
HAL Id: hal-04661330
https://hal.science/hal-04661330v1

Submitted on 24 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Qualitative Reasoning and Cyber-Physical Systems:
Abstraction, Modeling, and Optimized Simulation

Baptiste Gueuziec, Jean-Pierre Gallois, Frédéric Boulanger

To cite this version:
Baptiste Gueuziec, Jean-Pierre Gallois, Frédéric Boulanger. Qualitative Reasoning and Cyber-
Physical Systems: Abstraction, Modeling, and Optimized Simulation. Innovations in Systems and
Software Engineering, 2024, �10.1007/s11334-024-00567-0�. �hal-04661330�

https://hal.science/hal-04661330v1
https://hal.archives-ouvertes.fr


Qualitative Reasoning and Cyber-Physical

Systems: Abstraction, Modeling, and Optimized

Simulation

Baptiste GUEUZIEC1*, Jean-Pierre GALLOIS1 and
Frédéric BOULANGER2
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Abstract

Complex systems modeling and simulation are critical in many industrial and
research fields, specifically to predict, prove, verify, and understand the behavior
of cyber-physical systems. The diversity of variables in a system creates complex-
ity and a need for more efficient modeling and simulation methods. In the case
of hybrid systems, the heterogeneity of the discrete and continuous parts makes
these tasks more challenging, adding the necessity to manage different types of
variables and trajectories separately. Qualitative reasoning offers a paradigm to
study the behavior of such systems with a high level of abstraction, trading pre-
cision and specificity against generality and formalism. In some situations, this
paradigm can be preferred to numerical analysis, especially in the upstream study
of a system in its design phases when information and knowledge about its com-
ponents are incomplete. However, the different representations and contexts of
such systems create a significant obstacle to defining a general methodology for
applying qualitative reasoning and modeling to every case. This article proposes
a method and presents a tool prototype to unify different qualitative reasoning
techniques on complex cyber-physical systems described by polynomial ordinary
differential equations. Both are illustrated in case studies to highlight their ben-
efits. It also presents some possibilities of generalization to systems that do not
satisfy the criteria currently required by our approach.

Keywords: qualitative reasoning, modeling, abstraction, cyber-physical systems
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1 Introduction

Cyber-Physical Systems (CPS) [1] are central to many disciplines. The ability to
study, decompose, and understand them and their behavior is crucial to improving
our technical abilities in many industrial and scientific areas. Many methodologies
exist to study them, either at a component level or from a more systematic point
of view. However, all these methods lack generality: they were mainly thought for
specific applications, be it numerical simulation, diagnosis, or monitoring. Their high
degree of specialization makes them poorly adapted to reason on systems or tasks
requiring more general and abstract properties. Moreover, the hybrid nature of many
CPSs, including feedback or human interactions, adds a new form of complexity. As
hybrid systems [2] combine discrete and continuous variables (see Definition 1 and
Definition 2), their study is a more challenging task and must involve more efficient
and general methods.

Definition 1 (Hybrid System). We consider a system to be hybrid if it exhibits both
continuous and discrete behaviors. These systems can be described with:

• a discrete variable Q representing the control mode of the system, defined on the
finite domain Q, and whose value is noted m and called mode.

• a set X of continuous variables defined on the continuous set X, whose valuation
is noted x. The components of X are noted Xi, and their valuations xi. We often
consider X = Kn with n = |X| and K a field with the usual relations (<,>,=). In
most cases, K = R.

• a function I mapping each mode m to a set of predicates Invm ⊂ 2X representing
the invariant conditions of the system for the mode m.

• a set T ⊂ Q ∗ 2X ∗Q ∗XX of modal transitions represented by the departure mode
m1, a guard condition associated to the transition, the target mode m2, and a reset
function giving the new value of X when entering m2.

• the flow F mapping every mode m of Q to the dynamics vector containing ordinary
differential equations (ODE) on X and its derivatives.

Definition 2 (Variable). We define a variable as a measurable quantity with a phys-
ical unit, a value, and a variation set.

Qualitative reasoning, as defined by Forbus [3], refers to the area of computer
sciences aiming at representing and reasoning on models with very little and impre-
cise knowledge. In a complementary way, Sugeno defines qualitative modeling as the
design of models adapted to support qualitative reasoning [4]. Originally, qualitative
modeling was introduced by Brown [5] and De Kleer [6], who developed the concept
of qualitative knowledge about systems and processes. They designed this paradigm
mainly for electronics and computer-assisted physics computation. They did not see
this representation of knowledge as a substitute for numerical computation but as a
complementary strategy. Indeed, they presented their approach as a tool to solve gen-
eral problems by reasoning at a high level of abstraction on the system and to refine
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the more specific sub-problems that could only be solved with a more classic numeri-
cal computation. Therefore, the initial idea was to add intelligence in problem-solving
and optimize the use of computational resources that should be kept for sub-problems
that require them. If the notions implied by qualitative reasoning have evolved since
then, the ambition remains unchanged: proposing a new reasoning tool to supplement
the exact but too specific numerical approaches available to study the different kinds
of systems. Major elements have been added to the theory of qualitative modeling,
such as naive physics [7, 8] by Hayes and Smith, the theory of dynamic processes [9],
and the concept of conceptual closure of such a theory [10] by Forbus. Qualitative
modeling has made significant advances with the works of Kuipers [11] on the qualita-
tive representation of the state space and the value of system variables. He introduced
a form of reasoning based on sign algebra, using the values {−, 0,+} as abstractions
of the numerical values of the variables. The authorized operators are {+, ∗}, and
they illustrate the advantage of the sign algebra as they preserve all their properties
of transitivity, associativity, and commutativity [12]. This method allows the quali-
tative study of the behavior of a system based on qualitative differential equations,
which are abstractions of numerical differential equations. The development of this
analysis led to the development of the QSIM tool. However, the non-determinism of
such operations and the lack of precision showed the limits of the approach in the
case of systems with feedback or multiple successors for a given state. Kuipers and
Berleant partially solved these problems with their work on semi-qualitative reason-
ing [13]. In this approach, the sign algebra is completed with interval propagation to
integrate a part of numerical analysis and resolve the uncertainties that cannot be
studied with only sign knowledge. This complementarity allowed the study of more
complex systems and the development of more advanced versions of his tool, such
as SQSIM and Q3. Some work has been undertaken to combine it with orders of
magnitude, like Medimegh in [14], but the results did not meet the expectations. How-
ever, interval propagation has since progressed, allowing advances such as flow-pipe
computation presented by Bouissou in [15] or more precise uncertainty measures and
correction. Tiwari completed this approach [16] and generalized it to ordinary differ-
ential equations (ODE) under the condition that the terms of the equations must be
polynomial according to the system’s variables. This methodology requires an addi-
tional step of numerical analysis upstream of the system study. However, it can give
more interesting results as it considers the links between the dynamics and the values
of a system, while previous methods had the drawback of separating the two aspects.

In terms of applications, qualitative reasoning mainly allows formal computation
and proof using dynamic logic [17], diagnosis [18, 19], verification [20, 21] and approx-
imation [22]. Qualitative modeling implies reasoning on multiple levels of abstraction.
The most important ones are the design space (also named ‘domain space’ by For-
bus [10]), centered on constructing an adapted representation of the system and its
context. Working on the design is the most advanced form of qualitative reasoning. It
involves non-instantiated and even partially defined systems and requires the ability
to compute and solve equations with purely symbolic and non-valuated constants. The
dynamic equations of such a system can, for example, be defined as ẋ = ax3 − 3xy2

with a a symbolic constant with an unknown value. The stakes of such a challenge are
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to help design complex systems very upstream in their development and to work on
models defined with incomplete knowledge.

The state space of a system is a more tangible field, as we can expect all the
constants of the system to be at least partially known. In this publication, we will
focus on exploring the state space. Still, we consider these results preliminary to future
work exploring both the design and state spaces. This article presents the current state
of our methodology and tool to create a qualitative model from a representation of
the system, explore this model and build its behavior tree, and exploit it for behavior
analysis, simulation piloting, or system monitoring.

This article first presents the technical concepts on which we intend to apply qual-
itative reasoning in section 2. Then, in section 3, it develops a classic abstraction
method to create a qualitative model from a numerical system described by polyno-
mial equations. Section 4 presents our main contribution to qualitative reasoning by
developing the concept of qualitative zones. Then, section 5 describes and explains our
work to develop the prototype of a tool aiming at creating qualitative models from
numerical CPSs. Section 6 briefly develops applications allowed by qualitative reason-
ing upgraded by our contribution. Finally, section 7 overviews our works to generalize
qualitative reasoning to more general complex systems with less convenient structures.

2 Concepts

2.1 Cyber-Physical Systems

The main application of our work on qualitative modeling is the analysis of CPSs.
In this term, we include every system consisting of physical elements controlled by
a computational process. Such a system can be represented using the classic form of
hybrid systems [23] S = ⟨Q,X, I, F, T ⟩ with Q the discrete variable defined on Q, X
the vector of continuous variables defined on Kn, F the flow of the system (i.e., its
dynamics), which maps the value m of Q to the set of ODE that define the dynamics
of X in mode m, minit the initial mode and xinit the initial value of X. I is defined
as explained in 1 and represented as a mapping from Q to predicates on X. T is the
set of all modal transitions, represented as quadruplets (initial mode, guard condition,
arrival mode, reset function), where the reset function is defined in XX and gives the
value of the continuous variables in m2 after the transition from the value they had
in m1 before the transition. The equations of F are generally limited to K[Xi]Xi∈X

the set of polynomials on K with variables in X (we will use the notation K[X] for
the rest of this article). As F defines the continuous behavior of the system for each
mode and T the discrete switches between modes, we can now model the system’s
operation. For example, let us define a model of a thermostat as:

Q = {mode}, Q = {off, on},
X = {x} with x the temperature of the system in Celsius,
X = R,
I = {mode = off : x > 60, mode = on : x < 100},
F = {mode = off : ẋ = −x,mode = on : ẋ = 100− x},
T = {(off x⩽70−−−→ on, x 7→ x), (on

x⩾80−−−→ off, x 7→ x)}
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off
ẋ = −x

x > 60

on
ẋ = 100 − x

x < 100

x ⩽ 70

x ⩾ 80

Fig. 1 Hybrid model of a thermostat

2.2 Hybrid Automaton

Hybrid automata (see Definition 3), as described by Henzinger [2], are a standard
and efficient tool to represent and study CPSs.

Definition 3 (Hybrid Automaton). An hybrid automaton can be defined as H =
⟨Q,X, V,E, Init, I, F, J, L⟩ with
• Q, X, I, and F corresponding respectively to the discrete variable, the set of con-

tinuous variables, the invariant constraints, and the flow equations as defined in
definition 1 for the associated CPS.

• V the vertices of H representing all its control modes and E the edges between the
vertices, corresponding to modal transitions.

• Init the set of initial conditions, with predicates constraining the initial values of Q
and X.

• J a jump condition function that associates to each transition e ∈ E a predicate. It
corresponds to the guard condition of T in definition 1.

• L a pair composed of a set of labels and a mapping from E to these labels. The
label associated with a transition can be the nature of the transition, its cause, or
its specificity.

The structure of hybrid automata is particularly adapted to represent the behavior
of a CPS. For example, we represented the thermostat system described above as
a hybrid automaton in Figure 1. This classic definition isolates the different modes
of the system as different states of the automaton. Each one is characterized by its
specific flow conditions (i.e., the continuous dynamics associated with the mode) and
by transitions and initial conditions, defining the values of the elements of X that
allow a transition to another mode and the reset function imposed after an incoming
transition. However, the trajectory of X is not taken into account in this automaton
model. In simple cases like this one, it can be deduced from the expression of the flow,
whereas it can be impossible for more complex systems. This structure is oriented
toward studying discrete behaviors and possible mode jumps rather than continuous
behavior and effective transitions. However, studying CPSs also requires observing the
continuous behavior of the system. To this extent, we must not only deal with the
dynamics of the continuous variables but also with their trajectories and properties,
as these elements can give us helpful information about the behavior of the global
system. Moreover, knowing the behavior of the continuous variables is necessary to
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know which transitions (constrained by the value of X) can occur and which ones are
impossible in the current mode. To this extent, we need to be able to compute the
trajectory of these variables.

One can compute these trajectories at two levels of abstraction, with two main
families of techniques. The first one, and the most commonly used, is the family of
numerical methods. Here, the trajectories are obtained with numerical simulation
techniques, including, for example, Euler integration or Runge Kutta, that can give
exact and reliable results. The main problem of numerical methods in the context of
partially known systems is that they do not allow any generality in the simulation
and may require very high computation time for complex systems. Moreover, any
uncertainty can propagate and give very unsatisfactory results. Uncertainty man-
agement must use more complex techniques, such as interval propagation methods,
which require more time and computational resources. Therefore, as we especially
seek an important generality more than precision at this step of the system study, we
prefer the other option, which is qualitative reasoning. This choice implies discretiz-
ing the state space in a finite number of qualitative states, which are abstractions of
the numerical values they include. This discretization will allow the computation and
study of an abstract trajectory among a set of qualitative states. These trajectories
will benefit from being very general and represent a whole family of numerical traces
as a type of behavior. We will represent such trajectories in another type of hybrid
automata featuring both modal and intra-modal transitions. From now on, we will
present how to obtain these trajectories.

3 System Abstraction

3.1 State Space Discretization

Definition 4 (Discretization). If K is a continuous set, we call discretization of K a
finite partition of K in Ki ⊂ K with i ∈ [1, k] and k ∈ N, meaning that

⋃
i∈[1,k] Ki = K

and ∀(i, j) ∈ [1, k]2, i ̸= j =⇒ Ki ∩Kj = ∅.

The first step in computing the qualitative trace of a system is to transform our
representation of the system to a qualitative model to serve as computation support.

Definition 5 (Qualitative Model). Let S be either a CPS or a numerical repre-
sentation of a CPS. A qualitative model associated with S is a representation of S
trading precision and knowledge for a convenient highlight of the relations between the
elements of a discretization of the system. These relations can be a causal inference
or a temporal ordering.

Let us consider a system S = ⟨Q,X, I, F, S0, T ⟩ with the notations already defined.
We consider that the flow of the system is represented by a mapping of each mode
to an ordinary differential equation Ẋ = F (X(t), t) with t the time parameter of the
system.
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To illustrate our explanations, we will take as an example the hybrid Brusselator
system, expressed as:

S = ⟨
Q = {mode}, X = {x, y},
Q = {1, 2}, X = R2,
I = {mode = 1 : x, y > 0; mode = 2 : x, y > 0},
F = {mode = 1 :

(ẋ, ẏ) = (1− (b1 + 1)x+ a1x
2y, b1x− a1x

2y),
mode = 2 :
(ẋ, ẏ) = (1− (b2 + 1)x+ a2x

2y, b2x− a2x
2y),

S0 = (1, (5.3, 2.6)),
T = {(1, x < y, 2, Id), (2, x > y, 1, Id)}

⟩

Mode 1

ẋ = 1 + a1x
2y − (b1 + 1)x

ẏ = b1x − a1x
2y

x, y > 0

Mode 2

ẋ = 1 + a2x
2y − (b2 + 1)x

ẏ = b2x − a2x
2y

x, y > 0

x < y

x > y

Fig. 2 Hybrid model of a Brusselator system

With this representation, it is possible to visualize the discrete part of the model
as a hybrid automaton (see Figure 2). Different abstraction methods have been intro-
duced and used for continuous evolution. The choice of the abstraction method is
critical because it will strongly influence state space exploration. Among the methods
developed and studied, the most noticeable for CPS study are the methods of Kuipers
and Tiwari. The use of more advanced reasoning techniques implies converting the
continuous trajectory into a discrete evolution with the help of an abstraction func-
tion α that associates each position of the system to a qualitative state, which belongs
to a finite set.

The nature of this function is what differentiates the various modeling approaches.
The first method, brought by Kuipers, only reasons in terms of landmarks (i.e., hyper-
planes defined by Xi = c with c a constant and i ∈ J0, |X| − 1K). The abstraction of
the state space is made separately for the different variables of X and for their deriva-
tives. The abstraction of the state space is processed using landmarks on the zeros
of the variables and abstractions of the system’s differential equations named qual-
itative differential equations (QDE). These abstractions allow any change of sign of
a component Xi to influence the other components. For example, if X = (x, y) and
if x has a positive influence on y, then the QDE characterising it will be y = M+x.
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In the case of our case study system, ẋ = 1 − (b + 1)x + ax2y will be replaced by
ẋ = M+y+M+x ∗M+y. As variables and their derivatives are not completely linked
anymore because of the high level of abstraction, using these landmarks on the compo-
nents of Ẋ is more complex and gives little information. Actually, ẋ = ay and ẋ = ay2

are not different in this abstraction space applied to R+.
It is also possible to use other landmarks (i.e., with Xi = c ̸= 0) deduced from

prior knowledge about the system. For example, suppose we know that 100 km.h−1

and 1 km.h−1 are important milestones around which the qualitative reasoning about
an autonomous car should process. In that case, they will be considered as reference
landmarks to compare and abstract the current value of the speed. This integrates
elements of order of magnitude reasoning as presented by Travé-Massuyès and Dague
in [12]. However, as these values are not from the sign algebra, they cannot be propa-
gated in the equations as their properties do not match all the properties of the most
convenient algebra. This method allows simple studies of systems based on explicit
values chosen according to the objectives and the context of the CPS. It means it is
required to have a predefined instance and context of the system and to know where
and why it will be used. This constraint contradicts the main objective of qualitative
modeling: we must create models with as little information as possible, so we should
avoid contextual frontiers.

Aichernig [24] further formalized the abstraction process but did not improve the
generality of the approach, as its contribution is still based on the comparison of
variables to landmarks that cannot always be anticipated. This abstraction method
fits an already defined system with sufficiently precise knowledge about the intended
use and behaviors but is not suitable for partially known or designed systems.

The approach by Tiwari [16] has resolved this drawback: for each mode m ∈ Q,
using the equations defining the system (both the dynamic equations, the invariant
expressions, and the transition conditions), the algorithm defines new variables derived
from X. Tiwari assumes that all these equations have a polynomial form according
to the components of X. Using all the elements p from Fm, Im, and Tm (with Fm,
Im, and Tm being the subset of F , I and T associated with the mode m) such that
p ∈ K[X], we define a set Pm initiated with Pm = {X0, . . . , Xn−1} with n = |X|.
∀p ∈ K[X] ∩ (Fm ∪ Im ∪ Tm), we set xp = p and we add each xp to Pm. One can
note that previously mentioned landmarks can be integrated into these polynomial
equations once represented as Xi − ci for a landmark Xi = ci. Then, ∀p ∈ Pm, if
ṗ ̸= 0 ∧ ṗ /∈ Pm ∧ ∄ (b, d) ∈ K[X] ∗ Pm such that ṗ = b ∗ d, then ṗ is added to
Pm. This condition quickly suppresses the nilpotent and idempotent polynomials. As
the considered polynomials include terms only defined by their differential equation,
it is likely that many of them are neither nilpotent nor idempotent. Therefore, the
more they are derived, the more complex their expression will become. For example,
in the case of the Brusselator, the expression of ẋ = 1 + ax2y − (b + 1)x ∈ K[x, y]
will be added to P . Once derived, the obtained expression will be ẍ = a(−ax2y +
bx)x2+2a(ax2y− (b+1)x+1)xy− (b+1)(ax2y− (b+1)x+1). Deriving polynomials
from x and y many times according to the time parameter creates a refinement of
the qualitative model. However, it may increase computational complexity up to a
certain point without major precision improvement. Therefore, choosing a criterion to
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stop the filling of Pm is necessary. The more elements Pm will contain, the more the
qualitative model will be refined, so this choice corresponds to the search for a trade
between precision and complexity. This criterion must be chosen before the execution,
so there is still a problem with non-instantiated systems. If no information is available
about the needed precision of the abstraction or the usefulness of new reference values,
the criteria will have to be chosen arbitrarily. In [16], the authors did not consider this
a problem, as whenever the discretization is stopped, the result is still an abstraction
of the system. They do not see over-refinement to be disturbing. However, depending
on the use of the model, the searched precision will be completely different.

The search for stopping criteria for the abstraction process is a challenge on its own
and would require further investigations. We do not see the expression of a universal
criterion as possible from what emerged from the current works. However, something
quite general can be proposed. The first criterion we could add to the modeling pro-
cess is a constraint on the maximal complexity of the resulting qualitative model. This
complexity can be expressed with the number of elements of Pm, giving a maximum
estimation of the possible number of existing qualitative states and, by a simple com-
putation, the maximum estimation for the number of transitions. This computation of
the complexity of the model is an analogy of state space complexity (see Gao in [25])
to the discretization of the system state space. For a discretization achieved with a set
Pm of size lm, we can bound the maximum number of qualitative states in the mode
m to 3lm , and therefore the maximum number of transitions between these states to
32lm . The maximum complexity of the qualitative model is, in consequence, directly
dependent on |Pm|. An idea would be to stop the abstraction process when each Pm

reaches a limit size. Still, a new challenge is raised by the hybrid nature of treated
systems. Should the different modes be treated separately with a maximum complex-
ity associated with each, or should the model be treated as a whole with a global
maximum complexity? We still have to study this question more profoundly. Anyway,
the intuitive answer is that the consideration of the complexity of the complete model
could provoke a disturbing imbalance between the granularity of the state spaces of
the different modes. Therefore, the choice of a maximal authorized complexity per
mode, equivalent to a maximal number of qualitative states for each mode, seems to
be the most adapted solution. It would also be possible to evaluate the complexity
of the abstraction and to refine in consequence not only considering the number of
polynomials in Pm and their supposed inherited states and transitions but rather on
the actual qualitative states and the existing transitions between them. This would
require complete execution of the further process before coming back to possibly refine
or reduce the qualitative abstraction of the state space. The computation of the tran-
sitions would then have to be achieved for each execution, as every refinement of the
qualitative state may affect every formerly computed qualitative transition. Yet, as
the creation of the qualitative model is supposed to be computed offline without severe
time constraints, this possibility is not to be rejected.

In contrast, another option to define a stopping criterion is to evaluate the quality
of the obtained discretization. This is equivalent to an optimization exercise. It requires
the definition of a utility function fu to evaluate the quality of a given abstraction.
Precision cannot be sufficient to constitute a criterion, as qualitative reasoning implies
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inherently a loss of precision. Again, defining a utility function pertinent to every qual-
itative abstraction seems impossible, but some specific points could be considered to
develop a generic optimization process. The main quality intended for a qualitative
model is the ability to correctly reason on qualitative values to get satisfying results
without needing numeric computation. The criterion to determine a sufficiently pre-
cise abstraction could be the ability to discriminate a given set of numerical values in
the same number of different qualitative states. If two of the given values were to be
abstracted in the same qualitative state, the abstraction would be considered insuffi-
ciently refined, and the computation of Pm would restart to generate more qualitative
frontiers and, therefore, more qualitative states discretizing the state space.

The last challenge regarding the management of Pm and the discretization of X
for each mode once the stopping criteria are chosen is the priority order to attribute
to each element of Pm. Should the same element be derived many times in a row due
to its important role in the description of the system, or should there be no priority
between the considered polynomials? As the flow equations and their derivative con-
tain information about the system’s dynamics, giving them higher priority than the
derivatives of the transition condition would make sense. This decision is crucial to
drawing the abstraction policy and must be made according to the desired qualitative
information to integrate into the qualitative model.

For the rest of this article, the stopping criterion was chosen as simple as possible to
allow the algorithm to terminate without risking influencing the results in an undesired
way. We fixed for each of the polynomial equations of the system corresponding to the
initial elements of Pm a maximum number of times to be derived during the process
before stopping the Pm computation.

Finally, in order not to integrate the same polynomial p more than once in the
same Pm, it is necessary to add a unicity test during this discretization phase.

In the hybrid Brusselator system, with a simple criterion of a maximum of 2
derivations, P1 and P2 are both initialized to {x, y}. Then F [mode1][x] and F [mode1][y]
are added to P1. I[mode1] is also added as is the transition condition from mode1 to
mode2. At that time, we have P1 = {x, y, ẋ, ẏ, x − y}. Then, each element is derived:

as ẋ and ẏ are already in P1, they are not added. However, d(x−y)
dt , ẍ and ÿ are added.

Once Pm is computed, the next step is to take every p ∈ Pm and use a polynomial
solver to solve the equation p = 0. The obtained solutions give the expression of the
nullclines (i.e., a curve supported by an equation v̇ = 0 with v a function of time)
of the dynamics and allow a discretization of the state space of the variables. Each
value of X will now be abstracted by comparison to these nullclines.

Proposition 1. Using the so-obtained discretization of the state space of each mode
of a CPS, each valuation x of X can be abstracted in exactly one qualitative state.

This proposition comes from the nature of discretization, which is a partitioning
of the state space.

Definition 6 (Qualitative State). We call qualitative state of a system the pair
(m, qs) with m ∈ Q the current mode and qs ∈ {+, 0,−}|Pm| a vector such that
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∀i ∈ J0, |Pm|− 1 K, qs[i] = − if Pm[i](X) < 0, 0 if Pm[i](X) = 0, and + otherwise. A
qualitative state corresponds to a set of abstracted values of X expressed as a vector
of elements from {+,−, 0} representing respectively for every p ∈ Pm the fact that
p(X) is negative, zero, or positive.

Definition 7 (Abstraction Functions). Given a CPS S defined with the previous
notations, we define the system abstraction function

A :

{
Q → BX

m 7→ Sm,X

(1)

with Sm,X the set of qualitative states defined on X for the mode m and BX the
set of all partitions of the space X inspired from the notation of the Bell number B|X|.

From this definition and the definition 6 of the qualitative state, we deduce the
state abstraction function in the mode m noted

αm :

{
X → Sm,X

x 7→ qs ∈ {−, 0,+}|Pm| (2)

which abstracts each value x of X as a vector of length |Pm| representing the sign
of each polynomial p of Pm for X = x.

A qualitative state represents an abstraction of a whole set of numerical values
of X, therefore implying a loss of knowledge in the representation. For a qualitative
state qs corresponding to the abstraction of two different numerical values x1 and
x2, coming back from the qualitative knowledge to numerical representation implies
the implementation of a concretization function as defined by Tiwari in [16], which
cannot give with complete certainty one value rather than the other. Instead, it will
return a continuous set of values allowed for the variables. As the qualitative states are
computed by partitioning the state space of S for each mode m, the mutual exclusion
principle automatically applies to them by definition of a partition.

The advantage of this method is that it can be applied even on non-instantiated sys-
tems: it does not require prior knowledge about the context or the system’s objective,
meaning it is convenient to generalize.

Moreover, to apply this method, it is necessary to know the explicit formula of the
ODE, which means that it does not automatically apply to systems defined by more
abstract structures such as bond graphs developed by Rosenberg in [26], causality
graphs, or even proportionality relations. Therefore, the method is limited to a subset
of CPS where the relations and dynamics are perfectly known with symbolic formu-
las. We are currently working on generalizing this abstraction to systems defined by
causality or proportionality. In the case of explicit equations with non-valuated con-
stants, α can be defined but will not be reliable before a complete definition of all the
symbolic constants as its return value depends on it.

3.2 Evolution Abstraction

Once the system’s state space is discretized in qualitative states, the qualitative
model consists of a finite partition of its state space in qualitative states for each
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mode. Upgrading it and making it fit for complex applications such as prediction or
diagnosis requires computing the possible evolution for each qualitative state, given
the dynamics of the system.

Definition 8 (Continuous Evolution). Let t be the time parameter of the system S.
A continuous evolution of S is a function σ : t 7→ X that maps every defined instant
with a value of X.

The stake of qualitatively studying a system relies not only on the ability to create
and manipulate an abstraction of its state space. A major challenge of qualitative rea-
soning consists in applying this qualitative state abstraction to the system’s dynamics
to observe a concise view of its evolution. The continuous evolution of a system is often
observed to verify specific properties and to visualize the behavior of a concrete or a
well-designed system. However, when the design process is not over, numerical reso-
lution and computation do not fit the available knowledge nor the qualitative model
previously created.

To create a behavior representation fitting qualitative reasoning, the study of the
dynamics must follow the mindset of qualitative modeling and create an abstraction
of the continuous evolution σ. Therefore, we will consider a decomposition of the
system evolution inspired by the works of Forbus [10] using events and tendencies.

Definition 9 (Events and Tendencies). Let us consider a continuous evolu-
tion σ of the system S on the time interval T . We note mt the operating mode
of S at each instant t. We consider as events the values of t corresponding to
valuations x of X associated to a change of qualitative state of S, i.e. a time
instant t such that S(t) = (mt, x), ∃p ∈ Pmt such that p(x) = 0, and such that
∃ϵ > 0,∀θ ∈]0, ϵ[, S(t± θ) = (m2, x2) ̸= (mt, x). On the opposite, we consider as ten-
dency an interval Ti ∈ T such that ∀t ∈ Ti, if S(t) = (mt, xt), then ∀p ∈ Pmt , p(x) ̸= 0.

For example, in a sine function f : x ∈ R 7→ sin(x), where the function and its first
order derivative are studied, the events will be the points {k π

2 }k∈Q because the even
values of k will imply a change of sign of f while the odd values of k correspond to
the critical points and to a change of sign of df

dx . Consequently, the tendencies of f will

correspond to the intervals ]k π
2 , (k + 1)π2 [ where neither f nor df

dx change their sign.
Events and tendencies offer support to the abstraction of continuous trajectories,

as any continuous behavior can be represented using a variation table, whose extrema
and thresholds correspond to events while the tendencies represent variation directions
between the events.

Definition 10 (Qualitative Evolution). Let t be the time parameter of the system S. A
qualitative evolution of S is a function κ : t 7→ Q∗Sq,m that maps every defined instant
with a couple (m, sq) with m the mode and sq the qualitative state corresponding to
the abstraction of the continuous value X of the state of the system at instant t. Said
otherwise, a qualitative evolution of a system corresponds to its continuous evolution
abstracted with tendencies and events.
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To abstract all the possible behaviors of a system, we must first fix and abstract
its initial state to figure out which qualitative state to begin with. To this extent,
it is necessary to define which mode m of Q is the initial one. We then apply the
abstraction function αm on the initial value X0 of X. The result s0 corresponds to the
initial qualitative state of the system S. Without an initial numerical state, the initial
qualitative state may be chosen arbitrarily in the authorized set of qualitative states.

From s0, the objective is now to apply the dynamics F of S on the state space
abstraction from s0 to propagate the qualitative states and explore all the possible
qualitative behaviors κ of the system.

Then, while we are not in an absorbent state or an already explored state, we
explore all the neighbors of the current state and add them to the list of qualitative
states to be treated. Two structures are used to memorize the qualitative states: a
frontier list and an explored list. frontier contains the qualitative states from which
the analysis should progress, and explored memorizes the ones already studied.

3.2.1 Qualitative Transitions

Definition 11 (Qualitative Transition). A transition tr = (mi, s1) → (mj , s2) is
called qualitative or intra-modal iff mi = mj and s1 ̸= s2. Moreover, tr must be allowed
by the theorems of continuity, such as the intermediate value theorem.

While frontier is not empty, we consider si the next state in frontier. From this
state si, the objective is to compute all the successor states according to the dynamics
of the current mode m of S. The first step is to compute all the states sharing a
border with si. This is possible by using a polynomial constraint solver such as Z3
and by translating each digit of the state-vector vs ∈ {−, 0,+}|Pm| to a constraint
corresponding to the associated sign and imposed to the related polynomial. Changing
one digit of the current qualitative state and respecting the intermediate value theorem
allows the creation of all the theoretical neighbors of si. However, many of the found
neighbors do not exist or do not offer a transition from si.

Using constraint solving, we then find the possible neighbors sj . Considering the
hypothesis that every equation defining the qualitative states is polynomial, this res-
olution only consists of a conjunction of polynomial inequalities that can be solved
using the chosen solver. Then, if sj exists, it is placed in the structure RealNeighbors.

For sk in RealNeighbors, we must verify whether or not a transition from si to sk
is possible in the behavior of the system. This is achievable by using the Lie derivative
formula (see Tiwari in [16] and Yano in [27]):

LX(p) =
∑

Xi∈X

∂p

∂Xi

∂Xi

∂t
. (3)

with p ∈ Pm the polynomial function supporting the border between si and sk and
the Xi the components of X.

Proposition 2. The transition from si to sk is possible iff LX(p)∗ (p(si)−p(sk)) > 0
where p is the polynomial function supporting the border between si and sk.
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Proof. see [16].

Using the Lie derivative, it is, therefore, possible to compute every qualitative
transition in a mode by applying this process to every state si ∈ Sm,X, and to visualize
the behavior tree of any execution in a continuous model or a single mode of a hybrid
model. The different tests allow the suppression of the non-existing states and the
computation of only the real qualitative transitions. Using the existing structure
allows us to avoid the loops and suppress the quiescent, the already explored, and the
terminal states. However, dealing with modal transitions of a hybrid system is more
complex and requires more computation.

3.2.2 Discrete Transitions

Definition 12 (Modal Transition). A transition tr = (mi, s1) → (mj , s2) is called
discrete or modal if mi ̸= mj.

Computing the possible discrete transition in a qualitative hybrid model requires
incorporating the guard conditions of each transition from the current mode in the
abstraction process. To simplify the computation, we consider the guard condition
necessary and sufficient to provoke the transition, i.e., a discrete transition happens
as soon as its associated guard condition is verified. As the guard conditions are
considered polynomials and are incorporated in Pm ∀m ∈ Q, the verification of the
guard predicates can be integrated into the qualitative transitions detection process.
When a polynomial p associated with a guard condition changes its sign, the guard
condition is verified, and the transition is triggered. For the involved transitions, the
jump is not from a qualitative si to another sj in the same mode, but between the
qualitative states (m1, si) and (m2, sk) with i ̸= j. The intended transition is not
qualitative anymore but becomes modal. Therefore, the change does not only concern
the continuous variables of X but also Q. Moreover, a shift in mode implies activating
an associated reset function res that applies on X and may also cause a discontinuity
in its valuations.

Proposition 3. Abstracting the discrete transition tr = (mi, s1) → (mj , s2) requires
to compute α2(s1), i.e. α2(x) for all x ∈ s1.

The computation of α2(s1) can be achieved by creating another iteration of a
polynomial solver: by using branch-and-bound solving on all the constraints defin-
ing the qualitative states on m2, computing all the possible destination states for a
reset function applied on (m1, si) is possible. The list of obtained authorized states
[(m2, sj)]sj∈Sm2,X

will constitute the successors of (m1, si).
Doing this for all the triggering transitions in a mode m1 highlights all m1 outgoing

transitions. Once computed for every mode m ∈ Q, all the system’s outgoing and
incoming modal transitions will be represented.

3.3 Qualitative Behavior Computation

By neighborhood propagation, we can compute all the paths among the defined
qualitative states of the qualitative model considering its dynamics. Adjacent state
propagation allows us to determine all possible variation directions from an initial
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state. The obtained set of qualitative traces contains all the theoretically possible
behaviors of the system S.

Computing complete qualitative behaviors makes it possible to represent it as a
qualitative automaton.

Definition 13 (Qualitative automata). We consider the structure of a qualitative
automaton Aq = ⟨Q,X, V,E, Init, I, F, J, L,A, TQ⟩, where Q,X, V,E, Init, I, F, J, L
are the elements defined in Definition 3 and

• A is the system abstraction function mapping each mode m of Q to a partition of
X where each set corresponds to a qualitative state of the system.

• TQ is a function mapping each mode to the set of qualitative transitions computed
in subsection 3.2.

This representation, introduced in [16] as abstract transition systems, proposes
an alternative visualization of the behavior of a hybrid system, giving more infor-
mation about the different qualitative trajectories in the modes. It can provide, for
example, more knowledge about possible attractive states, intra-modal cycles, or even
two qualitatively different trajectories that could not be separated using a classic
hybrid automaton but which could imply various constraints for the system. This new
layer of information completes our qualitative model with a more precise mapping
of the qualitative states and gives more possibilities of anticipation, diagnosis, and
piloting [18, 28].

3.4 Problem of Dimensions

The presented process is simple to execute when |X| = 2 because polynomial solvers
easily handle polynomial problems with two variables. One of the components of X
can trivially be expressed depending on the other for each polynomial function with
at least one reference variable.

However, the presence of more dimensions raises problems that do not appear in
two dimensions. The more |X| increases, the more difficult it will become for the solver
to return a usable solution. Especially symbolic solvers in high dimensions tend to
find a unique solution that satisfies the constraints and will, therefore, avoid general
solutions of the expected form. To ensure that the returned solution has the desired
form, we must specify the anticipated solution format and the priority order of the
variables for the resolution to the solver. The presence of solutions of dimension less
than |X| − 1 will create frontiers that may be circumvented without being crossed,
which is a major problem in computing qualitative transitions. Therefore, we added
a filter to the solver that suppressed the solutions of low dimensions. Secondly, the
choice of the component of X that should be considered as a reference to express
the others is a question. Should X0 always be regarded as the reference variable, or
should there be a smarter decision criterion? Theoretically, the best solution would
be to avoid the presence of fractions in the expressions of the solutions as much
as possible. As fractions may cause singularity in the presence of a fraction pole in
the state space, the best expression of a solution would be the one that minimizes
the number of fractions. However, we made a concession due to the complexity of

15



submitting such criteria to already implemented polynomial solvers. We just created
a reference priority order favoring the lower factors of X to the upper. Finally, an
inherent problem in this situation is that the used solver may not find any solution in
high dimensions associated with high polynomial degrees. Even if polynomials of very
high degrees are not commonly used in CPS, the situation may happen for specific
systems and possibly in critical situations. This shows that there exists a possibility
of generalizing this contribution even more, using elements from other works, such as
qualitative tendencies.

4 Introduction of Qualitative Zones

The model obtained by the process presented in section 3 allows us to reason about
the qualitative states and behaviors. This representation constitutes the heart of what
is currently qualitative modeling. The major qualitative abstraction methods in the
literature are based on discretizations of this kind. However, this representation of sys-
tems lacks knowledge about orders of magnitude and distance/time to an event that
could allow the management of critical situations of the system. This means that qual-
itative models sacrifice all their knowledge about the magnitude of the variables apart
from their comparison to landmarks as in [12, 24]. As landmarks values depend on the
use and the design of the system, this choice is not an option when the abstraction
takes place at the design stage of CPSs. This section introduces the concept of qual-
itative zone, a contribution that we present to improve the reasoning capabilities on
qualitative models by introducing systematic order of magnitude reasoning on system
abstraction.

The exposed qualitative models represent the equivalent for the system state space
of a topographic chart of the summits of a mountain chain with the altitude gradient
between them. Yet, exploring such an important chain cannot be achievable without
information about the gradient magnitude and the possible presence of cliffs. In a CPS,
this is illustrated by the difficulty of making predictions or applying simulation on a
model with no further information about the intended trajectories than the sign or
the gradient. For an autonomous car, an acceleration of 1 m.s−2 and another directed
in the same direction of 100 m.s−2 cannot be considered the same way in simulation
or worse, in real-time execution. Moreover, the same car will not behave the same way
on an empty country road or a crowded freeway with other vehicles at less than three
meters. Therefore, the two corresponding challenges are introducing elements from
order of magnitude reasoning (see Mavrovouniotis in [29] and Raiman in [30]) in our
qualitative models and adding thresholds surrounding and preventing the important
events. As qualitative reasoning imposes constraints on the considered models, these
upgrades to the representation must imply a process of refinement of the state space
partition that matches the described ambitions. This means adding new borders to
create more qualitative states, therefore adding new elements in the sets Pm. The
inclusion of new polynomials in the Pm must be made with specific consideration to
the interest and the significance of the added elements: adding more polynomials that
correspond to no physical phenomenon does not have great interest. For example,
creating qualitative states defined by the sign of the 5th order derivatives will rarely
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bring useful knowledge to the model. Yet, when all the equations describing the system
and the most significant variable valuations have already been used to construct the
previous model, the newly introduced equations have a very small chance of being
of any significance to describe the system’s behavior by themselves. Therefore, an
option is to define new border equations from the previously defined ones to have
reasoning values associated with them. Modifying the elements pi of Pm makes it
possible to create two thresholds of borders surrounding the frontier defined by pi = 0.
These thresholds will then determine a neighborhood around the event frontier and
describe a form of proximity before the possible occurrence of the related event. The
consideration of these neighborhoods, or proximity areas, will introduce information
about the distance to the potential future events of the system behavior without clearly
implying numerical evaluation. They can also have the role of precaution frontier,
defining either a particularly far or critically close proximity to the event. Now, let
us see how to define such neighborhood limit (that we also call secondary frontiers,
by opposition to the primary/main ones, which are supported by the elements of
Pm). We mainly evoked and studied three main ideas. The first was to translate the
main equations of Pm from a chosen distance d to obtain the neighborhood limit. The
advantage of this idea is its simplicity of execution: each border from any dimension
can be translated from a specific value in a given direction without requiring heavy
computation. However, the choice of the translation direction is entirely arbitrary, and
such a frontier may not have any physical meaning, especially in the case of borders
defined by nullclines (here, the zeros of the derivatives of the system’s variables and
equations). This is, however, the best solution for the events defined by Xi = k, with
Xi a component of X and ki a constant in K defining a value for Xi: the translation
direction is then naturally following the axis defined by Xi. The obtained hyperplane
defined by the equation Xi = k ± d is parallel to the main border and represents a
proximity area around it at a constant distance d. This solution is not possible in the
case of nullclines supported by Ẋj = 0.

Another idea was to compute surfaces completely parallel to the border: this would
have assured a constant distance for every direction and would have been visually
understandable. However, the computation of such surfaces is much trickier than
expected: even in two dimensions, computing the equations defining a curve parallel
to another is far from trivial. In two dimensions, in the case of a parametric curve
defined at any instant t by x = f(t) and y = g(t) with f and g two functions, the par-
allel curves to the parametric curve (x, y) are the parametric curves which equations

are (x′, y′) with x′ = f(t) ± cġ(t)√
ḟ(t)2+ġ(t)2

, and y′ = g(t) ± cḟ(t)√
ḟ(t)2+ġ(t)2

, with c a con-

stant. This choice would make little sense as simplification and limited computation
are the main objectives of qualitative modeling. Moreover, such a limit would not
have any physical meaning. Consequently, this idea of parallel surfaces does not fit the
ambitions of qualitative reasoning to compute a neighborhood limit for polynomial
frontiers. Finally, the best of the raised propositions was to use isoclines (i.e., surfaces
defined with a function f by ḟ = c ̸= 0). For each element p of Pm, we must define a
value cp ∈ K, then use the already defined solver to solve p = cp and p = −cp. The
symbolic results will define the surfaces that will delimit the neighborhood of each
main border. Solving these equations does not require specifically heavy computation,
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and it corresponds to something concrete: a very low proximity value will be associ-
ated with a critical proximity to the event and a very little time interval remaining
before its occurrence. On the contrary, a very high value defining the neighborhood
will inform that any state out of this area will be unstable and maybe untrustworthy
as the associated variable or quantity will vary very fast.

We chose to separate these borders from the previous ones. As we already have
our discretization of the state space in qualitative states, we now have another dis-
cretization in areas defined depending on these latter, and that we called qualitative
zones (see Definition 14).

As the qualitative zones correspond to a subset of the state space defined by
the proximity to a frontier, it is also possible to expand this notion to represent
the neighborhood of a point. When representing the proximity of a chosen point xp

valuation of X, the proximity frontier of distance d is represented by a n-dimensional
sphere of radius d of equation

∑n
i=1(Xi − xp

i )
2 − d2 = 0. The corresponding quali-

tative zone is, therefore, the associated ball of the same dimension and of equation∑n
i=1(Xi − xp

i )
2 − d2 < 0.

Definition 14 (Qualitative Zone). A qualitative zone is a set of abstracted values
in a neighborhood of a qualitative frontier or of a point. A qualitative zone is defined
by a set of 2-uplets pi, di with pi ∈ Pm corresponding to a qualitative frontier or the
coordinates of a point and di ∈ K to the chosen neighborhood distance.

It is to note that some subsets of X may be included in many qualitative zones at
a time: the creation of a function able to compute the intersection between qualitative
zones is helpful to keep as much knowledge as possible about the proximity to the
different events.

Suppose the qualitative states give abstracted knowledge about the distance from
the current numerical state to each frontier. In that case, the qualitative zones offer
an abstraction of the distance separating it from the nearest borders. This allows us
to define a notion of distance in the qualitative models that may be used to evaluate
the system’s stability, the likelihood of a forthcoming event, or even the criticity of a
situation. It gives a new tool to anticipate and reason about a system state, its risks,
and possible futures.
The superposition of the two knowledge layers given respectively by qualitative states
and qualitative zones creates a more complete abstract representation of the state
space of a system. We call a position of the system in this representation a qualita-
tive position (see Definition 15).

Definition 15 (Qualitative Position). We call qualitative position the triplet
(mode, qualitative state, qualitative zone) of a system.

This complementary information creates a complete qualitative state space map
designed to locate a numerical state and reason about its successors.
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Finally, considering qualitative zones is a good criterion for taking apart two
qualitative behaviors that could not have been distinguished by reasoning only on
qualitative states. For example, in the Brusselator system defined in (4){

ẋ = 1− (b+ 1)x+ ax2y
ẏ = bx− ax2y

(4)

with a and b two positive constants, the analysis of qualitative states and transitions
shows that the system is cyclic around the convergence point. However, this knowledge
is insufficient to deduce whether the trajectory will be convergent: the two qualitatively
different behaviors (convergence and cycling around the convergence point) follow
exactly the same trajectory among the qualitative states described earlier.

The consideration of a qualitative zone around the nullclines ẋ = 0 and ẏ = 0 and
around the stable point allows us to determine, using the directional differentiation of
the Lie derivative, if the system will converge towards ẋ = ẏ = 0, or stay in a critical
cycle around it. With a symbolic expression of the distance d, the study of the surface
defined by ||a−X|| = d or by |ẋ| < d∧ |ẏ| < d will show if the convergence is possible
or not. If for any value of d, the inward transition is possible, and if from a threshold
ds > 0, the outward transition is impossible for d < ds, the system will be considered
as convergent. Otherwise, it can be proved that it will follow a limit cycle.

However, just like qualitative states, qualitative zones require the instantiation of
parameters such as the chosen proximity d to be computed. As the automation of the
choice of the number and the size of the qualitative zones has not been achieved, we
did not integrate the creation of the qualitative zones in the abstraction process: we
instead created a functionality to add qualitative zones on a qualitative model around
the desired qualitative frontiers with a given size. Functions to test the intersection
between a qualitative state and a qualitative zone and to compute the trajectory
direction on the border of a qualitative zone are also available.

5 Computation and Tool Creation

To build our tool, we considered two categories of systems corresponding to differ-
ent situations regarding the knowledge we have access to. These two categories will
be represented using the possibilities of object-oriented programming with two dif-
ferent classes. They will correspond respectively to instantiated and non-instantiated
systems. As a primary hypothesis, we suppose that in the two categories of systems,
the precise dynamic equations will be available, as will the invariant constraints and
transition guard conditions. For a system with more available knowledge (especially
about essential values of the variables, the objectives or context of the system, or the
effects of the environment), we favor the second category, supporting the instanti-
ated systems. Here, a new data structure is added to the model, representing all the
landmarks that will be considered to study the system and its behavior.

These two categories are distinguished using two classes of objects, the first named
System, and the second one, inheriting from the first, named Instantiated-System.
We use object-oriented programming to impose a standard structure for the treated
systems. We want to unify methods from polynomial solving, symbolic computation,
constraint solving, and graph logic, so we developed our program in Python to benefit
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from its numerous libraries. To be able to solve all the equations symbolically, we
use the Sympy library. For each mode taken separately, the discretization of the state
space is conducted as presented in section 3.

The discretization of the state space is done by placing all the polynomial equations
that define the system in the sets Pm and using the functions of symbolic solving
provided by Sympy to resolve the equalities pi = 0. Sympy also comes with tools to
differentiate the polynomials according to time, to test if the newly obtained formula
is a factor of existing polynomials using its polynomial module, and to create the
qualitative state based on the comparison of a value to every polynomial of the set. The
results of the resolution of the borders are given as n-uplets with n = |X|, in the form
(f0(Xi), ..., Xi, ..., fn−1(Xi)), that express the equations corresponding to the borders.

Then comes the abstraction function: given the entered numerical value x of X
and the current mode m, for each p ∈ Pm, we compute the sign of p(x) to determine
on which side of each of the qualitative border the current state is. The qualitative
state is then represented by an array of −1, 0, and 1, corresponding respectively to
−, 0, and + but making operations easier to compute.

In our example of the Brusselator, let us suppose that the current mode is mode1,
that the numerical value of the system is (1.5, 4.3), and that the parameters have
value (a1, b1) = (1.2, 1.4). If P1 = [x, y, x − y, 1 − (b1 + 1)x + a1x

2y, b1x − a1x
2y] as

we computed before, the qualitative state of the system is [+,+,−,+,−]. Then, the
algorithm of qualitative state propagation explores the system’s behavior and all the
system’s possible trajectories from an initial state, using mathematical properties such
as the intermediate value theorem, inequality solving, or Lie derivatives.

To propagate the current state and to compute the behavior tree of the system,
the algorithm first looks at all the qualitative states in contact with each found state.
This is done by taking the array of a state as a reference and by creating copies of
it where one digit is changed to a possible adjacent state (in the direction of the
intermediate value theorem), meaning that a 1 or a −1 can change to 0 and that a
0 can be converted either to a 1 or a −1. In the case of a state s1 = [1, 1,−1, 0,−1],
its computed possible successors will be [0, 1,−1, 0,−1], [1, 0,−1, 0,−1], [1, 1, 0, 0,−1],
[1, 1,−1, 1,−1], [1, 1,−1,−1,−1] and [1, 1,−1, 0, 0].

Then, the tool must check whether each of these possible successors exists or not.
It uses a constraint solver and checks if the conjunction of all the inequalities defining
the states can be True at a point of the space. If it can, the state exists and is kept for
the next steps. Otherwise, the state does not exist, and we forget it. Moreover, if the
new state corresponds to an invariant violation, we keep it in a special category: we will
still study the feasibility of the transition but keep it as an invalid one. The difficulty
arising in this step is that Sympy does not allow constraint solving for inequalities:
only equality solving is allowed when it comes to a conjunction of equations. Therefore,
we used a second Python library allowing symbolic computation specifically for this
task, which is Z3. To this extent, we added a translation program to the algorithm,
converting Sympy expressions and variables to Z3 format. The Z3 Python library uses
the Z3 SMT solver to solve a conjunction of symbolic inequalities on a specified set of
variables and returns sat if the created problem admits a solution. Therefore, to check
if a state exists, we convert all the equations and inequalities that characterize it to
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the Z3 format, create a problem based on the conjunction of all these inequalities,
and call the Z3 SMT solver to know whether a solution exists.

Once all the neighbors of a qualitative state s1 have been isolated, the pro-
gram must determine which are successors and which are predecessors. As explained,
it achieves this by computing the Lie derivative of the equation corresponding to
the border. It executes it with a scalar product between [ ∂p

∂Xi
for Xi ∈ X] and

[∂Xi

∂t for Xi ∈ X], with p = 0 defining the border. Ideally, this should be evaluated on
a numerical value x of X located in the current state to determine this scalar’s sign.
However, regarding the difficulty of finding a satisfying concretization function expres-
sion (which is still one of the biggest challenges of qualitative reasoning), there is not
yet a possibility of getting numerical values corresponding to a qualitative state. Z3
offers a way to bypass this difficulty. It can create a virtual state of size |Pm|+1, with
the |Pm| first elements being the elements of the initial state, to which we associate a
digit whose value depends on the sign variation implies by the considered transition.
This new element is linked to the equation obtained with the Lie derivative formula.
Then, we call the constraint solver again to determine if this virtual qualitative state
exists. If the associated problem is satisfiable, then the Lie derivative on the border
allows the transition, and the state s2 considered as a possible s1 successor is an actual
successor of s1. We add s2 to the list of successors of s1 and s1 to the list of predeces-
sors of s2. Otherwise, the transition from s1 to s2 is impossible, so we do not add s2 as
a real successor of s1. If s2 happens to violate invariant conditions, it is not added at
all in the behavior tree, but a state named Invariant Violation is added as a successor
of s1.

With all the intra-modal transitions computed for each mode, the algorithm now
browses the states corresponding to the validation of a jump condition. As the natures
of the equations defining the qualitative states are kept, one can refer to them and
observe which actual successors of s1 change the value of the associated digit. When
one transition to such a state is found, a modal transition to the corresponding tar-
get mode replaces the previously computed qualitative transition. The reset function
calculates the qualitative state of the new mode in which the discrete transition arrives.

In the end, the algorithm returns an automaton expressed as a dictionary, where the
identifier of each mode and qualitative state are used as keys, giving each qualitative
state its predecessors and successors. The qualitative state corresponding to the initial
value of the system contains the string start in its predecessors’ list.

Applied to the hybrid Brusselator and translated into a graphic version, the algo-
rithm gives the result shown in Figure 3 as a qualitative automaton drawn from the
automaton obtained as an output of the algorithm.

In this figure, the blue vertical arrows correspond to intra-modal (or qualitative)
transitions, while the red (oblique) ones are the modal (or discrete) transitions. The
thin red arrows represent the one-way transitions, and the thick ones represent transi-
tions that can happen in both directions. Qualitative transitions are all unidirectional,
so this distinction does not apply to them. No label was added to qualitative transi-
tions, while discrete transitions are labeled with their respective direction. The chosen
parameters values in this model were (a1, a2, b1, b2) = (1.2, 3.6, 1.4, 2.5). The labels of
the modes describe the sign of the elements of Pm and are ordered in the same order.
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Fig. 3 Complete qualitative automaton of the hybrid Brusselator system

Having chosen a simple stopping criterion for the discretization of the state space of at
most one derivation for any polynomial of Pm, the computed sets Pm are respectively
equal to {1− (bm + 1)x+ amx2y, bmx− amx2y, x, y, x− y}, containing equations cor-
responding respectively to the two flow equations, the two invariant constraints and
the transition condition. In each state, the set of elements from {−, 0,+} character-
izes the sign of the corresponding elements from Pm. Many qualitative cycles coexist,
all of them transiting by the two modes. There is no behavior staying in only one of
them. The existence of many different cycles shows the interest of the state space dis-
cretization, as it separates trajectories that would have been considered identical in
a classic hybrid automaton. We now have the complete qualitative automaton of the
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CPS. Both the discrete transitions and intra-modal behavior are included, and the
trajectories are more visible than in traditional hybrid automata.

Once the qualitative automaton is obtained, the following step is to compute the
qualitative zones around the qualitative frontiers and their different interactions with
qualitative states. The distances di between every qualitative border and its associated
secondary frontier must be entered as an argument: we still need to automatize the
choice of the value characterizing the optimal distance. Once we have the equations
of the different hyperplanes and isoclines, we aim to determine how they fit into the
qualitative model. This involves a new call of the constraint solver: the intersection
between qualitative states and zones can be achieved by testing the satisfiability of
the conjunction of the constraints associated with the intersection of a state with a
zone. If the problem has a solution, then the considered qualitative zone exists in the
qualitative state. Knowing which zone exists in each qualitative state and computing
the transition direction once more creates a qualitative map that gives more knowledge
about the trajectories of the system, with a good balance between qualitative and
numerical information. Here, we gave an example of the result we can obtain on a Van
der Pol oscillator: this system is a continuous system defined by Equation 5, where c
is a constant. {

ẋ = 10(y + x− x3

3 )

ẏ = c− x− 3y
4

(5)

This system’s few equations and borders make it an excellent example, as the
qualitative map is still understandable and not overloaded. In Figure 4, we drew the
main borders with plain lines and the associated secondary borders with dotted lines.
This representation corresponds to an instance of the system where c is arbitrarily set
to 0.465. The color code associates each border with its secondary limits. For both the
straight lines (hyperplanes in two dimensions), we arbitrarily chose a distance of 0.2
to place their proximity limits. We computed the isoclines with ẋ = ±d1 and ẏ = ±d2
where d1 = 10 and d2 = 1. Finally, the black arrows show the transition direction
allowed according to the computation of the Lie derivatives. Double arrows highlight
that both transition directions are possible at a point of the border.

6 Application to Piloting and Supervision

The process of qualitative model creation can now be automatized to generate a hybrid
automaton representing the system’s behavior. Qualitative models are mainly used for
theoretical and upstream tasks such as verification, proof, and diagnosis. The contri-
bution of qualitative zones to the qualitative model gives a glimpse of possible concrete
applications of qualitative models on concrete CPS. Using the abstraction algorithm
and the Lie derivative formula, the qualitative model already shows all the possi-
ble trajectories and, therefore, perfectly delimits the normal operation of the system.
Real-time verification is already possible with such modeling abilities. In addition, the
knowledge of the distance to events inherent to the notion of qualitative zone creates
the possibility of anticipating and monitoring the execution of a system during its
execution or adapting the simulation policy of a simulator depending on the observed
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Fig. 4 Qualitative map of a Van der Pol oscillator system

results. Such possibilities offer the ability to drive and pilot a simulation of the sys-
tem by modifying both the integration step dt and the quantization precision when
entering a zone defining a critical neighborhood of an event or, on the contrary, when
one of the derivatives of the variables is found very far from its nullcline, meaning
that the corresponding variable may vary very fast and cause unexpected events. The
controller is then more careful about the appearance of mistakes or unplanned behav-
ior in these situations. The adaptation to the proximity of an event can be compared
to the adaptation of someone walking near a cliff on a mountain path who will walk
more slowly and more carefully when close to the cliff in order to avoid any bad move.
The reduction of the integration step in a simulation can prevent the appearance of
false positives (i.e., computed transitions that do not exist in the system) and detect
with precision the transition timing without requiring rollback as evoked by Bouissou
in [15]. The modification of the integration step depending on the qualitative posi-
tion is inspired by quantized states simulation, developed by Kofman [31], Cellier [32]
or Floros [33]. It creates a compromise between qualitative and numerical reason-
ing, joining what Kuipers considered as semi-qualitative reasoning. The adaptation to
the variation amplitude is processed by making the formula maxi(⌈logk(|Ẋidt|)⌉) to
be bounded, with dt the integration step and k a chosen numeration base. A higher
value of k will cause a more important reduction of dt to the same acceleration and
assure a reduced risk but will increase the simulation time. The limit value imposed
to maxi(⌈logk(|Ẋidt|)⌉) will depend on the researched precision of the model, which
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is not something automatically quantifiable. Therefore, the intervention of a human
agent is required. As a result, we can upgrade the precision of a numerical simula-
tion compared to a constant-step execution and get results with initial time steps
that would not have allowed a classic simulation to work. The detection of the pre-
cise instant of the transitions is also more accurate because adapting the simulation
step near the neighborhood limits implies that any post-transition point will be in
immediate proximity to the transition border. Consequently, the deviations caused by
late detection of the transition threshold decrease. We also noted a reduction of false
transitions caused by significant inertia on the variation of the variables when some
derivatives have high values. As the simulation controller automatically reduces the
time step in these situations, the inertia is canceled due to the high number of com-
putation points. It does not cause any false transition that could completely deviate
the simulated trajectory from the actual behavior. Moreover, the execution time of
an adaptive simulation is far lower than the one of a precise simulation with constant
and small time steps. The simulator saves time when the system is not in any prox-
imity zone and has no high derivative among its variables. It keeps it for areas of
the state space where we seek precision and reliability. Therefore, simulation piloting
using qualitative reasoning offers an interesting trade between time complexity and
result precision.

In the case of CPS monitoring, it is also possible to change the frequency and the
quality of the sensor sampling to optimize the use of resources and keep results of
good quality. Modifying the quantization precision during a simulation allows a pilot
to adapt its precision and use better-quantized values in more critical zones. However,
adding precision back in the values of the system after having decided to discard it
to improve the computation time is still a problem: earning knowledge to get a finer
quantification is not possible without sensors or at the risk of choosing false values.
Now that we can nearly automatize the creation of such a qualitative pilot, it is almost
possible to generalize it to any kind of CPS expressible with ODE dynamics. We still
need to define some parameters, such as a reference time step that strongly depends
on the working context of the system and that cannot be determined by a general rule
for any CPS. We will also have to fully automatize the definition of such a pilot using
the qualitative analysis presented above. More details on both these applications are
presented in [28, 34].

7 Generalization

As this article follows and completes works focusing on polynomial systems, the
proposed abstraction methods were designed mainly for systems with polynomial con-
straints and dynamic equations. This is due to the simplicity of solving polynomial
equations to a certain degree, while more general functions do not offer such conve-
nience for resolution. As polynomials are almost the simplest mathematical functions
to manipulate, the framework of the polynomial system is very advantageous but still
quite limited. It is, however, possible to generalize this work to other categories of
functions, such as rational functions.
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7.1 Rational Functions

Considering that every rational function can be written in the form p1

p2
with p1 and

p2 polynomials, the set of all rational functions on the variable set X and written
K(X) can, by definition, be expressed as a product of set K[X] ∗ (K[X]∗). Therefore,
computing the zeros of a rational function is equivalent to computing the zeros of
its numerator polynomial p1 and verifying that they do not match with the zeros of
its denominator p2. This implies that Sympy and Z3 solvers, primarily thought for
polynomial functions, can perfectly deal with rational equations.

Moreover, as it is easy to prove that K(X) is closed under the derivation just like
K[X], manipulating rational functions for state space abstraction does not change
the situation for the computation. It makes the resolution more complex and the
execution longer. However, as computing the qualitative map is an offline operation,
the computation time does not constitute an important criterion. The qualitative
model is supposed to be generated before the execution of the processes (be it a
simulation or the monitoring of the system) that use it.

The main problem will be the apparition of a singularity area near the poles of the
fractions, which will cause the qualitative borders to have unpredictable shapes.

In spite of this inherent complexity, the generalization of our process to rational
fractions does not pose major problems.

7.2 Qualitative Tendencies and Hybridization

As exposed in subsection 3.4, complex polynomials can become a problem if the capac-
ity of the solver is exceeded. This can happen when X is composed of many variables
and if the treated polynomials are of high degree. To keep these case studies in the
range of qualitative reasoning, we worked on a function abstraction process [35] based
on order of magnitude [29] and order of growth reasoning. After having defined a ref-
erence value vi,m for every component Xi ∈ X and every mode m ∈ Q expressing the
anticipated order of magnitude of the variable Xi in the mode m and set of negligibil-
ity criteria ki,m, the process applies a hybridization method as explained by Maler or
Asarin in [20, 36] to abstract each function considered as too complex in a piece-wise
continuous simplified function, keeping for each sub-division of a mode state space
the terms considered as dominants and suppressing the terms whose impact on the
dynamics are considered as locally negligible. Hybridization is often used on continu-
ous complex systems to simplify them by transforming them into a hybrid system that
reproduces their properties and behavior. The idea of hybridization consists in approx-
imating a too-complex continuous vector field by a hybrid system with a collection of
simpler (constant, affine, or even polynomial) vector fields [36]. In the case of already
hybrid systems, it would lead to splitting each mode of the system into several modes
with simpler equations. The comparison between the different terms of an equation is
possible using order of magnitude reasoning (OMR). More precisely, as OMR can be
either absolute or relative, as explained by Raiman in [30], we especially use relative
OMR to perform a comparison between the relative magnitude of an equation. Abso-
lute OMR compares different variables to a set of fixed reference values, while relative
OMR compares variables with each other as long as they are comparable. Different
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comparison systems exist, such as FOG [30], O(M) [29], or Rom [37]. Each of them
uses its comparison operators, but the operators neg (Negligible) and Vo (Neighbor)
seem to make a consensus. We also chose to use Co (Comparable) from Rom.

Previous works also proposed a generalization of OMR to functions and dynamics
by introducing the notion of order of growth (see Borel [38], Hardy [39] or Dague [37]).
Orders of growth (OG) initially aimed to characterize the behavior of functions to ∞
and work with equivalent classes of applications. The order of growth of an application

f is computed as: c(f) = limt→∞
ln|f(t)|
ln|t| and c(f = 0) = −∞. This formula allows the

polynomial functions to have an order of growth equal to their degree. Abstracting
functions to simplify qualitative model computation requires both reasoning on the
magnitude of functions at a precise instant t and their behavior to infinity at the limits
of the state space. Relative OMR and OG reasoning give a good basis for abstracting
the functions defining the CPS. In the case of high-degree polynomials, equivalent
classes impose the monomials of different OG to have different behaviors to infinity.
Consequently, monomial terms of different degrees applying on the same variable of X
or parameter can be simplified if the considered variable/parameter reaches sufficiently
high values. The chosen negligibility criterion associated with the variable gives the
threshold authorizing this abstraction.

The protocol for applying relative OMR and OG for the polynomial abstraction
of system equations is as follows.

After separating each of the target equations into monomial terms, the algorithm
will discretize the state space based on the relative prevalence of each of the mono-
mial terms on the others to create a piecewise continuous function constituted of
sub-functions simpler than the original one. Each sub-function will correspond to a
new mode of the qualitative model, meaning that hybridization is applied to each
mode separately. This increases the number of operating modes of the qualitative
model and the computation capacity for each.

Definition 16 (Qualitative tendencies). If f : Kn → K is a function on K, let
fr be the piecewise continuous function abstracting fC obtained with the previously
presented instructions for negligibility criteria CXi

for each variable Xi. We call the
qualitative tendencies of f each continuous function fi defined on a rectangle of Kn

composing a continuous section of f .

Qualitative tendencies are thus defined as the section of the abstracted formulation
of the equations of the system. It corresponds to a subspace of the state space where
the respective orders of magnitude of the variables and where the local magnitude or
growth of the equation implies a specific influence relationship between its different
terms. In the case of equations involving different variables, the homogeneous terms are
compared to each other as the presence of an addition supposes a physical homogeneity
in the added terms. As example, consider a function f : x 7→ x3 − 2x2 − 2 defined on

R. If the negligibility criterion is chosen to be of 0.1 (meaning that xNe y if |x|
|y| < 0.1),
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then the obtained abstracted piecewise continuous function can be expressed as

fp =



−2 if |x| ⩽ 1√
10

x3 and x2 Ne 2

−2x2 − 2 if 1√
10

⩽ |x| ⩽ 1
3√10

x3 Ne 2 and x2

x3 − 2x2 − 2 if 1
3√10

⩽ |x| ⩽
√
10

x3 − 2x2 if
√
10 ⩽ |x| ⩽ 10 2Ne x3 and x2

x3 if |x| > 10 x2 and 2Ne x3

It is also possible to slightly change this expression to make the abstracted function
continuous on R by evaluating the suppressed terms on the discontinuity points when
the continuity of the abstraction is a constraint. This modification requires a few more
computations but does not radically change the process or the result.

This way, it becomes possible to create another qualitative model of the same
system, which will contain less precise and more artificial frontiers, but it will guaran-
tee the possibility of processing and refining the model better than with high-degree
polynomial equations.

7.3 Transcendental Functions

In the case of non-rational transcendental functions such as exponential, logarithms, or
trigonometric functions, the ability of polynomial solvers to symbolically find the zeros
of the equations does not hold anymore. The previous propositions and processes do
not apply to systems defined at least partially by such equations. Therefore, abstract-
ing the expressions before constructing a qualitative model is a necessity. Depending
on the nature of these functions, the abstraction possibilities are different and offer
different benefits and precision.

Periodic and stochastic functions have the advantages of showing some regularity
and a certain predictability in the case of long-term executions. By definition, peri-
odic functions repeat a behavior after a period tf and will not diverge to ±∞ when
t → ∞. Moreover, all the values of a periodic function f can be bounded with absolute
certainty between the maximum and the minimum of f on a single period. There-
fore, knowing the mean value and the amplitude of a periodic function f part of the
expression of an equation of the system, the bounded nature and predictability makes
it possible to neglect the variations of f around its mean value mf if they are negli-
gible compared to other terms of the equations according to the chosen negligibility
criterion, and if the period tf is sufficiently small compared to the considered time
interval T . The second condition is necessary to observe the function’s periodic nature.
If tf > T or tf ≈ T , the function will not be observed as locally periodic, and the
deviations imposed by its variations to the mean may not compensate for each other.
If the conditions are satisfied, f can be replaced in the concerned areas by mf without
causing a major deviation from the exact behavior. Consequently, periodic functions
may be abstracted by their mean values in the appropriate conditions.

In the presence of a stochastic function, the potential simplification may come from
the law of large numbers. If the considered time interval is sufficiently long, the mean
of the experienced behavior will converge almost surely to the expected value of the
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associated random variable. If the variance of the stochastic function is negligible com-
pared to the defined negligibility criterion, its variations may compensate themselves,
and the result should not diverge too much from the expected value. This approxi-
mation is less safe than the previous ones, but it still gives a tool to help the system
abstraction by transforming non-derivable terms into constant monomials, allowing
resolution and derivation, both impossible with purely stochastic terms.

Finally, once the degrees of the most complex polynomials have been reduced and
that the periodic and stochastic functions have been simplified to their mean value
when possible, the problems come from the terms that fit none of the previously
mentioned categories, such as exponential and logarithmic functions. Considering the
formula of orders of growth presented in subsection 7.2, it appears that c(f : t 7→
ekt) = +∞ for any constant k > 0, meaning that orders of growth are not sufficient to
distinguish diverging exponential terms by their relative behavior to ∞. This implies
that simplifications cannot be achieved in the same way as with polynomials. The
direction we would like to follow now is to apply polynomial approximations to these
embarrassing functions. By combining different interpolation methods, such as Taylor
or Chebyshev polynomials, we hope to be able to generalize the state space abstraction
approach to any system defined with transcendental ODEs and equations.

7.4 Causality Reasoning

Finally, one last developed possibility is to unify the different generations of qualita-
tive reasoning on systems to consolidate their respective influence and combine their
application area. Originally, qualitative reasoning was mainly supported by causal
ordering as developed by Iwasaki [40] or De Kleer [41]. This representation of a sys-
tem highlights the causality dependence between its variables and components and
may integrate a notion of temporality. Mythical causality, for example, uses the tem-
poral ordering between cause and consequence to represent the behavior. Causality
applied to qualitative reasoning, as developed by de Kleer and Brown, uses a specific
form of differential equations named qualitative differential equations (QDE), which
can be seen as abstractions of ODE applied to define the confluences of the system.
These qualitative equations associate a sign to a formula composed of simple oper-
ations between variables and parameters of the system. This idea of QDE has been
used in more recent productions such as [12, 42] to represent as simply as possible
some system’s properties and to reason on incomplete equations. This can be related
to our approach, as the choice to abstract the dynamics of the system is at the core of
the contributions. One of the drawbacks of this choice was that when models do not
integrate sufficiently usable knowledge, reasoning on it becomes irrelevant because all
the achievable conclusions are too simple to present significant interest. A possibility
to unify this area of qualitative reasoning to the state space abstraction is to change
the formulation of the causality bounds (currently expressed with operators such as
PROP,CPROP or IPROP ) by more standard equations with non valued parameters.
For example, the relation between two variables x and y, represented in the absence of
further knowledge as xPROP y could be expressed with x = cy with c a non valuated
positive constant. Also, by authorizing more categories of relations with, for exam-
ple, an operator representing a quadratic proportionality (meaning that x = cy2 with
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c > 0) or even the existence of a polynomial relation between x and y. That would
ensure that the literal expression of every relation could be included in a model using
polynomial functions to abstract the state space. By enriching the set of allowed oper-
ators with, for example, QPROP, PnPROP, PPROP, REL (meaning respectively the
existence of a quadratic, polynomial of the nth order, polynomial of unknown order
and unknown but existent relations between variables or components) and by relat-
ing each of these operators to a symbolic equation linking the variables to be used in
an abstraction process, it is possible to apply the presented system abstraction. The
absence of instantiated values for the parameters of the equation stops the possibility
of computing transition directions and, therefore, the dynamics of the system but still
allows a discretization of the state space and reasoning about the qualitative position
on the qualitative states of the system.

8 Conclusion and Future Works

In this article, we presented a state of the art and the current state of our research to
develop a qualitative abstraction and reasoning approach for the study of CPS and
for improvements in unifying the various forms of qualitative reasoning to general-
ize it to as many situations as possible. In the study of dynamic systems described
with polynomial ordinary differential equations, the discretization of the state space
builds the qualities to reason about; the study of qualitative transitions using the Lie
derivative allows the visualization of a qualitative trajectory of the system, while the
introduction of the qualitative zones adds a notion of proximity management, allowing
for more concrete applications such as verification, real-time monitoring or simulation
piloting. Finally, our previous and current works to generalize this method to more
complex, stochastic, or less defined systems give us hope that our contribution can be
generalized to more complex and significant use cases.

The current limitations of applying qualitative reasoning to CPS mainly concern
the systems represented using less convenient behavioral equations, such as algebraic
differential equations, or systems that include stochastic components that cannot be
ignored, given the relative magnitude of the different terms. These two cases require the
ability to solve equations that are not handled by traditional solving methods and are
entirely out of the field considered in this article. The use of remarkable results might
give hints to help in the qualitative abstraction of algebraic differential equations.
However, most of the possible situations still pose a significant problem for qualitative
reasoning. Stochastic systems, which can exhibit stochastic properties under various
forms (dynamics, transition condition, uncertainty, . . . ), have been partially treated
in other works such as [43] from Kroger. In this example, a concept of Bayesian
hybrid automaton allows the author to deal with major uncertainty in various aspects
of the system by representing the current state of the system using different and
related Bayesian networks, with weighted values for the state variables integrating the
probabilistic aspects of the dynamics and relations between the networks that take
into account the stochastic nature of the thresholds of the system. Integrating this
contribution to ours will be arduous, but it may solve one of the main remaining
weaknesses of our approach.
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