
HAL Id: hal-04661306
https://hal.science/hal-04661306

Submitted on 24 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flexible NVMe Request Routing for Virtual Machines
Tu Dinh Ngoc, Boris Teabe, Georges da Costa, Daniel Hagimont

To cite this version:
Tu Dinh Ngoc, Boris Teabe, Georges da Costa, Daniel Hagimont. Flexible NVMe Request Routing for
Virtual Machines. 2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS
2024), IEEE Computer Society Technical Community on Parallel Processing, May 2024, San Francisco,
CA, United States. pp.814-824, �10.1109/IPDPS57955.2024.00077�. �hal-04661306�

https://hal.science/hal-04661306
https://hal.archives-ouvertes.fr

Flexible NVMe Request Routing for Virtual
Machines

Tu Dinh Ngoc, Boris Teabe, Georges Da Costa, Daniel Hagimont
IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3, Toulouse, France

Abstract—Recent advances in storage hardware have resulted
in massive improvements in both I/O latency and throughput.
However, existing storage virtualization tools either depend on
a heavy and inefficient I/O stack that is not optimized for
parallelism, or require a separate API that is difficult to manage
and monitor. In this work, we introduce NVMetro, a solution based
on the NVMe protocol that proposes a flexible choice between
multiple I/O paths to ease the development of adaptive and
performant virtual storage. NVMetro provides two components:
(1) an intelligent I/O classification and routing framework powered
by eBPF; and (2) an easy-to-use and performant API to assist
the creation of userspace I/O functions within our framework.
We demonstrate the benefits of NVMetro by implementing two
virtual storage functions, and we evaluate them using various
benchmarks. The obtained results show that NVMetro achieves a
performance and scalability comparable to bleeding-edge, kernel-
bypass technologies while retaining the flexibility of traditional
OS-based storage APIs.

I. INTRODUCTION

The Non-Volatile Memory Express (NVMe) specification [1]
has been widely adopted as a way to remedy I/O inefficiencies
between the storage device and operating system. At the core
of NVMe is the concept of I/O queues, where multiple inde-
pendent storage operations can be performed simultaneously
without the cost of synchronization. This highly-optimized
design has massively benefited storage device and application
scalability. Indeed, NVMe devices have managed to reach
impressive performance figures; for example, the Intel Optane
P5800X series claims a performance of up to 5 million I/O
per second and a 99th percentile latency of less than 6 µs [2].

The increasing use of virtualization for managing and
isolating system partitions is followed with increasing demand
for efficient storage virtualization, in the form of storage
functions covering certain use cases, e.g. data encryption,
compression, replication, etc. Most of these technologies take
one of two forms: a hypervisor-based, fully-featured stack that
makes extensive use of OS features (e.g. QEMU’s own virtual
disk implementation, Linux’s in-kernel Vhost), or a hardware-
based stack that forgoes OS-level management in return for
improved performance (e.g. device passthrough, SPDK [3]).

Hardware-based stacks deliver the most storage performance
to VMs, but have the drawbacks of reduced manageability,
difficulty of use and a limited feature set. For instance, device
passthrough-based frameworks like SPDK assign an entire
device to its userspace driver. As a result, that device cannot
be accessed via the kernel API; disk access must be done with
SPDK-specific APIs, or through a compatibility bridge (e.g. the
DPDK kernel-native interface [4] for networking or FUSE [5]

for virtual filesystems). Userspace solutions like FUSE also
come with issues that can severely degrade performance [6].
Alternatively, single-root I/O virtualization (SR-IOV) can be
used to partition one physical device into PCIe virtual functions
that can be independently shared to each VM; however, SR-
IOV is restricted to a single use case of inter-VM isolation,
and gives the host little control or visibility over how each VM
uses its resource partition, as the guest NVMe driver directly
communicates with hardware, bypassing the host hypervisor.

All in all, these drawbacks are reasons to choose in-kernel
I/O implementations over a higher-performing userspace or
hardware-based one [7]. Yet OS-based stacks, while being
easier to use, struggle to keep up with hardware. At the level
of I/O performance demonstrated by the Intel Optane P5800X
cited above, software becomes a significant part of I/O overhead,
with kernel code taking nearly half of the time cost of a
read/write system call [8]. Moreover, the implementation of
complex storage functions can be challenging due to a lack
of tooling integration in the kernel. Consider an example of a
storage function that performs data encryption using Intel SGX.
Such an application can be easily written with Intel’s existing
SDK; however, implementing said function inside the kernel
requires a new, kernel-specific SDK, which is a considerably
more challenging task. To summarize, current solutions lack
the flexibility for implementing complex storage software;
therefore, we would need a more scalable and adaptable
solution that meets all the challenges of virtual storage.

In this work, we present NVMetro, a solution for efficiently
managing storage in virtual machines. With NVMetro, we aim
to ease the creation of flexible storage logic without sacrificing
either strong performance or security. NVMetro proposes an
unique solution that offers multiple I/O paths for handling
virtual storage requests: (1) a fast path adjacent to hardware
NVMe devices; (2) a kernel path attached to the host’s kernel
storage stack; and finally (3) a notify path controlled by an
userspace I/O function. These paths are controlled by a central
I/O router with interfaces for specifying policies to choose
a best path for each individual request, as well as a support
framework for userspace applications using the notify path.

Our design of NVMetro is guided by five main criteria:

• Flexibility: the key ability of NVMetro to provide fine-
grained partitioning and control of storage requests, thus
letting it adapt to multiple types of storage functions;

• Performance: that NVMetro does not significantly de-
grade performance compared to other solutions;

• Isolation: making sure that NVMetro does not break the
security model of storage virtualization;

• Compatibility: ensuring that NVMetro works with all
VMs supporting the NVMe specification;

• Ease of use: creation of a storage framework that
minimizes the development effort needed to write a storage
function with NVMetro compared to existing solutions.

To accomplish our design criteria, NVMetro uses two main
components: (1) an I/O router supporting pluggable classifiers
based on Linux’s Extended Berkeley Packet Filter (eBPF) for
encoding custom logic into the storage virtualization pipeline;
and (2) a kernel-user API that assists the creation of userspace
I/O functions (UIFs) for high-performance storage processing.

In Section II, we go into a deeper review of the NVMe
and eBPF technologies to illustrate their relevance to storage
virtualization. In Section III, we explain the goals and design
criteria of NVMetro, show their applicability to a range of
storage function use cases, and make comparisons to the
designs of other works. Following these criteria, we present the
main design of NVMetro’s I/O routing, classification and UIF
components. Section IV investigates two NVMetro use cases in
depth: a data encryption function and a data replication function.
We show in Section V the performance of NVMetro and its use
cases under various workloads. Our results demonstrate that
NVMetro takes good advantage of the storage performance of
modern hardware, with our NVMetro-based disk encryption for
VMs being up to 3.7× faster than an in-kernel virtual encrypted
disk based on dm-crypt+vhost-scsi while using as little
as 0.9× the CPU during heavy loads. Section VI gives an
overview of other storage virtualization and computational
storage approaches, and Section VII concludes our article.

II. BACKGROUND

In this section, we present a background of technologies
that make up NVMetro to help understand our solution.

A. NVM Express specification

The NVM Express specification defines a communication
protocol between software (the “host”) and storage devices
(“controllers”). It specifies an admin command set for the host
to interrogate and manipulate the controller, and various other
command sets for individual use cases: the NVM command
set for traditional block devices; and the KV command set for
devices having a key-value interface.

NVMe provides a generalized command queue abstraction
regardless of command set. The host sends I/O commands
to a controller via submission queues (SQs); the controller
processes them and puts their results into a corresponding
completion queue (CQ). Aside from a dedicated SQ/CQ pair
for admin commands, each NVMe controller can communicate
with the host using up to 64K queues, each capable of holding
up to 64K commands being processed in parallel. Each queue
is a lockless producer-consumer ring buffer; as such, each
CPU communicates with the controller using a dedicated
queue, removing the need for synchronization when submitting
requests. In addition, NVMe allows a N-to-1 correlation

between SQs and CQs; in other words, multiple SQs can
be associated to the same CQ. The host waits for completion
notifications from a controller in two ways: it can either receive
interrupts from the controller, or continuously poll its CQs for
any new entries (called busy polling, a.k.a. active polling).

NVMe specifies various transports for moving I/O data, such
as a memory transport for devices attached to a system bus like
PCI Express, message transport over TCP or Fibre Channel,
or a RDMA-based transport for high-speed remote storage
over Infiniband or converged Ethernet. These transports let
operating systems and applications use the same NVMe driver
and software stack regardless of the underlying connection.

In summary, NVMe’s scalable protocol and feature set
enables countless new use cases: remote storage, intelligent
tiering, key-value databases, etc. NVMe enjoys widespread
support from numerous hardware and software vendors, and is
poised to become a prominent all-purpose storage protocol.

B. eBPF virtual machine

Berkeley Packet Filters (BPF) [9] were introduced in the BSD
operating system for packet inspection, filtering and capturing.
BPF makes use of BPF filters written in an interpreted language,
where a filter processes multiple protocols at different network
layers. Linux originally adopted BPF in its socket filter [10].

The BPF instruction set was extended in Linux into Extended
BPF (eBPF) with extra instructions and registers. Before
running each eBPF program, the Linux kernel verifies its safety
through a large range of properties, including constraints on
memory accesses, loops and program size. eBPF programs
can call a list of authorized kernel helper functions; however,
this approach requires recompiling and reinitializing the eBPF
verifier every time a new helper function is needed. Linux eBPF
is currently employed in various use cases, such as system
call filtering (via the Seccomp-BPF API), kernel tracing, LSM
security controls, or infrared signal decoding. Notably, its
Express Data Path (XDP) feature executes eBPF programs at
the earliest points of network packet reception, such as in the
network driver or directly inside SmartNIC hardware for the
purposes of packet classification and routing [11].

III. DESIGN OF NVMETRO

In the following sections, we give a general overview of our
solution, then describe each design criterion in further depth.

A. General overview

NVMetro aims to ease the development of fast and flexible
storage functions for VMs. We continue from our observation
that current storage virtualization solutions only provide one
possible access method; they are “all-or-nothing” in that once
a storage function selects a specific virtualization API, it
cannot easily switch to another API to meet new requirements.
In NVMetro, we give developers multiple ways to process
I/O requests with various trade-offs between performance,
flexibility and ease-of-use depending on their use case.

Our solution operates in the hypervisor, and presents it-
self as a virtual NVMe controller in each concerned VM,

UIFClassifier Router

NVMetro

NVMe

VM

UserspaceKernel

Kernel I/O

Kernel

path

Notify path

Fast path

(HSQ/HCQ)

VCQVSQ

NSQ/NCQ

Fig. 1: NVMetro architecture and I/O paths. Customizable com-
ponents are drawn in dashed outline. VSQ/VCQ, HSQ/HCQ
and NSQ/NCQ denote virtual, host and notify submission and
completion queues (see Section III-C).

intercepting and servicing I/O requests from the VM. This
is done in accordance with the NVMe protocol, i.e. all VMs
supporting NVMe work with NVMetro by default without
guest modifications. Virtual controllers can be attached to an
entire NVMe namespace on the drive, or a fixed partition
of that namespace. NVMetro also supports creating multiple
queue pairs, preserving NVMe’s parallelism benefits.

Figure 1 summarizes NVMetro’s main components. In short,
requests from the VM pass through an I/O router. This router
is modified by a customizable I/O classifier to route requests
through one of three I/O paths: (1) a fast path to a physical
NVMe device (red arrow); (2) a kernel path (in blue); and
(3) a notify path (in green) to an external UIF.

The I/O router inspects incoming requests to find the most
appropriate I/O path. As the path selection must depend on
each particular function’s use case, this step is done through
I/O classifiers provided by the storage function. To determine a
request’s I/O path as quickly as possible, classifiers run directly
inside the host kernel inside an isolated environment.

Next, we describe the tradeoffs to each I/O path that the
classifier must take into account. The fast path, our simplest I/O
path, involves sending each request directly to an underlying
NVMe device. As a result, it is the most performant I/O path
in NVMetro for most requests. The kernel path translates
requests and sends them through the host kernel’s block device
architecture. This path incurs a request translation cost, and
is only usable with requests that follow the Linux kernel’s
storage semantics (versus NVMe-specific or vendor-specific
commands); however, it is compatible with Linux’s block layer
features (e.g. device mapper), as well as non-NVMe backends.

NVMetro’s notify path exports requests for processing
outside of the host kernel. Said requests are handled by an
userspace I/O function (UIF) making up part of the desired
storage function. We suggest using UIFs when either a) in-
kernel request processing architecture is insufficient; or b) extra
isolation of the storage function is required. To ease the creation
of UIFs, NVMetro includes a C++-based framework that takes
care of basic UIF housekeeping tasks.

Unique to NVMetro is that our I/O classifiers can run
multiple times for each request. Each execution of a classifier
dictates the next destination to which it should be sent. This
feature assists complex use cases where a request needs multiple
processing stages before it could be completed, by forming
a state machine where the classifier models each request’s
transition between several states until it is completely fulfilled.
Rather than filtering at every level of the I/O stack, the classifier
is only invoked at key decision points during its lifetime, thus
saving CPU and memory usage.

B. NVMetro’s design criteria in detail

Flexibility. In existing storage stacks (MDev-NVMe [12],
Linux’s device mapper, SPDK, etc.), functionalities such as
encryption, quality-of-service, etc. need to be implemented in
the stack itself. In contrast, NVMetro provides a more fine-
grained storage filtering, where UIFs are integrated into the
I/O request path only as needed. In complex use cases such as
encrypted key-value stores, NVMetro eases the integration of
relevant technologies (e.g. Intel SGX) without affecting unre-
lated requests thanks to our router and classifier architecture.

In NVMetro, UIFs can be combined generically, by program-
ming the I/O classifier to forward requests between UIFs; by
direct IPC between UIFs; or by combining all function logics
into a single UIF. Moreover, our modular design lets storage
administrators install, migrate and remove storage functions
on the fly, a desirable feature for avoiding VM reboots needed
in some solutions (e.g. vhost-scsi).

Performance. NVMetro adds routing on top of the MDev-
NVMe storage virtualization system; therefore, it necessarily
imposes some overhead over MDev-NVMe. However, our key
contribution is shortcut processing of I/O requests using a
custom classifier followed by redirecting to the next hop as
quickly as possible. In other words, commands that can be
served directly by the physical disk are immediately sent for
processing, and only those requiring extra processing will be
sent to a slower I/O path. NVMetro thus maintains the benefit
of I/O mediation without significantly impacting performance.

Isolation. In-kernel storage virtualization (Vhost, MDev-
NVMe) keeps functional logic (e.g. encryption, replication,
caching...) inside the kernel for performance reasons. This
decision also increases the attack surface of these solutions. In
NVMetro, we offload most of the work to isolated subsystems
such as sandboxed classifiers and userspace processes. The
remaining I/O router components in the kernel only minimally
processes incoming requests, thus reducing our attack surface.

Compatibility. The large software stack in e.g. Vhost complex-
ifies the implementation of certain I/O commands (e.g. block
unmapping, security commands). Any storage layer lacking
support for such commands will prevent them from being used
by the guest. In contrast, besides NVMetro’s support for the
base NVMe specs, commands authorized by the I/O classifier
can be passed directly to hardware, enabling the use of vendor
extensions for performance or security purposes. NVMetro also
easily adapts to new NVMe features (e.g. the KV command
set) by changing the classifier without affecting the host kernel.

Ease of use. Kernel-bypass solutions like SPDK and vfio-
user provide high performance through userspace polling
drivers. However, these drivers require significant reengineering,
take up exclusive control over the device, and cannot use
features already built into the Linux kernel. This is, among
other reasons, why Cloudflare chose to use the Linux kernel’s
TCP networking stack rather than DPDK [7]. In NVMetro,
each UIF chooses the programming languages, libraries and
APIs that best suit its purposes. We demonstrate this property
by implementing an UIF based on the Intel SGX SDK.

Following the design criteria discussed above, the next
sections detail NVMetro’s two core components: the I/O router
and classifier, and its accompanying userspace I/O functions.

C. I/O router and classifier

NVMetro implements various data paths for processing
I/O requests received by the host. We adapt MDev-NVMe’s
queue shadowing [12], where NVMetro’s I/O router receives
commands from the guest using virtual submission queues
(VSQ), and sends results to the guest using virtual completion
queues (VCQ) (see Figure 1).

To inject custom logic into the kernel without compromising
security, we selected eBPF as the platform for our I/O classifiers.
These classifiers modify the request in two steps: firstly, direct
mediation, where the classifier directly modifies a request’s
content. With direct mediation, each classifier can limit a
command’s privileges, e.g. by translating its requested logical
block address (LBA) to the underlying device’s real LBA
(compared to MDev-NVMe which implements LBA translation
directly inside its kernel module).

The second step is request routing, where requests are either
routed by NVMetro or stopped by sending an error status to the
VM’s VCQ. NVMetro implements iterative routing, where a
request traverses multiple hops following the classifier’s policy.
We manage iterative routing with a routing table that tracks
each request’s state during classification. To elaborate, requests
are forwarded to the queue types corresponding to I/O paths
shown in Figure 1: the fast path, which redirects requests to
the underlying device’s I/O queues, called the host submission
queues (HSQ) and host completion queues (HCQ); the kernel
I/O path, which sends requests through Linux’s block device
subsystem; or the notify path, which links to an UIF through
notify submission/completion queues (NSQ/NCQ). Along with
the VSQ, NVMetro’s router worker threads actively poll the
CQs of each path. We share these threads between multiple

VMs in a round-robin fashion, and individually track each VM
to stop polling them during inactivity.

When sending requests between components, NVMetro
minimizes unnecessary memory copies even under long request
paths. It only passes around each request’s 64-byte command
block, while the scatter-gather lists and data pages stay inside
the VM’s memory.

Finally, the I/O classifier can send one request to multiple
targets simultaneously if needed. This is useful when the
device and UIF need to work in parallel, e.g. during backup or
mirroring. Moreover, the classifier can install additional hooks
into the request. Hooks define certain events that happen during
the request’s lifecycle, e.g. when a request has been processed
by hardware. Each hook calls the I/O classifier again to decide
the next course of action until the request is satisfied.

D. Userspace I/O functions

UIFs are programs that processes each command from the
notify path according to the storage function’s requirements.
Each UIF opens NSQs/NCQs as file descriptors, maps them
into its address space using mmap() calls, and polls NSQs for
requests from the I/O router. It also has access to the VM’s
memory to read and write request data. When the UIF finishes
processing, it returns a status code to the kernel via the NCQ.

In our UIFs, we use an adaptive polling approach, where
they can switch between active polling and OS-assisted
waiting (using epoll()) depending on the activity level. This
approach also permits serving multiple VMs using multiple
UIFs in the same process to lower the CPU cost of busy polling.

To reiterate Section III-A, UIFs are meant to handle requests
that should be further isolated, or cannot be easily implemented
inside eBPF classifiers. For instance, as stated in Section II-B,
eBPF programs run under multiple restrictions to ensure the
kernel’s integrity. Additionally, the time-critical, in-kernel
nature of eBPF classifiers makes some features difficult to
utilize (e.g. timers, memory allocations). In contrast, UIFs are
free to choose the best APIs for fulfilling requests they receive.
In other words, they can use basic read() and write()
calls to serve data from a backend file, use io_uring to
improve performance, or even send HTTP requests to a cloud
service. However, to ease the creation of UIFs, we created an
UIF framework that provides the following services:

1) Setting up notify queues and io_uring mappings for
communication with the NVMetro router;

2) Configuring polling threads for I/O queues;
3) Parsing of incoming NVMe commands, as well as reading

and writing of data pages from the VM;
4) Exposure of requests from the VMs as UIF events.

Our framework spans only 1100 lines of C++, and helps
creating UIFs with minimal programming effort. We provide
an example of an UIF under our framework in the next section.

IV. USE CASES

In the following sections, we detail two examples of storage
virtualization functions implemented with NVMetro: a function
for transparent disk encryption, optionally integrating an Intel

SGX-based secure enclave; and a function that replicates data
between two disks. For each storage function, we present
its general request lifecycle and the roles of its components,
namely the I/O classifier and accompanying UIF.

As stated above, our solution is exposed as a virtual NVMe
controller inside each VM, with an additional control interface
on the host. NVMetro storage functions are therefore managed
by the system administrators by attaching each virtual controller
to a namespace or partition on a backend NVMe device. We
then use the control interfaces to insert eBPF classifiers and
attach UIFs for storage functions they wish to use.

A. Transparent data encryption

We created a storage function to encrypt data on virtual
disks, a critical feature for protecting sensitive data in cloud
environments. Figure 2 shows the lifecycle of an I/O request
under this function. In short, our eBPF classifier instructs the
I/O router to send incoming I/O requests to an UIF, which
decrypts and encrypts data during reads and writes respectively.

Start

Command*

Device

UIF encryptsDevice done*

Read

Write

UIF done
I/O done

UIF decrypts

UIF done
Device

Writeback①②

Fig. 2: Lifecycle of an I/O request with data encryption. The
asterisk (*) denotes classifier invocation points.

I/O classifier. We specified two rules in our I/O classifier: (1)
during reads: send the command to the physical disk, then once
the disk read completes, forward it to the UIF for decryption;
(2) during writes: send the command to the UIF for encryption,
then forward it to the disk for writing. Our classifier runs
at two critical decision points: once at the beginning of the
request pipeline, and once more during a read command after
the device finishes its read.

Listing 1 details the implementation of our encryption
I/O classifier. The function encryptor_classify is our
classifier’s entry point, and is called every time the classifier
is needed (see Figure 2). Each classifier is given an I/O
context ctx that contains information about the current request.
Depending on the request’s processing stage (lines 13-24), the
classifier must decide the next course of action:

• On a new request (HOOK_VSQ), the classifier reads the
command’s opcode (line 13). For reads, the classifier

instructs the router to send this request to the device
(SEND_HQ), and to invoke the classifier again when the
device responds (line 16). For writes, the request is sent
through the notify path (SEND_NQ). Once the UIF re-
sponds, the router immediately finishes the request without
calling the classifier again (WILL_COMPLETE_NQ).

• When the aforementioned read finishes (HOOK_HCQ), the
classifier checks the device’s read error code. If an error
occurred, this error is forwarded to the VM (line 8);
otherwise, the read continues in the UIF (line 9).

Our example demonstrates both types of request modification
available to a classifier:

• Direct mediation: by returning a NVMe status code (e.g.
line 8, which forwards the physical device’s status code).
This status code is sent to the VM to stop the request;

• Request routing: The classifier chooses the target I/O paths
to route our request. It can install a new hook (line 16) or
automatically complete the request when its targets finish
processing (lines 20 and 23).

Listing 1: Encryption eBPF classifier code.
1 int encryptor_classify(struct ctx *ctx) {
2 switch (ctx->current_hook) {
3 case HOOK_VSQ:
4 /* new request */
5 return encryptor_begin(ctx);
6 case HOOK_HCQ:
7 /* read device done, check for error */
8 if (ctx->error) return ctx->error | COMPLETE;
9 else return SEND_NQ | WILL_COMPLETE_NQ;

10 }
11 }
12 int encryptor_begin(struct ctx *ctx) {
13 switch (ctx->cmd.common.opcode) {
14 case nvme_cmd_read:
15 /* read commands that need reading ciphertext */
16 return SEND_HQ | HOOK_HCQ | WAIT_FOR_HOOK;
17 case nvme_cmd_write:
18 /* write commands that need encrypting,
19 * UIF will finish the command */
20 return SEND_NQ | WILL_COMPLETE_NQ;
21 default:
22 /* send to device */
23 return SEND_HQ | WILL_COMPLETE_HQ;
24 }
25 }

Userspace I/O function. Our encryption UIF performs three
tasks: (1) in-place decrypting of ciphertext from the physical
device; (2) encrypting of plaintext from the guest into a
temporary buffer; and (3) writing of ciphertext from step (2) to
disk with io_uring. Our encryptors use the standard XTS-
AES algorithm and are compatible with Linux’s dm-crypt.

Listing 2: Request processing code of encryption UIF.
1 bool uif::work(nvme_cmd cmd, u32 tag, u16 &status) {
2 switch (cmd.common.opcode) {
3 case nvme_cmd_read:
4 status = do_read(cmd);
5 return false; /* respond with status */
6 case nvme_cmd_write:
7 do_write_async(cmd, tag);
8 return true; /* asynchronous response later */
9 }

10 }
11 u16 uif::do_read(nvme_cmd cmd) {
12 for (auto data=parse(cmd); !data.at_end(); data++)
13 if (!decrypt(*data, data.lba())) /*inplace*/
14 throw std::runtime_error("cannot decrypt");
15 return NVME_SC_SUCCESS;
16 }
17 void uif::do_write_async(nvme_cmd cmd, u32 tag) {
18 auto data = parse(cmd);
19 auto ticket = new iovec_ticket({.tag = tag});
20 auto buf = malloc(data.nbytes());
21 /* encrypt data into temporary buffer */
22 for (; !data.at_end(); data++) {
23 auto block = buf.subspan(data.block_offset(),

data.lba_size());
24 if (!encrypt(/*out*/ block, /*in*/ *data, data.

lba()))
25 throw std::runtime_error("cannot encrypt");
26 }
27 /* write to disk from the UIF with io_uring */
28 ticket->iovecs.push_back({buf, data.nbytes()});
29 queue_writev(ticket, data.disk_addr());
30 }

Listing 2 shows an abbreviated version of our UIF code.
Each UIF is represented by a C++ class (uif) following our
implementation interface. Our framework passes incoming
requests to the UIF’s work function, which classifies the
request’s type (lines 2-9). During reads, the implementation is
straightforward: the UIF iterates over the data blocks coming
from the device (line 12), then decrypts them in-place (line 13)
and signals the VM of a successful decryption (line 15). During
writes, the UIF allocates a temporary buffer (line 20) which
is used for encryption (lines 22-26). The temporary buffer
is written to disk with io_uring (lines 28-29) and the
request completes when this write finishes. As seen from
the code snippet, our UIF framework takes care of queue
handling, request and memory management, while the UIF
code only needs to encrypt and decrypt data. Moreover, our
UIF framework supports all C++ features and libraries, making
UIF development simpler than that of Linux kernel modules.

We implemented two encryption UIFs using the same
classifier: one normal UIF, and one using Intel SGX enclaves.
Both versions use AES-NI instructions for encryption, the
same as dm-crypt, SPDK and other encryption software.
Our SGX-based UIF stores the cryptographic key inside a
hardware enclave. Both UIFs share substantial amounts of
code, except for only ≈ 120 lines of SGX-specific code.

B. Live disk replication

We created a mirroring UIF that replicates data between two
NVMe drives: a primary drive attached directly to the local
host, and a secondary drive attached to a remote host. The two
hosts are connected together using NVMe over Infiniband.

Our I/O request pipeline is as follows: our classifier passes
read requests directly from the guest to the primary disk,
while write requests are sent to both the primary disk and
UIF. The UIF then forwards the write request to the secondary
disk using io_uring. The mirroring process is synchronous,
where writes are not completed until both the local and remote
disks finish the request, thus allowing easy reuse of the VM’s
data buffers.

C. Implementation effort

As stated in Section III-D, our UIF framework aids the
implementation of fast and simple storage UIFs. Table I shows
a breakdown of the lines of code needed for each of our storage
function. Note that our normal and SGX encryptor functions
share the same classifier and 80% of UIF code.

TABLE I: Source code sizes of NVMetro classifier and UIF
implementations.

Function Component Lines
Encryptor Classifier 32
Encryptor Normal UIF 520
Encryptor SGX UIF + enclave 501
Replicator Classifier 16
Replicator UIF 307
Framework — 1116

V. EVALUATION

Our goal for the evaluation of NVMetro is twofold:
1) Compare the I/O performance of NVMetro to existing

solutions in the basic use case;
2) Show our UIF framework’s flexibility and ease of use

through various real-world storage function use cases.

A. Experimental setup

We evaluate the performance of NVMetro using our both
UIFs presented in Section IV with multiple different workloads:
firstly, benchmarks of I/O performance under various config-
urations with fio [13]; and secondly, database evaluations
using the YCSB suite [14].

We use two platforms for our evaluations: two Dell Pow-
erEdge R420 servers, each equipped with 2x Intel Xeon E5-
2420 v2 and 48 GB of RAM for most evaluations; and a Dell
Precision 7540 laptop with an Intel Core i5-9400H and 16
GB of RAM for disk encryption evaluations with Intel SGX.
Each machine is equipped with a Samsung 970 EVO Plus
1TB SSD for evaluation purposes. Experiments are conducted
inside a QEMU VM with 6 GB of RAM and 4 physical cores
(servers)/2 physical cores (laptops) running Ubuntu 20.04.

fio evaluation setup. To evaluate NVMetro’s raw per-
formance, we executed fio while varying the I/O block
sizes, benchmark modes (random, sequential, read/write/mixed),
queue depths (QD), and number of parallel jobs. We ran each
experiment 3 times, and recorded the resulting average I/O per
second (IOPS). We measured each experiment’s whole-system
CPU consumption to compare the solutions’ performance
impacts. Table II shows a detailed list of configurations.

We also evaluated the latency of various storage solutions.
We test each solution at a fixed rate of 10, 000 IOPS, while
varying the block sizes and queue depths, and report the median
and 99th-percentile latencies for each configuration.

YCSB evaluation setup. We benchmarked NVMetro using the
YCSB suite’s 6 built-in workloads (version ce3eb9c). We
configured each workload to run on RocksDB over ext4; to
minimize filesystem overhead, we disable the journal, discards

RR RW RRW0
100
200
300
400
500

Th
ro

ug
hp

ut

 (K
ilo

 IO
PS

) bs=512B, qd=1, Jobs=1

RR RW RRW

bs=512B, qd=128, Jobs=1

RR RW RRW

bs=512B, qd=128, Jobs=4

SR SW SRW0
50

100
150
200

Th
ro

ug
hp

ut

 (K
ilo

 IO
PS

) bs=16KB, qd=1, Jobs=1

SR SW SRW

bs=16KB, qd=128, Jobs=1

SR SW SRW

bs=16KB, qd=1, Jobs=4

SR SW SRW

bs=16KB, qd=128, Jobs=4

SR SW SRW0
5

10
15
20
25

Th
ro

ug
hp

ut

 (K
ilo

 IO
PS

) bs=128KB, qd=1, Jobs=1

SR SW SRW

bs=128KB, qd=128, Jobs=1

SR SW SRW

bs=128KB, qd=1, Jobs=4

SR SW SRW

bs=128KB, qd=128, Jobs=4

NVMetro
MDev
Passthrough

QEMU
Vhost
SPDK

Fig. 3: Basic evaluations: fio performance for each workload configuration and storage virtualization method.

TABLE II: List of fio benchmark configurations.

Block size Mode QD Nr. jobs
512 Random read (RR) 1, 128 1
512 Random write (RW) 1, 128 1
512 Mixed random R/W (RRW) 1, 128 1
512 Random read (RR) 128 4
512 Random write (RW) 128 4
512 Mixed random R/W (RRW) 128 4
16K Sequential read (SR) 1, 128 1, 4
16K Sequential write (SW) 1, 128 1, 4
16K Mixed sequential R/W (SRW) 1, 128 1, 4
128K Sequential read (SR) 1, 128 1, 4
128K Sequential write (SW) 1, 128 1, 4
128K Mixed sequential R/W (SRW) 1, 128 1, 4

RR RW0

50

100

La
te

nc
y

(
Se

c) bs=512B, qd=1

RR RW

bs=512B, qd=4

RR RW

bs=512B, qd=32

RR RW

bs=512B, qd=128

RR RW0

50

La
te

nc
y

(
Se

c) bs=16KB, qd=1

RR RW

bs=16KB, qd=4

RR RW

bs=16KB, qd=32

RR RW

bs=16KB, qd=128

RR RW0

100

La
te

nc
y

(
Se

c) bs=128KB, qd=1

RR RW

bs=128KB, qd=4

RR RW

bs=128KB, qd=32

RR RW

bs=128KB, qd=128

NVMetro
MDev

Passthrough
QEMU

Vhost
SPDK

Fig. 4: NVMetro latency evaluation results. Columns denote
median latency; 99th-percentile latency is shown in whiskers.

and access time features. We ran each workload 3 times with 1
million operations each on a dataset of 3 million records. We
evaluate two scenarios: 1) one YCSB job on 1 DB instance;
and 2) four parallel jobs, each with its own DB instance.

B. Basic performance evaluations

In this section, we compare the overhead of NVMetro
with other storage solutions: direct PCIe passthrough; MDev-
NVMe (implemented by Maxim Levitsky [15]); paravirtualized
disk with in-kernel vhost-scsi; virtual disk using QEMU’s
virtio-blk with io_uring; and finally, SPDK’s vhost-

RR
 qd=1

RR
 qd=4

RR
 qd=32

RR
 qd=128

RW
 qd=1

RW
 qd=4

RW
 qd=32

RW
 qd=128

RRW
 qd=1

RRW
 qd=4

RRW
 qd=32

RRW
 qd=128

0
50

100
150
200
250

Th
ro

ug
hp

ut

 (K
ilo

 O
ps

/S
ec

) 1 VM 2 VM 3 VM 4 VM

Fig. 5: NVMetro scalability evaluation results.

user-based virtio-blk. NVMetro uses a dummy eBPF
classifier without UIF.

Figure 3 shows the performance of NVMetro compared to
other solutions in the fio benchmark. In all configurations,
NVMetro with a dummy eBPF classifier performs similarly to
MDev-NVMe, SPDK and device passthrough. Being userspace-
based, QEMU’s virtio-blk performs significantly worse
than NVMetro at higher I/O rates and lower queue depths; for
example, NVMetro is 2.7× faster at 512B RR than QEMU
at QD1/1 job. QEMU regains performance at higher QDs,
potentially due to it redistributing I/O requests across multiple
worker threads; in fact, QEMU at 16K/QD128/1 job performs
the best, being between 19% to 32% faster than NVMetro. In
comparison, vhost-scsi despite being in-kernel falls behind
in performance, being one of the worst performers regardless
of benchmark configuration.

Figure 4 shows the request latency figures with fio, where
the bar heights represent the median latencies while the whisker
heights represent 99th-percentile latencies. Among our tested
configurations, a pattern emerges where NVMetro, MDev-
NVMe and SPDK, being polling-based, share approximately
the same median and tail latencies. Direct PCIe passthrough
without polling falls behind with a median latency 18.2%
higher than NVMetro at 512B RR and 9.1% higher at 512B
RW, potentially due to the overhead of forwarding device
interrupts to the guest. Vhost exhibits poor latencies even at
our low I/O rate, namely 73.6% higher at 512B RR and 97.6%
higher at 512B RW. QEMU’s virtual storage again performs
even worse, with 3.4× higher median random read latency and
4.1× higher write latency at 512B. Concerning tail latencies,
the only solution with a lower 99th-percentile write latency
than NVMetro is SPDK, at 5.9%, 18.0% and 13.0% for 512B,
16K and 128K blocks.

A B C D E F0
10
20
30
40
50

Th
ro

ug
hp

ut

 (K
ilo

 O
ps

/S
ec

) Jobs=1

A B C D E F0
20
40
60
80

Th
ro

ug
hp

ut

 (K
ilo

 O
ps

/S
ec

) Jobs=4

NVMetro
MDev

Passthrough
QEMU

Vhost
SPDK

Fig. 6: YCSB throughput for each workload type (A-F).

Figure 5 shows NVMetro’s scalability under an increasing
number of small VMs. Each VM is given 2 GB of RAM, 1
dedicated physical core, and a dedicated partition on a shared
NVMe namespace.1 We set up NVMetro to use one host
kernel thread to concurrently serve all VMs. All evaluations
were performed at a block size of 512B. We observe that
system throughput gradually increases as we add more VMs,
confirming NVMetro’s scalability even with high VM densities.

Our YCSB benchmark results in Figure 6 show little
performance variation between all solutions with 1 running job.
At 4 parallel jobs, YCSB becomes more I/O-bound and there-
fore shows more performance variations, while MDev-NVMe
and NVMetro stay close to native passthrough performance
(within approximately 3%). Other solutions fall behind, with
vhost-scsi, SPDK and QEMU being up to 10%, 31% and
49% slower than device passthrough respectively.

C. Disk encryption evaluations

In this section, we demonstrate the performance of disk en-
cryption using NVMetro (with and without SGX) compared to
Linux’s dm-crypt and vhost-scsi as the virtual storage
interface. We also make comparisons with the unencrypted
scenarios presented above. Our non-SGX UIF uses 2 threads;
our SGX UIF uses 1 worker + 1 SGX switchless thread.

Overall, Figure 7 shows that our non-SGX UIF outperforms
dm-crypt at all presented configurations. Notably, at (512B,
16K, 128K)/QD1/1 job, our UIF is up to 1.6×, 1.5× and
1.4× faster than dm-crypt. Our solution is even faster with
higher parallelism, being 3.2× faster with 16K reads/QD128/4
jobs and 3.7× faster at 128K. Meanwhile, our SGX-based
encryption UIF performs mostly the same as non-SGX, except-
ing 16K/QD128/4 jobs and 128K/QD128/4 jobs being up to
50% and 75% slower than non-SGX on average, and 128K
SW/QD128/4 jobs being 45% slower than dm-crypt. These
results are explained by its lower encryption thread count (as
it uses 1 thread for switchless calls).

In Figure 8, the YCSB benchmark shows similar performance
between our non-SGX UIF and dm-crypt. However, when
varying the YCSB job count, we observe a slight performance
gap between SGX and non-SGX. With one YCSB job, our

1Note that our smaller VM size in this experiment prevents direct comparison
with the throughput evaluations presented above.

RR RW RRW0
10
20
30
40
50

Th
ro

ug
hp

ut

 (K
ilo

 IO
PS

) bs=512B, qd=1, Jobs=1

RR RW RRW0
100
200
300
400
500

Th
ro

ug
hp

ut

 (K
ilo

 IO
PS

) bs=512B, qd=128, Jobs=4
SR SW SRW

bs=16KB, qd=1, Jobs=1

SR SW SRW

bs=16KB, qd=128, Jobs=4
SR SW SRW

bs=128KB, qd=1, Jobs=1

SR SW SRW

bs=128KB, qd=128, Jobs=4

NVMetro Encryption NVMetro SGX dm-crypt

Fig. 7: Disk encryption evaluations with fio.

A B C D E F0
15
30
45
60

Th
ro

ug
hp

ut

 (K
ilo

 O
ps

/S
ec

) Jobs=1

A B C D E F

Jobs=4
NVMetro Encr. NVMetro SGX dm-crypt

Fig. 8: Disk encryption evaluations with YCSB.

SGX UIF is up to 35% slower than non-SGX in workload
D; however, it gains back some ground at 4 jobs, with the
worst-performing workload D only losing 21% performance,
while most other workloads become comparable to non-SGX.

D. Disk replication evaluations

In this section, we compare NVMetro’s disk mirroring
with Linux’s dm-mirror+vhost-scsi on the VM host.
In general, both NVMetro and dm-mirror perform better at
reading than writing; this is easily explained since reads can
be directly serviced by the local drive without propagating to
the remote. When comparing the two solutions using fio
(see Figure 9), NVMetro outperforms dm-mirror at all
configurations by 68%, 220% and 291% at 512B reads/QD1/1
job, 512B reads/QD128/4 jobs and 128K reads/QD128/4 jobs
respectively, demonstrating NVMetro’s I/O path flexibility in
choosing the more efficient data read path. Figure 10 shows
our disk replication performance in the YCSB benchmark.
In general, NVMetro is faster than dm-mirror no matter
the workload or number of parallel jobs. We again see
our scalability advantages: NVMetro performs 2% better at
workload D with 1 YCSB job but 17% better with 4 jobs.

E. Overhead evaluations

In this section, we compare the CPU usage of each
virtualization method while running fio under each scenario
presented above. The CPU usage is presented in terms of total
system CPU time, including the VM and any host agents.

Basic evaluations (Figure 11). Device passthrough predictably
performs the best among all tested configurations. MDev-
NVMe, NVMetro and QEMU perform similarly, using ≈ 85%
more total CPU than passthrough at 512B/QD1/1 job, and
≈ 26% more in the intensive benchmark of 512B/QD128/4
jobs; with the exception of 128KB/QD1/1 job where QEMU
uses less CPU than the other two. vhost-scsi is more
efficient still, being the second-lowest CPU-consuming virtual-
ization method, only bested by device passthrough. Conversely,

RR RW RRW0
10
20
30
40
50

Th
ro

ug
hp

ut

 (K
ilo

 IO
PS

) bs=512B, qd=1, Jobs=1

RR RW RRW0
100
200
300
400
500

Th
ro

ug
hp

ut

 (K
ilo

 IO
PS

) bs=512B, qd=128, Jobs=4
SR SW SRW

bs=16KB, qd=1, Jobs=1

SR SW SRW

bs=16KB, qd=128, Jobs=4
SR SW SRW

bs=128KB, qd=1, Jobs=1

SR SW SRW

bs=128KB, qd=128, Jobs=4

NVMetro Replication dm-mirror

Fig. 9: Disk replication evaluations with fio.

A B C D E F0
15
30
45
60

Th
ro

ug
hp

ut

 (K
ilo

 O
ps

/S
ec

) Jobs=1

A B C D E F

Jobs=4
NVMetro Replication dm-mirror

Fig. 10: Disk replication evaluations with YCSB.

SPDK uses the most CPU time, with a ≈ 56% overhead at
512B/QD128/4 jobs. The higher CPU usage of MDev-NVMe,
NVMetro and especially SPDK is explained by these solutions
using active polling to process I/O requests.

RR RW RRW0
10
20
30
40
50

C
PU

 T
im

e
(S

ec
) bs=512B, qd=1, Jobs=1

RR RW RRW0
100
200
300
400
500

C
PU

 T
im

e
(S

ec
) bs=512B, qd=128, Jobs=4

SR SW SRW

bs=16KB, qd=1, Jobs=1

SR SW SRW

bs=16KB, qd=128, Jobs=4
SR SW SRW

bs=128KB, qd=1, Jobs=1

SR SW SRW

bs=128KB, qd=128, Jobs=4

NVMetro
MDev

Passthrough
QEMU

Vhost
SPDK

Fig. 11: CPU consumption of fio with basic evaluation.

Disk encryption (Figure 12). At (512B, 16K, 128K) QD1/1
job, our encryption UIF uses around 2.7×, 2.4× and 2.1×
the CPU of dm-crypt. While our UIF’s CPU utilization is
higher than that of dm-crypt at lower parallelism, we gain
ground in performance and CPU usage at higher parallelism:
at 4 parallel jobs, NVMetro uses around the same CPU time as
dm-crypt in reads, and even slightly less at 16K and 128K.

Our SGX-based UIF has a rather uniform CPU cost at
lower parallelisms: with (512B, 16K, 128K)/QD1/1 job, we
use ≈ 10% and 12% more CPU for essentially the same
performance. At QD128/4 job, our UIF uses the same amount
of CPU due to our maximum CPU constraint.

Disk replication (Figure 13). At 512B/QD1/1 job, 512B/
QD128/4 jobs and 128K/QD128/4 jobs, NVMetro incurs a
CPU cost up to 178%, 36% and 76% higher than dm-mirror;
nevertheless, this CPU cost is coupled with better performance,
especially at 128K reads/QD128/4 jobs where we pay 35%
more CPU for 291% more throughput, a combination of
NVMetro’s poll-based I/O and efficient request routing.

RR RW RRW0
10
20
30
40
50

C
PU

 T
im

e
(S

ec
) bs=512B, qd=1 , Jobs=1

RR RW RRW0
100
200
300
400
500

C
PU

 T
im

e
(S

ec
) bs=512B, qd=128, Jobs=4

SR SW SRW

bs=16KB, qd=1, Jobs=1

SR SW SRW

bs=16KB, qd=128, Jobs=4
SR SW SRW

bs=128KB, qd=1, Jobs=1

SR SW SRW

bs=128KB, qd=128, Jobs=4

NVMetro Encryption NVMetro SGX dm-crypt

Fig. 12: CPU consumption of fio with disk encryption.

RR RW RRW0
10
20
30
40
50

C
PU

 T
im

e
(S

ec
) bs=512B, qd=1, Jobs=1

RR RW RRW0
100
200
300
400
500

C
PU

 T
im

e
(S

ec
) bs=512B, qd=128, Jobs=4

SR SW SRW

bs=16KB, qd=1, Jobs=1

SR SW SRW

bs=16KB, qd=128, Jobs=4
SR SW SRW

bs=128KB, qd=1, Jobs=1

SR SW SRW

bs=128KB, qd=128, Jobs=4

NVMetro Replication dm-mirror

Fig. 13: CPU consumption of fio with disk replication.

F. NVMetro’s flexibility and ease of use in perspective

As we claimed in Section III-B, NVMetro’s storage frame-
work is more flexible and easier to use than existing systems.
In this section, we support our claims by analyzing our storage
function implementations in contrast to other storage solutions.

Compared to Linux’s vhost-scsi and device mapper.
Linux’s in-kernel storage virtualization involves two compo-
nents: the vhost-scsi facility that provides a virtual SCSI
interface to VMs, and a device mapper (“DM” for short) that
provides a stackable logic layer on top of storage devices
(similar to FreeBSD’s GEOM [16]). Together, these two give
the host control over each VM’s storage access.

Linux’s device mapper implements its mapping targets inside
the kernel, rather than as independent programs. These targets
can be stacked in order to combine simple block mapping
functions; however, the use of specific technologies such as
Intel SGX poses an additional challenge, as Linux only supports
user-mode SGX applications at the moment. In contrast, we
easily integrated Intel SGX into our encryption UIF.

NVMetro is designed from the ground up for fast kernel-
UIF communication using multiple asynchronous queues and
adaptive polling. Furthermore, NVMetro’s userspace-kernel
decoupling lets storage functions serve multiple VMs while
reducing the use of costly I/O polling threads. Finally, our
request router’s eBPF-coded fast paths help reduce the cost of
mediation, as apparent from our disk replication implementa-
tion: the UIF only needed to consider writes, while reads are
filtered out by our classifier and directly passed to disk.

Compared to MDev-NVMe. To reiterate, MDev-NVMe serves
as a basis for our implementation of NVMetro. As such, our
goal is not to beat MDev-NVMe in raw performance; instead,
NVMetro brings an innovative classification and routing

component, and a fast pathway for UIFs to communicate with
its VMs. Our evaluations showed that these components did not
introduce a significant overhead compared to the existing MDev-
NVMe mechanism. A possible alternative is to implement all
of the storage logic directly inside the MDev-NVMe module,
or to offload it to the DM layer; however, these approaches
have the same limitations as other in-kernel solutions.

Compared to in-VMM virtualization. Userspace VMMs
such as QEMU have direct access to a VM’s execution states
and virtual devices. As such, they have full control over a
VM’s I/O request flow. However, they also have two significant
limitations. Firstly, virtual I/O needs to be trapped in the kernel
then relayed back to the VMM. Afterwards, more hypervisor
operations are needed to signal the VM of I/O status (e.g.
using virtual interrupts), and to resume VM execution after a
trap. Secondly, even with solutions that avoid the above flaw
(e.g. Virtio at high QDs), each VMM needs to handle its own
VM’s storage requests. With high VM densities, handling I/O
separately on each VM wastes large amounts of CPU time and
context switches, thus limiting the scalability of this solution.

Compared to SPDK. SPDK is comparable to NVMetro as a
set of tools for writing user-mode storage applications. Both
possess similar capabilities: stackable storage logic, colocating
multiple storage targets in one process, and so on. However,
NVMetro provides two main benefits compared to SPDK.
Firstly, NVMetro does not require exclusive assignment of
a storage device; the host and multiple VMs can easily share
one device at the same time (e.g. accessing different partitions
on the same disk; or in a shared-disk filesystem scenario).
Secondly, NVMetro can be gradually applied to I/O requests
as requirements evolve. Particularly, the storage developer does
not need to consider hardware internals, or the handling of
irrelevant requests and commands; relevant requests are selected
in eBPF, and our UIFs communicate with our router using
standard POSIX APIs.

VI. RELATED WORKS

General computational storage architecture. SNIA’s Compu-
tational Storage Architecture and Programming Model [17] de-
fines a general structure of computational storage applications,
where different kinds of storage engines (e.g. eBPF-based) can
be embedded into various device classes. It also defines several
types of computational storage functions for these engines.

Virtual storage providers. SPDK [3] is a fast storage
framework based on top of the NVMe protocol. In the
same vein as DPDK, it uses an userspace driver via device
passthrough to deliver various virtual I/O services. Vhost is
Linux’s paravirtualized device framework based on the Virtio
specification for fast and efficient I/O services for KVM guests.
It offloads I/O processing to the host kernel [18] or an external
process (e.g. SPDK) via vhost-user [19], [20]. MDev-
NVMe [12] describes a NVMe virtualization layer based on
active polling to improve I/O throughput and reduce latency.
Notably, MDev-NVMe bypasses many subsystems of the Linux
kernel to reduce the cost of each I/O operation. FAST I/O [21]

proposes QoS service controls of I/O on NVMe devices by
submitting high-priority requests directly to an admin NVMe
queue, therefore bypassing the operating system-level queues,
and by writing request data to the Host Memory Buffer (HMB)
region.

NVMetro also belongs to the category of virtual storage
providers. The advantage of NVMetro compared to others is
a combination of kernel- and userspace-based logic to allow
developers to quickly and easily customize their virtual I/O
path per-request depending on their use case.

Sandboxed-bytecode (eBPF, WebAssembly)-based solutions.
Most works in this category propose offloading computing
tasks to local storage agents. Zhong et al. [8] investigate the
feasibility of inserting BPF hooks into Linux’s storage stack
to provide extra functionalities, e.g. tree lookups. Griffin [22]
envisions an API set using eBPF to add logic to storage apps
running on edge computing nodes. Kourtis et al. [23] follow in
the same line by running eBPF on top of NBD, and propose
ways to use eBPF for KV store and SQL offloading.

Generally speaking, these solutions suggest extending eBPF
or replacing it with another runtime (e.g. WebAssembly), citing
eBPF’s current limitations. In contrast, NVMetro requires no
change to the kernel’s eBPF implementation, as the eBPF code
only serves as a first-line classifier inside the request router;
complex operations can be offloaded to UIFs.

Hardware-based solutions. In this category, LeapIO [24]
presents a new storage stack that offloads virtualization tasks
onto on-disk processors coupled with smart memory and NIC
sharing to improve performance. FastPath [25] adds a FPGA-
based computing engine between the host and storage device,
then exposes an API to offer a fast path to applications needing
high I/O performance. FastPath MP [26] extends FastPath
with support for multiple I/O queues to take advantage of the
parallelism offered by NVMe devices. Similarly, FVM [27]
interposes NVMe devices with FPGA to virtualize storage
using I/O queue emulation and storage address translation.

VII. CONCLUSION

In this paper, we introduced NVMetro, a flexible I/O
virtualization framework that eases the development of so-
phisticated storage functions. NVMetro builds upon a mediated
NVMe interface with a combination of fast eBPF-based I/O
classifier/router and userspace I/O functions. By allowing
the creation of multiple I/O paths of varying characteristics,
NVMetro ensures that storage function remains fast, secure
and manageable regardless of the use case. We described the
design criteria that lead to NVMetro’s features, and elaborated
on the development of several sample storage use cases. We
evaluated NVMetro in comparison to existing systems, and
showed the performance, scalability and simplicity of our
storage function implementations using multiple benchmarks,
thus demonstrating the flexibility of our framework.

ACKNOWLEDGMENTS

This work is supported by the French Agence nationale de la
recherche under the ANR WalkIn (20-CE25-0005) and LabEx

https://anr.fr/Projet-ANR-20-CE25-0005

CIMI (11-LABX-0040) projects.

REFERENCES

[1] NVM Express, Inc., “NVM Express specifications,” https://nvmexpress
.org/specifications/, 2021.

[2] Intel Corporation, “Intel Optane SSD P5800X Series,” https://www.intel.
com/content/www/us/en/products/docs/memory-storage/solid-state-dri
ves/data-center-ssds/optane-ssd-p5800x-p5801x-brief.html, 2021.

[3] Z. Yang, J. R. Harris, B. Walker, D. Verkamp, C. Liu, C. Chang, G. Cao,
J. Stern, V. Verma, and L. E. Paul, “SPDK: A development kit to build
high performance storage applications,” in 2017 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom).
IEEE, 2017, pp. 154–161.

[4] DPDK Project, “Kernel NIC interface,” https://doc.dpdk.org/guides/prog
guide/kernel nic interface.html, 2021.

[5] M. Szeredi, “FUSE: Filesystem in userspace,” https://github.com/libfuse
/libfuse, 2010.

[6] B. K. R. Vangoor, V. Tarasov, and E. Zadok, “To FUSE or not to FUSE:
Performance of user-space file systems,” in 15th USENIX Conference
on File and Storage Technologies (FAST 17), 2017, pp. 59–72.

[7] Cloudflare, “Why we use the Linux kernel’s TCP stack,” https://blog.clo
udflare.com/why-we-use-the-linux-kernels-tcp-stack/, 2016.

[8] Y. Zhong, H. Wang, Y. J. Wu, A. Cidon, R. Stutsman, A. Tai, and J. Yang,
“BPF for storage: an exokernel-inspired approach,” in Proceedings of the
Workshop on Hot Topics in Operating Systems, 2021, pp. 128–135.

[9] S. McCanne and V. Jacobson, “The BSD packet filter: A new architecture
for user-level packet capture.” in USENIX winter, vol. 46, 1993.

[10] The kernel development community, “BPF documentation - the Linux
kernel documentation,” https://www.kernel.org/doc/html/latest/bpf/index
.html, 2021.

[11] Cilium, “BPF and XDP reference guide,” https://docs.cilium.io/en/latest
/bpf/, 2021.

[12] B. Peng, H. Zhang, J. Yao, Y. Dong, Y. Xu, and H. Guan, “MDev-NVMe:
A NVMe storage virtualization solution with mediated pass-through,” in
2018 USENIX Annual Technical Conference (USENIX ATC 18), 2018,
pp. 665–676.

[13] J. Axboe, “Flexible I/O tester,” https://github.com/axboe/fio, 2021.
[14] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with YCSB,” in Proceedings of
the 1st ACM symposium on Cloud computing, 2010, pp. 143–154.

[15] M. Levitsky, “NVME VFIO mediated device,” https://lkml.org/lkml/20
19/3/19/458, 2019.

[16] P.-H. Kamp, “GEOM tutorial,” https://papers.freebsd.org/2004/phk-geo
m-tutorial.files/bsdcan-04.slides.geomtut.pdf, 2004.

[17] SNIA, “Computational storage architecture and programming model,”
https://www.snia.org/sites/default/files/technical work/PublicReview/S
NIA-Computational-Storage-Architecture-and-Programming-Model-0
.8R0-2021.06.09.pdf, 2021.

[18] Red Hat, Inc., “Deep dive into Virtio-networking and vhost-net,” https:
//www.redhat.com/en/blog/deep-dive-virtio-networking-and-vhost-net,
2019.

[19] ——, “A journey to the vhost-users realm,” https://www.redhat.com/en/
blog/journey-vhost-users-realm, 2019.

[20] Z. Yang, C. Liu, Y. Zhou, X. Liu, and G. Cao, “SPDK Vhost-NVMe:
Accelerating I/Os in virtual machines on NVMe SSDs via user space
Vhost target,” in 2018 IEEE 8th International Symposium on Cloud and
Service Computing (SC2). IEEE, 2018, pp. 67–76.

[21] K. Kim, S. Kim, and T. Kim, “FAST I/O: QoS supports for urgent I/Os in
NVMe SSDs,” in Proceedings of the 2020 5th International Conference
on Intelligent Information Technology, 2020, pp. 146–151.

[22] G. Frascaria, A. Trivedi, and L. Wang, “A case for a programmable edge
storage middleware,” arXiv preprint arXiv:2111.14720, 2021.

[23] K. Kourtis, A. Trivedi, and N. Ioannou, “Safe and efficient remote
application code execution on disaggregated NVM storage with eBPF,”
arXiv preprint arXiv:2002.11528, 2020.

[24] H. Li, M. Hao, S. Novakovic, V. Gogte, S. Govindan, D. R. Ports,
I. Zhang, R. Bianchini, H. S. Gunawi, and A. Badam, “LeapIO: Efficient
and portable virtual NVMe storage on ARM SoCs,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020, pp. 591–605.

[25] A. Stratikopoulos, C. Kotselidis, J. Goodacre, and M. Luján, “FastPath:
towards wire-speed NVMe SSDs,” in 2018 28th International Conference
on Field Programmable Logic and Applications (FPL). IEEE, 2018,
pp. 170–1707.

[26] ——, “FastPath MP: Low overhead & energy-efficient FPGA-based
storage multi-paths,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 17, no. 4, pp. 1–23, 2020.

[27] D. Kwon, J. Boo, D. Kim, and J. Kim, “FVM: FPGA-assisted virtual
device emulation for fast, scalable, and flexible storage virtualization,”
in 14th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), 2020, pp. 955–971.

https://anr.fr/ProjetIA-11-LABX-0040
https://nvmexpress.org/specifications/
https://nvmexpress.org/specifications/
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-p5800x-p5801x-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-p5800x-p5801x-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-p5800x-p5801x-brief.html
https://doc.dpdk.org/guides/prog_guide/kernel_nic_interface.html
https://doc.dpdk.org/guides/prog_guide/kernel_nic_interface.html
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse
https://blog.cloudflare.com/why-we-use-the-linux-kernels-tcp-stack/
https://blog.cloudflare.com/why-we-use-the-linux-kernels-tcp-stack/
https://www.kernel.org/doc/html/latest/bpf/index.html
https://www.kernel.org/doc/html/latest/bpf/index.html
https://docs.cilium.io/en/latest/bpf/
https://docs.cilium.io/en/latest/bpf/
https://github.com/axboe/fio
https://lkml.org/lkml/2019/3/19/458
https://lkml.org/lkml/2019/3/19/458
https://papers.freebsd.org/2004/phk-geom-tutorial.files/bsdcan-04.slides.geomtut.pdf
https://papers.freebsd.org/2004/phk-geom-tutorial.files/bsdcan-04.slides.geomtut.pdf
https://www.snia.org/sites/default/files/technical_work/PublicReview/SNIA-Computational-Storage-Architecture-and-Programming-Model-0.8R0-2021.06.09.pdf
https://www.snia.org/sites/default/files/technical_work/PublicReview/SNIA-Computational-Storage-Architecture-and-Programming-Model-0.8R0-2021.06.09.pdf
https://www.snia.org/sites/default/files/technical_work/PublicReview/SNIA-Computational-Storage-Architecture-and-Programming-Model-0.8R0-2021.06.09.pdf
https://www.redhat.com/en/blog/deep-dive-virtio-networking-and-vhost-net
https://www.redhat.com/en/blog/deep-dive-virtio-networking-and-vhost-net
https://www.redhat.com/en/blog/journey-vhost-users-realm
https://www.redhat.com/en/blog/journey-vhost-users-realm

	Introduction
	Background
	NVM Express specification
	eBPF virtual machine

	Design of NVMetro
	General overview
	NVMetro's design criteria in detail
	I/O router and classifier
	Userspace I/O functions

	Use cases
	Transparent data encryption
	Live disk replication
	Implementation effort

	Evaluation
	Experimental setup
	Basic performance evaluations
	Disk encryption evaluations
	Disk replication evaluations
	Overhead evaluations
	NVMetro's flexibility and ease of use in perspective

	Related works
	Conclusion
	References

