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Abstract

Generative modeling methods can generate images from textual or visual
inputs. However, diversity in the generated images persists as a major
challenge of the existing approaches. In this work, we address this issue
head-on by demonstrating that: (a) the diversity of a generated batch of
images is intrinsically linked to the diversity within the latent variables;
(b) leveraging the geometry of the latent space, we can establish an effective
metric for quantifying diversity; and (c) employing this insight allows one
to achieve a significantly enhanced diversity in image generation beyond the
capabilities of traditional random independent sampling. This advancement
is consistent across a variety of generative models, including Generative Ad-
versarial Networks (GANs) and latent diffusion models. To facilitate further
research and application in this field, we are also releasing a comprehensive
package that enables easy reproduction of our experiments. We integrate our
contributions into a widely recognized tool for generative image modeling,
ensuring that our improvements are accessible to the broader community.

1 Introduction

Latent generative modeling involves learning a latent representation of the data that captures
its underlying structure and using this representation to generate new data points. Specifically,
the term “latent” refers to hidden variables or features that are inferred from the observed
data without being directly observed. In this context, latent generative modeling aims to
learn a model that map observed data into a latent space (LS), where each point represents
a set of underlying features or factors that explain the variation in the data. This latent
space has typically a lower dimension than the original one, which helps one capturing
essential features while reducing redundancy. Examples of latent generative models include
Variational Autoencoders (VAEs) [1] and Generative Adversarial Networks (GANs) [2]. A
major application of latent generative modeling is text-to-image synthesis [3, 4], frequently
referred to as “text2image”. This is a type of generative modeling where the goal is to
generate realistic images from textual descriptions. In this context, a model takes a textual
description as input and generates an image that corresponds to that description. While
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Figure 1: Left: General schema for diversity enhancement. A vanilla image generation
method is compared to a method with enhanced diversity. Instead of being randomly
generated, latent vectors are chosen on the basis of their pairwise distance, which results in
better image diversity. Right: Comparison of dispersion-with-big-conv and standard SD
(pure-random) for various prompts w.r.t the multiplicative percentage of batches containing
images with at least 2 different dominant colors for the following parameters: K = 1, batch
size = 50. In general we get better improvement for least represented groups.

latent generative modeling works well for text2image [3], it suffers from diversity loss and
mode collapse [5–8]. To alleviate these issues, we propose to replace the regular, pure random
generator of point configurations by another generator, that produces a well-distributed
point configuration. In particular, well-distributed point configurations [9] refer to the
arrangements of points in a space where the points are spread out evenly and uniformly,
often with respect to certain criteria or constraints.
The concept of well-distributed point configurations depends on the context and the specific
requirements of the application. Some common criteria for defining well-distributed point
configurations include:
1. Uniformity: Points should be distributed uniformly across the space, meaning that there
are no regions with significantly higher or lower point density compared to others.
2. Packing density: Points should be packed densely enough to cover the space adequately
but not so densely that they become clustered or overlapping. Achieving an optimal packing
density depends on the dimensions of the space and the desired properties of the point
configuration.
3. Symmetry: In some cases, symmetry or regularity in the arrangement of points is desired,
especially in geometric modeling or tessellation applications.
4. Smoothness: Points should be distributed smoothly across the space, without abrupt
changes in density or clustering.
Well distributed point configurations have been applied to many settings [9]. The literature
on well distributed point configurations contains only few tools for the case of small point sets
in high-dimensional spaces, and our goal is to fill this gap. Figure 1 provides a general scheme
for the application of well distributed point configurations to latent generative modeling
to improve the diversity of generated images, instead of 50 random independent images
usually used by existing approaches. More precisely, a well distributed point configurations
is generated in the LS, so that the batch of generated images is more diverse than in the
vanilla case. In the present paper, we analyze the max-pooling method [10], compared to
a vast sampling of tools for high-dimensional well distributed point configurations. After
careful examination, we show that dispersion combined with convolution (a) approximates
the performance of max-pooling in the low-dimensional case and (b) performs better in large
latent spaces used in modern latent diffusion models. We note that the method described
in [11] includes another strategy to ensure diversity; it considers a different context, and the
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proposed strategy is entangled in the diffusion process [12]. Due to this entanglement, [11]
cannot be applied to other methods, such as SDXL-Turbo [13].
The rest of this paper is organized as follows. Section 2.1 introduces the metrics for
assessing the quality of point configurations. We explore the metrics designed to evaluate
the distribution of images in Section 2.2. Section 3 describes the tools for generating well-
distributed point configurations, while Section 4 details the experimental results derived from
these tools. Appendix C discusses how our methodologies have been integrated into existing
codebases. Finally, a mathematical analysis of our findings is provided in Appendix L.

2 Measuring diversity

In this section, we present tools for measuring the point configurations diversity in the LS.
These tools are instrumental in the development of our sampling methods. Likewise, we use
them as a proxy to measure image diversity.

2.1 Figures of merit for point configurations: artificial metrics in the LS

Let µ be the Lebesgue measure on Sd, the unit sphere in Rd. Given a set S of distinct points in
Sd, S = {s1, . . . , sn}, defines the empirical measure associated to S ⊂ Sd as µ̂S(C) = #C∩S

#S .

The set of spherical caps for a threshold r is Cr = {{x ∈ Sd; x.u ≥ r}; u ∈ Sd}. All
the spherical caps for a same threshold r have the same measure. Cr is nontrivial if
r ∈ [−1, 1], and usual values lie in r ∈ [0, 1). This provides spherical cap diversity
measures for a point set S, namely mappings of the form u 7→ {x ∈ Sd; x.u ≥ r} which
carries the Lebesgue measure to Cr. Covering: average and worst case. We use an
average covering by default, i.e., covering(S) = Ex∈Sd infs∈S ||x − s||. We also consider a
worst case covering, namely supx∈Sd infs∈S ||x − s||. Packing/Dispersion. The packing,
packing(S) = − inf1≤i<j≤#S ||si − sj ||, is also based on a distance. The minus is used so
that all our metrics are to be minimized. We also consider an average packing, namely
avg-packing(S) = Ex,y∈S,x ̸=yx.y. Riesz. The Riesz potential is also based on a distance,
with Riesz(S) = −

∑
1≤i<j≤#S ||si − sj ||−s. We consider s = 1

2 , s = 1, s = 2. Extending
metrics using convolutions. Typically, the LS is a space of tensors of a given shape.
For example, some latent diffusion models use 64 × 64 × 4, where 64 × 64 corresponds to
spatial coordinates and 4 to the number of unordered channels. Different works [14, 10] have
shown the importance of the spatial proximity of the coordinates. Likewise, the authors
in [10] propose to group pixels in the LS by groups of 8 × 8. In this work, we propose to
use convolutions. Thus, instead of measuring a distance between x and y, we consider the
distance between conv(x, k) and conv(y, k), where k corresponds to a kernel for a Gaussian
blurring of some radius (8 by default) on the spatial coordinates. In our setting, BigConv
and MiniConv correspond to a radius of 24 and 2. Combining metrics. We also consider
the average between all the above metrics without considering any weight. More metrics are
presented in Appendix A.

2.2 Figures of merit for the diversity of images

We now consider diversity measures which are convenient for batches of images. Given a
batch B of images and a set S of classes, the diversity DivS,B (to be maximized) typically
comprises the number of elements in S which contain at least one element of B. This
diversity strategy can be used for different criteria, discussed below. For a given generator of
batches, B is a random variable, and by abuse of notation, DivS,B is used for the expectation
EDivS,B . We can consider a binary criterion with value 1 if the batch reaches some predefined
threshold and 0 otherwise. For example, we can consider the probability that we have at
least 2 or 3 classes (up to all classes) present in the batch, i.e., Divc

S,B = P (DivS,B > c).
Color diversity. To assess the color diversity in an image batch B, we employ a method
from [10] that involves extracting color information from each image in the batch using
the RGB color model, which represents colors as a combination of red, green, and blue
channels. We compute the mean value for each channel (red(I), blue(I), green(I)) in a given
image I, and identify whether one of these colors is predominantly present in the image: red

3



(resp. green, blue) is said to be dominant for a parameter K if red(I) ≥ K · green(I) and
red(I) ≥ K · blue(I). K > 1 corresponds to rarer classes, which can be relevant. We can
consider color diversity as follows:
• Div{Cr,Cg,Cb},B, where Cr = {I; red(I) > green(I) ∧ red(I) > blue(I)}, and Cg and Cb

the same with green or blue in the place of red.
• The case above leads to DivS,B ≤ 3: we can have max 6 classes (instead of 3) by
considering both which color is maximum and which color is minimum. In these examples,
except for equality cases, a class represents a partition.
• We can increase further the number of classes by considering classes of the form
Cred,green,K , denoting cases in which red(I) ≥ max(green(I), blue(I)) and red(I) >
K × min(green(I), blue(I)), and green(I) ≤ blue(I): there are 18 such classes when consid-
ering all colors and K ∈ {1., 1.1, 1.2}. For short, we denote this by Div18(B).
• We also consider a discretization of the vectors (red(I), green(I), blue(I)): each discretized
value leads to a class/partition. For example, we can consider the color diversity Divdepth=d

for various depth values d. Then, the classes are chosen as follows. The image is reduced to a
single pixel, encoded in three channels with 2d possible values. Thus, the maximum number
of classes is 23×d. Divdepth=d(B) is the number of classes observed at least once in B.
Ethnic diversity. In a real-world setting, we consider ethnicity for human faces, leading
to Divethnicity,B corresponding to 4 ethnicities (identified by DeepFace [15]). While the
first metrics have the advantage of being easy and fast to compute, the last one has the
advantage of being an example of a real-world metric. Many other diversity measures could
be considered, which we leave as future work.

3 Generators of well distributed point configurations

The state-of-the-art has predominantly focused on datasets with low-dimensional character-
istics, often yielding bounds that are non trivial only for large sample sizes. In the context
of this paper, methodologies tools such as Halton [16] and Sobol [17] are not applicable due
to the high-dimensional nature of the LS under study. We highlight four main methods
in this paper: covering, dispersion-with-big-conv, max and max-pooling. Table 12
in Appendix I describes the other strategies.
• The covering generator maximizes the covering criterion defined above.
• The dispersion-with-big-conv method minimizes the worst case dispersion, modified
by convolution with a kernel size (24, 24).
• In the max and max-pooling method [10], the “max” setting comprises a maximum
number of iterations in randomly searching for a new vector that would have a maximal
minimal distance to all the already selected vectors in the batch. The parameters of this
method are the target size of the batch B and a maximum number of iterations Nmax. In
the “max-pooling” version, the distance is computed after processing the vectors by the
average pooling on blocks of size 8 × 8 on the spatial coordinates, which down-samples the
vector size to 8 × 8 × 4 in the case of a LS shape of 64 × 64 × 4.

4 Experimental results

We emphasize in red our recommended methods: the covering method in the non-spatial
case (i.e., only channels as non-trivial dimensions) and the dispersion-with-big-conv
one in the spatial case, in green the max-pooling method, and in gray a pure random
strategy. Appendix D presents additional results in terms of artificial metrics, as presented
in Section 2.1. We focus here on diversity as measured on the images. In real-life, the batch
size varies from a few units to thousands (when people have converged to a prompt they
like, and create a big batch overnight). Consequently, we perform experiments with various
batch sizes. We consider generative models (Table 1), which convert a latent tensor and
possibly an input into an image: image = model(input, latent). Given a point set and a
classifier m with values in a finite set, we consider various diversity metrics Divm,S of the
set IS of images IS = {model(input, latent); latent ∈ S}, with S = {s1, . . . , sn}. Divm,S is
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Table 1: We consider spherical domains in the LS.
Model name Model type Input type Output type Latent Space
SDXL-Turbo text2image Text (prompt) Image 512 × 512 × 4

SD text2image Text (prompt) Image 64 × 64 × 4
BigGan class to image None Image 1 × 1 × 128

Figure 2: BigGan has 75 classes, studied separately in 75 columns. For each method (row)
and each BigGan class (col), we consider the average color diversity Div18. The score for that
method (e.g. 7.23 for pure-random) is then the average Div18 over the 75 classes. Methods
are ordered by average score (the greater, the better; best at the bottom). Batch size 48:
additional results and details in Fig. 9 in the appendix. Reading guide: pure-random has
7.23 classes on average, evaluated on 175800 batches. Overall, as shown by the results in
Appendix, our methods frequently outperform pure-random for BIGGAN but the gap with
pure-random is much lower than for latent diffusion models.

typically equal to the cardinal of {m(i); i ∈ IS} (on average, for a stochastic S). We refer
to Section 2.2 for all criteria.
We distinguish, in the following subsections two main categories of LSs: with and without
spatial coordinates.

4.1 BigGan: no spatial coordinate, 128 channels

We consider a LS with 128 channels and no spatial coordinate, with BigGan [18]. We present
the color diversity results in Fig. 2 (more results are illustrated in Fig. 9 in the appendix).
Overall, the covering method appears to be a reasonable criterion for this context, but the
success is moderate, and a greater gap is observed for latent diffusion models, as in the next
section.

4.2 Stable Diffusion: spatial coordinates 64x64, and 4 channels

Stable Diffusion (SD) is a text-to-image generation model that begins with a noisy LS
representation and progressively refines it into a coherent image. The LS is 64 × 64 × 4 in
dimensions, which is derived from compressing larger, high-resolution images (e.g., 512 ×
512 × 3). This model employs a reverse diffusion process. It starts with a compressed noisy
latent representation and then, gradually denoises it through a series of steps to form a
detailed image. If a batch of images needs to be generated, the same process applies to
each of them. We call this generation process pure-random. Color diversity. We aim
to determine the dominant colors in each image in each batch of generated images. We
define a dominant color based on the coefficient K, and calculate the diversity metrics.
The results for K = 1 (easier context, less differences between methods) are presented in
Fig. 1. Additional results are presented in Table 18 and Fig. 10 in the appendix. The
results for K=1.1 are presented in Table 2 and Fig. 3 (left), and in Fig. 11 in the appendix.
Finally, the results for K=1.2 are presented in Table 3 and Fig. 3 (right), and Fig. 12 in
the appendix. Ethnicity classification for images portraying humans. SD may lack
diversity in ethnicity representation as highlighted in [19]. That is why, for the prompts that
we use for the human face generation, we compare ethnic diversity when generating images
through our methods and through the basic version of SD (a.k.a. pure-random strategy). We
use DeepFace ethnicity recognition model [15] to identify the ethnicity of a person present
in an image. In particular, we consider the following groups of ethnicities: (i) Black, (ii)
Asian, (iii) Hispanic, (iv) White or Middle Eastern. We compute the percentage of batches
in which all the different ethnicities are present, or when at least 3 out of 4 ethnicities,
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Table 2: SD (LS 64x64). Comparison of different techniques for various prompts w.r.t the
percentage of batches containing images with at least 2 different dominant colors for the
following parameters: K = 1.1, batch size = 50; the methods are sorted by the average
percentage over the different prompts. 3s computational cost. More methods are compared
in Table 14 in the Appendix. Both max-pooling and dispersion-with-big-conv perform
significantly better than pure-random.

Mode bird butterfly cat horse rose
max-pooling 100.00 100.00 94.83±1.23 98.74±0.71 95.10±1.17
max 100.00 100.00 91.91±1.64 97.44±1.10 94.88±1.31
covering 99.26±0.33 100.00 77.26±1.20 96.06±0.70 85.73±1.09
dispersion-with-big-conv 100.00 100.00 93.02±1.37 96.65±1.06 87.09±1.68
dispersion-with_conv 100.00 100.00 91.09±1.49 97.18±0.90 84.52±1.74
dispersion-with_mini_conv 99.70±0.30 100.00 86.71±1.70 97.40±0.94 86.23±1.56
dispersion 99.49±0.30 100.00 77.83±1.28 92.83±0.94 83.56±1.21
pure-random 99.67±0.33 100.00 74.32±1.89 90.49±1.52 84.62±1.73
Riesz_ 99.70±0.21 100.00 77.32±1.16 95.21±0.78 84.02±1.09

Figure 3: Multiplicative improvement of percentage of image batches of size 50 that contain
images with dominance of different colors (at least 2 from 3): we compare dispersion-with-big-
conv vs pure-random. X-axis = proportion of satisfactory batches (defined as: at least two of
the three dominant colors for K = 1) in the pure random case. Y-axis: multiplication factor,
i.e., proportion for dispersion-with-big-conv divided by the proportion for pure-random (i.e.
> 1 means an improvement compared to pure-random). Left: K = 1.1. Right: K = 1.2. In
general we get better improvement for least represented groups (low percentage, i.e., left of
each subplot). Each dot represents a prompt from the list in Section N.

are present (similarly to colors). Tables 4 and 5 show that, in addition to our artificial
criteria (above), our approach can successfully improve the diversity of generated images for
real-world criteria.

Table 3: SD with LS 64x64. Comparison of different techniques for various prompts w.r.t
the percentage of batches containing images with 2 different dominant colors for the following
parameters: K = 1.2, batch size = 50; the methods are sorted by the maximum average
percentage across the different prompts. 3s computational cost. Both recommended methods
perform well for this 64x64 LS (512x512 images), with better results for max-pooling. More
methods are compared in Table 15 in the Appendix.

Mode bird butterfly cat horse rose
max-pooling 95.08±1.27 99.67±0.33 45.86±1.59 73.11±2.10 53.59±1.53
max 88.89±1.90 99.19±0.57 37.87±1.94 63.08±2.18 41.73±1.80
covering 76.93±1.25 76.30±1.22 9.86±0.97 21.66±1.21 36.80±1.11
dispersion-with_conv 77.53±1.82 75.43±1.91 15.51±1.74 31.03±1.79 40.65±1.66
dispersion-with-big-conv 77.34±1.94 77.41±1.87 16.61±1.79 22.30±1.97 41.72±1.66
dispersion-with_mini_conv 71.30±1.77 73.75±1.87 10.30±1.57 30.48±1.95 39.94±1.54
Riesz_ 78.36±1.25 75.48±1.21 9.04±0.93 25.40±1.24 36.08±1.09
pure-random 71.80±1.85 75.25±1.89 6.42±1.33 24.59±1.86 37.82±1.71
dispersion 75.81±1.35 72.53±1.23 9.12±0.96 23.99±1.28 34.56±1.22
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Table 4: SD with LS 64x64. Comparison of different modes for various prompts w.r.t. the
percentage of batches featuring people of all 4 ethnicity groups, batch size = 50, the methods
are sorted by the average percentage across the different prompts (the greater the better).
More methods in Table 16 (Appendix).

Mode
A close-up A passport-style A professional

facephotograph photograph photograph
of an elderly of a person’s of an adult
person’s face face person face

dispersion_with_big_conv 59.09±6.19 52.63±5.33 23.44±2.24 49.54±1.72
dispersion_with_mini_conv 63.64±6.50 40.00±5.87 22.69±2.20 46.81±1.94
dispersion_with_conv 50.00±4.73 46.15±5.26 28.02±2.13 39.57±1.93
pure_random 54.84±4.90 36.00±6.14 21.40±2.13 39.64±1.98
covering_ 42.47±3.33 33.68±3.22 20.10±1.32 45.50±1.06
dispersion 33.82±3.80 25.00±4.69 19.26±2.74 43.52±1.31

Table 5: SD (LS 64x64, i.e., images 512x512). Comparison of different modes for various
prompts w.r.t the percentage of batches featuring people of at least 3 out of 4 ethnicity
groups, batch size = 50. The methods are sorted by average percentage over the different
prompts. More methods are compared in Table 17 in the Appendix.

Mode
A close-up A passport-style A professional

facephotograph photograph photograph
of an elderly of a person’s of an adult
person’s face face person face

dispersion_with_big_conv 90.91±5.58 94.74±4.86 75.12±2.25 89.81±1.85
dispersion_with_mini_conv 90.91±5.58 92.00±5.00 76.39±2.22 86.70±2.15
covering_ 93.15±2.76 88.42±2.91 71.21±1.33 89.62±1.07
dispersion_with_conv 82.14±5.95 96.15±3.63 75.86±2.14 86.38±1.94
pure_random 93.55±4.13 88.00±5.73 69.43±2.12 87.84±1.93
dispersion 82.35±3.81 93.75±3.27 69.63±2.76 89.45±1.29

4.3 Statistics in Automatic1111/ SDXL-Turbo: LS 512x512x4, 3 seconds

Before integrating our work in main public codebases, we check that it also performs well
in a different contexts, including low batch size (8) and a different image generator (SDXL
Turbo). We limit the time to three seconds, which is negligible compared to the image
generation process in a MacBook Pro M1. We use the color diversity measure Divdepth=d

for various depth values d and compare in Table 6 (dispersion-with-big-conv) and Table 7
(max-pooling) the diversity of batches created by well distributed point configurations in
the case of this big latent spaces. As a baseline, we also use the same images randomly
grouped in batches of the same size. As demonstrated by the results, dispersion-with-big-
conv is always beneficial. Sometimes, in Section 4.2 with smaller latent spaces, max-pooling
was better: however, Table 7 (also Table 11 in the appendix) shows that for the same
parametrization (i.e. same pooling size 8 × 8) as in [10], or for a parametrization scaling
linearly with the spatial coordinates (i.e. 64 × 64-pooling as we switch from a 64 × 64 LS to a
512 × 512 LS), max-pooling fails in this high-dimensional context. We therefore recommend
dispersion-with-big-conv, which works over all tested settings, including cases with no spatial
coordinates (for which the convolution does not do anything); but then covering is usually
better (Section 4.1).

4.4 Image quality

We start the discussion with gradient-based methods (described in Appendix I). We observe
a big quality loss for images generated from latent variables created by those approaches.
This can be explained as follows: As noted in [10], points in the LS with large norm, though
they are theoretically possible in the Gaussian generator of latent variables, are rare, hence
the diffusion does not work when the norm is large. We need points which have (for example)
norm roughly

√
d in dimension d. This is aligned with the results observed in [10], as we

operate within a normalized space. However, a second property of almost all generated
points is that local averages (in the LS with spatial coordinates) are always close to 0. We
should not have more local uniformity than the traditional random points. We observe
that the gradient naturally “pushes” neighboring points in the same direction, leading to
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Table 6: Experiments on SDXL Turbo (LS 512x512). Diversity Divdepth for various depth
levels, for dispersion-with-big-conv and pure-random. All experiments with 800 images. Even
on this completely different setting, results are positive in all cases. We removed only the
cases in which all images were in the same class. Our approach was never detrimental.

Prompt Depth dispersion-with-big-conv Baseline

a beautiful woman
1 2.16 (±0.05) 2.08 (±0.02)
2 2.16 (±0.05) 2.10 (±0.02)
3 2.75 (±0.08) 2.63 (±0.02)
4 4.9 (±0.1) 4.74 (±0.03)

a handsome man
1 3.23 (±0.06) 3.09 (0.02)
2 3.23 (±0.06) 3.08 (±0.02)
3 3.83 (±0.08) 3.61 (±0.03)
4 5.42 (±0.1) 5.22 (±0.03)

a man and a woman
dancing together

1 3.31 (±0.07) 3.22 (±0.02)
2 3.31 (±0.07) 3.22 (±0.02)
3 4.95 (±0.09) 4.93 (±0.03)
4 6.2 (±0.1) 6.17 (±0.03)

a mma fight between
two pharaohs

1 2.24 (±0.04) 2.20 (±0.01)
2 2.24 (±0.04) 2.22 (±0.01)
3 3.55 (±0.07) 3.45 (±0.02)
4 5.46 (±0.1) 5.33 (±0.03)

a unicolor image
1 2.80 (±0.07) 2.70 (0.02)
2 4.79 (±0.09) 4.46 (±0.03)
3 7.05 (±0.09) 6.57 (±0.03)
4 7.84 (±0.04) 7.71 (±0.01)

unicorn + dragon
dancing in a magical

garden under a
rainbow

1 3.35 (±0.08) 3.23 (±0.02)
2 3.35 (±0.08) 3.22 (±0.02)
3 3.35 (±0.08) 3.23 (±0.02)
4 3.8 (±0.1) 3.64 (±0.03)

uniform local areas that diffusion approaches cannot handle. This leads to weird images, as
illustrated in Fig. 4. Figure 5 (appendix) shows that one cannot see any difference when using
gradient-free methods. Additionally, human-raters statistics, depicted in Table 8, pinpoint
that our method does not deteriorate the quality of the images.

4.5 Discussion

The case without spatial coordinates is dominated by covering, which is intuitively simple
and satisfactory. With spatial coordinates (as in most latent diffusion models), overall,
max-pooling from [10] performs very well in the setting of [10], i.e., with a relatively small
LS 64x64x4. In the case of 512x512x4, it becomes comparable, or even weaker, than pure-
random (Table 7 for the default parametrization; another scaling of parametrization is
presented in Table 11 in the appendix). Cap_pooling (proposed in [10]) sometimes has a
huge computational time, making it irrelevant in our high-dimensional context.

Table 7: Max-Pooling with 8x8 blocks vs random for 512x512 LS. We present the diversity
for a discretization of image colors as detailed in Section 4.3. 400 images per prompt. The
success of max-pooling (compared to pure-random) is questionable in this high-dimensional
LS context. Hence, our preference for the more robust dispersion-with-big-conv (see Table 6).

Prompt Depth Max-Pooling Baseline

a beautiful manga character
killing animals

1 2.46 (±0.08) 2.45 (±0.02)
2 2.46 (±0.08) 2.47 (±0.03)
3 2.46 (±0.08) 2.46 (±0.02)
4 3.7 (±0.1) 3.65 (±0.03)

a gothic witch laughing and
playing with a bazooka in the

middle of hell

2 1.08 (±0.04) 1.08 (±0.01)
3 3.44 (± 0.09) 3.46 (±0.02)
4 3.1 (± 0.1) 3.09 (± 0.04)

a man and a woman dancing
together

1 2.86 (± 0.09) 2.96 (± 0.03)
2 2.86 (± 0.09) 2.97 (± 0.03)
3 4.3 (±0.2) 4.36 (± 0.04)
4 5.3 (± 0.2) 5.47 (± 0.05)

an incredible image
1 1.48 (± 0.07) 1.48 (± 0.02)
2 1.48 (± 0.07) 1.46 (± 0.02)
3 2.9 (± 0.1) 2.88 (± 0.03)
4 4.0 (± 0.2) 4.13 (±0.05)
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Figure 4: Two first images: Examples of images obtained by SD on points obtained by
gradient-based methods, even after standardizing the norm: images do not make any sense.
Other images: examples of images generated by dispersion-with-big-conv with batch size 50
for prompts in Appendix N.2.

Table 8: Human ratings: statistics of preferences between SDXL Turbo, SDXL Turbo with
dispersion-with-big-conv. Counting no preference as 50%, this is 53.3 ± 2.1% preference
for the quality of our images. While this is not a statistically significant improvement, the
quality is at least preserved; furthermore, our other results show a significant improvement
in diversity, in particular in difficult cases. The exact question is “Do you prefer the image
on the right or on the left for prompt XXX ? (Left, Right, No opinion) ”

SDXL Turbo SDXL Turbo + dispersion-with-big-conv No preference
27.2% % 33.8% 39.0%

5 Conclusions

We applied well distributed point configurations for sampling LSs, for enhancing the diversity
of generated images. Compared to [10], we consider a broader range of cases (cases without
spatial coordinates and bigger LSs), and propose new methods. For the applications without
spatial coordinates, the covering method performs best overall; and, in contexts with spatial
coordinates, two strong methods are max-pooling and dispersion-with-big-conv. We note
that taking into account the topology of variables (by convolution or pooling) is essential
when working on LSs with spatial coordinates, and carefully choosing the size of convolution
matters. max-pooling is doing something similar to convolution, though by blocks, and
performs best for small LSs with spatial coordinates. For bigger LSs, dispersion-with-big-conv
performs best; and we did not find a case in which dispersion-with-big-conv is detrimental,
so we recommend it until better metrics are found. The case of gradient-based methods
shows that the selected metrics are not perfect. We need the LS to be roughly sampled as in
the original methods, and black-box optimization methods do that, whereas gradient-based
methods do not. A nice achievement would be to design a metric that would simultaneously
ensure diversity and quality: for the moment, only black-box optimization of our metrics was
good at preserving quality (as shown by the human ratings) while improving diversity. We
note that strong computational budgets do not have a clear positive impact, and results with
gradient-based methods (numerically excellent but leading to poor quality) even suggest that
over-optimizing can be detrimental: we recommend a time budget always tiny compared
to the image generation part, and even when using large batch sizes (> 500) never more
than a few seconds. A classical method for increasing the diversity is to add text suffixes:
e.g., different skin colors or genders. However, as shown by many recent counter-examples
recently [20], this has several drawbacks, such as unrealistic outputs. Future work. A
recent paper [14] proposed to use user preferences for guiding local perturbations in the LS:
combining such approaches with our tools are a natural further work. The present work
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is a step in very high dimensional well distributed point configurations: maybe the same
methods could be applied to other unexplored areas of applied mathematics. Limitations.
Our work can not create images that can not be created by the original model, or concepts
unavailable in the original training data. Our method has a big impact for rare classes in
latent diffusion models, but a moderate (though beneficial) impact on GANs. For small
latent spaces, Max-Pooling is frequently better than our proposal.
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A Figures of merit for point configurations: additional artificial
metrics

Cap discrepancy. The spherical cap discrepancy or cap discrepancy, for a threshold r, is defined
in the present paper as the variance Discr = V arc∈Cr µ̂S(c). By default, we use r = rd = 1√

d
, so

that the cap discrepancy is for us Discrd .
This cap discrepancy has the advantage that it is easy to compute. Other cap discrepancies might
consider E(µ̂S(C) − µ(C))2, which is equivalent.
Half-sphere discrepancy. The half sphere discrepancy is the special case Disc0 of cap discrepancy.

B Examples of generated images

In Figure 5 we provide some examples of images generated by SDXL Turbo.

Figure 5: Images generated by SDXL Turbo (left of each pair) and SDXL-Turbo with
dispersion-with-big-conv (right of each pair). Prompts: “a landscape from a planet in outer
space”, “a unicorn and a dragon dancing in a magical garden under a rainbow”. No clear
difference spotted. Human rates (Table 8) do not show a clear preference at the level of
individual images either.
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C Integration in public codes and reproducibility

We provide our tools as a module in Nevergrad (starting from version 0.15.0). Given a batch of latent
variables, with a shape (n, s1, s2, . . . , sk, c) the code will assume that we have n latent variables with
shape (s1, s2, . . . , sk, c) with si spatial coordinates and c the number of channels. A convolution will
be applied on s1, . . . , sk (at least if k ≥ 1) where the last coordinate will be considered as channels.
The code is as follows:

import nevergrad as ng
my_latent = ng . common . quasi_randomize ( my_latent )

The code is publicly available in [21] and as plugins for well known codes such as Automatic1111 ,
link https://github.com/mathuvu/sd-webui-diversity.
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D Additional experimental results: artificial metrics in the LS

Figure 6: Comparison between generators of well distributed point configurations (rows) for
artificial metrics (columns), in the case 64x64x4 corresponding to StableDiffusion. Numbers
= proportion of methods which did better than this method for this criterion, i.e. 50% of
methods did better than dispersion-with-big-conv for the metric packing-with-conv. Batch
size 48. Scores = average per row, used for ranking, so that low values (at the top) are
better.

Figures 6 to 8 present artificial metrics. Each column corresponds to a different figure of merit for
well distributed point sets. Each row corresponds to a method. Each number qm,c in the heatmap
corresponds to the proportion of methods doing better than method m for that metric c: the lower
the better. Methods (rows) are ranked by averages of qm,c and this average is mentioned next to their
name. Figure 6 presents results for an image LS corresponding to StableDiffusion, namely 64x64x4.
Our observations are straightforward. Good designs in terms of spherical cap discrepancy with
convolution, or worst-case packing with convolution, are difficult to obtain without optimizing that
specific criterion. Spherical cap discrepancy is very low (i.e. good) when we optimize the covering,
and more unexpectedly, designs created by LHS also perform well for this criterion. 2-antithetic
(simple centered symmetry) is excellent for half-sphere discrepancy (including with convolution),
average packing (also including with convolution). Covering or dispersion are good for worst case
packing, and more unexpectedly latin hypercube sampling is also good for this criterion. Fig. 7
and 8 present results for channels only, i.e., shapes of the form 1 × 1 × c. Also, we note that no
artificial metric is really good at predicting if a point configuration is good for the image generation
that follows. Packing with average looks not too bad, but gradient method are a counterexample: it
turns out that the way we optimize a criterion has an impact on the usability of generated points
by latent diffusion models. This shows that criteria are not perfect (see Section 4.4).
As expected, antithetic sampling performs well for half-spheres discrepancy and for average packing,
and optimizing the sum of all metrics is effective for being reasonably good on all metrics. Most
methods are worse than random for at least one metric: this shows the complexity of high-dimensional
point configurations.
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384
points, shape (1,1,3) 48 points, shape (16,16,2)

6 points, shape (32, 32, 4) 96 points, shape (32,32,4)

Figure 7: Additional comparisons between generators of well distributed point configurations
(rows) for artificial metrics (columns): similar to Fig. 6 but with different batch sizes and
shapes. Low values (at the top) are better.
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12 points, shape (32,32,2) 12 points, shape (32,32,3)

50 points, shape (64,64,3) 12 points, shape (64,64,4)

Figure 8: Additional comparison between generators of well distributed point configurations
(rows) for artificial metrics (columns). Similar to Fig. 6 and Fig. 7 but with different batch
sizes and shapes. Low values (at the top) are better.
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E Additional results on BigGan

Figure 9 extends Fig. 2 (diversity Div18 for BigGan) by considering several batch sizes.
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Figure 9: Extension of results with BigGan in Fig. 2, for batch size 24, 48, 96, 192, and 384.
The 75 BigGan classes are studied separately in 75 columns. For each method (row) and
each BigGan class (col), we consider the average color diversity Div18. The score for that
method is then the average Div18 over the 75 classes. Methods are ordered by average score
(the greater, the better; best at the bottom). Results are good for the covering method on
average (or almost equal performance), but the difference is small, compared to cases with
spatial latent classes for which there is a big difference. 22200 refers to the time budget in
centiseconds.

F Results with 3s, 6 cores, Stable Diffusion with LS 64x64x4

Results are also positive with a limited computational power (Tables 9 and 10).
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Table 9: SD with LS 64x64x4. Percentage of image batches of size 50 that contain at least one
image with dominance of each color (Red, Green, Blue), k = 1.1. Number of cores: 6. Average
latent vector generation time for different methods: 0s for pure-random, 2s for dispersion-
with-big-conv, 3s for max-pooling, 3s for max. Even with very limited computational power,
dispersion-with-big-conv improves the color diversity w.r.t pure-random.

Mode butterfly cat
ng_ 75.69±2.41 12.70±2.11
dispersion-with-big-conv 80.28±3.79 8.05±2.68
dispersion 77.56±2.26 10.43±1.89
covering 73.45±1.96 12.50±1.73
rs_ 75.34±0.92 9.36±0.76
greedy_dispersion-with-big-conv 67.37±3.24 16.98±3.03
dispersion-with_conv 70.75±3.13 13.19±3.08
greedy_dispersion-with_mini_conv 73.00±3.24 10.23±2.91
antithetic_pm 74.19±3.37 6.38±2.36
greedy_dispersion 73.96±3.31 6.25±2.54
dispersion-with_mini_conv 69.15±3.30 11.00±2.78
pure-random 74.12±3.53 6.00±2.23
Riesz_ 6.60±0.42 2.19±0.25

Table 10: SD with LS 64x64x4. Percentage of image batches of size 50 that contain at
least one image with dominance of each color (Red, Green, Blue), k = 1.2. Number of
cores: 6. Average latent vector generation time for different methods: 0s for pure-random,
2s for dispersion-with-big-conv, 3s for max-pooling, 3s for max.Dispersion-with-big-conv
outperforms pure-_random for the color diversity.

Mode butterfly cat
dispersion-with-big-conv 44.78±11.47 0.00±1.00
ng_ 39.18±7.76 1.59±3.06
antithetic_pm 36.96±10.85 1.11±3.74
greedy_dispersion-with-big-conv 37.89±10.57 0.00±1.00
rs_ 36.99±2.99 0.84±0.03
covering 35.63±6.53 1.43±2.39
greedy_dispersion-with_mini_conv 36.84±10.69 0.00±1.00
dispersion-with_mini_conv 32.58±11.45 1.00±1.00
dispersion 32.83±7.67 0.49±0.06
greedy_dispersion 31.18±11.31 1.25±4.20
pure-random 29.63±12.21 0.00±1.00
dispersion-with_conv 27.45±10.96 0.00±1.00
Riesz_ 3.04±1.04 0.03±0.01

G Additional experiments with dispersion-with_conv

Our main focus is on the more successful dispersion that one obtain with Big Conv. Thus, we check
if variants (such as dispersion-with_conv) are also robust enough for being beneficial or at least
non-detrimental. We observe in Figs. 10 to 12 that dispersion-with_conv becomes better and better
for more difficult cases, compared to pure random. Additionally, when the classes are rare, the
frequency has a multiplicative effect.
Diversity improvement for different time settings. Here we detail an experiment that aims
at exploring the impact of time on color diversity in the generated images. The results are presented
in Figs. 13 and 15 for the “dispersion-with_conv” and “dispersion-with-big-conv” methods.
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Figure 10: SD with LS 64x64x4. Comparison of dispersion-with-conv and standard SD
(pure-random) for various prompts w.r.t. the multiplicative percentage of batches containing
images with all 3 dominant colors for the following parameters: K = 1, batch size = 50. In
general we get better improvements (greater y-axis) for the most difficult cases (low x-axis
value).
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Figure 11: SD with LS 64x64x4. Comparison of dispersion-with_conv and standard SD
(pure-random) for various prompts w.r.t the multiplicative percentage of batches containing
images with at least 2 of the 3 different dominant colors for the following parameters: K = 1.1,
batch size = 50. In general we get better improvements (greater y-axis values) for least
represented groups (lower x-axis values).
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Figure 12: SD with LS 64x64x4. Comparison of dispersion-with_conv and standard SD
(pure-random) for various prompts w.r.t regard to the multiplicative percentage of batches
containing images with at least 2 different dominant colors for the following parameters:
K = 1.2, batch size = 50. In general we get better improvements (greater y-axis values) for
least represented groups (lower x-axis values).
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Figure 13: SD with LS 64x64x4. This figure shows the variation in color diversity depending
on the computational cost for the ’dispersion-with_conv’ method. It compares the improve-
ment in color diversity against the ’pure-random’ baseline, demonstrating a slight increase in
the percentage of image batches containing all dominant colors as the computational budgets
progresses: we do not need a big computational power. In Section 4.3, we also show that 3s
is enough for an impact on a larger LS 512x512x4 as the one of SDXL Turbo.
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H Additional experiments with max-pooling

The max-pooling method, successful in the 64x64x4 LS, is tested in the present 512x512x4 case.
We test both 8x8 pooling (as in the 64x64 LS), and 64x64 pooling (i.e., scaling the size of blocks
proportionally to the LS size).
We observe in Table 7 (with 8x8 blocks, so without scaling the block size when moving from 64x64
to 512x512) that results are not good for max-pooling when the LS is large.
We can also note in Table 11 that scaling the kernel size from 8x8 to 64x64 (when switching from
a LS with spatial coordinates 64x64 to a LS with spatial coordinates 512x512) does not make
max-pooling much better than random either (we tested a 8x8 kernel, i.e., no scaling proportionally
to the LS spatial coordinates.)

Table 11: max-pooling with 64x64 blocks vs random for 512x512 LS. We present the diversity
for a discretization of image colors by depth as detailed in Section 2.2 and num classes refers
to the number of classes that are represented at least once in our tests (num classes at most
23×d for a depth d, by definition of discretization at d bits with 3 colors).

Depth max-pooling pure-random
Prompt = a gothic witch laughing and playing with a bazooka in the middle of hell

( num classes: 5, depth 3 )
3 3.300 ( 0.086897 ) 3.311667 ( 0.026412 )

( num classes: 9, depth 4 )
4 3.020 ( 0.122857 ) 3.001667 ( 0.033236 )

a unicolor image
( num classes: 5, depth 1 )

1 2.700 ( 0.095831 ) 2.690 ( 0.029855 )
( num classes: 11, depth 2 )

2 3.960 ( 0.133890 ) 3.933333 ( 0.038159 )
( num classes: 26, depth 3 )

3 5.600 ( 0.145686 ) 5.648333 ( 0.041561 )
( num classes: 83, depth 4 )

4 7.540 ( 0.081866 ) 7.311667 ( 0.030518 )
Prompt=an incredible image
( num classes: 3, depth 1 )

1 1.420 ( 0.070508 ) 1.480 ( 0.021215 )
( num classes: 3, depth 2 )

2 1.420 ( 0.070508 ) 1.476667 ( 0.021470 )
( num classes: 6, depth 3 )

3 2.720 ( 0.127903 ) 2.846667 ( 0.034424 )
( num classes: 15, depth 4 )

4 4.120 ( 0.172946 ) 4.108333 ( 0.045497 )
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I Additional information on methods

Table 12 presents the methods used in the present paper, in particular those not developed in the
main text.
Most of our results are based on ad hoc methods for specific criteria or black-box optimization
based on [21]. However, we also include methods using gradient-based optimization, for the Riesz
potential methods. They have “Riesz_” as a prefix. Figure 4 shows a typical, weird result obtain by
these gradient-methods. We explain why we get such results in Section 4.4.
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Table 12: The point generators that we consider. All metrics are considered after normal-
ization of points to norm 1 and all outputs are rescaled for a norm as expected by the
latent2image converter. For illustration purpose, the numbers proposed as prefix for the
Antithetic methods correspond to the degree of antithetic methods in the case of 64x64x4
tensors. Channel: a channel is a tensor of variables corresponding to each index of the last
dimension (there are 4 channels in 64x64x4). Spatial coordinates: the coordinates except the
last one which corresponds to channels. For RandomSearch and Nevergrad, detailed names
of methods are provided in Table 13.

Generator Method
Pure random Randomly generate (normal sampling) n points.

Antithetic methods
2-Antithetic Randomly draw n/2 points x1, . . . , xn/2, add their opposite

−x1, . . . , −xn/2
24-Antithetic (a.k.a. big block sym-
metries)

Define s the last tensor dimension (4 for 64x64x4), define k = s!,
randomly draw n/k points, and for each of them consider the k
permutations of the last tensor indices: this corresponds to channels.

65536-Antithetic (a.k.a block sym-
metries)

Split the first and second tensor dimensions in 4, get a partition of
the tensor scalars into 16 blocks. This leads to 216 symmetries by
replacing any of these blocks by its opposite. Now, when we generate
a point, we also consider these 216 symmetries.

16-Antithetic Split the first and second tensor dimensions in 2, get a partition of the
tensor scalars into 4 blocks. This leads to 24 symmetries by replacing
any of these blocks by its opposite. When we generate a point, we
also consider these 24 symmetries.

Metric-based methods
Without convolution: use the Euclidean norm.
With convolution: use the Euclidean norm after convolution over the 2 first coordinates
Greedy dispersion Generate the first point at random, then each point maximizes its

minimum distance to previous points.
Dispersion (packing) Same initialization as greedy dispersion, and then optimize the dis-

persion globally: we maximize min1≤i̸=j≤n ||si − sj ||.
Covering Same initialization as greedy dispersion, and then randomly move

points as in K-means algorithms for optimal covering (min average
squared distance to the domain): we minimize Es min1≤i≤n ||s−si||2.

Optimizing metrics by black-box optimization (Section 2.1)
Without convolution: use the Euclidean norm.
With convolution: use the Euclidean norm after convolution over the 2 first coordinates
Random search Exists for all metrics,

and RS-ALL optimizes on average over all metrics
Nevergrad Same, but with optimization by Nevergrad

Other methods
LHS For each variable, randomly draw n points for each coordinate, one in

each of the n quantiles (randomly ordered) of the standard Gaussian
distribution. Then project radially to Sd.

Jittered Partition the sphere using the signature of a point: the signature
is the ranking (among 24=4! possible values) of the 4 sums of the
channels over each of the 4x4=16 squares partitioning the 2 first
spatial coordinates. Then, draw points in (randomly ordered) parts
of the partition, one at a time; repeat if not enough.

Reduced-Jittered Same with 2x2=4 squares partitioning the 2 first spatial coordinates.
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Table 13: Naming of our random search search for creating point configurations. Methods
with NG as prefix instead of RS refer to Nevergrad counterparts. In many figures, ng_ is an
average of all methods starting with ng_ and rs_ is an average of all methods starting with
rs_: the differences usually did not justify using more space. Methods with Riesz as a prefix
are methods with gradient.

Name Method

RS-Pack Random search for the Packing metric.
RS-Cap Random search for the spherical Cap metric (r = 1/

√
d).

RS-Cc Random search for the covering metric with Convolution
RS-Pac Random search for the Packing, with Average and Convolution

RS-Mhc Random search for the Metric with Half spherical caps (r = 0) with Convolution
RS-metric Random search for the half spherical caps (r = 0)

RS-ALL Random search for the sum of all metrics above
RS Random search for the spherical cap metric r = 0

RS-Pc Random search for the Packing, with Convolution
RS-Pa Random search for the Packing, with Average

RS-RA Random search for the Riesz potential with s = 1
RS-RA2 Random search for the Riesz potential with s = 2

RS-RA05 Random search for the Riesz potential with s = 0.5
RS-RAC Random search for the Riesz potential with s = 1 with convolution

RS-RAC2 Random search for the Riesz potential with s = 2 with convolution
RS-RAC05 Random search for the Riesz potential with s = 0.5 with convolution
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J Bird’s eye view

Figure 14 presents a bird’s eye view of our approach.
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Figure 14: Top: SD, the pure random case.
• The process starts with a text prompt (e.g., "cat") and initial noise.
• The noise is then processed through a series of latent vectors, each sized 64 × 64 × 4.
• Through the diffusion process, these latent vectors are transformed step by step into

a coherent image of a cat with dimensions 512 × 512 × 3 pixels.
Bottom: SD, Diversity Enhancement Mode with x × y × z pooling.

• Similar to the pure random process, it begins with the same text prompt and noise.
• Instead of a single chain of transformations, multiple latent vectors undergo parallel

diffusion processes.
• An additional pooling step (x × y × z pooling) is employed, where various features

from the parallel latent vectors are combined or selected to enhance diversity.
• A diverse set of latent vectors is chosen according to the required batch size.
• This results in a diverse array of images, exemplified here by two different cat images,

both with dimensions 512 × 512 × 3 pixels, but with distinct visual characteristics.

K Figure illustrating the impact of the computational cost

Figure 15 shows that a moderate computational budget does not prevent the method from being
effective. We note that Section 4.3 shows that three seconds are enough to obtain positive results
even when using the large LS of SDXL Turbo (512x512x4).
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Figure 15: This figure illustrates the change in color diversity (SD with LS 64x64x4)
depending on the computational cost for the ’dispersion-with-big-conv’ method. Similarly to
the ’dispersion-with_conv’ method, there is a noticeable improvement in the percentage of
image batches with complete color representation compared to the ’pure-random’ approach,
increasing slightly with the computational budget.

L Mathematical analysis

Given classes C = {C1, . . . , Cm}, such that ∀j, Cj ⊂ Sd, the average match M(S, C) of a stochastic
point configuration S of cardinal n is the expected cardinal E#{i; 1 ≤ i ≤ m ∧ Ci ∩ S ̸= ∅}. By
definition, 0 ≤ M(S, C) ≤ m. If C is a partition and n > 0, then 0 < M(S, C). So, we use
Divx 7→(χCi

)1≤i≤m
S = M(S, C). We call pure random sampling the random independent uniform

sampling of Sd.
For each sampling that we have defined, it is easy to create an example in which it performs vastly
better than random, i.e., M(S, C) >> M(pure-randomn, C) (with n the cardinal of the stochastic
point configuration S). We check whether, for some stochastic point configuration S of cardinal n,
it is possible to have counter-examples with M(S, C) < M(pure-randomn, C).

L.1 Properties

2-antithetic is perfect for half-sphere discrepancy, in the following sense: for all half-sphere, S puts
half points in it. We can also understand why, for n = 3 and d = 2, the greedy dispersion method
performs weakly: the 3 points are in the same half.

L.2 Counterexample for all antithetic systems

Define an antithetic sampling of n points as follows. The sampling depends on a homeomorphism π
from Sd to Sd, such that there is π0 ⊂ Sd of measure 1/k such that Sd =

⋃
0≤i<k

{πi(x); x ∈ π0}.
Assuming that k divides n, we sample n/k points b1, . . . , bn/k uniformly in π0 and the sampling
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is {πi(bj); i < k, j < n/k}. We note this sampling antitheticn,π,π0,k (n points, k strata, π0 first
stratum, π homeomorphism covering all strata).
Then, as an example in which antithetic sampling performs very well, we consider classes C =
{C1, . . . , Cm} with m = k exactly matching the πi(π0) (i.e., Ci = πi(π0) with C0 := Cm), then
n ≥ k implies that all classes are present in a batch of size n. This is the best case.
Now, let us consider the counter-example. It will be the opposite of the previous case: classes
C1, . . . , Cm are equally distributed over the Jj , and with a special positioning related to π as follows.
Proposition 1 (Antithetic sampling has counter-examples). Given k > 1, n/k > 1, n multiple of
k, then for all antithetic sampling a = antitheticn,π,π0,k of Sd of cardinal n, there exists a partition
C = {C1, . . . , Ck} of Sd such that M(a, C) < M(pure-randomn, C).

Proof. Given a = antitheticn,π,π0,k of cardinal n > k > 1 and n multiple of k, we build a partition
C = {C1, . . . , Cm} of Sd such that M(a, C) < M(a, pure-randomn). If we consider classes with the
same measure (i.e., ∀i, j, µ(Ci) = µ(Cj)), and each class Cj is the union

⋃
i
πi(Cj ∩ π0) for i < k.

Therefore:

• The number of classes found in the batch is equal to the number of classes found in the
intersection of the batch and of π0, i.e. M(S, C) = M(S ∩ π0, C).

• This number is therefore equal to the number of classes found in a pure random batch of
size n/k.

Therefore, M(antitheticn,π,π0 , C) = M(pure-randomn/k, C) < M(pure-randomn, C) if k > 1 and
n > k.

L.3 Counterexamples for packing, average covering and worst-case covering

Consider d = 2 and n ≥ 2. The maximum packing or covering (average or worst case) is equivalent
to antithetic sampling and has the same counter-example as in Section L.2.

L.4 No counterexample for jittered sampling

We consider Jittered sampling as follows:

• Consider a partition J1, . . . , Jk of Sd, with all Jj having the same measure.
• Assuming that k divides n, we randomly, uniformly and independently draw n/k points in

each Jj : xi is drawn in Jj if k|(i − j).

We call this the jittered sampling of Sd and denote it JitteredJ,k,n.
Proposition 2 (No counter-example for jittered sampling). Consider a partition C = {C1, . . . , Cm}
of Sd. Consider a jittered sampling for a partition J of cardinal k with n multiple of k. Then,
M(JitteredJ,k,n, C) ≥ M(P Rn, C).

Proof. M(Jittered, C) is, by definition, the sum over i ∈ {1, . . . , m} of the P (S ∩ Ci ̸= ∅), with S
the jittered sampling:

M(Jittered, C) =
∑
i≤m

P (S ∩ Ci = ∅).

With Jittered sampling, the probability qi of missing class Ci is qi = 1 − P (S ∩ Ci ̸= ∅) =
1 − πk

j=1(1 − P (xj ∈ Ci))n/k. Consider a fixed i, with pj,i = P (xj ∈ Ci), then we have Eq. 1 and
Eq. 2:

∂qi

∂pj,i
= − nqi

k(1 − pj,i)
(1)

k∑
j=1

P (xj ∈ Ci) = kµ(C) (2)

We apply the Karush-Kuhn-Tucker conditions to Eqs. (1) and (2), leading to the existence of λ such
that ∀1 ≤ i ≤ m, ∀1 ≤ j ≤ k, (1 − pi,j) = λqi. This shows that the minimum of

∑
i
qi is reached
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when, for each i, all the pj,i are equal, which means that Ci ∩ Jj has the same measure for all j:
this is equivalent to the pure random case.
Therefore, qi ≤ µ(Ci)/µ(Sd), and M(Jittered, C) =

∑
(1 − qi) ≥ M(P Rn, C).

L.5 Counter-example for Latin Hypercube Sampling

Consider dimension 2 (the unit circle of dimension 1 in R2) and 4 points. Consider 2 classes: the
class of a point (x, y) is the sign of x × y. Consider, without loss of generality, that the values for
the first coordinates are in increasing order, with the two first negative and the two last positive.
Then, the probability of all points in the same class is 1/8 for pure random. Therefore the expected
number of classes is 1

8 + 2 7
8 = 15

8 .
For Latin Hypercube Sampling, the following holds:

• The probability of having the second point with the same class as the first one is 1/3.
• If the two first points have the same class, the probability of having the third point in the

same class as the two first points is 100%.
• If the three first points have the same class, the probability of having the fourth point in

the same class as the three first points is 100%.

Therefore the average number of classes is 1
3 + 2 × 2

3 = 5
3 .

15
8 > 5

3 , hence the expected result.

M Additional tables: results on stable diffusion

Table 18 shows that even in an easy context (K = 1 implies that classes are less rare) our method
remains beneficial.

Table 14: Full version of the Table 2 in the main paper. SD (LS 64x64). Comparison of
different techniques for various prompts w.r.t the percentage of batches containing images
with at least 2 different dominant colors for the following parameters: K = 1.1, batch size
= 50; the methods are sorted by the average percentage over the different prompts. 3s
computational cost. ng_ is an average of all methods starting with ng_ and rs_ is an
average of all methods starting with rs_, as detailed in Table 13. Both max-pooling and
dispersion-with-big-conv perform significantly better than pure-random.

Mode bird butterfly cat horse rose
max-pooling 100.00 100.00 94.83±1.23 98.74±0.71 95.10±1.17
max 100.00 100.00 91.91±1.64 97.44±1.10 94.88±1.31
covering 99.26±0.33 100.00 77.26±1.20 96.06±0.70 85.73±1.09
dispersion-with-big-conv 100.00 100.00 93.02±1.37 96.65±1.06 87.09±1.68
dispersion-with_conv 100.00 100.00 91.09±1.49 97.18±0.90 84.52±1.74
dispersion-with_mini_conv 99.70±0.30 100.00 86.71±1.70 97.40±0.94 86.23±1.56
greedy_dispersion-with_mini_conv 100.00 100.00 83.14±1.67 95.88±1.12 85.00±1.65
greedy_dispersion-with-big-conv 99.73±0.27 100.00 79.18±1.88 94.77±1.25 87.65±1.58
ng_ 99.63±0.22 100.00 76.91±1.06 94.76±0.74 84.18±1.02
antithetic_pm 100.00 100.00 79.14±1.85 93.49±1.36 89.75±1.52
lhs 100.00 100.00 79.70±1.95 93.31±1.38 83.88±1.69
greedy_dispersion 100.00 100.00 78.29±1.85 93.04±1.34 83.96±1.73
dispersion 99.49±0.30 100.00 77.83±1.28 92.83±0.94 83.56±1.21
jittered 100.00 100.00 76.73±1.43 93.97±0.94 86.07±1.26
rs_ 99.62±0.12 100.00 75.80±0.62 92.97±0.47 83.63±0.58
pure-random 99.67±0.33 100.00 74.32±1.89 90.49±1.52 84.62±1.73
Riesz_ 99.70±0.21 100.00 77.32±1.16 95.21±0.78 84.02±1.09
big_block_symmetry 97.59±0.88 100.00 65.23±1.79 81.90±1.78 70.33±1.75
block_symmetry 92.43±1.37 99.68±0.32 61.81±1.63 77.42±1.84 66.57±1.73
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Table 15: Full version of the Table 3 in the main paper. SD with LS 64x64. Comparison of
different techniques for various prompts w.r.t the percentage of batches containing images
with at least 2 different dominant colors for the following parameters: K = 1.2, batch size
= 50; the methods are sorted by the average percentage over the different prompts. 3s
computational cost. Both recommended methods perform well for this 64x64 LS (512x512
images), with better results for max-pooling.

Mode bird butterfly cat horse rose
max-pooling 95.08±1.27 99.67±0.33 45.86±1.59 73.11±2.10 53.59±1.53
max 88.89±1.90 99.19±0.57 37.87±1.94 63.08±2.18 41.73±1.80
covering 76.93±1.25 76.30±1.22 9.86±0.97 21.66±1.21 36.80±1.11
dispersion-with_conv 77.53±1.82 75.43±1.91 15.51±1.74 31.03±1.79 40.65±1.66
dispersion-with-big-conv 77.34±1.94 77.41±1.87 16.61±1.79 22.30±1.97 41.72±1.66
dispersion-with_mini_conv 71.30±1.77 73.75±1.87 10.30±1.57 30.48±1.95 39.94±1.54
greedy_dispersion-with_mini_conv 76.79±1.77 74.70±1.79 10.57±1.47 20.96±1.89 39.41±1.60
greedy_dispersion-with-big-conv 79.57±1.66 70.76±1.74 13.65±1.73 24.04±1.92 37.65±1.66
Riesz_ 78.36±1.25 75.48±1.21 9.04±0.93 25.40±1.24 36.08±1.09
greedy_dispersion 80.95±1.79 74.83±1.90 9.87±1.54 24.05±1.82 38.68±1.68
lhs 79.74±1.83 78.03±1.85 8.49±1.55 22.89±1.92 34.63±1.70
ng_ 76.15±1.15 76.34±1.13 9.24±0.86 21.56±1.13 36.17±1.02
rs_ 77.26±0.63 73.12±0.63 9.23±0.50 23.92±0.64 35.48±0.58
pure-random 71.80±1.85 75.25±1.89 6.42±1.33 24.59±1.86 37.82±1.71
jittered 77.25±1.42 75.00±1.43 7.69±1.08 25.53±1.37 33.39±1.32
dispersion 75.81±1.35 72.53±1.23 9.12±0.96 23.99±1.28 34.56±1.22
antithetic_pm 77.22±1.94 75.66±1.76 9.27±1.52 22.60±1.90 35.71±1.72
block_symmetry 52.37±1.47 52.06±1.47 6.41±1.24 19.35±1.81 24.01±1.78
big_block_symmetry 52.07±1.53 58.31±1.58 7.28±1.38 12.70±1.64 17.21±1.70

Table 16: Extended version of the Table 4 in the main paper. SD with LS 64x64. Comparison
of different modes for various prompts w.r.t. the percentage of batches featuring at people
of all 4 ethnicity groups, batch size = 50, the methods are sorted by the average percentage
over the different prompts.

Mode
A close-up A passport-style A professional

facephotograph photograph photograph
of an elderly of a person’s of an adult
person’s face face person face

dispersion_with_big_conv 59.09±6.19 52.63±5.33 23.44±2.24 49.54±1.72
dispersion_with_mini_conv 63.64±6.50 40.00±5.87 22.69±2.20 46.81±1.94
dispersion_with_conv 50.00±4.73 46.15±5.26 28.02±2.13 39.57±1.93
pure_random 54.84±4.90 36.00±6.14 21.40±2.13 39.64±1.98
jittered_ 42.00±3.85 43.18±4.25 21.62±1.51 43.02±1.35
ng_ 42.22±4.26 38.46±3.70 21.90±1.74 47.18±1.25
greedy_dispersion_with_mini_conv 42.11±6.55 30.56±5.34 26.61±2.13 48.65±2.44
lhs 53.85±5.27 23.08±6.36 20.00±2.13 45.90±3.45
greedy_dispersion_with_big_conv 42.86±5.35 27.59±6.01 24.55±2.20 47.75±1.75
covering_ 42.47±3.33 33.68±3.22 20.10±1.32 45.50±1.06
rs_ 39.20±2.24 35.29±2.17 20.71±0.82 44.71±0.72
big_block_symmetry 40.00±5.87 32.35±5.43 29.41±7.80 36.17±4.49
greedy_dispersion 35.00±6.93 32.26±5.71 27.48±2.20 42.55±1.86
block_symmetry 31.25±7.97 35.00±6.93 19.00±2.13 45.50±1.92
dispersion 33.82±3.80 25.00±4.69 19.26±2.74 43.52±1.31
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Table 17: Extended version of the Table 5 in the main Paper.SD (LS 64x64, i.e., images
512x512). Comparison of different modes for various prompts w.r.t the percentage of batches
featuring at people of at least 3 out of 4 ethnicity groups, batch size = 50, the methods are
sorted by the average percentage over the different prompts.

Mode
A close-up A passport-style A professional

facephotograph photograph photograph
of an elderly of a person’s of an adult
person’s face face person face

greedy_dispersion 95.00±4.63 96.77±3.08 77.03±2.18 88.09±1.87
dispersion_with_big_conv 90.91±5.58 94.74±4.86 75.12±2.25 89.81±1.85
jittered_ 92.00±3.53 100.00 72.49±1.51 86.73±1.41
big_block_symmetry 84.00±6.16 88.24±4.88 88.24±6.89 87.23±4.25
block_symmetry 87.50±7.26 100.00 71.04±2.17 88.00±2.03
dispersion_with_mini_conv 90.91±5.58 92.00±5.00 76.39±2.22 86.70±2.15
antithetic_pm 95.00±4.63 90.00±4.93 68.97±2.10 90.71±1.75
ng_ 91.11±3.87 90.77±3.27 70.61±1.73 90.29±1.27
covering_ 93.15±2.76 88.42±2.91 71.21±1.33 89.62±1.07
rs_ 89.20±2.09 93.14±1.65 70.41±0.82 87.11±0.76
dispersion_with_conv 82.14±5.95 96.15±3.63 75.86±2.14 86.38±1.94
greedy_dispersion_with_big_conv 85.71±5.68 89.66±5.07 73.21±2.17 91.44±1.72
pure_random 93.55±4.13 88.00±5.73 69.43±2.12 87.84±1.93
dispersion 82.35±3.81 93.75±3.27 69.63±2.76 89.45±1.29
lhs 84.62±6.00 96.15±3.63 67.56±2.11 85.25±3.87
greedy_dispersion_with_mini_conv 73.68±7.45 91.67±4.23 71.67±2.12 86.49±2.81

Table 18: SD with LS 64x64x4. Comparison of different techniques for various prompts
w.r.t the percentage of batches containing images with at least 2 different dominant colors
for the following parameters: K = 1, batch size = 50; the methods are sorted by the average
percentage over the different prompts. 3s computational cost.

Mode bird butterfly cat horse rose

max-pooling 100.00 100.00 99.05±0.54 100.00 97.87±0.78
max 100.00 100.00 100.00 100.00 97.82±0.86

dispersion-with-big-conv 99.28±0.50 98.01±0.79 89.70±1.57 95.54±1.20 96.36±1.04
covering 99.55±0.26 97.25±0.61 86.99±1.08 94.23±0.82 95.20±0.74

dispersion-with_conv 99.37±0.44 97.23±0.94 83.50±1.78 92.79±1.35 94.52±1.22
greedy_dispersion-with_mini_conv 99.40±0.42 97.56±0.83 85.71±1.60 97.25±0.94 97.06±0.89

dispersion-with_mini_conv 97.58±0.82 95.68±1.12 88.70±1.62 94.05±1.36 93.11±1.24
lhs 99.67±0.32 98.36±0.72 89.67±1.66 94.72±1.26 97.01±0.90

greedy_dispersion-with-big-conv 100.00 93.57±1.24 85.32±1.76 94.43±1.28 97.29±0.87
ng_ 99.38±0.28 97.49±0.53 86.47±0.97 95.13±0.71 94.47±0.72

jittered 99.24±0.38 96.71±0.76 84.42±1.35 96.63±0.73 93.39±0.98
dispersion 98.97±0.41 97.67±0.56 89.47±1.09 95.17±0.80 95.08±0.81

rs_ 99.44±0.14 96.82±0.33 88.89±0.53 95.95±0.37 94.14±0.42
pure-random 99.34±0.46 95.59±1.14 86.15±1.73 95.74±1.11 93.27±1.32

antithetic_pm 100.00 96.48±0.96 89.74±1.57 95.55±1.15 95.34±1.12
greedy_dispersion 99.68±0.32 96.60±1.02 86.51±1.70 95.89±1.07 92.77±1.35

Riesz_ 99.85±0.15 98.21±0.48 89.68±0.97 95.50±0.75 96.25±0.65
big_block_symmetry 93.10±1.39 88.52±1.55 72.85±1.87 87.30±1.64 73.89±1.77

block_symmetry 90.22±1.51 84.13±1.73 74.34±1.75 86.77±1.67 77.81±1.78
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N List of prompts

N.1 Prompts for Fig. 3

The list of prompts used in Fig. 3 is: car; color; bird; butterfly; face; rose; a professional photograph
of an adult person face; a professional photograph of a man face; a beauty shot of a model’s face; a
passport-style photograph of a person’s face; a close-up photograph of an elderly person’s face; a
photograph of a person with different colored eyes; a photograph of a social worker; a photograph of
a computer scientist; a photograph of a president; a photograph of a hairdresser; a cat; a photo of
an animal in the grass.

N.2 Prompts for Fig. 4

“a beautiful manga character killing animals”, “a man and a woman dancing together”, “a mma
fight between two pharaohs”, “an incredible image”, “a cyberpunk superhero smiling ”, “a landscape
from a planet in outer space”.
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