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In this paper, a prismatic solid-shell is developed. The element is intended to the analysis of shells during forming process and consolidation stage. To correctly 
perform the simulation of this step, the proposed element provides an accurate calculation of stress/strain through the thickness. The bending stiffness of the element 
is based on the formulation of a DKT plate element which leads to good numerical efficiency. An additional degree of freedom at the center of the element, allows at 
the same time, the use of a complete 3D constitutive law, to avoid the thickness locking and a variation of the normal stress in the thickness which makes it possible to 
check the load boundary conditions on the upper and lower surfaces. This is very important for process simulation, and in particular for consolidation. A set of 
examples shows the good precision of the proposed element in many of the classical shell tests and its ability to calculate with accuracy the normal strain/stress in 
thickness.

1. Introduction

Solid-shell elements bridge the gap between shell finite elements and

3D finite elements. Efficient shell elements have been developed based

on assumed strain: Dvorkin and Bathe present an assumed method so

called ‘mixed interpolation’ in the case of Ahmad for node shell elements

[1], Belytschko et al. propose an assumed strain method to stabilize a

9-node shell element [2], Onate et al. introduced shear constrained plate

elements [3], Brank et al. use the assumed strain concept in a shell model

accounting for through-the-thickness stretching [4], Katili et al. devel-

oped recently a shell element for composite structures using assumed

strain fields [5]. Other shell finite elements are based on enhanced

assumed strain [6–8], discrete Kirchhoff [9,10], mixed formulations [11,

12] or reduced integration with hourglass control [13–15] (among

many).

Many structures have both three-dimensional and thin areas and need

in the same finite element analysis, shell and 3D elements. The use of

solid-shell elements avoids having two types of element and defining

their boundaries and links. The solid-shells are 3D elements, have only

degrees of freedom of translation, but have a bending accuracy equiva-

lent to that of the shell elements when the structure is thin. Moreover, the

solid-shell elements have other advantages: the effective taking into ac-

count of the contact (for example with a tool) directly on the external

surfaces and a 3D constitutive law whereas the shell finite elements are

generally in a plane stresses state.

Given the 3D kinematics and the 3D constitutive law, it is possible for

a solid-shell element to model the strain/stress in the thickness. This

possibility can be a major aspect of the analysis performed. For example,

consolidation is an important point when forming a thermoplastic pre-

preg [16,17]. The loads applied to the prepregs during the manufacturing

process should lead to a good cohesion of the matrix. Fig. 1 shows a

prepreg consisting of ten carbon unidirectional reinforcement plies and

thermoplastic matrix [18]. Fig. 1a shows, at the beginning of the process,

that the laminate has significant porosities. It is important that the pro-

cess leads to a state such that Fig. 1b where the matrix is consolidated i.e.

with no porosity. In the simulation of the process, the UD (unidirectional)

prepreg plies (that are thin) are modeled by elements in contact with the

neighboring plies and with the tools. The 3D solid elements cannot be

used given the thin thickness of the plies. To model both the forming (and

the associated bending) and the compaction/consolidation, solid-shells

can be use provided that they correctly model the strain/stress through

the thickness.

In addition complex shapes and remeshing during the process lead to

use triangular elements in the plane of the structure. This is the objective

of this paper: to propose a simple prismatic solid-shell element that is

effective in bending and which accurately describes the strain/stress in

the thickness.

Much effort have been devoted to the development of solid-shell
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elements. Most of them are height node elements [19–26]. Hauptmann

and Schweizerhof introduced the solid shell concept [19], Vu-Quoc and

Tan presented a simple low order hexahedral solid shell element [20],

Reese proposed an eight-node solid shell finite element formulation

based on reduced integration and hourglass stabilization [21], De Sousa

et al. developed a one point quadrature assumed strain 8-node solid shell

element [22], Abed-Meraim and Combescure presented a hexahedral

solid shell element based on a reduced integration and physical stabili-

zation procedure [23], Schwarze and Reese used EAS and ANS in a

reduced integration solid shell element at large deformations [24], Bassa

et al., proposed a hexahedral solid-shell with a supplementary node at the

center of the element which makes a 3D constitutive law possible [25],

Flores presented a 8-node solid-shell element for the analysis of

elastic-plastic shells at large strains [26]. Some primes have also been

developed [27–29]. Among the first developments Sze and Ghali [30]

introduced adjustable parameters in the 8-node hexahedral hybrid

element developed by Pian and Tong [31]. Actually, low degree 3D el-

ements are subject to locking phenomena when the thickness is small.

Solid-shell element development requires modifications to avoid them.

Transverse shear locking is due to the inability of C0 shell elements to

obtain solutions with zero-value transverse shear strains in the case of

thin thickness. The thickness locking is due to the coupling between

normal and in-plane stresses in the cases of bending. A simple way to

avoid thickness locking is to apply a plane stress condition. But the

constitutive law is no longer tridimensional.

The reduced integration scheme is the most standard way to avoid

locking. In addition this method reduces the computation time which is

very interesting in practice. The association of the reduced integration

with the methods ANS (assumed natural strain) [1,32] and methods EAS

(enhanced assumed strain) [6,33,34] led to the development of efficient

solid-shell elements [7,19,21–24,35–37].

The solid-shell finite element proposed in this paper (called SB7γ19:

Shell Brick, 7 nodes, 19 degree of freedom) is a 6 node prism i.e. 18

translation degrees of freedom to which a degree of freedom of trans-

lation along the thickness at the center of the element is added to improve

the through the thickness behavior. The element uses the formulation of

the DKT6 shell element for bending [38,39]. This results in a good effi-

ciency in bending. The developed prism belongs to the family of discrete

kirchhoff elements. This approach leads to zero transverse shear strains.

Nevertheless the transverse shear strains are computed to stabilize zero

energy modes that can develop in the prism. An additional dof

(displacement along the normal) render possible both to use 3D consti-

tutive laws, to avoid the thickness locking and to verify the boundary

conditions in efforts on the upper and lower edges of the element.

A set of standards tests for the shell finite elements shows a good

accuracy of the proposed prism. In three of these tests (circular clamped

plate, Scordelis-Lo roof, and double dome), the stresses in the thickness

are analyzed to check the normal stresses and the respect of the boundary

conditions on the outer surfaces of the element.

2. Deformation modes of the prism and approaches considered

The deformation modes of a six node prism are presented in Fig. 2.

(The rigid modes are not shown). The presented finite element brings

rigidity to these different modes by effective formulations. Bending

stiffness (modes 7,8,9) is based on a DKT6 plate finite element [38,39]

that brings efficiency in bending (section 3.1 and 3.2).

A standard CST (Constant Strain Triangle) formulation is used for the

membranemode (modes 1,2,3) (section 3.3). In the transverse direction z

(modes 4,5,6), a reduced integration and an hourglass control are applied

to decrease the computational cost [41] (section 3.5). To improve the

transverse behavior a central node is introduced in section 3.5.2. This

node renders possible the use of a full three dimensional constitutive law

(i.e. without uncoupling). In addition, the pressure boundary conditions

on the top and bottom surfaces are verified. The stiffnesses of the DKT

formulation leads to zero transverse shear strains. However, the 6-node

prism has some zero energy modes with respect to DKT, membrane

and pinch stiffnesses. These are stabilized by calculating the transverse

shears. The twist mode 10 is not stabilized because it is not propagable.

The principle of virtual work is written,

Wextðu; δuÞ �Wintðu; δuÞ ¼ Waccðu; δuÞ (1)

for any virtual displacement δu equal to zero on the boundary.Wext ;Wint;

Wacc are the external, internal and inertial virtual works. In the case of the

proposed solid-shell element, the internal virtual works is the sum of

bending, membrane and pinching:

Wintðu; δuÞ ¼ W
bending

int ðu; δuÞ þWmembrane
int ðu; δuÞ þW

pinch

int ðu; δuÞ (2)

In the context of a finite element interpolation, Eqs. (1) and (2) lead to

M €uþ Fbending

int þ Fmembrane
int þ Fpinch

int � Fext ¼ 0 (3)

M is the masse matrix, €u the nodal acceleration vector and Fext is the

nodal external load. The interior loads F
bending
int ; Fmembrane

int ;Fpinch
int (bending,

membrane, transverse shear and pinching) are the assembly of the

element nodal loads Fα
e; int:

Fα
e; int ¼

Z

Ωe

BαT
σ
αdΩ (4)

where α is the considered mode, α¼ bending, membrane and pinching.

σα is the Cauchy stress corresponding to the deformation mode α. The

definition of the strain interpolation matrix Bα for each deformation

mode α is the objective of the following section 3.

In the sequel, the displacements and strains considered to determine

the strain interpolation matrices are small or virtual. The interpolations

of virtual displacement and strains enable geometric nonlinearities using

an explicit method. The geometry of the prismatic element is presented

Fig. 3.

Fig. 1. Prepreg (a) during forming (b) after consolidation.
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Fig. 2. Deformation modes of the six node prism.
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3. Strain interpolations of the prismatic element

3.1. Discrete Kirchhoff DKT6 finite element

The bending stiffness corresponding to the bending modes (modes 7,

8, 9 Fig. 2) is based on the kinematics of the discrete Kirchhoff plate

element DKT6 [38,39,42]. The stiffness matrix of this element coincides

with that of the Morley triangle plate element [43]. The degrees of

freedom of the element are three normal displacements at the vertices 1,

2, 3 and three rotations at the middle nodes 4, 5, 6. (Fig. 4). The normal

displacement is linearly interplolated:

w ¼ N1w1 þ N2w2 þ N3w3 (5)

where N1 ¼ 1� ξ� η N2 ¼ ξ N3 ¼ η (6)

ξ, η, ζ are the coordinates in the reference element. The rotations

components at the nodes k¼ 4, 5, 6 located in the middle of the sides are

interpolated by:

θx ¼
X

k¼4;5;6

Nkθxk θy ¼
X

k¼4;5;6

Nkθy k (7)

θxk and θy k are the components of the rotation at node k in the Cartesian

frame ex, ey. in the mid-plane of the element. The interpolation functions

Nk are such that:

N4 ¼ 1� 2N3 N5 ¼ 1� 2N1 N6 ¼ 1� 2N2 (8)

Denoting θsk and θnk the components of the rotation at node k in the

direction of the side k and on the normal perpendicular to the side

(Fig. 4a), discrete Kirchhoff assumptions set θnk in function of the normal

displacements (denoted wi and wj) of the two ends of the side k of length

Lk:

θnk ¼
wi � wj

Lk

(9)

This reduces the rotation degrees of freedom to the components along

the sides θs4; θs5; θs6 that are denoted θ4; θ5; θ6 for simplicity (Fig. 4).

The curvatures

χ ¼
�
χxx; χyy; χxy

�T
¼

�
�
∂θx

∂x
;�

∂θy

∂y
;�

�
∂θy

∂x
þ
∂θx

∂y

��T
(10)

are interpolated using Eqs. (6) and (8). The derivatives of the interpo-

lation function Nk are constant. Consequently the curvature is constant

on the element. Introducing sk and ck the cosine directors on the side k of

length Lk,

½χ� ¼
1

A

2
4
s4L4 0 s5L5 0 s6L6 0

0 �c4L4 0 �c5L5 0 �c6L6

�c4L4 s4L4 �c5L5 s5L5 �c6L6 s6L6

3
5½θe� (11)

where ½θe� ¼ ½θx4; θy4; θx5; θy5; θx6; θy6�
T and A is the area of the triangle

1,2,3. In the frame of the sides:

½χ� ¼
1

A

2
4

skckLk s2kLk

::: �skckLk ::: ::: c2kLk :::

�c2kLk þ s2kLk �2skckLk

3
5½θs� (12)

where ½θs� ¼ ½θn4; θn5; θn6; θ4; θ5; θ6�
T .

The components θnk are related to the normal displacements wi by the

discrete Kirchhoff conditions (Eq. (9)), the interpolation of the curvatures

is in the form:

½χ� ¼ ½Bθ�

2
4
θ4
θ5
θ6

3
5þ ½Bw�

2
4
w1

w2

w3

3
5 (13)

with

½Bθ� ¼
1

A

2
4

s24L4 s25L5 s26L6

c24L4 c25L5 c26L6

�2c4s4L4 �2c5s5L5 �2c6s6L6

3
5 (14)

½Bw� ¼
1

A

2
4

c4s4 � c6s6 c5s5 � c4s4 c6s6 � c5s5
c6s6 � c4s4 c4s4 � c5s5 c5s5 � c6s6

�c24 þ s24 þ c26 � s26 �c25 þ s25 þ c24 � s24 c25 � s25 � c26 þ s26

3
5

(15)

Fig. 3. The prismatic element and the six apex nodes.

Fig. 4. (a) DKT6 plate finite element, (b) corresponding prismatic element.
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3.2. Linking the DKT6 triangle to the prism element

The element proposed in this paper is a prism. For bending, it is based

on the DKT6 element described above. But the nodes (I, J, K, L, M, N) are

at the vertices of the prism (Fig. 4b). The curvatures (Eq. (13)) must be

expressed in function of the displacements of (I, J, K, L, M, N). The normal

displacements at the nodes of the DKT6 are directly related to the dis-

placements of the vertice nodes of the prisme

w1 ¼
wI þ wL

2
; w2 ¼

wJ þ wM

2
; w3 ¼

wK þ wN

2
(16)

A base change of Bw (Eq. (15)) gives Bw that interpolates the part of

the curvature function of the normal displacements in function of the 18

nodal displacements of the prism ½Ue�.

½Ue� ¼ ½UXI ;UYI ;UZI ;UXJ ;UYJ……UZN �
T

(17)

The rotations θ4; θ5; θ6 around the three sides of the triangle must be

expressed in function of the nodal displacements of the prism ½Ue�.

Consider node 4. Two points A and B are located in the middle of the

edges IJ and LM (Fig. 4b). A local basis is defined at node 4. s4, q4 are the

unit vectors along 1–2 and A-B respectively. r4 completes the ortho-

normal system. The components of s4, q4, r4 in the global system gives

the rotation R4 that connect the displacements and coordinates of the

node I in the local (4) and global system.

2
64
u
ð4Þ
I

v
ð4Þ
I

w
ð4Þ
I

3
75 ¼ ½R4�

2
4
UXI

UYI

UZI

3
5

2
64
s
ð4Þ
I

q
ð4Þ
I

r
ð4Þ
I

3
75 ¼ ½R4�

2
4
XI

YI

ZI

3
5 (18)

Expressions are similar for nodes J, M, L.θ4 is the derivative of the

displacement component w relatively to q4. θ4 ¼ w;q4.

In the face IJLM, w is interpolated by ξ and η, the natural coordinates

in the quadrangle IJML (ξ and η 2[-1, 1]:

w ¼
1

4
ð1� ξÞð1� ηÞw

ð4Þ
i þ

1

4
ð1þ ξÞð1� ηÞw

ð4Þ
j þ

1

4
ð1þ ξÞð1þ ηÞwð4Þ

m

þ
1

4
ð1� ξÞð1þ ηÞw

ð4Þ
l

(19)

The derivatives of w with respect to ξ and η at node 4 are related to

the nodal displacements:

�
w

;ξ

w
;η

	

ð0;0Þ

¼
1

4

�
�1 1 1 �1

�1 �1 1 1

�
2
6664

w
ð4Þ
i

w
ð4Þ
j

wð4Þ
m

w
ð4Þ
l

3
7775; additionally

�
w

;ξ

w
;η

	

ð0;0Þ

¼ ½J0�

�
w

;s4

w
;q4

	

ð0;0Þ

(20)

Consequently,

θ4 ¼ w;q4 ¼
1

2A4

h
s
ð4Þ
L � s

ð4Þ
J s

ð4Þ
I � s

ð4Þ
M s

ð4Þ
J � s

ð4Þ
L s

ð4Þ
M � s

ð4Þ
I

i
2
6664

w
ð4Þ
i

w
ð4Þ
j

wð4Þ
m

w
ð4Þ
l

3
7775

(21)

A4 is the surface of the face IJML (considering coordinates r4 null).

A4 ¼




sð4Þm � s
ð4Þ
i

�

q
ð4Þ
l � q

ð4Þ
j

�
þ


qð4Þm � q

ð4Þ
i

�

s
ð4Þ
j � s

ð4Þ
l

��.
2 (22)

Noting P4 ¼
s
ð4Þ
L

�s
ð4Þ
J

2A4
and Q4 ¼

s
ð4Þ
I

�s
ð4Þ
M

2A4
and considering Eq. (18),

θ4 ¼ P4½ r4x r4y r4z �

2
4
UXI

UYI

UZI

3
5þ Q4½ r4x r4y r4z �

2
4
UXJ

UYJ

UZJ

3
5

� Q4½ r4x r4y r4z �

2
4
UXM

UYM

UZM

3
5� P4½ r4x r4y r4z �

2
4
UXL

UYL

UZL

3
5 (23)

The procedure to express the rotation θ4 of the DKT element as a

function of the displacement degrees of freedom of the prism does not

require the IJML face to be planar. Nevertheless IJML must be close

enough of the plane quadrangle defined by r4¼ 0 for each node because

it is the surface of this plane quadrangle which is used in the calculation

of A4.

The rotations θ5; θ6 are expressed in the same manner according to

the nodal displacements of the prism which give the expression of DKT

rotations as a function of prism nodal displacements:

2
4
θ4
θ5
θ6

3
5 ¼ ½T�½Ue� (24)

The curvatures are interpolated in function of the nodal displace-

ments of the prism.

½χ� ¼
�
½Bθ�½T� þ

�
Bw

�
½Ue� ¼

�
Bb

�
½Ue� (25)

3.3. Membrane deformation

For shell analysis, the DKT6 element is usually associated with a CST

membrane element (Constant Strain Triangle) [38]. The in-plane dis-

placements at nodes 1,2,3 are the average of the displacements of the

corresponding upper and lower nodes of the prism. The in-plane dis-

placements ½um� at nodes 1,2,3 are expressed in function of ½Ue�, the nodal

displacements of the prism. The membrane strain are classically inter-

polated in function of the in-plane displacements of nodes 1,2,3 and

consequently in function of ½Ue�.

½εm� ¼ ½Bm�½um� ¼
�
Bm

�
½Ue� (26)

The bending and membrane interpolation matrices are constant. This

membrane contribution gives a stiffness to membrane deformation

modes (modes 1, 2, 3 Fig. 2).

3.4. Transverse shear stabilization

Taking into account the 6� 3 dof of the prism and the rigidities

brought by the DKT, the membrane and the pinch, there are twomodes of

deformation which are with zero energy (Fig. 5a and b). Section 4.10

shows a case where these modes develop. To prevent the development of

these modes, despite the use of the DKT approach, transverse shear de-

formations are calculated from node displacements and internal stabili-

zation forces are calculated. This approach does not require a

stabilization parameter.

Transverse shear strain calculation is based on the approach pre-

sented in Ref. [40,44] for a three node Mindlin shell element is used. It is

an assumed strain method [1,32]. So-called assumed strain methods are

based on the a-priori assumption of an interpolation for strains, generally

different from those derived from the displacement interpolation. At each

vertex node i of the middle plane triangle (i¼ 1,2,3), two material vec-

tors f i1; f i2 are defined from i to the two other vertex nodes (Fig. 5c). The

material coordinates along the sides are defined such as r i1 ¼ ri2 ¼ 0 at

node i, ri1 ¼ 1 at node iþ1 and ri2 ¼ 1 at node i-1. f i1 and f i2 are obtained

from ri1 and r i2:

f i1 ¼
∂x

∂ri1
; f i2 ¼

∂x

∂ri1
f i3 ¼

∂x

∂ζ
(27)

The corresponding contravariant frame is such as:

5



Acc
ep

te
d 

M
an

us
cr

ip
t

f i:f j ¼ δij (28)

In the frame of the element sides, the components of the deformation

tensor are denoted:

ε ¼ eεkl fk � f l (29)

The transverse shear eεα3 ¼ 1
2
ðfα:f3 � fα0:f30Þ (α¼ 1,2) are assumed to

be constant along each side and equal to the value at the center of the face

of the prime.

Taking into account f iα ¼ ∂x
∂riα

¼ ∂ðx0þuÞ

∂riα
¼ f iα0 þ

∂ðuÞ

∂riα
,

eεiα3 ¼
1

2

��
∂u

∂ζ

�

m

⋅
�
f
i

α0


m
þ

�
∂u

∂riα

�

m

⋅ ðf30Þm

�
(30)

At mid-point m (m¼ 4, 5, 6, Fig. 5c),

�
∂u

∂ζ

�

m

¼
uB � uA

2

�
∂u

∂riα

�

m

¼ uiþ1 � ui (31)

A and B are nodes on the top and bottom surfaces on the normal at

point i. Their displacement is the average of those of the corresponding

vertex nodes. Eqs. (30) and (31) expresses the transverse shear strains eεiα3
in function of the nodal displacements:

�
eεiα3

�
¼ ½Ci�½Ue� (32)

The transverse shear strain components eεikl at the three nodes i are

expressed in the frame at node 1 (components εimn):

eεikl f
ki � f li ¼ εimn f

m1 � fn1 (33)

The vectors f
i
1 and f

i
2 are in the same plane which implies:

�
εi13
εi23

�
¼ ½Di�

�
eεi13
eεi23

�
(34)

The transverse shear strains in the element are interpolated from

these nodal transverse shears

�
ε13
ε23

�
¼

X3

i¼1

Niðξ; ηÞ

�
εi13
εi23

�
(35)

In the present element, the transverse shear strains are assumed to be

constant and equal to the value in the center of the element (ξ¼ η¼ 1/3).

Eq. (30)–(35) give the transverse shear interpolation matrix:

�
ε13
ε23

�
¼

1

3

X3

1

½Di�½Ci�½Ue� ¼ ½Bs�½Ue� (36)

3.5. Through the thickness strain

3.5.1. Six node element

The through the thickness strain is an important capability of solid-

shell elements that allows to analyze phenomena related to the thick-

ness change. This section concerns the ‘pinch modes’ 4, 5, 6 (Fig. 2). By

noting h1 ¼ ηζ and h2 ¼ ξζ, the normal displacement in the direction

ez (Fig. 4) can be written:

w ¼ a0w þ axwx þ aywy þ azwzþ c1wh1 þ c2wh2 (37)

with axw ¼ ½bx�
T½Uze� ayw ¼

�
by

�T
½Uze� azw ¼ ½bz�

T½Uze� cαw

¼ ½γα�
T½Uze� ðα ¼ 1; 2Þ (38)

½γα�
T ¼

1

2

�
½hα�

T �
�
½hα�

T½xe�

½bx�

T �
�
½hα�

T½ye�
�
by

�T
�
�
½hα�

T½ze�

½bz�

T

(39)

½hα�
T are the row matrix of the values of hα at the six nodes.

½h1�
T ¼ ½ 0 0 �1 0 0 1 � ½h1�

T ¼ ½ 0 �1 0 0 1 0 � (40)

2
4
½bx�

T

�
by

�T

½bz�
T

3
5 ¼

�
J�1
0

�
2
4
½N

;ξ�
T

�
N

;η

�T

½N
;ζ�

T

3
5 ½J0� ¼

2
4
½N

;ξ�
T

�
N

;η

�T

½N
;ζ�

T

3
5½Xe;Ye;Ze� (41)

½N�T is the matrix of the interpolation functions of the prism.

Using the notation a
;x ¼ ∂a

∂x

w
;z ¼

�
½bz�

T þ ½γ1�
T
h1;z þ ½γ2�

T
h2;z

�
½Uze� ¼ ε0zz þ qzz (43)

Where ε0zz is constant.

ε0zz ¼
2

h

1

6
½ �1 �1 �1 1 1 1 �½Uze� ¼ ½Bp

0�½Uze� (44)

Fig. 5. (a) and (b) zero energy modes, (c) material coordinates and material vectors at node 2.

½N� ¼
1

2
½ ð1� ξ� ηÞð1� ζÞ ξð1� ζÞ ηð1� ζÞ ð1� ξ� ηÞð1þ ζÞ ξð1þ ζÞ ηð1þ ζÞ � (42)
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qzz ¼ J33
�
½γ1�

T
ηþ ½γ2�

T
ξ
�
½Uze� (45)

A reduced integration consists in considering only the term ε0zz in Eq.

(43). qzz enables to stabilize the zero energy modes due to the reduce

integration [41]:

qzz ¼ ½BΓ �½Uze� (46)

By noting Cp a stabilization coefficient, the through the thickness

internal nodal loads are:

½Fp

int� ¼

Z

Ve

�
½Bp

0�
T
þ Cp½BΓ �

T

σ33dV (47)

If a 3D mechanical behavior is used, an element based on the above

equations is subjected to thickness locking. This difficulty is caused by

Poisson's ratio coupling of the in plane and transverse normal stress re-

sponses. When the element is in a pure bending state the through the

thickness stress should be equal to zero. However the bending terms lead

to a spurious normal stress when z is different from zero. This locking

phenomenon can be overcome by uncoupling bending and through the

thickness strains by a modification of the three-dimensional behavior

law.

However, this approach can lead to difficulties in case of nonlinear

material [25]. Different approaches have been proposed to overcome

thickness locking. A method is proposed below that aims on the one hand

to keep the complete 3D constitutive law and on the other hand to have a

linear distribution of the normal stress and consequently to be able to

verify stress boundary conditions on the top and bottom size of the prism.

3.5.2. Supplementary degree of freedom

An additional degree of freedom in the z direction is placed in the

center G of the element (Fig. 6). Consequently the normal strain and

stress are linear through the thickness (instead of constant without this

dof). All the formulation presented above for different strains remain

unchanged except the normal strain through the thickness εzz. The

normal displacement along the central normal at ξ¼ η¼ 0 is quadratic in

z.

wðzÞ ¼ wð0Þ þ

�
2z2

h2
�

z

h

�
w� �

4z2

h2
wo þ

�
2z2

h2
þ

z

h

�
wþ (48)

where wo is the additional degree of freedom. w� and wþ are given from

the displacements at the apex nodes. wþ ¼ 1
3
ðwL þ wM þ wNÞ

and w� ¼ 1
3
ðwI þ wJ þ wKÞ.

Derivation of the normal displacement (Eq. (48)), gives the normal

strain through the thickness:

εzz ¼
1

h

�
wþ � w�


þ
4z

h2

�
wþ þ w� � 2wo


¼

1

h

�
wþ � w� � 4ζw*

o


(49)

where w*
o ¼ wo �

1
2
ðwþ þ w�Þ is the “relative” translation dof.

The interpolation matrix B
p
ð1x19Þ is obtained by adding one term

(depending on ζ) given by Eq. (49) to the B
p
ð1x18Þ of Eq. (44).

The interest of this supplementary dof is double. The linear distri-

bution of εzz avoids the thickness locking and the fully 3D constitutive

law can be used. In addition, the pressure boundary conditions can be

verified on the top and bottom surfaces of the prism, even in the case

where the two pressures are different. This is important for the simula-

tion of processes for which the distribution of the normal stress in the

thickness is essential. This verification of the boundary conditions will be

shown on some examples (while it is not verified for other solid shell

elements.).

4. Numerical examples

The set of examples below aims to present the results obtained by the

proposed prismatic solid-shell element to the classical tests for shell el-

ements [45–47]. The proposed solid shell element is denoted SB7γ19

(section 3.5.2 and Fig. 6). It has 6 vertex nodes, 1 central node and 19 dof.

The tests are also carried out with the prism element without central

node and uncoupled constitutive matrix (SB6γ18). The results obtained

by the proposed triangular prism solid-shell element are compared to the

reference solution of the tests and to the solutions given by other finite

elements. In particular, they are compared to the six node prism element

SC6R used in Abaqus code [48]. This element is a solid shell with three

translations degree of freedom per node.

In addition to these classical shell tests, the stress/strain through the

thickness is analyzed in three tests: the circular clamped plate (section

4.3), the Scordelis-Lo roof the case of pressure loads on both sides (sec-

tion 4.9) and the double dome forming (section 4.14).

4.1. Basic bending test

A square plate (lengths¼ 100mm, thickness¼ 1mm) is considered

(Fig. 7) with three corners (1,6,8) simply supported. A point load is

applied to the fourth one. The proposed SB7γ19 and SB6γ18 give the

exact solution as the SCR6 (Abaqus) element (Table 1).

4.2. Patch test

The patch test is defined for triangular shell elements in Ref. [49,50]

(Fig. 8). A theoretical constant state of bending moments all over the

plate is given by the boundary conditions and concentrated loads

Fig. 6. Additional degree of freedom in the ez direction at the center of

the element.

Fig. 7. Bending test.

Table 1

Comparison of bending test with different elements.

SB6γ18 SB7γ19 SC6R (Abaqus) C3D8 (Abaqus) Ref

Uz3 0.39 0.39 0.3889 0.2230 0.39

σxx¼ σyy 0 0 2.10–4 wrong 0

σxy(top) �3 �3 �2.993 �3

σxy(bottom) 3 3 2.986 3
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(Fig. 4b). Exact displacements at points 3, 5, 8 and 10 are obtained by the

SB6γ18, SB7γ19 and SCR6 (Abaqus) elements (Table 2).

4.3. Circular clamped plate

A circular plate, the boundary of which is clamped, is subjected to a

normal pressure. The useful data are: radius R¼ 100mm; thick-

ness¼ 1mm; isotropic material: E¼ 200000MPa, Poisson's ratio ν¼ 0.3;

uniform pressure normal to the bottom plane p¼ 0.01172 N/mm2. This

value corresponds to a theoretical displacement of the plate center of

1 mm according to Kirchhoff's theory. Two densities of mesh have been

considered (Fig. 9). The central displacement and normal stress are given

in Table 3. The calculated displacement at plate center is accurate for the

developed prism and also for the other shell elements considered. The dof

at the center of the element (SB7γ19) leads to an exact normal stress

component σzz that ranges from 0 to 0.01172 N/mm2 and consequently

verify the pressure boundary conditions. This not the case for the other

elements.

A second pressure loading is considered to confirm the advantage of

the developed solid-shell element with regard to the normal stress

component σzz. A pressure Pþ ¼ -0.5*0.01172 is applied on the top

surface, and a pressure P- ¼ 1.5*0.01172 is applied on the bottom sur-

face. The Table 4 confirms that the proposed prism (SB7γ19) leads to the

exact normal stress that varies through the thickness from P- to Pþ. It is

not the case of the other elements. The Scordelis-Lo roof with pressure

test (presented in section 4.9) analyses the normal stress in a curved

geometry.

4.4. Twisted beam

The 90�-twisted beam intend to assess the effect of warping on the

performance of shell elements. The undeformed beam twisted by 90�

Fig. 8. Patch test.

Table 2

Patch test: Displacements at nodes.

SB6γ18 SB7γ19 SC6R (Abaqus) Ref

w3¼w8 �12,48 �12,48 �12,5334 �12,48

w5¼w10 �1,62 �1,62 �1,62896 �1,62

Table 3

Center displacement and stress component normal to the mid-plane.

Coarse

mesh

SB6γ18 SB7γ19 SC6R

(Abaqus)

DKT18

[35]

Ref

Uc 0,924083 0,924083 0,86347 1,1 1

σzz top �0,00586058 0 0 0 0

σzz
bottom

�0,00586058 �0,01172 0 0 �0,01172

Refined mesh

Uc 1,0044 0,995576 0.99339 1.027 1

σzz top �0,00586982 0 0 0 0

σzz
bottom

�0,00586982 �0,01172 0 0 �0.01172

Table 4

Center displacement and stress component when a pressure Pþ ¼ -0.5*0.01172

is applied on the top surface, and a pressure P- ¼ 1.5*0.01172 is applied on the

bottom surface.

Coarse mesh SB6γ18 SB7γ19 SC6R (Abaqus) Ref

Uc top 0.84288 0.92427 0.88854 1

Uc bottom 0.84288 0.92427 0.88854 1

σzz top �0,01172 �0,01172*0.5 0 �0,01172*0.5

σzz bottom �0,01172 �0,01172*1.5 0 �0,01172*0.5

Refined mesh

Uc top 0.98818 0.99580 0.99339 1

Uc bottom 0.98818 0.99580 0.99339 1

σzz top �0,01172 �0,01172*0.5 0 �0,01172*0.5

σzz bottom �0,01172 �0,01172*1.5 0 �0,01172*0.5

Fig. 9. Clamped circular plate (an only quarter due to symmetries) subjected to a pressure.
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with a 12 by 2 mesh is shown in Fig. 10. The length of the beam is 12.0,

width 1.1, thickness 0.32, elasticity modulus 2.9� 107 Pa, Poisson ratio

0.22. If an “in-plane” force P (P¼ 1) is applied on the point C along Y

direction (Fig. 4a), the resulting displacement UY(C)¼ 5.424� 10�3. If

an “out-of-plane” force Q (Q¼ 1) is prescribed along X, the theoretical

displacement UX(C)¼ 1.754� 10�3.

The results relating to a 12 by 2 mesh (Table 5) and a 48 by 8 mesh of

different triangular shell elements and the solid shell elements are given

in Table 5. The comparison of numerical values to exact solutions show

that the proposed prism is not prone to warping even if prismatic

Fig. 10. Twisted beam.

Table 5

Twisted beam: Loading point displacement.

'In-plane ''P" SB6γ18 SB7γ19 SC6R (Abaqus) DKT18 Morley [43] S3 [51] Ref

Mesh 12� 2 0,99269912 0,99252581 0,99419248 0,9821 0,993 0,9749 1

Mesh 48� 8 0,99529867 0,99524336 0,99693953 0,9935 0,995 0988 1

Out-of-plane ''Q''

Mesh 12� 2 0,8422691 0,84082098 1,05292474 0,8352 0,8449 0,8312 1

Mesh 48� 8 0,97696693 0,97605473 0,99149943 0,9743 0,9755 0,9709 1

Fig. 11. Pinched hemispherical shell.

Fig. 12. Convergence of the displacement for the pinched hemisphere.
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elements require a fine mesh on this test.

4.5. Pinched hemisphere with 18� hole

A hemispherical thin shell (radius R¼ 10, thickness h¼ 0.04), with

an 18� circular cutout at its pole, is subjected to an inward force

(Fy¼�2) and to an outward force (Fx¼ 2) (Fig. 11). The material is

isotropic elastic with Young's modulus E¼ 6.825� 107 Pa and Poisson's

ratio v¼ 0.3. Owing to symmetry, one-quarter of the shell is modeled

(Fig. 11). The loading points displacements are compared to the refer-

ence result given in Ref. [45]: Ux¼ - Uy¼ 0.093 It can be noted that

other authors propose another reference value: 0.094 [35]

For three meshes (4� 4), (8� 8), (16� 16), the displacements under

the loads are compared with the reference in Table 6. The proposed prism

gives good results.

4.6. Sensitivity to the pinch coefficient

The sensitivity to the pinch coefficient has been studied (Fig. 12). The

curve in Fig (12b) shows the displacement of loading points relatively to

the reference result as a function of the coefficient for pinching Cp (Eq.

(47)), for a fixed 16� 16 mesh. The curve shows satisfactory

Table 6

Pinched hemispherical shell: Loading point displacement for different elements.

SB6γ18 SB7γ19 SC6R (Abaqus) DKT18 [38] Morley [43] S3 [51] Ref

Mesh 4� 4 0,060870 0,059780 0,040690 0,09804 0,10961 0,08196 0,093/0094

Mesh 8� 8 0,089640 0,089238 0,088650 0,09463 0,1 0,08367

Mesh 16� 16 0,093820 0,093665 0,092260 0,09296 0,09522 0,08652

Fig. 13. Pinched cylinder with free ends.

Table 7

Pinched cylinder: Loading point displacement for different type of elements.

SB6γ18 SB7γ19 SC6R (Abaqus) DKT18 [38] Morley [43] S3 [51]

Mesh 4� 4 0,97827919 0,975505 0,897278 0,504 1176 1043

Mesh 6� 6 0,99736611 1,027752 0,945250 0,751 1092 1017

Mesh 8� 8 1,03338016 1,032792 0,965189 0,875 1062 1,01

Fig. 14. Scordelis-Lo roof.
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convergence when Cp � 10�2. This analysis was done in all of the tests

presented in this paper. Beyond the pinched hemisphere, none of them

showed any sensitivity to the given value Cp. But all the calculations

were also conducted with very low Cp values (10�4) without showing

hourglass problem.

4.7. Pinched cylinder with free ends

The pinched cylinder problem shown in Fig. 13 was also frequently

analyzed to test shell elements. The useful data are: Cylinder: length

L¼ 10.35, radius R¼ 4.953, thickness h¼ 0.094; Material:

E¼ 10.5� 107 Pa and ν¼ 0.3125; Load: Two equal and opposite forces

F¼ 100. Due to symmetries, only an eighth of a pinched cylinder is

meshed (Fig. 13). The vertical displacement of point C, which can be

compared to the solution: 0.1139, in Table 7.

4.8. Scordelis-Lo roof

The geometry consists of a portion of a cylindrical shell (Fig. 14). Its

two end sections are fixed using rigid diaphragms while its two lateral

sides remain free. It is subjected to a distributed loading. Only one

quarter of the structure needs to be modeled. The useful data are: length

L¼ 50, radius R¼ 25, thickness t¼ 0.25, Ф¼ 40�; Material:

E¼ 4.32� 107 Pa and ν¼ 0.0; Gravity Load: g¼ 90. The test result is the

vertical displacement at the midpoint of the free edge. The theoretical

value for this result is uref¼ 0.3024.

Fig. 15 presents the curves of the normalized displacement at the

midpoint of the free edge with two different types of mesh: mesh A and

cross-diagonal (CD) mesh (Fig. 14). The test is a membrane dominated

problem. The proposed prism shows correct convergence compared to

other elements.

4.9. Scordelis-Lo roof subjected to pressure

The Scodelis-Lo roof has been modified, with the same geometry and

boundary conditions, except that the gravity load has been replaced by

pressures applied normally to its two faces. Three pressure loadings with

different values of P- and Pþ, on the bottom and top of the shell are

considered. The mesh is a type A 24� 24 elements. The results presented

in Table 8 show that the proposed solid-shell element SB7γ19 is able to

obtain the correct normal stress through the thickness in the case with

curved plate. The normal stress distribution is shown in Fig. 16. The

stress boundary conditions are well verified.

4.10. Stabilization of zero-energy modes

The square plate (L¼ 100, e¼ 10) is meshed by 8 prism elements and

subjected to loads as shown Fig. 17a. Without stabilization (i.e. with the

stiffness of the DKT, membrane and pinch but no transverse shear stiff-

ness) a deformation is obtained as shown Fig. 17b and c. It corresponds to

the development of the mode shown in Fig. 5a. Taking into account the

transverse shear energy stabilizes this deformation mode (Fig. 17d).

4.11. Mesh with distorsion

A square plate (L¼ 100, h¼ 1) with different distorsions of the mesh

is analyzed (Fig. 18).

The analysis of a simply supported square plate submitted to a con-

stant pressure is made using meshes with distorsion. The vertices at the 3

nodes are not normal to the middle surface. The distorsion reduces the

accuracy of the calculation. Nevertheless, the result remains rather close

to the solution.

4.12. Cantilever beam with a point load

To assess the performance of the solid-shell elements in geometric

nonlinear analysis, several shell benchmarks were carried out below. The

first one is the cantilever beam subjected to a point load P (Pmax¼ 4) at

the free end (Fig. 19a). The geometry is L¼ 10, b¼ 1, h¼ 0.1. The ma-

terial data is: Young's modulus E¼ 1.2� 107 Pa, Poisson's ratio¼ 0.

Fig. 19b shows the calculated load-deflection curves obtained with a

16� 1 mesh with the solid-shell elements SB6γ18, SB7γ19. They are

Fig. 15. Convergence of normalized deflection at free edge's mid-point w.

Table 8

Stress through the thickness in the Scordelis-Lo roof subjected to pressure.

σzz Bottom SB6 γ18 SB7γ19 SC6R Ref

Case 1: P�¼ 10, Pþ¼ 0 �5 �10 0 �10

Case 2: P�¼ 10, Pþ¼ -10 �10 �10 0 �10

Case 3: P�¼ 10, Pþ¼ -5 �10 �10 0 �10

σzz Top SB6 γ18 SB7γ19 SC6R Ref

Case 1: P�¼ 10, Pþ¼ 0 �5 0 0 0

Case 2: P�¼ 10, Pþ¼ -10 �10 �10 0 �10

Case 3: P�¼ 10, Pþ¼ -5 �5 �5 0 �5

Fig. 16. Distribution of transverse stress σ33 in case 3 (P�¼ 10, Pþ¼ -5).
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Fig. 17. Development of zero energy modes, (a) mesh and loading, (b) zero energy mode, (c) top view, (d) transverse shear stabilization.

Fig. 18. Simply supported square plate wit distorted meshes.

Fig. 19. Cantilever beam.
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compared to the reference solution given in Ref. [46]. The proposed

element shows good performance in the analysis of this test.

4.13. Hemispherical shell subjected to alternating radial forces

The pinched hemisphere shell problem in analyzed in the context of

large elastic deformations (Fig. 20). Due to symmetry, only a quarter of

the hemisphere is modelled by a 16� 16 mesh. The material and geo-

metric properties are given in section 4.4. The point load is incrementally

applied to a maximum value Pmax¼ 400 N. Fig. 20b shows the deformed

configuration obtained with the maximum load. The load-deflection

curves at points A and B are plotted in Fig. 20c. The displacements ob-

tained with the proposed SB7γ19 prism are in good agreement with the

reference solution [46].

4.14. Pinched semi-cylindrical isotropic shell

This semi-cylindrical shell is subjected to a vertical radial force at the

middle A of the free circumferential edge, while the other circumferential

edge is fully clamped. Along the two straight edges, all the nodal Z

translations are restrained. The material properties are E¼ 2068.5,

v¼ 0.3. The length and radius of the half cylinder are L¼ 3.048 and

R¼ 1.016, respectively, and the thickness is h¼ 0.03. Themaximum load

level at point A is set to Pmax¼ 2000. The structure is modeled using

32� 32 element meshes of SB6γ18, SB7γ19 elements and compared to

the reference [46]. Fig. 21b shows the deformed shape for the maximum

load level, and Fig. 21c plots the obtained load-displacement at point A.

The results obtained with the proposed element are in good agreement

with the reference results.

Fig. 20. Hemispherical shell subjected to alternating radial forces.

Fig. 21. Pinched semi-cylindrical isotropic shells subjected to a pinching force.
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4.15. Pullout of an open-ended cylindrical shell

An opened cylindrical shell is pulled by a pair of radial forces P

(Fig. 22). The parameters are: length L¼ 10.35, radius R¼ 4.953,

thickness h¼ 0.094, material properties: E¼ 10. 5� 107, v¼ 0.3125.

The maximum load is Pmax¼ 4� 104. Taking the advantage of the

symmetry, only one octant of the cylinder is modelled and a 16� 16

regular mesh is employed. Fig. 22b shows the deformed shell under the

maximum load. In Fig. 22c the predicted displacements at points of

loading are compared with the reference solution [46]. Close agreement

can be noted. When P reaches 2� 104, a slight snap-through behavior

caused by buckling was found, that is fairly well obtained by the pro-

posed element.

4.16. Consolidation in a double dome forming

The ‘Double Dome Benchmark' is a relatively complex double-curve

geometry (Fig. 23 for a quarter of the part). It has been defined for

comparative studies between models and approaches in forming

continuous dry and pre-impregnated reinforcements [52–57].

In the thermoforming of thermoplastic prepreg, it is important to

consolidate the composite i.e. to remove the voids that appear when it is

heated. For this a pressure is applied for a certain time at a given tem-

perature. Fig. 1 shows a prepreg during forming (with about 10% void)

and after consolidation (no visible voids). To produce a good quality

composite, this phase is essential. The forming and the consolidation

phase have been simulated using the SB7γ19 prismatic solid-shell pro-

posed in the present work. It gives the through the thickness stress during

forming and consolidation. From the stress state and the temperature

applied during a time interval, the ‘degree of intimate contact’ can be

calculated following the works of Lee and springer [16]. This ‘degree of

intimate contact’ is equal to 1 when the prepreg is consolidated (no void).

The simulation using the proposed prism provides the stress through the

thickness at the end of the forming phase which makes it possible to

calculate the degree of intimate contact (Fig. 23). In this state the

consolidation of the prepreg is not is not reached. A 3-min consolidation

Fig. 22. Open-end cylindrical shell subjected to radial pulling forces.

Fig. 23. Normal stress through the thickness and degree of intimate contact after forming.
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phase leads to a degree of intimate contact equal to one on the whole

double dome (Fig. 24). This is a typical use of the proposed prismatic

solid shell element. It is efficient during the simulation of the forming

stage and it provides the through the thickness stress that render possible

the intimate contact calculation during the consolidation phase.

5. Conclusion

In this paper a prismatic solid-shell element has been proposed. The

purpose of this element is sheet forming simulations especially when the

through the thickness behavior is important. This is the case for prepreg

thermoforming processes in which a consolidation stage compact the

prepreg to remove voids. The proposed prismatic shell element is based

on a DKT formulation that leads to a good efficiency on classical shell

tests. The supplementary dof at the center of the element (a translation

normal to the mid-surface) allows to use a 3D constitutive equation.

Above all, it leads to a linear strain/stress in thickness and render

possible to verify load boundary conditions on the top and bottom sur-

face of the shell. This is important for simulation of sheet forming pro-

cesses and in particular prepreg consolidation.

The use of solid-shell elements in composite forming simulations is

not very common at present. However phenomena in the thickness are

often critical during forming of these materials. The stiffness through the

thickness of composite reinforcements or prepreg is often weak and the

deformation can be important. The consolidation (Fig. 1) was mentioned

in this paper. The compaction of textile preforms during infusion process

due to atmospheric pressure on the bagging filmmodifies the thickness of

the composite and is a sensitive point in the process. In these cases, the

use of solid-shell finite elements must make it possible to simulate both

the shaping of the reinforcements or prepreg and the deformations in the

thickness.
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