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Abstract: Insufficient dietary fiber intake can negatively affect the intestinal microbiome and, over
time, may result in gut dysbiosis, thus potentially harming overall health. This randomized controlled
trial aimed to improve the gut microbiome of individuals with low dietary fiber intake (<25 g/day)
during a 7-week synbiotic intervention. The metabolically healthy male participants (n = 117, 32 ± 10 y,
BMI 25.66 ± 3.1 kg/m2) were divided into two groups: one receiving a synbiotic supplement (Biotic
Junior, MensSana AG, Forchtenberg, Germany) and the other a placebo, without altering their dietary
habits or physical activity. These groups were further stratified by their dietary fiber intake into a low
fiber group (LFG) and a high fiber group (HFG). Stool samples for microbiome analysis were collected
before and after intervention. Statistical analysis was performed using linear mixed effects and partial
least squares models. At baseline, the microbiomes of the LFG and HFG were partially separated.
After seven weeks of intervention, the abundance of SCFA-producing microbes significantly increased
in the LFG, which is known to improve gut health; however, this effect was less pronounced in the
HFG. Beneficial effects on the gut microbiome in participants with low fiber intake may be achieved
using synbiotics, demonstrating the importance of personalized synbiotics.

Keywords: synbiotics; fiber; intervention study; gut microbiota; probiotic; prebiotic; dysbiosis

1. Introduction

The human gut microbiota comprises trillions of microorganisms. More than 90%
of bacterial species belong to one of the four phyla: Bacillota (synonym: Firmicutes),
Bacteroidota, Actinobacteria, and Pseudomonadota [1]. The microbiome encompasses all
microbial genes and is linked to the onset of diverse diseases, including type 2 diabetes
and non-alcoholic steatohepatitis. However, the composition of the gut microbiome can
also be modulated by the intake of prebiotics, probiotics, and synbiotics [2].

Synbiotics, which combine pre- and probiotics, exert beneficial effects on host health, syner-
gistically enhancing outcomes beyond those achieved by either probiotics or prebiotics alone [2].
Additionally, prior research indicates that synbiotics may possess therapeutic potential for con-
ditions such as insulin resistance and inflammatory bowel syndrome [3–5]. However, whether
synbiotics can also be used for disease prevention owing to their microbiome-modulating
properties remains unknown [6,7].
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The interaction between nutrition and the microbiome is increasingly being recognized
as an important environmental factor for human health. In particular, the type, origin, and
quality of food consumed shape the composition of the intestinal microbiota [8]. Interest is
growing in using specific nutritional strategies to modulate the microbiota for improving
health and preventing or treating diseases. For example, fiber is an important factor in
nutrition, as fiber has positive effects on cholesterol metabolism [9]. Consistent, long-term
fiber consumption has been demonstrated to influence the gut microbiota by modifying
bacterial fermentation, colony size, and species composition [9–12]. Specifically, there
was an increase in the abundance of bacteria that degrade polysaccharides and produce
short-chain fatty acids (SCFAs), which are considered beneficial [13,14].

Furthermore, a higher intake of fiber is linked to the prevention of diseases such as
type II diabetes mellitus or heart diseases and is considered beneficial [15,16]. Additionally,
the evidence-based guidelines of the German Association of Nutrition (DGE) on carbohy-
drate intake indicate that high fiber intake has protective effects on the risk of developing
hypertension, malignant tumors in the colorectum, obesity, coronary heart disease, and
dyslipidemia [17–19]. The World Health Organization (WHO), Food and Agriculture Orga-
nization (FAO), and European Food Safety Authority (EFSA) all recommend a minimum
daily dietary fiber intake of 25 g.

In contrast, low fiber intake has been independently linked to negative health con-
sequences of a microbial response in the gut, including overall lower microbial diversity
and richness [8]. Additionally, earlier studies have demonstrated that specific taxonomic
changes can occur, especially in microbes responsible for SCFA production, resulting in
decreased SCFA levels [14,20]. Against this background, this study investigated whether
the intake of synbiotics for seven weeks increased the diversity of the gut microbiome and
thus contributed to a healthier microbiome in human participants with an initially low
dietary fiber intake. We further tested whether the administration of synbiotics had an
additional positive effect on the microbiome despite the high-fiber diet [13].

2. Methods
2.1. Study Design and Intervention

Between March and November 2019, a randomized, placebo-controlled, double-blind
study was conducted at the University Hospital Bonn, Germany [21]. Aim of this secondary
analysis was to investigate the effect of a synbiotic on gut microbiome in participants with
low fiber intake.

After the first session, participants were randomly assigned in a 1:1 ratio to either the
synbiotic (SYN) group or the placebo (PLA) group. Both participants and investigators were
blinded to the group assignments. The commercially available dietary synbiotic supplement
Biotic Junior, provided by the manufacturer MensSana contained 2 × 109 colony forming
units (CFU) probiotic bacteria from five strains (Bifidobacterium lactis, Lactobacillus acidophilus,
Lactobacillus casei, Lactobacillus salivarius, Lactococcus lactis) along with prebiotic inulin
derived from agave. The placebo product was identical in appearance and taste and
contained microcrystalline cellulose (MCC). The supplements were administered once
daily (2 g dissolved in water) for seven weeks. The participants were instructed to maintain
constant dietary behaviors and physical activities during the study phase. Anthropometric
measurements, dietary records, and fecal samples were gathered from participants both
before and after the seven-week intervention period.

The study adhered to the Declaration of Helsinki guidelines and received approval
from the Ethics Committee of the University Clinic Bonn (number 347/18). Before the
study commenced, written informed consent was obtained from all participants. The trial
was preregistered on the Open Science Framework (https://osf.io/utsn4, accessed on 10
April 2024) with a comprehensive outline of the protocol.

https://osf.io/utsn4
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2.2. Participants

Eligible participants were males between the ages of 20 and 60, non-smokers, with
a BMI ranging from 20 to 34 kg/m2, not following specific dietary restrictions (such as
vegetarianism) or having food allergies or intolerances. Additionally, they had not taken
any hormonal medication or antibiotics in the four weeks preceding the study entry.

2.3. Dietary Intake

Participants were responsible for recording their dietary intake, following instructions to
complete a three-day food protocol before both the initial and subsequent sessions. The data
collected were transferred and preprocessed utilizing the nutritional software EBISpro 2016.

2.4. Fiber Group Definition

For this secondary analysis, the participants were divided into a low or high fiber
group depending on their initial fiber intake, based on fiber recommendations for adults,
by WHO, FAO, and EFSA, with the following criteria for stratification: low fiber group
(LFG): <25 g/day and high fiber group (HFG): ≥25 g/day (Figure 1).
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2.5. Anthropometrics

Anthropometric measurements were recorded by trained personnel according to the
standardized procedures. Body height and weight were measured at 0.1 kg, respectively.
BMI was computed using the formula BMI = weight [kg]/height [m]2. Body weight and
fat percentage were assessed using a medical-grade bioimpedance scale (Tanita Europe BV,
Amsterdam, The Netherlands).

2.6. Gut Microbiome Sample Processing

To analyze the gut microbiome, stool samples were collected within 24 h before each
study visit using a standardized procedure. These samples were promptly frozen at −80 ◦C
until analysis. DNA extraction was carried out using a QIAamp PowerFecal DNA Kit
following the manufacturer’s protocol (Qiagen, Hilden, Germany) [22]. In summary, stool
samples were mechanically disrupted using Bead Tubes with a 0.7 mm Dry Garnet. High-
throughput sequencing of the V3V4 region of the 16S rRNA gene was performed using
the primer pair 341f-806bR. QIIME2 (Quantitative Insights into Microbial Ecology; version
2023.5) [23] was utilized for all preprocessing tasks. The 300-bp paired-end reads generated
from the MiSeq analysis were assembled using DADA2 [24]. DADA2 was employed for
quality filtering of paired-end reads, employing a quality threshold of >30 and eliminating
mismatched barcodes. The resulting Amplicon Sequence Variants (ASVs) from DADA2
were utilized for subsequent analysis. Additionally, a phylogenetic tree was constructed
using these ASVs. Ultimately, the Silva taxonomy database (version 138) [25,26] was
employed for taxonomic assignment of sequences across all taxonomic levels, estimating
their relative abundances.

2.7. Statistical Analyses

To complete the secondary analysis as discussed above, diversity metrics such as
Shannon index and Faith’s phylogenetic diversity (Faith’s PD). Microbiome composition
metrics such as Jaccard distance, abundance of each microbe, dietary fiber intake were
considered as outcome variables.

2.7.1. Analyzing Participant’s Characteristics

All statistical analyses were conducted using R Studio (version 4.2.2, Boston, MA, USA).
Continuous data were presented as mean ± standard deviation (SD), while categorical
variables were expressed as frequencies. Normal distribution of continuous variables was
assessed using the Shapiro–Wilk test. Baseline differences between treatment groups were
evaluated using an unpaired Student’s t-test for normally distributed variables, Mann–
Whitney test for non-parametric variables, and Pearson’s chi-square test for categorical
variables. To mitigate the potential impact of dietary intake variations on microbiome
changes, relative changes in energy, carbohydrates, protein, and fat intake, as well as
changes in body weight, BMI, and fat mass between groups, were compared using the
t-test or Wilcoxon test. Statistical significance was set at p < 0.05.

2.7.2. Diversity Analysis

For diversity analysis, rarefaction was conducted at a sampling depth of 12,000 se-
quences, leading to the exclusion of 21 samples from the analysis. Alpha diversity metrics,
including the Shannon index and Faith’s PD), along with beta diversity metrics such as
Jaccard distance, were calculated using the QIIME2 package. To analyze gut microbial
composition and confirm the intervention’s impact on the gut microbiome in a longitudinal
manner, a linear mixed model was employed to examine group differences in microbial
alpha-diversity (Shannon index, Faith’s PD). Furthermore, analyses of beta-diversity (Jac-
card distance) incorporated baseline synbiotic abundance and two-way interactions (group
× baseline-synbiotic-abundance). The placebo group was designated as the reference, and
synbiotic abundance was characterized as the total relative abundance of synbiotic bacteria
in the gut microbiome before the intervention (at baseline).
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2.7.3. Gut Microbiome Analysis Using sPLS-DA

To investigate the effect of synbiotics on abundances of different gut microbes in each
fiber group, a dimensional reduction technique, similar to principal component analysis,
was performed using a sparse partial least square discriminatory analysis (sPLA-DA),
implemented in the mixOmics v6.8.5 R package [27]. Using sPLS-DA is advantageous
because it effectively handles the complex relationships among many microbes, reduces
data complexity, and considers multiple microbes at once, providing a more robust and
comprehensive analysis of the gut microbiome data. This approach also offers clear visu-
alizations and highlights key contributors, enhancing the interpretation and validity of
our findings.

In this analysis, components are formed by maximizing covariance between the mi-
crobes, to distinguish intervention groups from each other. In our case, a partial least square
model with feature selection using LASSO regularization technique was performed on the
high dimensional microbiome dataset. For selecting the optimal number of components
and microbes in each component needed to distinguish between intervention groups, a five-
fold cross-validation with 50 repeats was performed. The optimal number of components
and regularization was selected minimizing the balanced error rate (BER). To check for the
stability of the selected microbiomes in the previous step, a final tenfold cross validation
with 50 repeats was performed. The evaluation of the model was done using the BER, as
well as the AUC. Sample plots and loading plots are made using the functions plotIndiv and
plotLoadings from mixomics package, respectively. More detailed workflow can be found
in the mixOmics tutorial (http://mixomics.org/case-studies/splsda-srbct-case-study/, ac-
cessed on 15 March 2024). This analysis was performed at different taxonomic levels with a
relative abundance threshold of 0.01%. Change in center-log-ratio transformed microbiome
data between sessions (endline-baseline) was provided as an input. Participants without
postintervention data were excluded (n = 1).

2.7.4. Metabolic Pathway Analysis Using sPLS-DA

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States
2 (PICRUSt2) v2.5.1 was employed to predict the functional potential of microbial com-
munities. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs
were identified, and KEGG pathways were inferred from these orthologs using KEGG
Orthology (KO), a classification system developed based on the KEGG database [28].
The ko2kegg_abundance function in the ggpicrust2 package [29] was used for this task.
sPLSA-DA was used for these KEGG pathways.

2.7.5. Individual Microbe Analysis Using NBZIMM

Compared to a system level analysis such as sPLS-DA, we additionally performed a
regression analysis at feature level. At feature level, each gut microbe was considered as
an independent microbe and the regression analysis was performed on each individually.
Regression analysis of gut bacterial taxa was conducted using a negative binomial and zero-
inflated mixed model (NBZIMM) [30] involving the gut microbiomes of 97 participants.
Taxa were deemed adequately abundant if each taxon was present in at least 20% of the
samples [10]. This model addresses zero-inflation concerns for certain microbiome taxa and
consists of two steps: first, a logistic model predicts excess zeros, followed by a negative
binomial distribution for overdispersed counts. The model, incorporating the effects of
group, session, and group × session, was utilized to pinpoint microbial taxa significantly
impacted by the intervention. Age and BMI served as covariates, and adjustments were
made for varying sequence counts in each sample. Additionally, random effects were
included to account for repeated sampling of the microbiota from the same individual. The
model was applied individually to each taxon, and to counteract multiple testing, a false
discovery rate (FDR)-adjusted p < 0.05 was chosen for the associated genus.

http://mixomics.org/case-studies/splsda-srbct-case-study/
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3. Results
3.1. Participant’s Characteristics

Out of the initial 117 participants, 16 were excluded for various reasons: antibiotic
treatment during the intervention (n = 8), changes in medical conditions or treatment
affecting the gut microbiota (n = 6), reported changes in dietary habits (n = 1), or non-
attendance at the post-intervention session (n = 1). Additionally, four individuals were
excluded due to technical issues with fiber intake assessment, resulting in a final analysis
of 97 participants, with an average age of 32 ± 10.69 years (Table 1). No participants
reported any adverse effects after taking synbiotics or the placebo. At baseline, there were
no significant differences between the synbiotic and placebo groups within each fiber group
regarding anthropometric data including weight, BMI, and body fat mass. There was no
significant difference in microbial diversity between the intervention groups at baseline
within each fiber group.

Table 1. Baseline characteristics of the study population.

Total (n = 97) LFG HFG

SYN [n = 30] PLA [n = 27] p Value SYN [n = 19] PLA [n = 21] p Value

Age (years) 32.27 ± 10.69 31.69 ± 10.98 34.72 ± 11.57 0.31 31.14 ± 8.87 30.48 ± 10.82 0.83
Weight (kg) 84.08 ± 11.66 85.73 ± 12.96 85.56 ± 12.76 0.96 82.8 ± 9.57 80.78 ± 9.85 0.51

BMI (kg/m2) 25.66 ± 3.1 25.7 ± 3.42 26.53 ± 3.06 0.34 25.28 ± 2.68 24.64 ± 2.97 0.48
Fat mass (%) 19.57 ± 5.19 19.86 ± 5.39 21.09 ± 5.11 0.92 19.32 ± 4.35 17.28 ± 5.41 0.20

Energy intake
(kcal/day) 2819.56 ± 588.5 2792.05 ± 632.52 2650.43 ± 595.27 0.39 2746.63 ± 527.37 3134.24 ± 473.66 0.01

Carbohydrate intake
(grams/day) 298.25 ± 81.37 283.89 ± 97.88 275.27 ± 70.21 0.70 309.09 ± 71.91 337.4 ± 63.42 0.20

Protein intake
(grams/day) 112.88 ± 37.58 119.77 ± 53.07 107.59 ± 31.07 0.29 102.01 ± 21.95 119.43 ± 26.82 0.03

Fat intake
(grams/day) 120.32 ± 32.5 116.7 ± 23.8 115.16 ± 37.71 0.86 115.83 ± 26.24 135.96 ± 38.33 0.06

Fiber intake
(grams/day) 24.98 ± 8.37 19.6 ± 3.79 19.48 ± 3.58 0.90 32.17 ± 5.94 33.25 ± 7.84 0.63

Shannon index 6.55 ± 0.64 6.53 ± 0.62 6.66 ± 0.54 0.84 6.45 ± 0.88 6.53 ± 0.52 0.94
Faith’s PD 35.46 ± 8.67 37.71 ± 8.79 33.76 ± 8.15 0.20 34.58 ± 9.48 35.27 ± 80 0.68

BMI: Body Mass Index; LFG: Low Fiber Group; HFG: High Fiber Group; SYN: Synbiotic; PLA: Placebo; For
Shannon index and Faith’s PD, a linear model adjusting for age and BMI was used, remaining metrics were
measured using t-test. p value shown is unadjusted.

At baseline, the HFG and LFG were observed to have partially separated microbiomes
at the genus level (Figure S1A). Among the top five genera contributing to the components
driving the separation, Butyrivibrio, Lachnospiraceae UCG-008, and Lachnospiraceae UCG-008
were found to have a higher mean abundance in HFG and Dorea and Negativibacillus in the
LFG group (Figure S1B). Similar separation of the two groups at baseline was also observed at
the species and ASV levels (Figure S1C–F). At baseline, there were no differences between
HFG and LFG in macro-nutrients intake, apart for carbohydrates (LFG: 279.89 ± 85.51 g,
HFG: 323.95 ± 68.22 g, t = −11.00, p = 1.92 × 10−15) and fiber (LFG: 19.54 ± 3.66 g, HFG:
32.74 ± 6.94 g, t = −2.80, p = 2.72 × 10−3), which was expected, as we had stratified accordingly.
However, protein (LFG: 114.12 ± 44.29 g, HFG: 111.15 ± 25.86 g, t = 0.41, p = 0.68), fat
(LFG: 115.99 ± 30.75 g, HFG: 126.4 ± 34.28 g, t = 78.36, p = 0.12), and alcohol intake (LFG:
11.57 ± 19.06 g, HFG: 5.82 ± 9.96 g, t = 88.75, p = 0.56) were similar between HFG and LFG.

3.2. Anthropometric Measures and Macro-Nutrient Intake

Since the participants were instructed to maintain their usual isocaloric diet during
the 7-week intervention period, there were no differences in the relative changes in body
weight, BMI, or fat mass between the fiber groups. Similarly, no significant differences
in the relative changes in energy, carbohydrate, protein, and fat intakes were observed in
either fiber group (Table 2).
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Table 2. Relative change in anthropometric measures and macro-nutrient intake.

LFG HFG

SYN PLA
p Value

SYN PLA
p Value

(n = 30) (n = 27) (n = 19) (n = 21)

Weight (%) 0.15 ± 1.58 0.1 ± 2.04 0.92 0.66 ± 2.11 −0.47 ± 1.77 0.07
BMI (%) 0.15 ± 1.59 0.11 ± 2.04 0.92 0.66 ± 2.11 −0.47 ± 1.77 0.07

Fat mass (%) −2.46 ± 10.16 −3.26 ± 7.87 0.75 −0.53 ± 6.77 −2.19 ± 8.19 0.49
Energy intake (%) −0.24 ± 31.78 −6.62 ± 27.66 0.43 −14.46 ± 16.74 −5.63 ± 24.62 0.20

Carbohydrate intake (%) −2.98 ± 29.93 −1.5 ± 36.57 0.86 −15.44 ± 17.99 −5.54 ± 25.24 0.17
Protein intake (%) −3.36 ± 36.08 −5.97 ± 35.5 0.78 −15.53 ± 23.23 −3.89 ± 26.68 0.15

Fat intake (%) 1.49 ± 36.88 −7.81 ± 29.89 0.31 −12.69 ± 26.91 −8.68 ± 35.4 0.69
Fiber intake (%) −4.19 ± 29.27 8.7 ± 53.14 0.25 0.66 ± 2.11 −0.47 ± 1.77 0.07

Mean relative change ± SD of weight, BMI, fat mass and energy and macronutrient intake from session 1 to
session 2; BMI: Body Mass Index; p value shown is unadjusted and measured using t-test.

3.3. Results of the Diversity Analysis

As expected, the baseline composition of the gut microbiome exhibited individual
variation (Shannon index: 3.81 min, 7.88 max). However, it was similar between the
intervention groups (Jaccard distance: 0.89 ± 0.02 sd) for both the LFG and HFG groups.
Upon intervention, the gut microbiome composition was altered in the LFG (Figure S2A),
whereas the microbiome of the HFG remained unaffected by the intervention (Figure S2B).
This alteration in LFG was depended on baseline synbiotic abundance.

3.4. Synbiotic-Induced Changes in Gut Microbiome

To analyze the changes in the gut microbiome composition from session one to session
two at the genus, species, and ASV levels, sPLS-DA was applied on the gut microbiome.
Results from these models are shown in sample plots and loading plots. Sample plots show
how the changes in the microbiome separate the groups. The loading plots highlight the
microbes whose changes were most influential in differentiating between the two groups.

3.4.1. Microbiome Changes in LFG

A microbiome signature that separated the intervention groups was observed at the
genus (AUC: 0.63, p-value: 0.07), species (AUC: 0.68, p-value: 0.01), and ASV levels (AUC:
0.67, p-value: 0.02). The separation between the synbiotic and placebo groups was the most
pronounced at the ASV level (Figure 2A–F, Table S1).

At the ASV level, the greatest decrease was observed in the species Clostridium leptum
(genus Incertae sedis) in the synbiotic group compared to the placebo group (Figure 2B,
Table S2). This trend was also observed at the species and genus levels (Figure 2C,E). A
decrease in three ASVs and an increase in one ASV belonging to the genus Faecalibacterium
was observed in synbiotic group compared to those in the placebo group. Furthermore,
alterations were observed in ASVs belonging to Eubacterium ramulus in the synbiotic group
compared with the placebo group.

At the species level, an increase was observed in Streptococcus salivarius in the syn-
biotic group compared to the placebo group, whereas a decrease was observed in UCG-
010, Ruminococcus, Marvinbryantia in the synbiotic group compared in the placebo group
(Figure 2D). Among the top five genera contributing to the components, an increase was
observed in the abundance of WPS-2, Alloprevotella, and Catenibacterium, whereas a decrease
was observed in the abundance of Marvinbryantia, Colidextribacter, and Ruminococcaceae
incertae sedis in the synbiotic group compared to those in the placebo group.
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Figure 2. Intervention effect on gut microbiome in LFG at genus, species, and ASV levels. Sample plots
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mean increase/decrease in abundance of the microbe in synbiotic relative to placebo, respectively.
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3.4.2. Microbiome Changes in HFG

Similar to LFG, microbiome signature separation was observed at the genus (AUC:
0.78, p-value: 2.0 × 10−3), species (AUC: 0.80, p-value: 1.3 × 10−3), and ASV levels (AUC:
0.68, p-value: 0.04) following intervention. Again, a well-defined microbiome separation
between the synbiotic and placebo groups was observed at the ASV level (Figure 3A–F).
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Synbiotic intervention affected multiple ASVs, including an increase in two ASVs
from the genus Eubacterium ruminantium in the synbiotic group compared to that in the
placebo group. This increase in abundance was also observed at the species and genus
levels. A decrease in ASV from the genus Holdemanella was observed in the synbiotic group
compared to that in the placebo group, which was also observed at the genus level. Another
decrease in uncultured species from the Rikenellaceae RC9 gut group was detected in the
synbiotic group compared to that in the placebo group. A decrease in the genus Bacteroides
as well as in the two species Bacteroides xylanisolvens and Bacteroides vulgatus was observed
in the synbiotic group compared to the placebo group.

3.5. Synbiotic-Induced Changes in Microbiome-Derived Metabolic Pathways

Only slight intervention effects were observed in the predicted KEGG pathways in
the synbiotic and placebo groups within the HFG and LFG groups (Figure 4A,C). There
was an increase in fructose and mannose metabolism, whereas aminobenzoate degradation
decreased in the synbiotic group compared to that in the placebo in LFG (Figure 4B).
Similarly, in the HFG, only the fatty acid degradation increased, whereas biotin metabolism,
galactose metabolism, streptomycin biosynthesis, and sulfur metabolism decreased in the
synbiotic group compared to the placebo group (Figure 4D).
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Figure 4. Intervention effect on gut microbiome at the pathway level in LFG and HFG. Sample plots
with 95% confidence ellipses for each taxonomy level are displayed at (A,C), showing the changes in
gut microbiome that separates the groups (synbiotic and placebo are displayed as blue and orange
respectively), and their corresponding loading plots at (B,D) derived from sPLS-DA models. The
loading plot displays which changes in bacterial abundance are most important in differentiating
the groups. The top 5 contributors are displayed in the loading plot. Green/red displays mean
increase/decrease in abundance of the microbe in synbiotic relative to placebo, respectively.
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3.6. Individual Alterations for Gut Microbiome

Taxonomic analysis at the genus level revealed that the most abundant genera, the
core microbiome (top 11 microbes), remained stable in the LFG and HFG (Figure S2D,E). In
the LFG, this intervention led to a significant increase in the abundance of seven genera and
a decrease in the abundance of six genera. Similar to the LFG, the intervention effect on the
HFG increased the abundance of nine genera and significantly decreased the abundance of
14 genera in the HFG (Table S3).

4. Discussion

In this secondary analysis of this randomized, placebo-controlled, double-blind inter-
vention study, it was observed that synbiotics may exert beneficial effects on gut microbiome
in participants with low fiber intake, depending on the baseline microbiome, indicating the
need for personalized synbiotics. Thus, after 7 weeks of intervention, there was a significant
increase in the abundance of SCFA-producing microbes in the LFG, which improve gut
health; however, this effect was less pronounced in the HFG. Accordingly, these results
suggest that the increase in the abundance of beneficial microbes such as Catenibacterium
and Alloprevotella induced by synbiotics may counteract the low initial microbial diversity
as a result of low fiber intake. This is in line with other dietary intervention studies showing
that microbes such as Catenibacterium and Alloprevotella are more abundant with high fiber
intake [31,32].

Dietary fibers are crucial for maintaining human gut health. Numerous studies
have explored the impact of dietary fiber on the gut microbiome and metabolic health in
both mice and humans [33–35]. Many of these studies have demonstrated the beneficial
effects of dietary fiber on health [16], on the other hand a deficiency of fiber intake may
also have negative effects [36]. Low dietary fiber intake results in decreased microbial
diversity [8,36,37] and different microbiome compositions compared with high dietary fiber
intake, which is associated with increased microbial diversity [22,38,39]. This is in line with
our results, since in our intervention study population, a partially different microbiome
signature between the LFG and the HFG at baseline was also observed, which supports the
hypothesis that fiber intake, per se, modulates microbial composition in humans.

Diversity analysis showed that the success of the intervention in the LFG was highly
dependent on the abundance of synbiotic strains at baseline. This indicates that the
impact of synbiotics on the microbiome might be personalized depending on the person’s
daily fiber intake and baseline microbiome. This is in line with the results of probiotics
trials, showing a greater benefit of probiotics if particular microbes are already present at
baseline [40–42].

In both LFG and HFG, a clear separation between the synbiotic and placebo groups
was observed at amplicon sequence variant levels, while the core microbiome remained
stable. This suggests that synbiotics affect specific microbes within an entire ecosystem.
Notably, this intervention study was performed in metabolically healthy participants
without any gastrointestinal symptoms or microbial dysbiosis; thus, strong microbial shifts
were unlikely.

However, in the HFG, synbiotic intervention led to a decrease in the abundance of
Erysipelatoclostridium, which is linked to diet-induced obesity, and most studies have shown
that depleting Erysipelatoclostridium is beneficial [43]. The synbiotic also increased the
abundance of Alistipes and Parasutterella, which is in line with other dietary fiber interven-
tions [44–46] and supports the potential role of Parasutterella in maintaining bile acid levels
and regulating cholesterol metabolism. Furthermore, higher levels of Parasutterella in the
gut microbiome correlate with improved low-density lipoprotein levels in healthy adults,
ref. [47] indicating the potential metabolic benefits of synbiotics in the microbiome.

Additionally, synbiotics also increased the abundance of Alistipes in the HFG, which
might be beneficial because they may offer protection against conditions like fibrosis, colitis,
cancer treated with immunotherapy, and cardiovascular disease [48]. The increase in the
abundance of Alloprevotella in HFG might also be beneficial, as it is a widely found bacterium



Nutrients 2024, 16, 2082 12 of 17

in the gut [32] and is associated with an improved intestinal barrier [49]. In line with this,
a decrease in several opportunistic pathogens, such as Erysipelatoclostridium [43,50] and
microbes associated with Crohn’s disease, such as Ruminococcus gnavus [51,52] has been
detected, highlighting the potential synbiotic effect against diseases.

Another significant increase was observed in Prevotellaceae UCG-003 which has the
potential to modulate intestinal inflammation [14,53,54]. Additionally, another species of
Streptococcus salivarius, also known for its anti-inflammatory properties [55], was increased
in the LFG. Furthermore, our synbiotic intervention caused the depletion of harmful
bacteria, such as Colidextribacter, which is positively correlated with inflammatory metabo-
lites [56].

Similar to dietary fiber intervention, prebiotics or probiotics, our findings of the synbi-
otic intervention within the LFG showed a strong increase in fiber-degrading genera, such
as Catenibacterium, Prevotellaceae UCG-003, Ruminococcaceae CAG-352, and Alloprevotella,
which produce SCFAs such as butyrate, thereby improving gut health and nutrient uti-
lization [57–59]. In addition, in the HFG, synbiotic intervention increased the number of
SCFA genera such as the Eubacterium ruminantium group [45]. Furthermore, the abundance
of genes encoding the biosynthesis of the vancomycin group antibiotic pathway decreased
after synbiotic intervention, which might be relevant. As vancomycin restricts the growth
of Gram-positive bacteria, including some butyrate-producing bacteria, it leads to higher
SCFA concentrations [60]. Additionally, our data indicated an increase in the abundance of
multiple genera belonging to the Oscillospiraceae family, which has also been associated
with multiple health benefits and SCFA production [61,62]. Furthermore, several ASVs of
genus Faecalibacterium alterations were detected, which are commensal bacteria that produce
butyrate and other SCFAs [63] in the LFG. The abundance of several strains belonging to
Eubacterium ramulus were also altered in the LFG [64–66].

Functional analyses of the microbiome revealed several alterations in different path-
ways. Thus, a strong increase in the abundance of genes encoding the fructose and mannose
metabolism pathways was observed in the LFG, which was expected because our synbiotic
intervention contained inulin, which is a polyfructose. Therefore, inulin degradation may
have increased the abundance of this pathway. In line, Catenibacterium, which are associ-
ated with inulin intake, were also shown to increase [67]. Furthermore, an increase in the
abundance of genes encoding folate biosynthesis in LFG [68,69] might be highly beneficial
because folate, as the natural form of vitamin B9, is recommended in diet to promote good
health [70,71].

This study possesses several strengths. First, this nutritional intervention study was
conducted according to the gold standard method for a randomized, placebo-controlled,
double-blind study (RCT). Dietary fiber intake remained stable during the intervention as
participants adhered to their habitual diet. Moreover, the RCT included a relatively large
sample size of 97 participants in the analyses, encompassing a diverse range of BMI values,
potentially representing the broader population. Lastly, the synbiotic utilized met all safety
criteria, ensuring a low risk of adverse effects from the outset of the study. This was further
affirmed by the absence of any reported side effects or adverse reactions by participants.

This study utilized a per protocol analysis due to the loss of 20 out of 117 subjects
(approximately 17%) to follow-up. While intention-to-treat (ITT) analysis is generally
preferred to preserve randomization and minimize bias, our findings still provide valuable
insights for those adhering to the protocol. Additionally, as this is a secondary analysis,
we focused on exploring additional insights without a formal sample size calculation,
embracing the opportunity to generate new hypotheses and enhance our understanding
of the data. A limitation of the study is that the duration of seven weeks only represents
a mid-term intervention period and does not reflect long-term effects on the microbiome,
such as adaptations, and we did not conduct a follow-up. Even though a one-year follow-
up study was planned, due to the COVID-19 pandemic, only a few people attended. In
addition, the collected data were not usable because of many confounding factors, such
as COVID-19 vaccination and infection. Thus, studies specifically designed to investigate
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long-term effects are required to observe the beneficial effects of changes in the microbiome
on metabolism, particularly in metabolically healthy participants. As we showed that
synbiotics have a greater impact on the microbiome when already present at the baseline,
the need for a personalized approach is suggested.

5. Conclusions

In summary, by modulating the gut microbiome using synbiotics in an RCT, we were
able to improve the gut microbiome of participants with low fiber intake, and this impact
was individually dependent on baseline dietary fiber intake and the microbiome.

Supplementary Materials: The following supporting information can be downloaded from https:
//www.mdpi.com/article/10.3390/nu16132082/s1; Figure S1: Comparison of the baseline gut
microbiome at the genus, species, and ASV levels. Sample plots with 95% confidence ellipses for each
taxonomic level are displayed in (A,C,E), and their corresponding loading plots in (B,D,F) derived
from sPLS-DA models. The loading plot displays the contribution (loading weight) of each feature
selected from the first component with increasing importance from bottom to top. The top five
contributors are presented in loading plots. Microbes with higher mean abundance in HFG/LFG
are displayed as dark yellow/grey respectively, Figure S2: Box-plots displaying change in alpha
diversity in each group in (A) LFG and (B) HFG. Estimate plots from analyses of change in gut
microbiome composition in (C) LFG and (D) HFG. * Statistical significance. Data were analyzed using
a linear mixed model. Relative taxonomic abundance at the genus level (prevalance:0.60, detection
threshold:0.01%) in each group/time-point in (E) LFG, (F) HFG, Table S1: Characteristics and results
of sPLS-DA models. Table S2: Component details of sPLS model, Table S3: Results of single feature
taxonomy analysis using NBZIMM at the genus level in LFG and HFG displaying the estimate.
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