

Study protocol to assess polypharmacy and comorbidities in lung cancer

Hélène Pluchart, Sébastien Bailly, Jérôme Fauconnier, Patricia Delafosse, Sébastien Chanoine, Isabelle Dumas, Pierrick Bedouch, Anne-Claire Toffart

▶ To cite this version:

Hélène Pluchart, Sébastien Bailly, Jérôme Fauconnier, Patricia Delafosse, Sébastien Chanoine, et al.. Study protocol to assess polypharmacy and comorbidities in lung cancer. Respiratory Medicine and Research, 2021, 80, pp.100861. 10.1016/j.resmer.2021.100861. hal-04661126

HAL Id: hal-04661126 https://hal.science/hal-04661126v1

Submitted on 13 Nov 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S2590041221000507 Manuscript_76d6fa415ad2ffa7c9d8c403b18bb075

Study protocol to assess polypharmacy and comorbidities in lung cancer

Hélène PLUCHART^{1,2,3}, Sébastien BAILLY⁴, Jérôme FAUCONNIER³, Patricia DELAFOSSE⁵, Sébastien CHANOINE^{1,2,7}, Isabelle DUMAS⁶, Pierrick BEDOUCH^{1,2,3}, Anne-Claire TOFFART^{2,7,8}

¹Pôle pharmacie, Centre Hospitalier Universitaire Grenoble Alpes, France

²Université Grenoble Alpes, Grenoble, France

³Univ. Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France

⁴Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38000 Grenoble, France

⁵General Cancer Registry of Isère, Grenoble, France

⁶Centre de Coordination en Cancérologie, Pavillon E.Chatin, CHU Grenoble Alpes

⁷Institute for Advanced Biosciences, UGA/INSERM U1209/CNRS 5309, Université Grenoble Alpes, France.

⁸Clinique de Pneumologie, Unité d'Oncologie Thoracique, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, France.

Corresponding author:

Hélène PLUCHART, hpluchart@chu-grenoble.fr

CHU Grenoble Alpes, Pôle pharmacie

Boulevard de la Chantourne

38700 LA TRONCHE

ORCID Hélène PLUCHART: 0000-0003-2438-6481

Abstract

Background: At least half of patients with lung cancer have comorbidities, which can affect treatment decisions and survival. Associated with comorbidity, polypharmacy can also have consequences on patient care. This study will evaluate both polypharmacy and comorbidities in a cohort of hospitalized patients on the administration of chemotherapy and survival.

Methods: In this monocentric retrospective study, patients diagnosed with lung cancer during their first hospitalization in thoracic oncology were included between 2011 and 2015.

Four datasets were obtained containing the variables of interest. Deterministic data linkage will be performed. The main objective will be to assess the impact of polypharmacy and comorbidities on chemotherapy administration within two months after the first hospitalization in thoracic oncology. The probability of chemotherapy administration will be estimated using the Kaplan Meier method. Prognostic factors will be identified using a Cox model. The Fine and Gray method will be used to analyze the competitive risk of death.

Expected results: We first aim to demonstrate the feasibility of working with real-life data and aggregate different databases. Then our goal is to assess impact of polypharmacy and comorbidities on chemotherapy administration and on the survival of lung cancer patients. This would help to understand the possibilities to aggregate several database for a protocol in view to help clinicians to rationalize treatment and define inappropriate medications for this population.

Keywords: lung cancer, polypharmacy, comorbidities, survival analysis, competing risk

1. Introduction

The assessment of comorbidities is critical for the management of cancer patients. Indeed, it is well known that they have a negative impact on patient survival in lung cancer (1). This is important, as

the prevalence of comorbidities in lung cancer is higher than that for other cancers (50 to 70% (2,3)), with patients having a median age at diagnosis of 70 years (4).

Comorbidity often implies polypharmacy, defined in the elderly in the literature as five or more medications (5–7) and as excessive polypharmacy for 10 or more prescribed medications (5,8). Polypharmacy has often been reported for cancer patients. In a cohort of 236 patients (5), 41% experienced polypharmacy, with a mean of nine medications. Among them, almost 20% had lung cancer. Although polypharmacy is well described among cancer patients, very few studies have focused on lung cancer.

In this study, we aim to evaluate the impact of polypharmacy and comorbidities on chemotherapy administration and overall survival. This protocol is original because it will require linkage of multiple datasets, which need to be collected in consideration of ethical issues. The four datasets will contain the variables of interest and will require complex data management for linkage to be feasible. There is no preliminary data on the feasibility of this study design on lung cancer patients. This is an original pharmacoepidemiology method based on multiple data sources. Such a study has not been published on lung cancer patients.

2. Objectives and methods

2.1. Study design

This is a retrospective single-center study on clinical and admnistrative datasets. Any patient over 18 years old with lung cancer (code C34.0 to 9 according to the Health Information Service Department) hospitalized in thoracic oncology at Grenoble University Hospital over the period from 2011 to 2015 will be included. They will be studied from their first hospitalization.

2.2. Objectives

The objectives, endpoints, and statistical analyses are summarized in Table 1. The main objective will be to assess the impact of polypharmacy and comorbidities on chemotherapy administration within two months after the first hospitalization in thoracic oncology. The secondary objectives will be to assess median survival, estimated in months, according to polypharmacy and comorbidities, identify any therapeutic classes associated with delayed administration of chemotherapy, describe the treatments received by the patients (excluding anticancer treatment), and assess the proportion of potentially inappropriate medication.

Datasets

Four datasets were obtained through a data collection process and will need to be merged into one database that will contain the data of interest (Table 2). The four datasets are:

Dataset A. Identification of patients' first hospitalization in thoracic oncology between 2011 and 2015. This dataset was provided by the Health Information Services Department and included comorbidities codded with the tenth revision of the International Statistical Classification of Diseases and Related Health Problems. Any comorbidities treated during or in connection with the hospitalization was included in this dataset"

Dataset B. Data from the district cancer registry based on the patient's identifying number provided following a request to the district cancer registry.

Dataset C. Data from multidisciplinary concertation meetings provided upon request.

Dataset D. Data concerning every chemotherapy and drug prescription for all hospitalizations, which will be separated into two sub-datasets, the first containing chemotherapy prescriptions and the second with all prescribed drugs. This dataset was provided by the Grenoble University Hospital computer system for the identified patients.

The data-linkage strategy is described in Figure 1. Dataset A (data from the Health Information Services department) will be merged with Dataset B (district cancer registry). Then this database will be merged with Dataset C (multidisciplinary concertation meetings) based on the patient's family name, first name, and date of birth. The first sub-dataset of Dataset D will be merged with the patient's identifying number and hospitalization start date. Finally, the second sub-dataset from Dataset D will be merged into the overall database.

2.3. Statistical analyses

The primary endpoint (time to chemotherapy administration after the first day of hospitalization) will be assessed using the Fine and Gray method for competing risks with death (censored at two months) (Figure 2). Not taking competing risks into account may lead to overestimation of the probability of chemotherapy administration with the Kaplan Meier method (9).

Two months was chosen as the cut-off because it corresponds to the postponement of chemotherapy administration due to toxicity, and we will consider delays beyond this timepoint to be due to reasons other than chemotherapy-related toxicity. A multivariable model will be used to evaluate the risk depending on polypharmacy and comorbidities. Comorbidities will be assessed using Elixhauser score.

For the secondary endpoints, survival will be the time between the first day of first hospitalization and estimated median survival (in months) or death, estimated using the Kaplan Meier method. Survival curves between populations will be compared using a Log Rank test. A Cox model will be generated to identify prognostic factors. Statistical analyses to be used for the other secondary endpoints are described in Table 1.

In survival model, TNM stage, histological types, sex, age at hospitalization and at diagnosis will be use as covariates.

Results of the descriptive analysis of associated treatments (excluding anticancer treatment) will be presented as medians and interquartile ranges for continuous variables and proportions (percentages) for qualitative variables.

All statistical analyses will be performed using SAS 9.4 for Windows (SAS Institute, Inc., Cary, NC, USA). A P-value < 0.05 will be considered significant.

2.4. Ethics

This study was approved by our institutional review board, respecting reference methodology No. 004 (MR004), which concerns research not involving human subjects (studies and evaluations in the health field). Study ethics approval was obtained on 01 september 2021 (CECIC Rhône-Alpes-Auvergne, Clermont-Ferrand, IRB5891) An information and non-objection letter will be sent to living patients in the cohort.

3. Expected results

This original study on lung cancer patients aims to assess the impact of medication and comorbidities on chemotherapy administration and survival. Complex data linkage will be necessary and competitive risk analysis will be performed.

Data linkage allows the combining of individual-level information available in different datasets (10), enabling researchers to identify factors and associations that would otherwise be difficult to determine. Indeed, the strengths of this method include its utility in studies that require long-term follow-up (11) and those that would be very costly and organizationally difficult to undertake (12). It can also be used for studies with large sample sizes to obtain detailed data on populations, with little loss to follow-up (13). However, this approach can be challenging, as it relies on data quality and potentially poor-quality data and missing data. Linkage error can compromise the accuracy of the results (10,13). Other concerns include statistical issues, technical issues with permission to use datasets held by multiple units, and ethical issues (10). It can also be associated with multiple errors, such as non-matched data due to missing data (false negatives) or matched data between unrelated cases (false positives) (14). These two types of error determine overall linkage quality (15). Moreover, analysis is performed only on preexisting data available in datasets (16). Based on its retrospective monocenter design, this study has also limitations such as lack of intern validity, applicability and small sample. Some measurement biases concerning information towards comorbidity (only comorbidity treated or related to hospitalization are recorded) and medication prescription (an estimation will be performed between chronic ambulatory medication and computer prescription during hospitalization) exist. This study will use deterministic and probabilistic data linkage to account for potential biases. Adequate statistical analyses will be implemented, mainly by considering death as a competing event.

This study will lead to the identification of therapeutic classes that affect the administration of anticancer treatment or survival and will be of interest to clinicians seeking guidance for appropriate therapeutic use of such medications. Based on multidisciplinary teamwork, which ensures better healthcare, this study will serve as a "case study" for our institution in the context of a feasibility study to create a data warehouse (17,18).

Conflict of interest

HP, SC, JF, PD, PB have nothing to disclose related to the submitted work. ID received accomodations from BMS. ACT received personal fees and non-financial support from Astra Zeneca, BMS, MSD, Novartis, Boehringer Ingelheim, Roche, Pfizer.

Acknowledgement

This work was supported by the Association de Recherche d'Information Scientifique et Thérapeutique en Oncologie Thoracique (ARISTOT).

References

- Leduc C, Antoni D, Charloux A, Falcoz P-E, Quoix E. Comorbidities in the management of patients with lung cancer. Eur Respir J. 2017;49(3).
- Islam KMM, Jiang X, Anggondowati T, Lin G, Ganti AK. Comorbidity and Survival in Lung Cancer Patients. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. juill 2015;24(7):1079-85.
- Edwards BK, Noone A-M, Mariotto AB, Simard EP, Boscoe FP, Henley SJ, et al. Annual Report to the Nation on the status of cancer, 1975-2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer. Cancer. 1 mai 2014;120(9):1290-314.
- Noone AM, Howlader N, Krapcho M, Miller D, Brest A, Yu M, et al. SEER Cancer Statistics Review, 1975-2015, National Cancer Institute [Internet]. [cité 30 juill 2018]. Disponible sur: https://seer.cancer.gov/csr/1975_2015/sections.html
- 5. Nightingale G, Hajjar E, Swartz K, Andrel-Sendecki J, Chapman A. Evaluation of a pharmacist-led medication assessment used to identify prevalence of and associations with polypharmacy and potentially inappropriate medication use among ambulatory senior adults with cancer. J Clin Oncol Off J Am Soc Clin Oncol. 1 mai 2015;33(13):1453-9.

- 6. Sharma M, Loh KP, Nightingale G, Mohile SG, Holmes HM. Polypharmacy and potentially inappropriate medication use in geriatric oncology. J Geriatr Oncol. sept 2016;7(5):346-53.
- Gnjidic D, Hilmer SN, Blyth FM, Naganathan V, Waite L, Seibel MJ, et al. Polypharmacy cutoff and outcomes: five or more medicines were used to identify community-dwelling older men at risk of different adverse outcomes. J Clin Epidemiol. sept 2012;65(9):989-95.
- Turner JP, Jamsen KM, Shakib S, Singhal N, Prowse R, Bell JS. Polypharmacy cut-points in older people with cancer: how many medications are too many? Support Care Cancer Off J Multinatl Assoc Support Care Cancer. avr 2016;24(4):1831-40.
- 9. Fine JP, Gray RJ. A Proportional Hazards Model for the Subdistribution of a Competing Risk. J Am Stat Assoc. juin 1999;94(446):496.
- 10. Harron K, Dibben C, Boyd J, Hjern A, Azimaee M, Barreto ML, et al. Challenges in administrative data linkage for research. Big Data Soc. déc 2017;4(2):205395171774567.
- Virnig BA, McBean M. Administrative Data for Public Health Surveillance and Planning. Annu Rev Public Health. mai 2001;22(1):213-30.
- 12. Sibthorpe B, Kliewer E, Smith L. Record linkage in Australian epidemiological research: health benefits, privacy safeguards and future potential. Aust J Public Health. 12 févr 2010;19(3):250-

6.

 Holman CDJ, Bass JA, Rosman DL, Smith MB, Semmens JB, Glasson EJ, et al. A decade of data linkage in Western Australia: strategic design, applications and benefits of the WA data linkage system. Aust Health Rev. 2008;32(4):766.

- 14. Bohensky MA, Jolley D, Sundararajan V, Evans S, Pilcher DV, Scott I, et al. Data Linkage: A powerful research tool with potential problems. BMC Health Serv Res. déc 2010;10(1):346.
- 15. Ferrante A, Boyd J. A transparent and transportable methodology for evaluating Data Linkage software. J Biomed Inform. févr 2012;45(1):165-72.
- Boyd JH, Randall SM, Ferrante AM, Bauer JK, McInneny K, Brown AP, et al. Accuracy and completeness of patient pathways – the benefits of national data linkage in Australia. BMC Health Serv Res. déc 2015;15(1):312.
- 17. Cosgriff CV, Stone DJ, Weissman G, Pirracchio R, Celi LA. The clinical artificial intelligence department: a prerequisite for success. BMJ Health Care Inform. juill 2020;27(1).
- Artemova S, Madiot P-E, Caporossi A, PREDIMED group, Mossuz P, Moreau-Gaudry A.
 PREDIMED: Clinical Data Warehouse of Grenoble Alpes University Hospital. Stud Health Technol Inform. 21 août 2019;264:1421-2.

Figure legends

Figure 1. Dataset linkage method.

The highlighted data are the ones used for merging.

Figure 2. Statistical considerations for primary objective analyses.

Primary objective	Primary endpoint	Statistical analyses
Assessment of the impact of	Time to chemotherapy administration	-Kaplan Meier method to estimate the
polypharmacy and comorbidities	after the date of hospitalization (within	probability of chemotherapy
on chemotherapy administration	2 months)	administration
after the first hospitalization in		-Log-rank method to compare the
thoracic oncology		probability of the event (chemotherapy administration) between populations
		-Cox proportional hazards regression
		model to perform multivariate analyses
		of prognostic factors
		-Fine and Gray method to assess the
		competitive risk of "death" (19)
Secondary objectives	Secondary endpoints	Statistical analyses
Overall survival depending on	Time between the day of	- Kaplan Meier method to estimate the
polypharmacy and comorbidities	hospitalization and the date of last	probability of survival
	follow-up (cut off at survival median	-Log-rank method to compare the
	estimated in months)	probability of the event (death) between
		populations
		-Cox proportional hazards regression
		model to perform multivariate analyses
		of prognostic factors
Identification of a therapeutic class	Time to chemotherapy administration	- Kaplan Meier method to estimate the
associated with delayed	after the date of hospitalization for all	probability of chemotherapy
administration of chemotherapy	therapeutic classes (cut off at 2	administration
	months)	-Log-rank method to compare the
		probability of the event (chemotherapy
		administration) between populations

		-Cox proportional hazards regression
		model to perform multivariate analyses
		of prognostic factors
		-Fine and Gray method to assess the
		competitive risk of "death" (19)
Description of treatments	Number of medications and	Descriptive analysis of associated
(excluding anticancer treatment)	classification with the Anatomical	treatments (excluding anticancer
and assessment of the proportion	Therapeutic Chemical classification,	treatment)
of potentially inappropriate	number of potentially inappropriate	
medications	medications	

Table 1. Primary and secondary objectives, their endpoints, and statistical analyses.

	Health	District cancer registry	Multidisciplinary	Computerized
	information	Dataset B	concertation meetings	prescriptions
	services		Dataset C	Dataset D
	department			
	Dataset A			
Structure of	Grenoble	District cancer registry	Grenoble University	Grenoble
origin	University Hospital		Hospital	University Hospital
Data source	Grenoble	Anatomopathological	Grenoble University	Grenoble
	University Hospital	laboratory, long-term	Hospital	University Hospital
		condition network,		
		cancer network,		
		hematology		
		laboratories, and		
		medical records		
Objective	Collection and	Contribute to the	To have a dataset with the	Date on the
	analysis of medical	epidemiological	characteristics of patients	administration of
	information on	surveillance of cancers	presented at the	medications during
	patients	by producing indicators	multidisciplinary	hospitalization and
	hospitalized in the	of descriptive	concertation meetings	description of
	establishment for	epidemiology, based on		medications
	epidemiology	an active and exhaustive		
	studies and the	registration of cancer		
	medical billing	cases		
	process			
Strengths	Data is complete,	Controlled and	Details on TNM status and	Complete data on
	Homogeneous and	exhaustive data	each therapeutic line	computerized
	standardized:	representative of the	available	prescriptions
	comparability	general population of	ECOG-Performance Status	during hospital
		lsère	data	stay including
			Vital status	chemotherapy,
				based on

				administered
				medications
Weaknesses	Medico-economic	Only people living in	Only patients discussed at	Existence of old
	coding rule: less	Isère are included	meetings are in the	versions for data
	appropriate for	Time frame of	database and not all lung	recovery
	epidemiological	availability data	cancer patients treated in	
	studies		the center	

 Table 2. Description of the four datasets.

- → Alive at two months without chemotherapy prescription
- Death
- Chemotherapy prescription
- t0 First day of first hospitalization in thoracic oncology unit between 2011 and 2015
- **X** Right censoring time : 2 months after first hospitalization (t0)