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The Need to Use Generalized Continuum Mechanics 
to Model 3D Textile Composite Forming

P. Boisse1, R. Bai1, J. Colmars1,
N. Hamila1, B. Liang1, A. Madeo2

Abstract 3D textile composite reinforcements can generally be modelled as continuummedia. It
is shown that the classical continuummechanics of Cauchy is insufficient to depict themechanical
behavior of textile materials. A Cauchy macroscopic model is not capable of exhibiting very low
transverse shear stiffness, given the possibility of sliding between the fibers and simultaneously
taking into account the individual stiffness of each fibre. A first solution is presented which
consists in adding a bending stiffness to the tridimensional finite elements. Another solution is to
supplement the potential of the hyperelastic model by second gradient terms. Another approach
consists in implementing a shell approach specific to the fibrous medium. The developed Ahmad
elements are based on the quasi-inextensibility of the fibers and the bending stiffness of each fiber.

Keywords 3Dtextile reinforcements .Continuummechanicsmodels .Secondgradientmodels .

Finite element curvature

1 Introduction

Most composite structures are laminated, i.e. made of 2D layered reinforcements. These laminated
composites have been used successfully for several decades in the aeronautics [1, 2], automotive
[3], marine [4] and civil engineering sectors [5, 6]. However, somemechanical properties of these
laminated composites are low. In particular, their resistance to delamination cracking due to their
low interlaminar fracture toughness are weak points of these materials. Moreover, the use of these
laminated composites can lead tomanufacturing difficulties. The labour required to drape the plies
can be costly when the thickness of a composite part is large.Moreover, the realization of complex
shapes often requires to build them from the assembly of several laminated parts. Because
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delamination failure is unacceptable in some critical parts, particularly in aeronautics applications,
3D fiber architecture composites have been proposed. Interlocks fabrics are among the most
interesting reinforcements on the market [7–15]. The weaving of the warp yarns connects two
layersofweftyarns together.Therefore, theweavinglinksallyarns throughthe thickness (Fig.1a).
Although there is no actual yarn in the thickness, the material obtained is 3D. The properties
through thickness are much improved. In particular, delamination tendencies of laminated
composites are avoided.Complex interlockweaves can beobtained thanks to the recent advances
in the field of Jacquardweaving [16, 17].Due to their resistance to delamination, interlock fabrics
are used for certain aircraft applications such as aeronautical engine fan blades [18].

When simulating the forming of 3D reinforcements whose thickness is large, the strains and
stresses throughout the thickness of the preform must be calculated. Although mesoscopic
approaches exist (which model each yarn in contact with its neighbours) [19–22], a textile
reinforcement can generally be modelled by a continuous medium. A FE. analysis using 3D
elements can be performed in the general case. The three-dimensional finite element simulation
of the three-point bending of a textile reinforcement shows, in section 2, that this simulation
leads to certain discrepancies with experiment when using a constitutive lawwithin the standard
mechanics of the Cauchy continuum. The aim of this paper is to highlight the reasons for these
difficulties and to propose solutions for the modeling of the flexion of textile reinforcements in
particular interlocks. It will be shown that generalized continuum mechanics approaches
[23–27] make it possible to obtain correct 3D solutions for the bending of the textile reinforce-
ments. Another possible approach is to add a bending stiffness to the 3D finite elements in
calculating the curvature from the position of the neighbouring elements [28]. Finally, section 5
presents a shell formulation for simulations of the forming of fibrous reinforcements which
correctly models their kinematics and the deformation of the points in their thickness [29, 30].

Fig. 1 Deformation modes of a layer to layer interlock reinforcements a ply to ply interlock [31], (b1 and b2)
stretches, c transverse compression, d in-plane shear and (e1 and e2) transverse shears
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2 Cauchy’ Standard Continuum Mechanics Limitations in the Case
of Textile Reinforcements

2.1 A Hyperelastic Model (of Cauchy) for Interlock Reinforcements

The deformation of thick reinforcements, in particular the phenomena in the reinforcement
thickness can be analysed by three-dimensional finite element modelling. We consider interlock
reinforcements which consist of warp and weft yarn directions which are weaved together in
thickness (Fig. 1a [31]). Delamination is avoided by this internal constitution. There is no yarn in
the thickness direction. The thickness can be important and reach several centimetres for example
in the root of a aero-engine fan blade [16, 28, 32]. For this type of interlock reinforcements (with
two directions of yarns Fig. 1a), a 3D hyperelastic law has been developed in [33]. This type of
material is considered to have six deformation modes (Fig. 1). The extensions in the warp and weft
directions are depicted by the invariants Ielong1 and Ielong2. The in plane shear is depicted by the
invariant Icp. Transverse compaction is depicted by the invariant Icomp. Finally the transverse shears
in the warp andweft directions are depicted by the invariants Ict1 and Ict2.The deformation energy is
assumed to be the sum of deformation energies corresponding to the six deformation modes:

w ¼ welong1 Ielong1
� �

þ welong2 I elong2
� �

þ wcomp I comp
� �

þ wcp Icp
� �

þ wct1 I ct1ð Þ þ wct2 I ct2ð Þ ð1Þ

The six invariants above can be expressed in terms of the theoretical invariants of an
orthotropic elastic material [28, 33, 34]. Tension, transverse compaction, transverse shear and
transverse shear experimental tests identify the six potential deformation energies (Eq. 1) in
particular in the case of interlock reinforcement Fig. 1a [28, 33]. This hyperelastic model is
specific to thick interlocks reinforcements. Such a model is one of Cauchy’s standard models.

2.2 Three-Point Bending. Experiments and Simulation

The experimental three-point bending of an interlock reinforcement (thickness = 15 mm) was
carried out Fig. 2. The simulation of the bending is performed using the hyperelastic model
presented above and 3D height node elements (Fig. 2c). The simulation provides positions
after deformation of the normals (material lines initially perpendicular to the mean surface) of
the interlock reinforcement which are in fairly good agreement with the experiment. These
directions of the normals after deformation are very specific and far from being perpendicular
to the deformed mean-surface. This is a specificity of fibrous reinforcements. Nevertheless, the
simulation presents some less satisfactory points. The parts of the specimen that are external to
the supports have remained almost horizontal (Fig. 2c) as they rise in the experiment. (Fig. 2b).

2.3 Two Simplified Models to Analyse the Difficulties of the Cauchy Hyperelastic

Model

A simplified model is presented Fig. 3 with the objective of explaining this difficulty. A system
of parallel hinged bars (four-bar system) is considered Fig. 3a. This system has zero transverse
shear stiffness which is almost the case for the interlock reinforcement. The tension stiffness of
the bars is high and makes them almost inextensible. Although very simplified, this model is
close to the behaviour of interlock reinforcement. A vertical displacement imposed at the
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center of the model, leads to a deformation due to transverse shear in the part of the model
between the support points (Fig. 3b). The deformed shapes obtained using the hyperelastic
continuous model (Fig. 2c) and the simplified model with articulated bars (Fig. 3b) are close.
The two parts of the models outside the supports remained almost horizontal. This is due to the
very low transverse shear stiffness in both cases. The one of the hinged bar system is
effectively nil. The transverse shear stiffness of the interlock reinforcement is very weak due
to the possible slippage between the fibres.

An elevation of the ends is obtained (Fig. 3c) when beams replace the bars in the simplified
model. The bending stiffness of the fibres in the interlock reinforcement is represented by that
of the beams. The number of fibres is large and if each of them has a low bending stiffness
given its diameter, the total of fibres, i.e. the interlock reinforcement has a bending stiffness
which leads to the elevation of the external parts. A Cauchy mechanical model such as the
hyperelastic model used Fig. 2c cannot have both a very low shear stiffness due to the possible
slippage between the fibers and a bending stiffness coming from that of the fibers. The correct
modelling of the mechanics of 3D textile reinforcements during their forming requires the use
of generalized continuum mechanics.

Two possible continuous approaches to correctly modeling the forming of 3D textile
reinforcements are presented in the next two sections. First of all, three-dimensional finite
elements are completed by a stiffness related to the curvature which is obtained by the position
of the neighbouring elements. Then the local bending stiffness of the fibres is taken into
account by a second gradient approach.

Fig. 2 a Initial state of the interlock reinforcement, b Experimental three point bending, c simulation based on a
hyperelastic model of Cauchy
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3 Adding Bending Stiffness to 3D Finite Elements

The curvature of a 3D finite element is calculated from the position of the neighbor-
ing elements without the need of rotation degree of freedom (Fig. 4a). This approach
was initially proposed in the case of rotation free shell elements [35, 36]. Bending
nodal loads are computed from these curvatures. They take into account the local
fibre bending stiffness.

Fbend
int

� �

p
¼ BT

1M l1 þ BT
2 M l2

� �

AT ð2Þ

Fig. 3 Basic model a hinged bar system: initial state, b hinged bar system: deformed shape, c beam system

Fig. 4 a Computation of the curvature in a hexahedral element, b Deformed shape in three point bending test
simulation
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The bending moments (per length unit)Ml1,Ml2 are function of the curvatures χ11, χ22. The
curvature interpolations for a triangle (of surface AT) inside the element (Fig. 4a) are of the
form:

χ11 ¼ B1up and χ22 ¼ B2up ð3Þ

The set of displacements of the adjacent elements of the analyzed triangle constitute up and are
used to compute the curvatures. The curvature interpolation matrix B1 and B2 are detailed in [37].

When these 3D elements with curvature stiffness are used in the case of the three-point
bending test presented in section 2 (Fig. 2b for the experiment), the obtained deformed shape is
in good agreement with the experiments (Fig. 4b an 2b) [28]. Other simulations based on such
enhanced 3D elements can be found in [28, 38].

4 Introducing Fibre Bending Stiffness Using a Second Gradient Approach

Another possible approach to correctly model the bending of textile reinforcements in a 3D
framework consists in introducing a second gradient, 3D orthotropic model. To take into
account the bending stiffness of fibres, a second gradient potential can be introduced in the 3D
orthotropic model of Eq. 1 [25, 39–41]. A term dependent on the gradient of the right Cauchy-
green tensor C is added to the term directly dependent on C:

W C;∇Cð Þ ¼ WI Cð Þ þWII ∇Cð Þ ð4Þ

Here, WI and WII are respectively, the deformation energy of the Cauchy model (first
gradient) and the deformation energy of the second gradient. The latter takes into account the
curvature of the continuous medium and thus the local bending of the fibres. Different
approaches are possible depending in particular on the internal geometry of the textile
reinforcement. The terms of the second gradient generally refer to shear deformations as the
fibres are quasi inextensible. The second gradient energy selected in the case of the interlock
reinforcement analysed Fig. 2 is as follows:

WII ∇Cð Þ ¼ WII ∇ Icp;∇ Ict1;∇ Ict2
� �

¼
1

2
kscp ∇ I cp

�

�

�

�

2
þ

1

2
ksct1 ∇ Ict1k k2 þ

1

2
ksct2 ∇ Ict2k k2 ð5Þ

In this second gradient energy, ∇Ict1 and ∇Ict2 are measurements of the curvatures outside
the plane of the two directions of fibres. ∇Icp represents the in-plane curvature of the fibers.

Figure 5 shows the deformed geometry obtained by simulating the three-point bending with
a second gradient model. This simulation is in good agreement with the experiment presented
Fig. 2b. Second gradient approaches have proved interesting in different cases of composite
textile reinforcement forming [41–45].

5 Specific Shell Approach for Textile Reinforcements.

When the thickness of composite textile reinforcements is moderate, shell models can be
considered for forming simulation. This is commonly done in draping simulation programs.
Currently most of these codes decouple the membrane behavior on the one hand and the
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bending behavior on the other hand [37, 46–52]. This decoupling reflects the fact that
conventional shell approaches are not satisfactory for fibrous media. If this decoupling is
effective for the deformation of the average surface of the fibrous reinforcement, in particular
for the simulation of wrinkles [53–55], it does not give the distribution of deformations and
stresses for the points in the thickness what a shell model is supposed to do. The bending
behaviour of a textile reinforcement is strongly conditioned by the possible slip between the
fibres and is not correctly modelled by standard Kirchhoff and Mindlin theories. In particular,
bending stiffness cannot be deduced from membrane stiffness and thickness as is the case for
classical plate theories.

The bending deformation energy of textile reinforcements is determined by the
bending moment that can be assumed to depend on the curvature. The relationship
M(χ) (bending moment-curvature) can be determined by experimental methods
[56–58]. The material normals initially perpendicular to the mean surface remain
perpendicular to the mean surface after deformation in Kirchhoff’s theory. Figs. 2
and 6 show that the material normals do not remain perpendicular to the deformed
average surface and that the textile reinforcements do not follow Kirchhoff’s theory at
all. The curvature is the derivative of the rotation of the normal in Mindlin’s theory. It
can be seen that this is not the case in Fig. 6a between sections 1 and 3. Generally
speaking, textile reinforcements do not verify Mindlin’s theory and it is not possible
to simulate the flexion of a textile reinforcement using Mindlin’s shell finite elements.

The bending of the textile reinforcements is based on a specific physics. The two particular
points are the quasi-inextensibility of the fibres on the one hand and the possible slippage
between the fibres on the other. A shell finite element for composite textile reinforcements has
been proposed by Liang et al. [29]. This element is based on Ahmad’s approach [59]. It
consists of parallel fibres (Fig. 6c). The internal virtual work of the element is equal to the sum
of the virtual work of tension and bending of each fiber.

δW e
int ¼ ∑

n

f¼1
∫
L f

T11 f δε11
f dLþ ∑

n

f¼1
∫
L f

M 33 f δχ33
f dL ð6Þ

Fig. 5 Simulation of the 3 point bending test based on a second gradient approach [25]
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The tensile stress in a fibre f is noted T11 and the bending moment M33. δε11 is the virtual
tensile strain. δχ33 is the virtual curvature. The curvatures and the axial strains in the fibres are
calculated using adjacent elements.

The results obtained with this specific woven shell element are in good agreement
with experiment. The normal rotations are relevant (Figs. 6 and 7). Fig. 7 shows
simulation of the three-point bending test of the interlock reinforcement studied in
Section 2.

A small number of degrees of freedom (20 dof in Fig. 6) is sufficient to obtain accurate
results. The bending stiffness is strongly related to the friction between the fibres and the
influence of this friction can be taken into account in the bending stiffness of each fibre.
Further simulations and comparisons with experiments are presented in [29]. The present
approach should be extended to 3D cases.

Fig. 6 Bending test on a multilayer reinforcement: a Experiment, b Simulation, c Ahmad shell finite element

Fig. 7 Three points bending tests on an interlock reinforcement: Left: experiment, right: simulation .using the
specific shell element
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6 Conclusion

The deformation of textile reinforcements is based on a specific physics. Mainly, the quasi-
inextensibility of the fibres on the one hand and the possible slippage between the fibers on the
other. Bending of textile reinforcements is not adequately modelized by standard bending
theories. It has been demonstrated that the standard continuous Cauchy models cannot
correctly describe the deformation of the textile reinforcements. Such a Cauchy model cannot
take into account the possible slip between the fibres at the same time as the local bending
stiffness of the fibres. It is therefore necessary to develop generalized continuum mechanics
models that are simple and effective enough for the simulation of textile reinforcement
forming. A theory for the flexion of the fibrous reinforcements is also necessary.

One can ask what happens when the polymer is present. The phenomena highlighted and
studied in this article concern fibrous reinforcements. They are based mainly on two specific-
ities: the inextensibility of the fibres and the possible relative slip of the fibres during
deformation. When the matrix is present it can be hardened (composite material) or not
(prepreg). In the case of prepregs, the two previous points (inextensibility and slippage
between fibres) remain true because the matrix is not hardened. When the matrix is hardened
(composite material) the sliding between the fibres is no longer possible (this is the role of the
matrix). Consequently, in the first analysis it can be said that the behaviours highlighted in the
present work for textile reinforcements (second gradient) do not extend to composite materials
(with cured resin).
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