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Abstract: The vertical distribution of light and its spectral composition are critical factors influencing
numerous physical, chemical, and biological processes within the oceanic water column. In this study,
we present vertically resolved models of downwelling irradiance (ED) at three different wavelengths
and photosynthetically available radiation (PAR) on a global scale. These models rely on the SOCA
(Satellite Ocean Color merged with Argo data to infer bio-optical properties to depth) methodology,
which is based on an artificial neural network (ANN). The new light models are trained with light
profiles (ED/PAR) acquired from BioGeoChemical-Argo (BGC-Argo) floats. The model inputs consist
of surface ocean color radiometry data (i.e., Rrs, PAR, and kd(490)) derived by satellite and extracted
from the GlobColour database, temperature and salinity profiles originating from BGC-Argo, as
well as temporal components (day of the year and local time in cyclic transformation). The model
outputs correspond to ED profiles at the three wavelengths of the BGC-Argo measurements (i.e., 380,
412, and 490 nm) and PAR profiles. We assessed the retrieval of light profiles by these light models
using three different datasets: BGC-Argo profiles that were not used for the training (i.e., 20% of
the initial database); data from four independent BGC-Argo floats that were used neither for the
training nor for the 20% validation dataset; and the SeaBASS database (in situ data collected from
various oceanic cruises). The light models show satisfactory predictions when thus compared with
real measurements. From the 20% validation database, the light models retrieve light variables with
high accuracies (root mean squared error (RMSE)) of 76.42 µmol quanta m−2 s−1 for PAR and 0.04,
0.08, and 0.09 W m−2 nm−1 for ED380, ED412, and ED490, respectively. This corresponds to a median
absolute percent error (MAPE) that ranges from 37% for ED490 and PAR to 39% for ED380 and ED412.
The estimated accuracy metrics across these three validation datasets are consistent and demonstrate
the robustness and suitability of these light models for diverse global ocean applications.

Keywords: BGC-Argo; ED380; ED412; ED490; global ocean; light models; neural network; PAR

1. Introduction

Incoming solar radiation, 40% of which originates from the visible part of the spectrum,
stands as the main source of energy for the entire Earth system. In the ocean, this radiation
propagates and attenuates from the surface to the depths. The characterization of this
propagation critically depends on accurate estimation of the downwelling irradiance,
ED (W m−2), over various depths. This estimation serves as the core for understanding
numerous surface and sub-surface oceanic processes, as well as for the quantification of
key oceanic variables.

More specifically, knowledge of ED at different depths is crucial for the quantification
of various photo-dependent processes, such as oceanic phytoplankton photosynthesis [1,2],
which relies on photosynthetically available radiation (PAR) as an indication of the integra-
tion of irradiance over the visible domain (400–700 nm). Additionally, knowledge of ED
is essential for determining the heating rate of the upper ocean [3,4], involving the entire
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spectrum from UV to infrared, and also for the photo-production or destruction of organic
molecules [5], often driven by the energetic UV part of the spectrum.

The derivative of the ED with respect to depth, known as the diffuse attenuation
coefficient, kd (m−1), is a reliable parameter that can be related to specific optically signifi-
cant substances, such as chlorophyll-a concentration (Chla), the proxy for phytoplankton
biomass [6,7] or colored dissolved organic matter (CDOM) [8], the proxy for dissolved
organic carbon (DOC) [9].

For the computation of remote sensing reflectance (Rrs), in situ measurements of ED
and upwelling irradiance (LU), which measure the radiant flux per unit area per unit solid
angle (W m−2sr−1), are essential. Rrs, linked to the concentration of optically significant
substances and accessible from satellite observations, is an apparent optical property (AOP)
of fundamental importance in ocean-color-related science. Notably, ocean color products,
including Rrs, as well as ocean surface heat flux, are labeled as essential oceanic variables
within the framework of the Global Ocean Observation System (GOOS) program.

Most of the irradiance (multi- or hyper-spectral, PAR) profiles acquired so far essen-
tially result from the deployment of irradiance profilers from ships. These measurements
(and the subsequent derivation of kd), along with the concurrent measurements of key
biogeochemical variables (e.g., Chla) [10–12], have contributed to the establishment of
reference databases. These databases have become the key for assessing the bio-optical and
trophic status of oceanic environments [12,13] as well as supporting validation activities
for satellite ocean color radiometric products [14].

The implementation of the BioGeoChemical(BGC)-Argo program, of which irradiance
is one of the six core variables, has opened up a revolutionary way to acquire numerous
irradiance profiles and develop internally consistent databases [15,16]. In particular, long
time series are now available in highly remote oceanic areas as well as for the severe
conditions encountered in high-latitude environments in winter. Apart from radiometric
quantities, BGC-Argo also allows measurement of the profiles of bio-optical variables
such as Chla and particle backscattering (bbp, a proxy for the particulate organic carbon
(POC)). As a consequence, BGC-Argo alleviates the seasonal and regional limits and biases
observed in former bio-optical databases established through ship-based observation alone,
thus filling observational gaps.

To clearly distinguish the bio-optical and biogeochemical characteristics of the upper
water column, a precise determination of light parameters, particularly kd, is essential. A
variety of models, including numerical, analytical, and empirical approaches, are currently
used to derive the vertical propagation of irradiance within the water column. Some
of these models [17–21] primarily rely on the use of inherent optical properties (IOPs)
and AOPs to derive subsurface light fields. Others [22] combine a clear-sky irradiance
model [23] and a spectral bio-optical relationship linking Chla to kd(λ) [11], which is applied
to vertical Chla profiles to propagate surface irradiance into the water column beneath.
These models have been widely used for a variety of applications aiming to understand
and quantify bio-optical or biogeochemical processes at a regional or global scale, par-
ticularly benefiting from ocean color radiometry measured by satellites. However, these
models remain complex, and, more importantly, their inputs are not readily available for
immediate use.

The unique, readily and openly accessible bio-optical database based on BGC-Argo
measurements (e.g., [24]) has proven to be a pivotal starting point for refining bio-optical
studies (e.g., [25]), as well as for the development of novel approaches. Among these,
ref. [26] reports the development of a neural network method aimed at predicting the
vertical distribution of bbp for any geolocation in the open ocean. This neural network,
named SOCA (Satellite Ocean Color merged with Argo data to infer bio-optical properties
to depth), was trained and validated using the BGC-Argo database of temperature, salinity,
and bbp profiles. The SOCA method for bbp estimation at depth requires satellite ocean
color data combined with vertical profiles of temperature and salinity as inputs. The
original method of [26] has been further refined (e.g., by including satellite altimetry data as
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additional predictors) and adapted for the estimation of both bbp and Chla. Currently, this
refined approach is presented as a standard three-dimensional gridded product delivered
by the European Copernicus Marine Service [27]. SOCA-derived profiles of biogeochemical
quantities, along with their uncertainties, offer a basis for valuable tools for overcoming
existing observational gaps. These new products can potentially support a wide range of
scientific activities, including ocean modeling.

The SOCA models have served as a proof of concept by successfully deriving, first, the
bbp, and then another bio-optical property measured from BGC-Argo floats (i.e., Chla). This
achievement has boosted confidence in the methodology’s effectiveness and its adaptability
to various properties measured by the BGC-Argo floats. Building on this foundation estab-
lished by the SOCA models, our study aims to introduce a similar approach, specifically
tailored for retrieving vertically resolved light fields in the ocean. Referred to as SOCA-light,
this model has been developed to estimate irradiance profiles at any geolocation in the open
ocean (bathymetric depth greater than 1500 m). It relies on a unique database of PAR and
ED profiles acquired by BGC-Argo floats over the last decade. This manuscript presents
the development of SOCA-light, its validation, and explores its potential applications. This
model represents a significant advancement in bio-optical studies, opening a new pathway
for oceanographic research.

The manuscript is organized as follows: Section 2 introduces the data and methods
used for the development and validation of the light models. The following section exam-
ines the performance of these models across several datasets, including BGC-Argo datasets
as well as historical ones used to establish and validate numerous models. In this section,
we additionally assess the capability of the light model to predict bio-optical products from
the irradiance profile. In Section 4, the final section, we address the drawbacks, benefits,
and future prospects of SOCA-light models.

2. Materials and Methods
2.1. Data
2.1.1. BGC-Argo Data

BGC-Argo floats [16] equipped with multi-spectral ocean color radiometers (Satlantic
OCR-504, Satlantic Inc., Halifax, NS, Canada) measuring ED at 3 different wavelengths,
i.e., 380, 412 and 490 nm, W m−2 nm−1, and PAR, µmol quanta m−2 s−1, were used for
the present study. From among the synthetic BGC-Argo individual profiles available at
the Coriolis Global Data Assembly Center (GDAC) [28], only radiometric measurements
qualified in delayed-mode (DM) using the quality control and calibration procedures
proposed by [29] were kept for the model development. These procedures identify and
correct radiometric profiles for any sensor drift or temperature dependence. The correc-
tion relies on the acquisition of at least one night profile per year (for the assessment of
sensor temperature dependence) and daily dark measurements when the float drifts at the
1000 dbar parking depth (for the assessment of sensor drift). Concurrently with radiometric
profiles, DM-qualified profiles of pressure (P), temperature (T), and salinity (S), were also
used for the present study. The P, T, and S profiles with a number of qualified measurements
less than 5 in the upper 50 m and less than 15 in the upper 250 m were discarded from the
present analysis. The geographical locations of all profiles (P, T, S, and PAR) used for the
development and validation of the SOCA-light model for PAR are shown in Figure 1.
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Figure 1. Geographical distribution of BGC-Argo profiles used for the development and validation
of the SOCA-light model for photosynthetically available radiation (PAR) profiles. The details of the
geographical distributions of profiles for other light variables (ED) are provided in Figures S1–S3 in
Supplementary Information.

2.1.2. Satellite Ocean Color Data

For the neural network development and validation, and the extraction of monthly
climatological light fields, we used satellite-based level-3 (L3) ocean color products of fully
normalized remote sensing reflectance (Rrs), PAR, and kd(490) from GlobColour products.
While (Rrs and kd(490) data were available from the Copernicus-GlobColour product,
PAR (not similarly available) was directly downloaded from the GlobColour website
(http://hermes.acri.fr, accessed on 17 February 2023). These global L3 products [30], which
have a spatial resolution of 4 km, correspond to daily composites obtained from merged L3
Ocean Color outputs from different sensors, which ensures data continuity, improves spatial
and temporal coverage, and reduces data noise [31]. The kd(490) product of GlobColour
was computed from the corresponding merged Chla (CHL-OC5) product [32], using the
following empirical equation [33].

kd(490) = 0.0166 + 0.077298× CHL-OC50.67155 (1)

2.1.3. SeaBASS Data

The SeaWiFS Bio-Optical Archive and Storage System (SeaBASS) [34,35] is a high-
quality in situ database of optical measurements, essential for satellite-data product val-
idation and algorithm development. These data have been collected since 1998 using a
variety of instrument packages (profilers, buoys, and hand-held instruments) from different
manufacturers and operated on a variety of platforms, including ships and moorings. For
our study, we specifically extracted profiles of ED at 380 nm (ED380), 412 nm (ED412),
490 nm (ED490), and PAR from the SeaBASS database. These profiles were collocated with
ocean color and hydrological data from the ARMOR3D product (see below for details)
(Figure 2). These extracted profiles were used to provide an independent assessment of the
SOCA-light models developed in this study.

http://hermes.acri.fr
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Figure 2. Geographical distribution of independent light-variable profiles (PAR, ED380, ED412, and
ED490) available for validation from the SeaBASS database. Red circles represent locations of PAR
profiles, blue circles correspond to ED380 profiles, green circles to ED412 profiles, and orange circles
to ED490 profiles.

2.1.4. ARMOR3D Data

In this study, we used the ARMOR3D product [36,37], which provides temperature and
salinity profiles at a resolution of 0.25◦ × 0.25◦, encompassing 50 vertical levels within the
upper 5500 m water column. This product additionally includes mixed layer depth (MLD)
information. This ARMOR3D product [38] is available from the Copernicus Marine Service
and was used in this study for (1) validation purposes; as temperature and salinity profiles
were not available in the SeaBASS database, we used the ARMOR3D product collocated
with light profiles, and (2) producing three-dimensional (3D) monthly climatological light
fields; ARMOR3D monthly climatological temperature and salinity fields were used as
inputs of the SOCA-light model.

2.1.5. Selection of the Database

BGC-Argo profiles, together with satellite products measuring ocean color, made up
the initial database for neural network training and validation. The ocean color matchup
was built by selecting the nearest available measurement both in time (within ±5 days)
and space (within a 5 × 5 pixel area) relative to the float location and sampling time.
Based on the monthly distribution of light profile acquisitions (Figure 3A), it appears that
this database does not present any temporal bias in terms of the number of profiles per
month globally. However, a seasonal geographical bias exists as fewer profiles exist for the
northern and southern hemispheres during their respective winter months. This is due to
the reduced number of matchups available because of increased cloud coverage during the
winter. The present study uses all profiles sampled between 8 and 18 local hours. On an
hourly basis, 97% of the profiles were sampled between 10 and 13 local hours (Figure 3).
From this initial database, separate databases were created for each of the four models (i.e.,
PAR, ED380, ED412, and ED490).
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Figure 3. The temporal distribution (monthly (A) and hourly (B)) of PAR profiles used for this study.

The databases thus constituted were used for SOCA-light development, with 80% of
profiles being used for model training and the remaining 20% for model validation. These
training and validation databases were randomly selected. In parallel, the data from four
floats with World Meteorological Organization (WMO) numbers 6901472, 6901493, 6901523,
and 6901773 were kept aside for independent validation; i.e., these floats were not part of
the training and validation processes. These four floats acquired multi-year measurements
in four different oceanic areas considered to cover a large range of hydrological and bio-
optical conditions typically representative of open ocean waters.

2.2. Methods
2.2.1. General Features of SOCA Models

Sauzède et al., (2016) [26] developed a machine-learning-based approach to extend
surface bio-optical properties, such as the particulate backscattering coefficient (bbp), to
depth. This method, known as SOCA, relies on combining satellite ocean color observations
with vertical physical information of the water column to infer the vertical distribution
of the bio-optical variable bbp. To train the SOCA neural network, concurrent profiles of
BGC-Argo hydrological properties are matched with satellite ocean color data as inputs,
while the corresponding BGC-Argo bbp profiles are used as targeted outputs. This original
SOCA method has been further refined by, for instance, including Rrs instead of satellite
bbp and Chla, using satellite altimetry products as additional predictors (to account for
possible mesoscale influence) and adapting the method for the estimation of both bbp and
Chla. In this way, ocean color and hydrological products with different temporal scales
(weekly fields and monthly climatologies) are used as inputs to these SOCA models, and
the derived outputs are delivered as operational standard products by the Copernicus
Marine Service [27].

2.2.2. The SOCA-Light Models

For this study, we developed a SOCA-type model based on a neural network, and
more specifically, a multilayer perceptron (MLP). The MLP is a robust modeling tool used
for supervised learning, employing multiple inputs and a known output value to train
the model [39–41]. As a feedforward neural network, information flows unidirectionally
from the MLP’s input layer to its output layer, passing through one or more intermedi-
ate layers, also called hidden layers. Each layer is constructed from neurons, which are
fundamental transfer functions that generate outputs when inputs are applied. Each con-
nection between neurons has its own weight. The backpropagation algorithm then adjusts
the weights of the neurons in each layer to minimize the loss function using a first-order
gradient-based optimizer.
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The SOCA-light models are largely derived from the generic SOCA methodology
described in [26,27]. They consist of four models capable of predicting the vertical profiles
of PAR, ED380, ED412, and ED490 at a given geolocation, using as inputs the data from
matchups with satellite ocean color products and the vertical profiles of T and S. For SOCA-
light, we have slightly modified the input variables used for other SOCA models (i.e., for
Chla and bbp) through the selection of key variables that depict the vertical propagation
of light in the water column (i.e., first optical depth (Zpd)). In this way, while other SOCA
models (Chla and bbp) have used sea-level anomaly (SLA) as input to infer mesoscale
processes that may impact the vertical distribution of phytoplankton biomass, in SOCA-
light models we have removed SLA from the key variables. The four SOCA-light neural
networks were trained using a database of concurrent profiles of temperature, salinity,
and light variables (ED380, ED412, ED490, and PAR) collected by BGC-Argo floats and
collocated with satellite-derived products. A schematic representation of all the SOCA-light
models is shown in Figure 4.

Figure 4. Schematic representation of the SOCA-light multilayer perceptron.

There are three main input components used for this model:

• Surface components: These encompass satellite-based surface estimates of Rrs at five
different wavelengths (i.e., 412, 443, 490, 555, and 670 nm) and PAR.

• Vertical components: These rely on the first principal component analysis of salinity
and temperature profiles. The principal components were selected on the basis of
cumulative explained variance values less than or equal to 0.998. For temperature, this
criterion is satisfied by five principal components, and for salinity, by four principal
components. The mixed layer depth (MLD) was derived from density calculated
from pressure, temperature and salinity profiles with a density differential threshold
criterion of 0.03 kg m−3 with reference to the density at 10 m [42]. The Zpd was derived
from the satellite-derived kd(490) using Equation (2).

Zpd =
1

kd(490)
(2)

• Temporal components: The temporal components are the day of the year (DOY)
and the local time (LT) of the sampling profile. These components follow periodic
evolution within certain time windows (0 to 365 days for DOY; 0 to 24 h for LT). The
cyclic transformations (sine and cosine) of radian-transformed DOY and LT were used
as temporal components (Equation (3) and (4)):

DOYrad =
DOY× π

182.625
(3)
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LTrad =
LT × π

12
(4)

The SOCA-light model outputs are the four light variables (PAR, ED380, ED412, and
ED490) at 51 vertical levels from the surface to 250 m depth at every 5 m interval. The
use of an ensemble of MLPs proved effective in improving the robustness and reliability
of predictions compared to the use of a single MLP [43]. For this reason, as a first step,
several MLPs were created, each with a unique architecture incorporating the hyperbolic
tangent (tanh) as the activation function and adaptive moment estimation (ADAM) [44]
as the solver. The ADAM solver streamlines the conclusion of iterations upon reaching
model convergence, speeding up the process. At the same time, we identify the optimal
number of epochs to ensure effective learning and prevent overfitting.The key distinction
among these models lies in the varying number of neurons distributed across each hidden
layer, with the intention of capturing diverse patterns and representations inherent in the
data. We chose two hidden layers from the considered options of one, two, and three
hidden layers for these light models. Notably, models with two hidden layers consistently
outperformed, with the number of neurons in the second hidden layer always being fewer
than or equal to that in the first hidden layer. The models were trained by changing the
neuron numbers between 5 and 150 with an increment of one (altogether 10,585 iterations).
The second step was then to select, from all these iterations, an ensemble of the 10 best
MLPs based on minimum statistical metrics obtained from training and validation datasets
(root mean square error (RMSE) and the median absolute percent error (MAPE)). Through
this selection, the ensemble model aimed to capture diverse representations while ensuring
the sound performance and consistency of individual MLPs.

2.2.3. Statistical Analyses

The performance of the model was evaluated by comparison between the modeled
variable values (Y-axis) and the actual values used as references (X-axis). Two statistical
criteria were used: the RMSE as well as the MAPE that were computed as in the equations
below (Equations (5) and (6)):

RMSE =

√
∑n

i=1(Obsi − Predi)2

n
(5)

MAPE(%) = median
[
|Obsi − Predi|

Obsi

]
× 100 (6)

where n, Obs, and Pred correspond to the number of points, the observed value, and the
predicted value, respectively.

3. Results
3.1. Validation of SOCA-Light Models

A rigorous set of validation protocols was adopted to assess the accuracy of the
four light models. In this way, the model results were validated against the validation
database (Section 3.1.1), then against the four independent BGC-Argo floats from four
distinct oceanic basins (Section 3.1.2), as well as against the independent SeaBASS database
(Section 3.1.3). Finally, proxies derived from SOCA-light products were further used to
evaluate the prediction capability of the model (Section 3.1.4).

3.1.1. Validation of SOCA-Light Models Using 20% of the Global Database

The SOCA-light models were validated using 20% of the dataset randomly extracted
from the BGC-Argo database, originating from a large diversity of oceanic regions. The
comparison between modeled SOCA-light variables and BGC-Argo measurements (PAR,
ED380, ED412, and ED490) is presented in Figure 5. Overall, there is a very good agreement
between the predicted and the measured light variables. The density scatterplot reveals a
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close clustering of points along the identity line over more than five orders of magnitude.
Statistical metrics extracted from linear regression between the modeled and observed
PAR values reveal slope, r2, RMSE and MAPE values of 1.01, 0.96, 76.42 µmol quanta
m−2 s−1, and 37.41%, respectively (Figure 5A). The validation for the three ED models
shows satisfactory performances. The modeled ED380 profiles exhibit RMSE and MAPE
values of 0.04 W m−2 nm−1, and 39.01%, respectively, when compared with their measured
counterparts (Figure 5B). Similarly, the MAPE values for ED412 and ED490 were 39.47%
and 37.05%, respectively (Figure 5C,D).

Figure 5. Scatterplots between light variables (PAR, ED380, ED412, and ED490) modeled by the
SOCA-light models versus their corresponding BGC-Argo measurements: PAR (A); ED380 (B);
ED412 (C); ED490 (D). This validation was performed using 20% of profiles randomly selected from
the total database. The color code scales the probability density function (PDF). The identity line is
represented by the 1:1 black dotted line.

3.1.2. Validation of SOCA-Light Models Using Four Independent BGC-Argo Floats from
Different Oceanic Regions

An independent validation was performed using four BGC-Argo floats from dis-
tinct oceanic regions, namely the North Atlantic Subtropical Gyre (NASTG), the Eastern
Mediterranean Sea (EMS), the Southern Ocean (SO), and the North Atlantic Subpolar Gyre
(NASPG). The profiles for each region originated from a single float with a unique WMO,
none of which were included in the training and validation databases. The validation
results for each oceanic region are presented in Figure 6.

The scatterplot of PAR derived by the model shows strong agreement with PAR
measured by the BGC-Argo floats for all four regions (Figure 6A). Statistical error estimators
computed between modeled and observed PAR profiles for all four regions together show
slope, r2, RMSE, and MAPE values of 1.03, 0.96, 72.86 µmol quanta m−2 s−1, and 30.50%,
respectively. These statistical error estimators of PAR are comparable with the statistics
obtained on 20% of the validation database (Figure 5A). For ED380 (Figure 6B), the slope, r2,
RMSE, and MAPE values are 1.04, 0.97, 0.034 W m−2 nm−1, and 40.99%, respectively. For
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ED412 (Figure 6C), the same statistical metrics yield values of 1.03, 0.97, 0.070 W m−2 nm−1,
and 36.67%, respectively. Finally, for ED490 (Figure 6D), the metrics take values of 1.03,
0.95, 0.087 W m−2 nm−1, and 29.86%, respectively.

Figure 6. Scatterplots illustrating the comparison between SOCA-light modeled variables (PAR,
ED380, ED412, and ED490) and their corresponding BGC-Argo measurements collected by the four
independent floats. The subplots display: PAR (A), ED380 (B), ED412 (C), ED490 (D). Each color
represents a specific float: blue for NASTG, purple for EMS, brown for NASPG, orange for SO. The
identity line is represented by the 1:1 black dotted line.

North Atlantic Subtropical Gyre

The NASTG is an oligotrophic environment characterized by low surface nutrients,
low Chla, and the presence of a permanent deep chlorophyll maximum (DCM), generally
found below 100 m [45,46]. The multi-year time series (more than 6 years of measurement)
of the vertical distribution of light variables (PAR, ED380, ED412, and ED490) measured by
the NASTG BGC-Argo float (WMO = 6901472) and modeled by SOCA-light are presented
in Figure 7 for a direct comparison. Overall, the SOCA-light models clearly reproduce, in a
smoother way, the seasonal and vertical trends revealed by the float measurements. The
SOCA-light models capture even subtle changes in the general trends of light variables,
as evidenced by the less pronounced light penetration observed and reproduced by the
model at the end of 2015. As well as reproducing the trends satisfactorily, the magnitude
of the signals is retrieved well by the models for the four variables. The statistical metrics
between the modeled and the observed PAR profiles show (Figure S4) slope, r2, RMSE,
and MAPE values of 0.99, 0.98, 73.09 µmol quanta m−2 s−1, and 21.50%, respectively. For
ED380, these metrics are, respectively, 0.96, 0.98, 0.04 W m−2 nm−1, and 28.72%. For ED412,
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they are 0.95, 0.98, 0.08 W m−2 nm−1, and 26.66%. Finally, for ED490, they are 0.98, 0.98,
0.09 W m−2 nm−1, and 21.53%.

Figure 7. Time series of the vertical distribution of the four light variables in the North Atlantic
Subtropical Gyre (NASTG), as measured by BGC-Argo float with WMO 6901472 (left column)
and modeled by SOCA-light (right column). The variables in each subplot are indicated by text
in the corresponding subplots. The black stars indicate the depth at which instantaneous PAR
value = 15 µmol quanta m−2 s−1.

Eastern Mediterranean Sea

The EMS is also a permanent oligotrophic system at temperate latitudes. The float
selected (WMO = 6901773) measured all four light variables (PAR, ED380, ED412, and
ED490) for nearly four years (Figure S5). Again, the multi-year vertical sections of these
variables from this region show very good agreement between the measured and modeled
values. The modeled variables exhibited seasonal fluctuations in their magnitude across
different years, similar to those observed. The surface incoming solar radiation shows
larger seasonal variability than the variability observed in the subtropical oligotrophic
regime (NASTG, Figure 7), yet it is well captured by the model. As for the NASTG, the
models reproduce light variables with much less noise compared to their corresponding
BGC-Argo measurements. The statistical metrics between the modeled and the measured
variables from the EMS for all four light variables are highly comparable with the global
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20% validation metrics (Figure S6). The statistical metrics between the modeled and the
observed PAR profiles display slope, r2, RMSE, and MAPE values of 1.02, 0.98, 63.20 µmol
quanta m−2 s−1 and 21.42%, respectively. For ED380, these metrics were, respectively, 1.08,
0.98, 0.03 W m−2 nm−1, and 39.89%. For ED412, they were 1.06, 0.98, 0.06 W m−2 nm−1,
and 29.04%. Lastly, for ED490, they were 1.01, 0.98, 0.08 W m−2 nm−1, and 22.78%. All the
derived error estimators show comparable values (some even better, such as the RMSE and
MAPE) with those obtained for the 20% global validation database. These results depict
the robustness of the SOCA-light models for deriving light variables over several years
of observation.

Southern Ocean

Over four years, the BGC-Argo float (WMO = 6901493) traveling eastwards (from 5◦E
to 83◦E) and between 40◦S and 50◦S in the SO underwent the typical bio-physical conditions
prevailing in the area. Overall, it captured four phytoplankton blooms and was regularly
trapped or influenced by mesoscale features or fronts. The multi-year time series of the
vertical distribution of light variables (PAR, ED380, ED412, and ED490) measured by this
float and the SOCA-light modeled light variables are presented and compared in Figure 8.
The gaps in the time series during the southern-hemisphere winter months are due to the
unavailability of ocean color matchups resulting from cloud coverage during this period.
In general, as for the NASTG and EMS, the SOCA-light models reproduce the seasonal and
vertical trends of the float measurements in a smoother way. In addition to reproducing
the seasonal trends, the magnitude of the retrieved light variables is in order with the
measurements for the four light variables. The statistical metrics between the modeled and
measured PAR profiles (Figure S7) show slope, r2, RMSE, and MAPE values of 0.99, 0.91,
88.63 (µmol quanta m−2 s−1), and 54.37%, respectively. For ED380, these metrics were 1.03,
0.95, 0.04 (W m−2 nm−1), and 51.52%. For ED412, they were 1.03, 0.93, 0.08 (W m−2 nm−1),
and 54.33%. Finally, for ED490, the metrics were 0.99, 0.91, 0.10 (W m−2 nm−1), and 51.47%.
The statistical estimators from the SO, namely the RMSE and MAPE, are slightly larger
than the global 20% validation metrics. These uncertainties could possibly originate from
the highly dynamic nature of the area associated with the ocean color matchups of the
closest pixel of the temporal (±5 days) and spatial (5 × 5 pixels) matchups. They may
also be attributed to the higher level of this dataset’s independence, thus providing a more
rigorous test of the model’s generalization capabilities. Indeed, a higher level of errors can
be expected in a highly variable environment such as the SO. Nevertheless, the fact that
errors from this dataset are only marginally greater than those from the 20% validation
dataset suggests the model’s robustness without signs of overfitting.

North Atlantic Subpolar Gyre

The data acquired by the float (WMO = 6901523) over its two years of exploration
are representative of the diversity of the North Atlantic Subpolar Gyre conditions. In
particular, it encountered intense convection periods (>1000 m) as well as intense spring
phytoplankton blooms. Due to a lack of ocean color matchups, the NASPG region expe-
rienced similar problems as the SO region in obtaining SOCA-light variables during the
winter. The two-year time series of the vertical distribution of light variables (PAR, ED380,
ED412, and ED490) measured by this float and modeled by SOCA-light are presented and
compared in Figure S8. Essentially, the SOCA-light models reproduce the seasonal trends
in float measurements in a smoother way. The statistical metrics between the modeled
and the observed PAR profiles manifest slope, r2, RMSE, and MAPE values of 1.08, 0.93,
64.83 µmol quanta m−2 s−1, and 58.79%, respectively (Figure S9). For ED380, these metrics
were subsequently 1.02, 0.96, 0.02 W m−2 nm−1, and 50.82%. For ED412, they were 1.02,
0.95, 0.04 W m−2 nm−1, and 51.75%. Finally, for ED490, these metrics were 1.09, 0.92, 0.06
W m−2 nm−1, and 57.63%. Similarly to the SO float, the statistical estimators, mainly the
RMSE and MAPE, from the NASPG float are slightly larger than the global 20% validation
metrics. This could mainly be due to the uncertainties associated with the retrieval of ocean
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color matchups from the closest pixel of the temporal (±5 days) and spatial (5 × 5 pixels)
matchups in such a highly dynamic high-latitude environment, which seems less the
case for low and temperate latitudes (see Figures 7 and S5 and the associated metrics in
Figures S4 and S6).

Figure 8. Time series of the vertical distribution of the four light variables in the Southern Ocean (SO)
measured by BGC-Argo float WMO 6901493 (left column) and modeled by SOCA-light (right column).
The variables in each subplot are specified by text in the corresponding subplots. The black stars indicate
the depth at which instantaneous PAR value = 15 µmol quanta m−2 s−1.

3.1.3. Validation of SOCA Light Models with the Independent Global SeaBASS Database

As well as validating SOCA-light models against a 20% subset of the BGC-Argo
dataset or against the data of selected BGC-Argo floats not included in either the initial
training or the 20% validation procedures, validation against datasets not acquired by
BGC-Argo offered an informative complementary exercise. For this purpose, we used the
global SeaBASS light database whose measurements originate from various cruises and
field campaigns. It should be noted that, contrary to the BGC-Argo light measurements
performed under any sky conditions, measurements from ships, which are more operator-
dependent, are essentially conducted under a clear sky.

The input matchups were taken from the weekly binned files of ARMOR3D and
GlobColour data that corresponded to each SeaBASS in situ station. The physical variables
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(temperature, salinity, and MLD) were extracted from the macro-pixel (0.25◦ × 0.25◦)
nearest the in situ station and ocean color matchups from the mean of the 3 × 3 micro-
pixels (4 km × 4 km) box centered at each in situ station. It should be noted that only
a restricted number of stations from the original SeaBASS database were used for this
validation exercise, as more than 90% of the stations (including coastal stations with
bathymetric depths less than 1500 m) lacked a corresponding satellite ocean color matchup,
mainly due to the contamination of signals, probably by clouds or sea ice.

The scatterplots of the light variables derived by the SOCA-light models compared
with those measured in situ within the SeaBASS database are presented in Figure 9. The
same metrics are reported as those in the other validation exercises based on float data
(Sections 3.1.1 and 3.1.2). Figure 9 shows that the retrieval by SOCA-light systematically
underestimates the SeaBASS measurements for each light variable. This bias is the same
over the whole water column as the slopes between the modeled light and corresponding
measurements are close to one (Figure 9). The fact that the SeaBASS database is essentially
populated by data obtained under clear-sky conditions at a given time could explain this
bias. By way of contrast, the weekly matchups of GlobColour products used as input
for the SOCA-light models likely do not correspond to clear-sky conditions over such an
extended temporal window.

The scatterplot of PAR produced by the model exhibits notable consistency with PAR
measured in situ by SeaBASS data (Figure 9A). Statistical error metrics were extracted
from linear regression between the modeled and observed PAR profiles, showing slope,
r2, RMSE, and MAPE values of 1.00, 0.88, 101.25 µmol quanta m−2 s−1, and 65.48%,
respectively. For ED380, these metrics were 1.00, 0.82, 0.11 (W m−2 nm−1), and 76.30%
(Figure 9B). For ED412, they were 1.00, 0.81, 0.18 W m−2 nm−1, and 76.07% (Figure 9C).
Finally, for ED490, they were 0.99, 0.85, 0.21 W m−2 nm−1, and 62.32% (Figure 9D). These
four light models (PAR, ED380, ED412, and ED490) were validated independently, and the
extracted error metrics are quite satisfactory, even if these statistical estimators are slightly
larger compared with the error metrics of both the global 20% validation database and
four independent BGC-Argo floats. These larger error estimators could be because of the
uncertainty associated with the physical and ocean color data considered as inputs (as well
as the nature of the data in SeaBASS, essentially acquired under clear-sky conditions).

3.1.4. Additional Validation with iPAR_15

An alternative to validating the SOCA-light model results against light data from
various databases (previous sections), that also allows gauging the model’s prediction
capabilities, is to quantify and assess the quality of model-derived products that are
essential for certain applications. This is the case for the depth of iPAR_15 (Z_iPAR_15) [47],
a variable that corresponds to the depth at which the instantaneous PAR, iPAR, equals
15 µmol quanta m−2 s−1. This quantity is required for the correction of non-photochemical
quenching (NPQ) that affects the chlorophyll-a fluorescence profiles. NPQ is a photo-
physiological mechanism whereby the signal of chlorophyll-a fluorescence is depressed
under high irradiances (maximal at noon). The method proposed by [47] and further
improved by [48] uses Z_iPAR_15 as a depth threshold under which no NPQ is expected.
In a way, Z_iPAR_15 can be considered as a proxy for water clarity with high values
corresponding to the clearest waters, where the NPQ effect can be observed at the deepest
depths. The present study extracted Z_iPAR_15 from PAR measured by the BGC-Argo
floats and PAR derived using the SOCA-light PAR model for the validation database of
20% of the global database and for the four independent floats (Figure 10). Overall, the
results are satisfactory with respect to the retrieval of Z_iPAR_15 by the SOCA-light PAR
model. Furthermore, the range of values of Z_iPAR_15 for the four floats (Figure 10B) is
equivalent to that for the 20% validation database (Figure 10A). This demonstrates that
the four floats cover the entire range of trophic status currently detected by the BGC-Argo
database throughout the global ocean.
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Figure 9. Scatterplots between light variables (PAR, ED380, ED412, and ED490) derived using
SOCA-light models and SeaBASS in situ measurements. The subplots display: PAR (A), ED380 (B),
ED412 (C), ED490 (D). The color code scales the PDF. The identity line is represented by the 1:1 black
dotted line.

To illustrate a potential application of the SOCA-light models, we extracted global
3D multi-year monthly averaged climatologies of light variables at local noon at a 5 m
resolution from the surface to 250 m depth. The inputs used to generate the climatolo-
gies were multi-year monthly averaged GlobColour data and ARMOR3D physical data.
The satellite data were averaged (0.25◦ × 0.25◦) at the same spatial resolution as the
physical ARMOR3D data. As an example, the extracted Z_iPAR_15 from these seasonal
climatology fields is presented in Figure 11, and shows well-characterized latitudinal and
seasonal variations.
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Figure 10. Comparisons of Z_iPAR_15 derived by the SOCA-light PAR model versus Z_iPAR_15
estimated by BGC-Argo float measurements for the 20% validation database (A) and for the
4 independent floats (B).

Figure 11. Seasonal climatology of Z_iPAR_15 derived at local noon using the SOCA-light PAR
model applied to monthly climatological fields of inputs: Z_iPAR_15 averaged for the months of
December, January, and February in (A); March, April, and May in (B); June, July, and August in (C);
September, October, and November in (D).
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4. Discussion and Conclusions

Knowledge about the irradiance vertical distribution is essential for improved under-
standing and quantification of many oceanic processes in the upper water column. Over
time, a variety of bio-optical models has been developed to better predict light fields, partic-
ularly at the ocean surface. These models have drawn from various complex relationships,
spanning from purely empirical to fully analytical algorithms. They have served as fun-
damental building blocks for various biogeochemical applications, including the retrieval
of IOPs [49,50], biogeochemical quantities such as Chla [51–53], and POC [54], as well as
the quantification of the oceanic heating rate [3,4] and the modeling of oceanic primary
production [1,2]. These models serve as the foundation for bio-optical oceanography and
satellite ocean color science.

The development of bio-optical models has, however, been constrained by the limited
availability of in situ data, either for model construction (for empirical models) or model
validation (in the case of analytical models). Substantial gaps in the acquisition of bio-
optical data have resulted in limited coverage and sparse datasets, especially in remote
open ocean areas. Additionally, the databases containing these measurements often exhibit
heterogeneity in terms of acquisition modes, involving different platforms and sensors.
These variations lead to consistency and interoperability issues, increasing the uncertainties
of models relying on these data.

More recently, the prospect of developing more accurate bio-optical models for irradi-
ance vertical distribution has emerged for two main reasons. The first one relates to the
massive availability of the various oceanic properties, including optically significant sub-
stances and light variables. This availability is largely due to the extensive data-collection
capacity of BGC-Argo, which has contributed to a rich and dense database of ED and PAR
profiles. Importantly, in addition to being publicly and openly accessible, this database
offers the advantage of being homogeneous and interoperable thanks to the development
of dedicated methods to ensure its qualification [29,55,56]. Moreover, this database has
proven instrumental in validating bio-optical models [57,58] and models based on Chla
for estimating PAR [22]. The second reason is due to the increasing adoption of machine
learning techniques that take advantage of data availability, which results in a strong
improvement in the predictive capability of these purely empirical approaches. Pioneering
work by [26] showed that global 3D reconstruction of the bbp could be performed thanks to
the development of the first SOCA model. More recently, subsets of irradiance data (ED380,
ED412, and ED490) acquired by BGC-Argo floats have been used to predict PAR either
through statistical approaches [59] or the use of neural networks [60].

The present study represents, to our best knowledge, the first attempt to develop a
predictive model for the vertical profiles of light, encompassing both PAR and irradiance
at three different wavelengths, thanks to the application of machine learning using the
extensive BGC-Argo light database. This model rests on the initial SOCA methodology,
which has been carefully refined to accommodate the specificity of light-related variables.
While the model exhibits significant accuracy and potential, it does have some limitations
that should be acknowledged. Certainly, the prediction of light profiles becomes challenging
in the absence of Rrs data (e.g., due to cloud coverage), a situation particularly critical
in high-latitude environments during the winter. Moreover, the majority of SOCA-light
training involved local noon data (97% of profiles gathered between 10 and 13 h local
time), suggesting a potential decrease in accuracy for predictions at other times of the
day. Nevertheless, as more data from BGC-Argo become available at various times, this
limitation could be easily addressed in the near future. In the meantime, it is recommended
to preferentially use SOCA-light around noon local time.

The predictive power of SOCA-light appears to be robust (Figures 5, 6, 9 and 10).
Until now, efforts to characterize vertical light profiles in oceanic waters have relied on
various approaches, involving numerical models [17–21] and a combination of analytical,
semi-analytical, and empirical relationships [11,20,22,33]. However, these models heavily
rely on specific parameters, including AOPs, IOPs, and Chla resolved over the vertical
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dimension. The incorporation of these precise vertically resolved inputs presents challenges
when attempting to compare such models with SOCA-light ones. The lack of these crucial
input data poses a well-acknowledged challenge in the field of oceanography, especially
within the marine optics and ocean color remote sensing communities. Consequently, this
data gap potentially translates into more uncertainty over depths. The machine learning
approaches proposed here potentially circumvent this weakness. Furthermore, assuming
the model inputs are at the right resolution, SOCA-light can easily extract 3D global ocean
light maps at any temporal resolution (daily, weekly, and monthly).

Due to their solidity and versatility, SOCA-light models offer great potential for
supporting many applications for which light profiles are key variables but are unfor-
tunately not measured. For instance, several applications for improving the BGC-Argo
database can already be envisioned. At present, light profiles are not acquired from all
BGC-Argo floats. Indeed, less than 45% of the ≈118,000 chlorophyll-a fluorescence profiles
so far acquired have concurrent light measurements. Yet, light profiles are required for a
more accurate estimation of Chla from chlorophyll-a fluorescence measured from floats.
First, the correction of NPQ fluorescence is more accurate with the use of instantaneous
PAR profiles [47,48] compared to former methods which do not rely on light [61]. Sec-
ondly, as the relation between Chla and chlorophyll-a fluorescence varies regionally and
seasonally, methods have been proposed that rely on concurrent profiles of ED490 and
chlorophyll-a fluorescence to estimate the slope correction to apply to the fluorescence
profile in order to retrieve more accurate Chla [6]. The estimation of this slope correction
relies on a bio-optical relationship linking kd(490) (derived from the ED490 profile) to
Chla [11]. Having the whole BGC-Argo fleet delivering light profiles (either measured
or modeled) would guarantee an overall more consistent and interoperable Chla dataset.
Similar methods would allow the derivation of profiles of CDOM absorption at 412 nm
from profiles of CDOM fluorescence, calibrated chlorophyll-a fluorescence (slope correction
applied), and irradiance (ED412) [8]. Therefore, the potential of SOCA-light already appears
enormous when simply considering its possible applications in relation to the BGC-Argo
database alone.

Recently, floats have begun to acquire hyperspectral radiometric measurements [62,63].
New perspectives that consequently open up include refinements in the characterization of
optically active substances, such as CDOM or phytoplankton community structure at large
scale [63]. The SOCA-light method presented here has the potential to accommodate any
increase in the spectral domain and resolution once sufficient data have been acquired to
support training. The availability of such modeled data could represent a new step towards
a better understanding of various components of biogeochemical cycles at a global scale.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15245663/s1, Figure S1: Geographical distribution of BGC-Argo
profiles used for the development and validation of the SOCA-light model for ED380, Figure S2:
Geographical distribution of BGC-Argo profiles used for the development and validation of the
SOCA-light model for ED412, Figure S3: Geographical distribution of BGC-Argo profiles used
for the development and validation of the SOCA-light model for ED490, Figure S4: Scatter-plots
between light variables (PAR, ED380, ED412, and ED490) modeled by SOCA light models versus their
corresponding BGC-Argo measurements from NASTG. PAR (A); ED380 (B); ED412 (C); ED490 (D),
Figure S5: Time series of the vertical distribution of the four light variables in the Easter Mediterranean
Sea (EMS) measured by BGC-Argo float WMO 6901773 (left column) and modeled by SOCA-light
(right column). The variables in each subplot are indicated by text in the corresponding subplots.
The black stars indicate the depth at which instantaneous PAR value =15 µmol quanta m−2 s−1,
Figure S6: Scatter-plots between light variables (PAR, ED380, ED412, and ED490) modeled by SOCA
light models versus their corresponding BGC-Argo measurements from EMS. PAR (A); ED380 (B);
ED412 (C); ED490 (D), Figure S7: Scatter-plots between light variables (PAR, ED380, ED412, and
ED490) modeled by SOCA light models versus their corresponding BGC-Argo measurements from
SO. PAR (A); ED380 (B); ED412 (C); ED490 (D), Figure S8: Time series of the vertical distribution
of the four light variables in the North Atlantic Subpolar Gyre (NASPG) measured by BGC-Argo
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float WMO 6901523 (left column) and modeled by SOCA-light (right column). The variables in
each subplot are specified by text in the corresponding subplots. The black stars indicate the depth
at which instantaneous PAR value =15 µmol quanta m−2 s−1, Figure S9: Scatter-plots between
light variables (PAR, ED380, ED412, and ED490) modeled by SOCA light models versus their
corresponding BGC-Argo measurements from NASPG. PAR (A); ED380 (B); ED412 (C); ED490 (D). All
of the models and functions (Jupyter Notebook) are open source and can be accessed via our GitHub
page: https://github.com/renoshpr/SOCA-LIGHT-MODELS, (accessed on 10 November 2023).
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Abbreviations
The following abbreviations are used in this manuscript:
ADAM Adaptive moment estimation
ANN Artificial neural network
AOP Apparent optical property
ARMOR3D A 3D multi-observations T, S, U, V product of the ocean
bbp Particulate backscattering coefficient
BGC-Argo BioGeoChemical Argo
CDOM Colored dissolved organic matter
Chla Chlorophyll-a concentration
CMEMS Copernicus Marine Environment Monitoring System
DCM Deep chlorophyll maxima
DOC Dissolved organic carbon
DOY Day of the year
ED Downwelling irradiance
EMS Eastern Mediterranean Sea
GOOS Global Ocean Observing System
IOP Inherent optical property
kd Diffuse attenuation coefficient
LT Local time
LU Upwelling radiance
MAPE Median absolute percent error
MLD Mixed layer depth
MLP Multilayer perceptron
NASPG North Atlantic Subpolar Gyre
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NASTG North Atlantic Subtropical Gyre
NN Neural network
PAR Photosynthetically available radiation
PDF Probability density function
POC Particulate organic carbon
RMSE Root mean squared error
Rrs Remote sensing reflectance
SeaBASS SeaWiFS Bio-Optical Archive and Storage System
SLA Sea-level anomaly
SO Southern Ocean
SOCA Satellite Ocean Color merged with Argo data
tanh Hyperbolic tangent
WMO World Meteorological Organization
Z_iPAR_15 The depth at which instantaneous PAR value =15 µmol quanta m−2 s−1
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