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Electron motion in an atom driven by an intense linearly polarized laser field can exhibit a
laser-dressed stable state, referred to as the Kramers-Henneberger (KH) state or KH atom. Up to
now, the existence conditions of this state rely on the presence of a double well in the KH potential,
obtained by averaging the motion over one period of the laser. However, the approximation involved
in the averaging is largely invalid in the region of the double well structure; therefore this raises the
question of its relevance for identifying signatures of these exotic states. Here we present a method
to establish conditions for the existence of the KH atom based on a nonperturbative approach. We
show that the KH atom is structured by an asymmetric periodic orbit with the same period as the
laser field in a wide range of laser parameters. Its imprint is clearly visible on the wavefunction
in quantum simulations. We identify the range of parameters for which this KH state is effective,
corresponding to an elliptic periodic orbit.

INTRODUCTION

Subjecting neutral atoms or molecules to super-intense
laser pulses revealed some counter-intuitive, intricate
and fascinating phenomena, such as ionization stabiliza-
tion [1–12] and the ponderomotive acceleration of neu-
tral atoms [13], in intensity regimes where full ioniza-
tion was thought to be unavoidable. A possible expla-
nation behind these unexpected phenomena was formu-
lated by moving to a suitable frame –using the Kramers-
Henneberger (KH) coordinates [14–16]– where a fast os-
cillation can be averaged out to derive an effective poten-
tial –called KH potential– revealing a potential well with
local minima at about one quiver radius. This potential
well was hypothesized as the bedrock for the existence of
some exotic laser-dressed states of the neutral atom. A
KH state, also referred to as KH atom, is defined as a
bound state localized in the vicinity of the local minima
of the KH potential. Exploiting the physical properties of
these states holds many promises as Rydberg-like atoms
piloted by the laser field. However, up to now, the exis-
tence of KH atoms remains largely elusive.

A large amount of works was produced in the early
90s, evidencing a strong enthusiasm for the perspective
of manipulating these exotic atomic states. The lack of
direct experimental evidence, coupled with the unreal-
istic values of the laser parameters (too high intensity
and too small wavelength) for ionization stabilization has
hindered the exploitation of the full potential of the KH
atom.
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For laser parameters conventionally explored in strong
field atomic physics experiments, typically in the infrared
regime for intensities in the range from 1013 to 1016 W
cm−2, the approximations involved in the derivation of
the KH potential are largely invalid, given that the har-
monics of the Hamiltonian cannot be neglected [17], ques-
tioning the validity of the KH atom. Some indirect signa-
tures have been attributed to the KH atom by using pho-
toelectron spectroscopy [17–19] for the potassium atom,
and by looking at the Kerr effect response [20]. These en-
couraging signs raise the question of when and how KH
atoms can be observed, even in a range of parameters
where the KH approximation fails.

Here we address this question by looking at the pe-
riodic orbits in the corresponding classical system. We
show that the KH atom corresponds (up to a symmetry)
to a single elliptic or weakly hyperbolic periodic orbit
mostly localized around one quiver radius. We analyze
its properties as a function of the intensity of the laser
and the atom under consideration and illustrate its rele-
vance as a scar in the quantum wavefunction.

In Sec. I, we recall the Hamiltonian in the KH coor-
dinates, the KH approximation and the KH potential.
In Sec. II, we investigate the nonlinear dynamics of the
KH Hamiltonian and identify the relevant periodic orbit
as the classical KH state. In Sec. III, we analyze the
influence of the KH periodic orbit on the corresponding
quantum wavefunction.

I. KH MODEL, KH APPROXIMATION AND
KH ATOM

In order to showcase our results, we consider the sim-
plest argument with which the KH atom has been ad-
vocated in the literature for decades. It starts with a
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one-dimensional Hamiltonian model comprising a ionic
potential V and a linearly polarized laser field, with E0

the amplitude of the electric field and ω its frequency
(defined from its wavelength λ). In the dipole approxi-
mation, the Hamiltonian for the dynamics of the electron
is given by

H(xe, pe, t) =
p2e
2

+ V (xe) + xeE0 cosωt , (1)

where V is a soft-Coulomb potential V (xe) = −(x2e +
a2)−1/2 with a softening parameter a. Here xe and pe
are the classical position of the electron in phase space,
or the quantum operators of position and momentum, de-
pending on the framework. In the Kramers-Henneberger
coordinates [14, 15],

x = xe −
E0

ω2
cosωt, (2a)

p = pe +
E0

ω
sinωt, (2b)

the Hamiltonian becomes [14, 15]

HKH(x, p, t) =
p2

2
+ V

(
x+ q cosωt

)
, (3)

where q = E0/ω
2 is the quiver radius. In order to exhibit

the local minimum of an effective potential, the dynamics
is averaged over one period (linked with the fast oscilla-
tions of the field), so that the Hamiltonian becomes

⟨HKH⟩(x, p) =
p2

2
+ VKH(x) , (4)

where VKH is the Kramers-Henneberger potential given
by

VKH(x) =
1

2π

∫ 2π

0

V
(
x+ q cosϕ

)
dϕ . (5)

Consequently, if the KH approximation is valid, meaning
that the fast oscillations can be averaged out, the KH ef-
fective Hamiltonian ⟨HKH⟩ is time independent, and the
classical dynamics evolves on a constant energy surface
EKH = ⟨HKH⟩(x, p). Figure 1 shows an example of KH
effective potential (5). In a wide range of laser param-
eters VKH exhibits two minima, located at ±xKH, just
about one quiver radius away from the parent ion, cor-
responding to two fixed points in the phase space of the
KH effective Hamiltonian ⟨HKH⟩.

The bound eigenstates of ⟨HKH⟩, denoted |ψn⟩, exhibit
probability density maxima around ±xKH. In principle,
the wavefunction may stabilize in these potential wells
as a consequence of the existence of the bound states
|ψn⟩. However, the elegance of the argument advocating
the existence of these laser-dressed states has not been
matched with some conclusive evidence. Neglecting the
terms resulting from averaging out the fast oscillations
is far from an obvious step, and depends significantly on
the values of the parameters of the laser and the atom,

FIG. 1. Effective potential VKH given by Eq. (5) for I = 1015

W cm−2, λ = 780 nm and a = 1 a.u.. The position
x is in units of quiver radius, the potential is in units of
Up = E2

0/(4ω
2). Blue dot: position of the fixed point KH0.

Magenta line: n = 2 resonance; magenta dots: positions of
the corresponding elliptic orbits; magenta cross: position of
the two symmetric hyperbolic orbits. Red line: n = 1 reso-
nance; red dots: positions of the corresponding elliptic orbits;
red cross: position of the two symmetric hyperbolic orbits.
The full red circle corresponds to the periodic orbit KH1.

and the region in phase space where this approximation
is performed. In other words, is the existence of |ψn⟩
a sufficient condition for stabilization? To address this
question, we introduce the Hamiltonian

Hε(x, p, t) = εHKH(x, p, t) + (1 − ε)⟨HKH⟩(x, p) , (6)

with ε a parameter that allows to move from a time evo-
lution governed by ⟨HKH⟩ (ε = 0) to HKH (ε = 1). For
ε = 0, the population of |ψn⟩ is conserved in time. As a
consequence, the probability density is localized around
±xKH. For ε ̸= 0, the population of those states evolves
in time. However, there is no stability condition for the
population of |ψn⟩ and no clear evidence about the role or
relevance of this eigenbasis for ε = 1. Moreover, for most
atoms and for laser fields in the near-infrared regime and
in the 1013 to 1016 W cm−2 intensity range –nowadays
routinely considered in experiments–, the KH approxi-
mation is clearly not valid [21] in a region around one
quiver radius away from the ionic core. Can we then
still have a KH atom even if the KH approximation is
not valid? In other terms, if the KH potential does not
structure the dynamics, what are the objects in phase
space organizing the dynamical processes? We address
this question by first considering the nonlinear dynamics
associated with Hamiltonian (6).

II. KH ATOM AS A PERIODIC ORBIT

A. Finding KH state(s) by a continuation method

In the neighborhood of the KH fixed point (for ε = 0),
denoted KH0 in what follows, there is a harmonic motion
with frequency ωKH =

√
V ′′
KH(xKH). Still for ε = 0, away

from the fixed point (for higher effective energy E), the
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phase space is densely filled with periodic orbits of in-
creasing periods, denoted 2π/Ω(E), bouncing back and
forth on the walls of the potential VKH, as illustrated in
Fig. 1. When the time dependence of the field is taken
into account, the fixed point KH0 of ⟨HKH⟩ is in fact a
periodic orbit of period T = 2π/ω. This periodic orbit
is stable and elliptic since its location corresponds to a
minimum of the effective potential energy. The motion
bouncing back and forth on the potential walls corre-
sponds now to two-dimensional invariant tori with the
two frequencies (Ω(E), ω). When the two frequencies are
commensurate, i.e., there exists (n,m) ∈ N2 such that
nω − mΩ(E) = 0, the invariant tori are densely filled
with periodic orbits (with period 2πm/ω). Most of these
periodic orbits will be broken as soon as the time de-
pendence is turned on (i.e., for ε > 0). However, some
periodic motion originating from the KH potential per-
sists, and these will be referred to as the KH periodic
orbits. The question is then to know whether some of
the KH periodic orbits persist up to the full Hamiltonian
HKH by increasing gradually ε away from 0 and up to
1 in Hamiltonian (6), i.e., when the KH approximation
is not applied. The quantity 1 − ε corresponds to the
degree of consideration of the KH approximation. As ε
increases from 0, the approximation is gradually turned
off. We follow the destiny of the KH periodic orbits for
increasing ε : We start with a situation where the KH
periodic orbits exist for ε = 0 (i.e., when VKH has a local
minimum), and increase ε. If the KH periodic orbits can
be followed up to ε = 1, this corresponds to a situation
where the KH atom exists. We restrict the study to the
case m = 1, i.e., Ω(E) = nω, corresponding to periodic
orbits with the same period as the laser field. The short-
est periodic orbits are likely to be the most stable ones,
and hence with a long-lasting impact on the dynamics.

In Fig. 1, some surviving KH periodic orbits for ε = 0+

are represented by circles and crosses. The periodic or-
bits which turn out to be of crucial importance for the
destruction of the KH0 state correspond to the reso-
nant motion with the laser field, in particular, the pe-
riodic orbits of ⟨HKH⟩ with frequency Ω(E) = nω where
n ∈ N∗, denoted KHn in what follows. For our choice
of the parameters I, λ and a, there are two such reso-
nances, whose energy levels are represented in Fig. 1 as
a red line (the n = 1 resonance) and a magenta line (the
n = 2 resonance). We have followed the positions and
residues [22] of the corresponding periodic orbits for in-
creasing ε, and observed that the KH0 state disappears
by colliding with a periodic orbit relative to the closest
resonance in phase space, through what is referred to as
a saddle-node bifurcation. The closest resonance is the
one with n = ⌊ωKH/ω⌋, and n = 2 in this particular case.

Figure 2 illustrates the typical mechanism through
which KH0 disappears. The upper left panel shows a
Poincaré section for Hamiltonian (6) with ε = 0.02, a
value such that all the periodic orbits born out of the
KH fixed point and the n = 2 resonance still exist (i.e.,
still in the regime where the KH approximation largely

applies). Their residues [22], measuring their stability,
appear in the lower panel. The blue dot labels the el-
liptic orbit representing the KH0 state; the two magenta
dots label the two elliptic orbits born out of the n = 2
resonance; the magenta crosses label the two hyperbolic
orbits born out of the resonance, which have the same x
position and momenta p of opposite signs.

The residue curves show that at ε ≃ 0.053 the elliptic
orbit labelled by the full magenta circle merges with the
two hyperbolic orbits, to give a single hyperbolic orbit
which is now symmetric around p = 0. As ε increases the
surviving hyperbolic orbit and the KH0 state get closer,
until they collide at ε ≃ 0.082, so well before the KH ap-
proximation is released. The upper right panel of Fig. 2
illustrates this, showing a Poincaré section for Hamilto-
nian (6) with ε = 0.08, just before the KH0 state and the
hyperbolic orbit disappear. Therefore, the mechanism
through which the KH0 orbit disappears is a collision
with a periodic orbit associated with the KH potential
resonant with the laser field, as a saddle-node bifurca-
tion of periodic orbits. We have carried out a similar
analysis of phase space structures and confirm the gener-
ality of the scenario, a saddle-node bifurcation between
the KH0 state and a resonant state with n = ⌊ωKH/ω⌋.
For all the cases where this resonance exists, the only pe-
riodic orbit surviving in the dynamics of Hamiltonian (3)
is KH1, issued from the n = 1 resonance. The reason is
that each resonance generates an even number of periodic
orbits. After the saddle-node bifurcation that eliminates
KH0, one orbit issued from the n = ⌊ωKH/ω⌋ resonance
is left. This orbit is in turn destroyed by a resonant state
of order n − 1, while one state of order n − 1 survives,
and will be destroyed by a resonant state of order n− 2.
So, it is one orbit of the lowest order n = 1, i.e., KH1,
which survives this process, as it is illustrated in Fig. 3
for the case under study.

For values of the parameters such that there are no
resonances with the laser field, it is the KH0 state who
survives in the dynamics of Hamiltonian (3), since there
are no resonant orbits that can destroy it through the
saddle-node bifurcation depicted in Fig. 2. In summary,
only KH0 or KH1 persist up to ε = 1.

B. For which intensities are there KH atoms?

We scan the parameters I and a and we fix the laser
wavelength at λ = 780 nm. The question we address
is for which values of (a, I) the dynamics leads to a KH
atom as a continuation of the KH periodic orbit born out
of the local minimum of the KH potential.

From Fig. 4, we conclude that there is a single KH peri-
odic orbit, whether it is linked to KH0 or KH1 in the KH
approximation (respectively, regions at the right or left
of the dotted black line in Fig. 4, which corresponds to
ωKH = ω). Clearly, both states lead to the same periodic
orbit.

For small intensities or small ionization potential (or
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FIG. 2. Upper left panel : Poincaré section for Hamiltonian (6) at ε = 0.02. Upper right panel : Poincaré section for
Hamiltonian (6) at ε = 0.08. The positions x are in units of quiver radius, the momenta p are in units of E0/ω. Lower
panel : evolution of the periodic orbit residues [22] with ε. The symbols for the periodic orbits are the same as in Fig. 1. The
parameters are I = 1015 W cm−2, λ = 780 nm and a = 1 a.u..

FIG. 3. Evolution of the residues [22] of all the periodic orbits
(KH0 and n = 2 and n = 1 resonances) for Hamiltonian (6).
The symbols for the periodic orbits are the same as in Fig. 1.
The parameters are I = 1015 W cm−2, λ = 780 nm and a = 1
a.u.. The black frame on the left-hand side corresponds to
the limits of Fig. 2.

equivalently large a, e.g., a ≳ 4.2 for λ = 780 nm), this
KH periodic orbit is elliptic (the white region in Fig. 4,
delimited by red lines), otherwise, it is weakly hyperbolic
(the orange region in Fig. 4 represents the values of the
residue [22] associated with the KH periodic orbit).

For any a, there is a value of laser intensity below which
the KH state does not exist anymore (the gray region in
Fig. 4). The KH state disappears due to a bifurcation
through which the two asymmetric KH orbits born from
the right and left wells of the KH potential coalesce to

FIG. 4. Domain of existence of the KH periodic orbit for
Hamiltonian (3) in parameter space (a, I) for λ = 780 nm.
The orange scale corresponds to the value of the residue [22]
of the periodic orbit when hyperbolic. In the white region
(delimited by the two red lines), the KH atom is elliptic. The
region on the right-hand side of the dotted black line is such
that ωKH < ω, and corresponds to the KH0 periodic orbit;
the region on the left-hand side of the dotted black line corre-
sponds to the KH1 periodic orbit (ωKH > ω). The gray region
is the one where the KH state does not exist. Below the black
solid line, the potential has no local minima at nonzero values
of x. The values of I are in W cm−2 and the values of a are
in atomic units.
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give a single symmetric orbit.
The location xKH of the local minimum of the KH po-

tential depends only on the ratio of the softening param-
eter to the quiver radius a/q ∝ a/

√
I. The critical value

for the existence of xKH ̸= 0 is a/q ≃ 0.46 (the black
solid line in Fig. 4). Figure 4 shows that the presence of
local minima of the potential VKH (for laser intensities
I > a2ω4× 6.03 · 1018W cm−2) is neither a necessary nor
a sufficient condition for the existence of the KH state.

Figure 5 represents the elliptic KH periodic orbit for
I = 1015 W cm−2, λ = 780 nm and a = 5 a.u.. The
orbit is indeed localized around one quiver radius if ex-
pressed in the KH coordinates (left panel). Going back
to the electron coordinates (xe, pe) of Hamiltonian (1),
the orbit is reminiscent of a Rydberg state (right panel).
A Poincaré section of Hamiltonian (3) close to the po-
sition of the elliptic KH periodic orbit is represented in
Fig. 6. It shows the rather small extent (in position and
momentum) of the elliptic region around this orbit.

The KH atom exists for a wide range of experimen-
tally accessible intensities and atoms, exemplifying its
robustness. In addition, for most of the parameters, the
KH atom is elliptic or very weakly hyperbolic, signifying
that its effect might be clearly visible on the wavefunc-
tion, most likely for the entire duration of the laser pulse.
These elements make the KH atom an ideal candidate for
a laser-driven Rydberg state, provided it is explored in
the relevant range of parameters. Here we have used
the KH potential as a guide to find the relevant periodic
orbit leading to the KH state. However, given that the
KH approximation is not valid, the link between the KH
potential and the true dynamics is tenuous. For instance,
as we have discussed, there are situations where the KH
potential has a local minimum but there is no KH state,
and other situations where there is a KH state but no
minimum of the KH potential.

III. SIGNATURE OF THE KH PERIODIC
ORBIT IN QUANTUM SIMULATIONS

The predictions obtained from the classical analysis
are tested on the corresponding quantum system. Fig-
ure 7 shows the probability density as a function of the
position and time obtained from the solution of the time-
dependent Schrödinger equation

i∂tψ(x, t) = ĤKH(t)ψ(x, t), (7)

with ĤKH(t) = HKH(x,−i∂x, t). The wavefunction is
initiated as a coherent state centered around the KH pe-
riodic orbit. The position and momentum of the KH pe-
riodic orbit at time t are denoted (xKH(t), pKH(t)). The
wavefunction is therefore initiated as

ψ(x, t0) = ϕ(xKH(t0),pKH(t0))(x), (8)

where

ϕ(x0,p0)(x) =
1

(πσ2)1/4
exp

(
− (x− x0)2

2σ2
+ ixp0

)
, (9)

represents a coherent state of mean position x0 and mean
momentum p0. We use a standard deviation σ = 10 a.u.
corresponding to roughly 0.2 times the quiver radius for a
laser intensity I = 1015 W cm−2 and wavelength 780 nm
for all the observables we compute next. The quantum
simulations are started at time t0 = π/(2ω) such that the
laser electric field is zero at the beginning of the simu-
lation. The wavefunction is propagated on a symmetric
grid of step size 0.2 and 214 points using a second-order
split-operator method [23]. The three panels of Fig. 7
show the probability density function as a function of
the position and time for different softening parameters.
In all panels, we observe that a part of the wavefunction
remains localized around the KH periodic orbit for all
times. The wavefunction is sculpted by the KH periodic
orbit. However, in panels (a) and (b), we observe that the
amount of wavefunction rather quickly fades away from
the (weakly) hyperbolic periodic orbits. Conversely, in
panel (c), it remains highly localized around the elliptic
periodic orbit.

In order to get a more quantitative insight into the lo-
calization of the wavefunction around the KH periodic
orbit, we compute the correlation function between the
wavefunction and a coherent state given by Eq. (9), cen-
tered around the KH periodic orbit; the explicit expres-
sion of the correlation function is

C(t) =

∣∣∣∣∫ ϕ∗(xKH(t),pKH(t))(x) ψ(x, t) dx

∣∣∣∣2 . (10)

The values of C(t) are shown for each case in Fig. 8
as a function of time. In all panels, we notice that
C(t0) = 1. In panels (a) and (b), we observe that C(t)
quickly drops off in the first periods of the simulation,
so that C(t) < 0.05 for t − t0 > 5. On the contrary,
in panel (c), we observe that C(t) decreases slowly with
time, so that after ten laser cycles, C(t) ≈ 0.45. Thus,
the wavefunction remains close to the classical KH peri-
odic orbit if it is elliptic. This demonstrates that elliptic
KH periodic orbits act as a backbone for the wavefunc-
tion dynamics. If the KH periodic orbit is hyperbolic, the
wavefunction only remains localized around it for a few
laser cycles, then spreads away from it rather quickly.
However, in contrast to elliptic periodic orbits, hyper-
bolic ones have invariant manifolds that structure phase
space. We study the influence of the invariant manifolds
of the hyperbolic KH periodic orbit on the wavefunction
by comparing the classical and quantum views of the dy-
namics in phase space. Quantum mechanically, we use
the Husimi representation

Q(x, p, t) =

∣∣∣∣∫ ϕ∗(x,p)(y)ψ(y, t) dy

∣∣∣∣2 , (11)

corresponding to the overlap between the wavefunction
ψ(x, t) and a coherent state given by Eq. (9) centered at
(x, p) [24]. The integral in Eq. (11) can be written in the
form of a convolution product and can therefore be effi-
ciently computed using fast Fourier transforms. At time
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FIG. 5. The KH periodic orbit for I = 1015 W cm−2, λ = 780 nm, a = 5 a.u. in the KH frame (left panel), semi-KH frame
(middle panel) and electron coordinates (right panel). The positions x, xe are in units of quiver radius q, and the momenta p,
pe are in units of E0/ω. The changes of coordinates are given by Eq. (2). The black dot gives the position of the ionic core (on
the middle and right panels).

FIG. 6. Poincaré section for Hamiltonian (3) around the KH
periodic orbit for a laser wavelength of 780 nm, I = 1015 W
cm−2 and a = 5 a.u.. The position of the elliptic KH periodic
orbit is indicated by a blue dot. The position x is in units of
quiver radius q, and the momentum p is in units of E0/ω.

t = t0, Q(x, p, t0) is centered around the KH periodic
orbit with positive x. As time evolves, Q(x, p, t) follows
the periodic orbit motion and leaks slowly out of its sur-
rounding region as indicated by the correlation functions
in Fig. 8. An animated gif for the time evolution of the
Husimi function is provided in the Supplemental Mate-
rial of this article [25]. During the time evolution, for all
cases, we observe that the Husimi representation of the
wavefunctions follows the motion of the periodic orbits
with high fidelity. The wavefunction spreads throughout
phase space for the hyperbolic case, and remains rather
localized around the periodic orbit for the elliptic case.
This is also what can be seen from Figs. 7 and 8. Fig-
ure 9 shows Q(x, p, t) at time t − t0 = 8 laser cycles for
the same parameters as in Fig. 7. In the three panels of
Fig. 9, we observe that a part of the electron remains lo-
calized in phase space around the KH periodic orbit. In
Fig. 9(c), for which the KH periodic orbit is elliptic, we
observe that the electron remains in its neighborhood. In

Figs. 9(a) and 9(b), the stable and unstable manifolds of
the KH periodic orbits are indicated by gray and black
lines, respectively. In this case, classically and quantum
mechanically, the electron escapes the neighborhood of
the hyperbolic KH periodic orbit through its invariant
manifolds. We observe that local maxima of Q(x, p, t)
are located around the intersections of the stable and un-
stable manifolds. The wavepackets are driven back and
forth from the KH periodic orbit. The KH periodic orbits
also structure the quantum dynamics through its invari-
ant manifolds. However, it is unclear if this organization
is sufficient for the wavefunction to be characterised as a
KH state.

CONCLUSIONS

In this article, we have shown that the KH state cor-
responds to a single periodic orbit with the same period
as the laser field, despite the fact that the KH approxi-
mation is largely invalid. This KH state exists in a wide
range of parameters of the laser and the atom, and in
most relevant cases is an elliptic or weakly hyperbolic
periodic orbit. We have used the KH approximation as
a guide to find it by gradually turning on the neglected
terms in the Hamiltonian. As expected, the phase-space
picture in the KH approximation bears very little to no
resemblance with the true dynamics in the KH coordi-
nates, but it has a useful component as a methodological
tool to identify and follow the fate of the main periodic
orbits in the integrable case. We have shown that the
identified periodic orbit has a strong influence on the
quantum wavefunction, where the effect of this periodic
orbit is clearly visible as a scar lasting several laser cy-
cles if weakly hyperbolic or much longer if elliptic. The
existence of this KH state opens up a formidable avenue
to exploit these Rydberg-like atoms where the level of
excitation is piloted by tuning relevant parameters of the
laser field. This could be achieved by controlling the clas-
sical KH periodic orbit identified in the present work.
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FIG. 7. Probability density |ψ(x, t)|2 as a function of the position x and time t for a KH state sculpted by the periodic orbit
(black lines) for a laser wavelength of 780 nm, t0 = 1/4, I = 1015 W cm−2 and (a) a = 1 a.u., (b) a = 2.5 a.u. and (c) a = 5
a.u.. The position x is in units of quiver radius q, and times t and t0 are in units of laser cycles (l.c.).

0

1

0

1

0 10
0

1

FIG. 8. Correlation function C(t) given by Eq. (10) as a
function of time t for the same parameters as in Fig. 7, i.e.,
for a laser wavelength of 780 nm, I = 1015 W cm−2 and (a)
a = 1 a.u., (b) a = 2.5 a.u. and (c) a = 5 a.u.. The correlation
C(t) is in atomic units, and times t and t0 = 1/4 are in units
of laser cycles.
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