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Abstract. Numerical models of ocean biogeochemistry are
becoming the major tools used to detect and predict the im-
pact of climate change on marine resources and to monitor
ocean health. However, with the continuous improvement
of model structure and spatial resolution, incorporation of
these additional degrees of freedom into fidelity assessment
has become increasingly challenging. Here, we propose a
new method to provide information on the model predictive
skill in a concise way. The method is based on the conjoint
use of a k-means clustering technique, assessment metrics,
and Biogeochemical-Argo (BGC-Argo) observations. The k-
means algorithm and the assessment metrics reduce the num-
ber of model data points to be evaluated. The metrics evaluate
either the model state accuracy or the skill of the model with
respect to capturing emergent properties, such as the deep
chlorophyll maximums and oxygen minimum zones. The
use of BGC-Argo observations as the sole evaluation data
set ensures the accuracy of the data, as it is a homogenous
data set with strict sampling methodologies and data qual-
ity control procedures. The method is applied to the Global
Ocean Biogeochemistry Analysis and Forecast system of
the Copernicus Marine Service. The model performance is
evaluated using the model efficiency statistical score, which
compares the model–observation misfit with the variability
in the observations and, thus, objectively quantifies whether

the model outperforms the BGC-Argo climatology. We show
that, overall, the model surpasses the BGC-Argo climatol-
ogy in predicting pH, dissolved inorganic carbon, alkalin-
ity, oxygen, nitrate, and phosphate in the mesopelagic and
the mixed layers as well as silicate in the mesopelagic layer.
However, there are still areas for improvement with respect
to reducing the model–data misfit for certain variables such
as silicate, pH, and the partial pressure of CO2 in the mixed
layer as well as chlorophyll-a-related, oxygen-minimum-
zone-related, and particulate-organic-carbon-related metrics.
The method proposed here can also aid in refining the design
of the BGC-Argo network, in particular regarding the regions
in which BGC-Argo observations should be enhanced to im-
prove the model accuracy via the assimilation of BGC-Argo
data or process-oriented assessment studies. We strongly rec-
ommend increasing the number of observations in the Arc-
tic region while maintaining the existing high-density of ob-
servations in the Southern Oceans. The model error in these
regions is only slightly less than the variability observed in
BGC-Argo measurements. Our study illustrates how the syn-
ergic use of modeling and BGC-Argo data can both provide
information about the performance of models and improve
the design of observing systems.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Since preindustrial times, the ocean has taken up ∼ 26 %
of total anthropogenic CO2 emissions (Friedlingstein et al.,
2022), leading to dramatic change in the ocean’s biogeo-
chemical (BGC) cycles, such as ocean acidification (Iida et
al., 2020). Moreover, deoxygenation (Breitburg et al., 2018)
and change in the biological carbon pump are now manifest-
ing globally (Capuzzo et al., 2018; Osman et al., 2019; Roxy
et al., 2016). Therefore, along with plastic pollution (Eriksen
et al., 2014) and an increase in fisheries pressure (Crowder et
al., 2008), major changes are occurring in marine ecosystems
at the global scale. In order to contextualize the monitoring
of ongoing changes, derive climate projections, and develop
better mitigation strategies, realistic numerical simulations of
the oceans’ BGC state are required.

Numerical models of ocean biogeochemistry represent a
prime tool to address these issues because they produce
three-dimensional estimates of a large number of chemical
and biological variables that are dynamically consistent with
the ocean circulation (Fennel et al., 2019). They can assess
past and current states of the BGC ocean and produce short-
term to seasonal forecasts as well as climate projections.
However, these models are far from being flawless, mostly
because there are still huge knowledge gaps in the under-
standing of key BGC processes and, as a result, the mathe-
matical functions that describe BGC fluxes, and the ecosys-
tem dynamics are too simplistic (Schartau et al., 2017). For
instance, most models do not include a radiative component
for the penetration of solar radiation in the ocean. Neverthe-
less, it has been shown that coupling such a component with
a BGC model improves the representation of the dynamics
of phytoplankton in the lower euphotic zone (Dutkiewicz et
al., 2015; Álvarez et al., 2022). Additionally, the parameter-
ization of the mathematical functions generally results from
laboratory experiments on a few representative species and
may not be suitable for extrapolation to ocean simulations
that need to represent the large range of organisms present
in oceanic ecosystems (Schartau et al., 2017; Ward et al.,
2010). Furthermore, the assimilation of physical data in cou-
pled physical–BGC models that improve the physical ocean
state can paradoxically degrade the simulation of the BGC
state of the ocean (Fennel et al., 2019; Park et al., 2018; Gas-
parin et al., 2021). Thus, a rigorous assessment of BGC mod-
els is essential to test their predictive skills, examine their
ability to reproduce BGC processes, and estimate confidence
intervals on model predictions (Doney et al., 2009; Stow et
al., 2009).

However, the evaluation of BGC models is limited by the
availability of data. It relies principally on a combination of
different data sets from satellite observations (such as the
chlorophyll a concentration), cruise observations, and per-
manent oceanic stations from large databases such as the
World Ocean Database (e.g., Doney et al., 2009; Dutkiewicz
et al., 2015; Lazzari et al., 2012, 2016; Lynch et al., 2009;

Séférian et al., 2013; Stow et al., 2009). All of these data
sets do not have a sufficient vertical/temporal resolution nor
a synoptic view, and they do not provide all of the variables
necessary to evaluate how models represent climate-relevant
processes such as air–sea CO2 fluxes, the biological carbon
pump, ocean acidification, or deoxygenation.

In 2016, the Biogeochemical-Argo (BGC-Argo) program
was launched with the goal of operating a global array of
1000 BGC-Argo floats equipped with sensors measuring the
following parameters: oxygen (O2), chlorophyll a (Chl a),
and nitrate (NO3) concentrations; particulate backscatter-
ing (bbp); pH; and downwelling irradiance (Biogeochemical-
Argo Planning Group, 2016; Claustre et al., 2020). Although
the planned number of 1000 floats has not been reached yet,
the BGC-Argo program has already provided a large num-
ber of quality-controlled vertical profiles of O2, Chl a, NO3,
bbp, and pH (Fig. 1). With respect to O2, Chl a, NO3, and
bbp, the North Atlantic and the Southern Oceans are reason-
ably well sampled, whereas pH is only well sampled in the
Southern Oceans. At the regional scale, the Mediterranean
Sea is also fairly well sampled by BGC-Argo floats (Salon
et al., 2019; Terzić et al., 2019; D’Ortenzio et al., 2020);
however, there are still large undersampled areas like the
Arctic Ocean, subtropical gyres, and the subpolar North Pa-
cific. Thanks to machine-learning-based methods (Bittig et
al., 2018; Sauzède et al., 2017), floats equipped with O2 sen-
sors can be additionally used to derive vertical profiles of
NO3, phosphate (PO4), silicate (Si), alkalinity (Alk), dis-
solved inorganic carbon (DIC), pH, and the partial pressure
of CO2 (pCO2).

The BGC-Argo data set represents a significant improve-
ment for the assessment of models compared with large
databases such as the World Ocean Database (Boyer et al.,
2013) or the Copernicus Marine Service in situ data set
(European Union-Copernicus Marine Service, 2015). Large
databases are composed of data collected using various in-
strument types and heterogenous data sampling methodolo-
gies. Therefore, for a given variable, the accuracy numbers
are not the same and change depending on the instrument
type (European Union-Copernicus Marine Service, 2019).
Consequently, the changing proportion of instrument types
over the years affects the overall accuracy over time. On the
other hand, the BGC-Argo data set is a homogenous data
set with strict and uniform sampling methodologies and data
quality control (QC) procedures. As a result, the BGC-Argo
data set has a satisfactory level of accuracy that remains sta-
ble over time (Johnson et al., 2017; Mignot et al., 2019).
Moreover, the number of quality-controlled observations col-
lected every year by the BGC-Argo fleet is now greater than
any other data set (Claustre et al., 2020). Using the BGC-
Argo data set as the single evaluation data set is, therefore, a
way to ensure consistent accuracy.

The BGC-Argo floats provide multivariate observations at
high vertical and temporal resolutions and for long periods
of time, producing nearly continuous time series of the ver-
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Figure 1. Spatial and temporal coverage of BGC-Argo quality-controlled pH, nitrate, chlorophyll a, oxygen, and bbp profiles: (a) the number
of quality-controlled profiles for the entire period per 4◦×4◦ bin; (b) the number of quality-controlled profiles per year. Note that this study
only uses data from 2009 to 2020 to evaluate model performance.

tical distribution of several biogeochemical variables. This is
not possible with the discrete, univariate vertical sampling
provided by cruise cast in situ measurements or with clima-
tological values derived from the World Ocean Atlas. All
of these specificities overcome the limitations of previous
data sets, especially with respect to their univariate nature
as well as their limited vertical and temporal resolutions.
This opens new perspectives for the evaluation of BGC mod-
els (Gutknecht et al., 2019; Salon et al., 2019; Terzić et al.,
2019).

The development of BGC models, coupled with the ongo-
ing increase in spatial and vertical resolutions, has resulted
in a significant rise in the volume of model output. Sim-
plification techniques are therefore required to provide deci-
pherable information on the model predictive skill. Allen et
al. (2007) proposed a methodology to reduce the spatial di-
mensions in model assessment exercises, thereby providing

concise information about the model performance. They used
an unsupervised learning algorithm to classify the southern
North Sea into five coherent BGC regions based on mod-
eled time series of temperature and NO3, PO4, and Si con-
centrations. They then evaluated the predictive capability of
the model in each BGC region (instead of each grid point),
thereby greatly reducing the number of points to be validated.
An additional method to reduce the dimensions of model–
data comparison is the use of assessment metrics (Hipsey et
al., 2020; Russell et al., 2018). In particular, metrics such
as depth-averaged state variables (e.g., mixed-layer-averaged
Chl a, NO3, and O2), mass fluxes and process rates (e.g.,
primary production or division rates), or emergent proper-
ties (e.g., the deep chlorophyll maximum, DCM, or oxygen
minimum zone, OMZ) are particularly useful to reduce the
number of model vertical layers to be compared with the ob-
servations.

https://doi.org/10.5194/bg-20-1405-2023 Biogeosciences, 20, 1405–1422, 2023
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The objective of the present study is twofold. First, we aim
to propose a methodology that uses the BGC-Argo data set,
an unsupervised learning algorithm, and assessment metrics
to simplify marine BGC model–data comparisons and, thus,
provides information (in a concise way) about model perfor-
mance. Second, we aim to use this methodology to identify
ocean regions where the model–observation misfit is larger
than the variability in the BGC-Argo data and, thus, provide
information on regions that should be better sampled by the
BGC-Argo observing system. The first step of the method
consists of defining 23 assessment metrics that are used both
to construct the BGC regions and, subsequently, to compare
the model output with the BGC-Argo data. In the second
step, following the approach of Allen et al. (2007), we use
an unsupervised learning algorithm, specifically a k-means
clustering technique, to classify the global ocean into eight
coherent BGC regions based on the climatological modeled
time series of the 23 assessments metrics. In the last step, the
skill of the model with respect to predicting the assessment
metrics is evaluated in each BGC region using the model
efficiency statistical score. Unlike other statistical metrics
such as the correlation coefficient, the bias, or the root-mean-
square (RMS) difference, which do not objectively quan-
tify whether the model performance is acceptable or not, the
model efficiency calculates whether the model outperforms
an observational climatology. Finally, the method is imple-
mented using the global ocean BGC analysis and forecasting
system of the Copernicus Marine Service (European Union-
Copernicus Marine Service, 2019).

The rest of the paper is organized as follows: Sect. 2
presents the data sets used in this work; Sect. 3 defines the
assessment metrics and details the k-means algorithm as well
as the model efficiency statistical score; Sect. 4 presents and
discusses the results; and, finally, Sect. 5 concludes the study.

2 Data

2.1 BGC-Argo float observations

The float data were downloaded from the Argo CORI-
OLIS Global Data Assembly Center in France (ftp://ftp.
ifremer.fr/argo, last access: January 2023). The conductivity–
temperature–depth (CTD) and trajectory data were quality
controlled using the standard Argo protocol (Wong et al.,
2015). The raw BGC signals were transformed to biogeo-
chemical variables (i.e., O2, Chl a, NO3, bbp, and pH) and
quality controlled according to international BGC-Argo pro-
tocols (Johnson et al., 2018a, b; Schmechtig et al., 2015,
2018; Thierry et al., 2018; Thierry and Bittig, 2018).

In the Argo data system, the data are available in three
data modes: “real time”, “adjusted”, and “delayed” (Bittig et
al., 2019). In the real-time mode, the raw data are converted
into state variables, and an automatic quality control is ap-
plied to “flag” gross outliers. In the adjusted mode, the real-

time data receive a calibration adjustment in an automated
manner. In the delayed mode, the adjusted data are adjusted
and validated by a scientific expert. While the real-time and
adjusted data are considered acceptable for operational ap-
plication (data assimilation), the delayed-mode data are de-
signed for scientific exploitation and represent the highest-
quality data with the ultimate goal (when time series with
sufficient duration have been acquired) of possibly extracting
climate-related trends (Bojinski et al., 2014). However, for
some variables, only a limited fraction of the data is accessi-
ble in the delayed mode. Consequently, for each variable, we
selected the highest-level data mode, in which at least 80 %
of the data are available (see Table 1). Note that this crite-
rion is not applied to O2, as only delayed-mode data were
selected for this variable in order to generate the pseudo-
observations from the CANYON-B neural network (more
detail given in the following). We removed data with miss-
ing location or time information and data flagged as “bad
data” (flag= 4). Depending on the parameter and the associ-
ated data mode, we also excluded data flagged as “potentially
bad data” (flag= 3) (see Table 1). Finally, it should be noted
that the status of the different modes of adjustment for bbp is
still very inhomogeneous in the global BGC-Argo database.
A quality control procedure in real time has just been pro-
posed to the Argo Data Management Team but is not yet op-
erationally implemented in the database (Dall’Olmo et al.,
2022). As there is no current official consensus regarding the
qualification of bbp data, we decided to use all data modes
for this study.

Particulate organic carbon (POC) concentrations were de-
rived from bbp observations. First, three consecutive low-pass
filters were applied on the vertical profiles of bbp to remove
spikes (Briggs et al., 2011): a two-point running median fol-
lowed by a five-point running minimum and a five-point run-
ning maximum. The filtered bbp profiles were then converted
into POC (mgC m−3) using a simplified version of the em-
pirical POC / bbp algorithm developed by Gali et al. (2022),
i.e., for depths larger than the mixed-layer depth (MLD):

POC
bbp
=c+ a · e−0.001·b·(z−MLD)

z >MLD, (1)

where c is a constant deep value and b is the slope of the
exponential decrease; the aforementioned variables are set
to 12 010 mgC m−3 m and −6.57, respectively, as proposed
by Gali et al. (2022). The global coefficient a is set to
37 990 mgC m−3 m to be consistent with a relationship, de-
veloped for global applications (i.e., POC= 38 687.27·b0.95

bp )

(European Union-Copernicus Marine Service, 2020). In the
mixed layer (ML), z is fixed at z=MLD, and Eq. (1) simpli-
fies to
POC
bbp
= c+ a,

z ≤MLD. (2)

Biogeosciences, 20, 1405–1422, 2023 https://doi.org/10.5194/bg-20-1405-2023
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Table 1. Data mode and QC flags of the BGC-Argo observations used in this study. In the Argo data system, the data are available in three
data modes: “real time”, “adjusted”, and “delayed”. See Sect. 2.1 for a brief description of each data mode. The flags “3” and “4” refer to
“potentially bad data” and “bad data”, respectively. The reader is referred to Bittig et al. (2019) for a more detailed description of the Argo
data modes and flags.

Parameter Data mode Data mode of associated
pressure, temperature,
and salinity profiles

QC flags

Chl a Adjusted and
delayed

Real time, adjusted,
and delayed

Real time (P,T ,S): all flags except 4
Adjusted or delayed: all flags except 3 and 4

O2 Delayed Delayed All flags except 3 and 4

NO3 Adjusted and
delayed

Real time, adjusted,
and delayed

Real time (P,T ,S): all flags except 4
Adjusted or delayed: all flags except 3 and 4

pH Adjusted and
delayed

Real time, adjusted,
and delayed

Real time (P,T ,S): all flags except 4
Adjusted or delayed: all flags except 3 and 4

bbp Real time, adjusted,
and delayed

Real time, adjusted,
and delayed

Real time (bbp,P ,T ,S): all flags except 4
Adjusted or delayed (bbp,P ,T ,S): all flags except 3 and 4

“(P,T,S)” refers to pressure, temperature, and salinity.

Finally, we complemented the existing BGC-Argo data set
with pseudo-observations of NO3, PO4, Si, Alk, and DIC
concentrations as well as pH and pCO2 using the CANYON-
B neural network (Bittig et al., 2018). CANYON-B estimates
vertical profiles of nutrients; the carbonate system variables
from concomitant measurements of float pressure, temper-
ature, salinity, and O2 qualified in delayed mode; and the
associated geolocalization and date of sampling informa-
tion. CANYON-B was trained and validated using version
2 of the Global Ocean Data Analysis Project (GLODAPv2)
data set (Olsen et al., 2016). The CANYON-B estimates
of NO3 and pH were merged with measured values based
on the rationale that CANYON-B estimates have RMS er-
rors (NO3 = 0.7 µmol kg−1 and pH= 0.013) (Bittig et al.,
2018) that are of the same order of magnitude as those of
the BGC-Argo observation errors (NO3 = 0.5 µmol kg−1 and
pH= 0.07) (Mignot et al., 2019; Johnson et al., 2017).

Finally, we verified that the RMS errors in BGC-Argo data
(both measured and from CANYON-B estimates) are lower
than the RMS difference between the model and BGC-Argo
data; therefore, the comparison of simulated properties with
the BGC-Argo data leads to a meaningful evaluation of the
model performance. We believe it is reasonable to draw con-
clusions on the model uncertainty from BGC-Argo data as
long as the BGC-Argo errors are much lower than the model–
observation RMS difference.

2.2 The Global Ocean Biogeochemistry Analysis and
Forecast system of the Copernicus Marine Service

The global model simulation used in this study (see Ap-
pendix A1) originates from the global ocean hydrodynamic–
biogeochemical coupled system, based on the NEMO–

PISCES (Nucleus for European Modelling of the Ocean–
Pelagic Interaction Scheme for Carbon and Ecosystem Stud-
ies) model, implemented and operated by Mercator Ocean
for the Copernicus Marine Service within the framework of
the European Union’s Earth observation program (European
Union-Copernicus Marine Service, 2019). The BGC compo-
nent is constrained by the assimilation of satellite Chl a con-
centrations, and a climatological damping is applied to ni-
trate, phosphate, oxygen, and silicate with the World Ocean
Atlas 2013, to dissolved inorganic carbon and alkalinity with
the GLODAPv2 climatology (Lauvset et al., 2016), and to
dissolved organic carbon and iron with a 4000-year PISCES
climatological run. The BGC model is forced in offline mode
by daily averages of ocean physics, sea ice, and atmospheric
conditions. The ocean physics and sea-ice forcing come from
the global ocean physics analysis and forecasting system at
1/12◦ (Lellouche et al., 2018); the aforementioned system
assimilates along-track altimeter data, satellite sea surface
temperature and sea-ice concentration, and in situ tempera-
ture and salinity vertical profiles. The BGC model has a 1/4◦

horizontal resolution with 50 vertical levels (22 levels in the
upper 100 m, and the vertical resolution decreases from 1 m
near the surface to 450 m near the ocean bottom.

We used the daily output of Chl a, NO3, PO4, Si, O2, pH,
DIC, Alk, and pCO2 as well as the weekly output of two
size classes of phytoplankton, the small detrital particles and
microzooplankton (resampled offline from a weekly to daily
frequency via constant interpolation) from 2009 to 2020.
Note that the method of linear resampling, which artificially
increases the number of data, could potentially bias the sta-
tistical results, especially in regions with poor data coverage.
As suggested by Gali et al. (2022), the POC concentration
was computed offline by adding the two size classes of phy-

https://doi.org/10.5194/bg-20-1405-2023 Biogeosciences, 20, 1405–1422, 2023
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toplankton (the small detrital particles and microzooplankton
modeled by PISCES) together. This particular combination
of phytoplanktonic and non-phytoplanktonic organisms has
been shown to match the small POC observed by the floats.
The partial pressures of CO2 values were extrapolated in the
mixed layer from the surface value estimated by the model.
The Black Sea was not considered in the present analysis
because the model solutions are of poor quality. Finally, the
daily model output was co-located in time and space closest
to the BGC-Argo float positions and was interpolated to the
sampling depth of the float observations. The characteristics
of the model are further detailed in the Appendix.

3 Methods

3.1 Assessment metrics

In this section, we present the 23 metrics used for the clus-
tering of the ocean and for the assessment of the model
simulation with BGC-Argo data. The metrics are associated
with the carbonate chemistry, the biological carbon pump,
and oxygen levels. Most of the metrics evaluate the model
state accuracy via the comparison of simulated state vari-
ables with BGC-Argo observations that are depth averaged in
the mixed (hereinafter indicated with the subscript “mixed”)
and mesopelagic (hereinafter indicated with the subscript
“meso”) layers. This two-layer comparison between model
and BGC-Argo data provides an indirect evaluation of the
key processes and fluxes associated with the carbonate chem-
istry, biological carbon pump, and oxygen levels in the mixed
and mesopelagic layers. In addition, some of the metrics as-
sess the skill of the model with respect to capturing emergent
properties, such as the nitracline depths, DCMs, and OMZs.
The metrics are described below and summarized in Table 2.
The definition of the metrics is the same for the model and
the BGC-Argo data. The MLD is computed, following De
Boyer et al. (2004), as the depth at which the change in po-
tential density (from its value at 10 m) exceeds 0.03 kg m−3.
Dall’Olmo and Mork (2014) define the mesopelagic layer as
the region between the deeper of either the euphotic layer
depth or the MLD and a depth of 1000 m. However, for ease
of use, we adopt a simplified definition that considers the
mesopelagic layer to be the region between the MLD and a
depth of 1000 m. To ensure the accuracy of the metrics’ cal-
culation, we have checked the representation of the MLDs in
the model. The model’s MLDs closely match the observed
data, as indicated by an overall mean-square difference of
approximately 30 % of the total variance in the observations.

3.2 Carbonate chemistry

The uptake of ∼ 26 % of anthropogenic CO2 by the global
ocean (Friedlingstein et al., 2022) has altered the oceanic
carbonate chemistry over the past few decades (Iida et al.,
2020). Therefore, assessing how models correctly represent

the oceanic carbonate chemistry is critical if we aim to derive
accurate climate projections of future change. The classical
variables for the study of carbonate chemistry are DIC, Alk,
pH, and pCO2 (Williams and Follows, 2011). These vari-
ables are assessed in the mixed (DICmixed, Alkmixed, pHmixed,
and pCO2 mixed) and mesopelagic (DICmeso, Alkmeso, and
pHmeso) layers. The partial pressure of CO2 is only assessed
in the mixed layer, as the evaluation of pCO2 mixed plays a
critical role in the assessment of BGC models’ skill to cor-
rectly represent the air–sea CO2 flux.

3.3 Biological carbon pump

The biological carbon pump is the transformation of nutri-
ents and dissolved inorganic carbon into organic carbon in
the upper part of the ocean via phytoplankton photosynthesis
and the subsequent transfer of this organic material into the
deep ocean. The functioning of this pump relies on key pools
of nutrients and carbon as well as several processes that con-
trol mass fluxes between the pools. Changes in the biological
carbon pump are now manifesting globally (Capuzzo et al.,
2018; Osman et al., 2019; Roxy et al., 2016).

One way to indirectly evaluate a model’s ability to ac-
curately capture essential processes related to the biologi-
cal carbon pump in the ocean’s upper layer, such as pri-
mary production, respiration, and grazing, is to compare var-
ious ML pools (here the nutrients (NO3 mixed, PO4 mixed, and
Simixed), Chlmixed, and POCmixed) with BGC-Argo observa-
tions. Similarly, the assessment of the mesopelagic nutri-
ents and POC concentration (hereinafter denoted NO3 meso,
PO4 meso, Simeso, and POCmeso) provides an indirect evalua-
tion of the key mesopelagic layer processes, such as export
production and respiration.

In stratified systems, a DCM is formed at the base of the
euphotic layer (Barbieux et al., 2019; Cullen, 2015; Letelier
et al., 2004; Mignot et al., 2014, 2011). It has been suggested
that the DCM plays a key role in the synthesis of organic
carbon by phytoplankton (Macías et al., 2014). Therefore,
DCMs are key features to be assessed in BGC models with
respect to processes involved in the biological carbon pump,
such as primary production. However, the DCM layer gen-
erally escapes detection by remote sensing. Furthermore, the
DCM is also an emergent feature that develops in response to
complex physical and biogeochemical interactions (Cullen,
2015). Thus, its evaluation provides critical information re-
garding the accuracy of the model with respect to capturing
complex patterns of key ecosystem processes. The depth and
magnitude of the DCM (HDCM and ChlDCM, respectively)
are helpful metrics for the assessment of DCM dynamics.
The depth of the DCM is calculated as the depth where the
Chl a maximum occurs in the profile, with the criterion that
the HDCM should be deeper than the MLD. The magnitude
of the DCM corresponds to the Chl a value at the HDCM.

NO3 is often depleted in the surface layers and is a limiting
factor for phytoplankton growth in most oceanic regions. The
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Table 2. The metrics used to assess the model simulation with BGC-Argo data. For each metric, the level of assessment, as described in
Hipsey et al. (2020), is also indicated.

Process Metric Definition Units Assessment level

Carbonate chemistry pCO2 mixed Depth-averaged pCO2 in the mixed layer µatm State variable
DICmixed Depth-averaged DIC in the mixed layer µmol kg−1 State variable
Alkmixed Depth-averaged Alk in the mixed layer µmol kg−1 State variable
DICmeso Depth-averaged DIC in the mesopelagic layer µmol kg−1 State variable
Alkmeso Depth-averaged Alk in the mesopelagic layer µmol kg−1 State variable
pHmixed Depth-averaged pH in the mixed layer Total State variable
pHmeso Depth-averaged pH in the mesopelagic layer Total State variable

Biological carbon pump Chlmixed Depth-averaged Chl a in the mixed layer mg m−3 State variable
NO3 mixed Depth-averaged NO3 in the mixed layer µmol kg−1 State variable
PO4 mixed Depth-averaged PO4 in the mixed layer µmol kg−1 State variable
Simixed Depth-averaged Si in the mixed layer µmol kg−1 State variable
NO3 meso Depth-averaged NO3 in the mesopelagic layer µmol kg−1 State variable
PO4 meso Depth-averaged PO4 in the mesopelagic layer µmol kg−1 State variable
Simeso Depth-averaged Si in the mesopelagic layer µmol kg−1 State variable
POCmixed Depth-averaged POC in the mixed layer mg m−3 State variable
POCmeso Depth-averaged POC in the mesopelagic layer mg m−3 State variable
ChlDCM Magnitude of DCM mg m−3 Emergent property
HDCM Depth of DCM m Emergent property
Hnit Depth of nitracline m Emergent property

Oxygen levels O2 mixed Depth-averaged O2 in the mixed layer µmol kg−1 State variable
O2 meso Depth-averaged O2 in the mesopelagic layer µmol kg−1 State variable
O2 min Value of O2 minimum µmol kg−1 Emergent property
HO2min Depth of O2 minimum m Emergent property

vertical supply of NO3 to the surface layers depends, among
other factors, on the vertical gradient of NO3 (the nitracline)
and, in particular, on its depth (the nitracline depth) (Cer-
meno et al., 2008; Omand and Mahadevan, 2015). Therefore,
the comparison of the simulated nitracline depth (Hnit) with
BGC-Argo observations allows for an indirect assessment of
the model performance with respect to reproducing vertical
fluxes of NO3. Following previous studies (Cermeno et al.,
2008; Lavigne et al., 2013; Richardson and Bendtsen, 2019),
the depth of the nitracline is identified as the first depth where
NO3 is detected. A detection threshold of 1 µmol kg−1 is
used, which is an upper estimate of the accuracy of BGC-
Argo NO3 data (Johnson et al., 2017; Mignot et al., 2019).

3.4 Oxygen levels

Oxygen levels in the global and coastal waters have de-
clined over the whole water column over the past decades
(Schmidtko et al., 2017), and OMZs are expanding (Stramma
et al., 2008). Therefore, assessing how models correctly rep-
resent ocean oxygen levels as well as the OMZs is critical to
monitor their change over time. Similar to the assessment of
DCMs, evaluating oxygen minimum zones (OMZs) provides
insight into how the model represents emergent dynamics
resulting from intricate physical and biogeochemical inter-

actions (Paulmier and Ruiz-Pino, 2009). Oxygen levels are
evaluated in the mixed (O2 mixed) and mesopelagic (O2 meso)

layers. OMZs are defined as oceanic regions where O2 lev-
els are lower than 20 µmol kg−1 (Paulmier and Ruiz-Pino,
2009). OMZs are characterized by their depths (H2 min) and
their concentrations (O2 min).

3.5 Bioregionalization of the global ocean

In this study, we use the k-means clustering algorithm (Har-
tigan and Wong, 1979) to regionalize the ocean based on the
modeled climatological monthly time series of the 23 metrics
described previously. The k-means clustering algorithm is an
unsupervised machine learning technique that groups similar
objects together in a way that maximizes similarity between
objects within a group and minimizes similarity between ob-
jects in different groups. This clustering tool has been suc-
cessfully used to classify marine BGC regions in different
oceanic basins based on the seasonal cycle of satellite chloro-
phyll (Kheireddine et al., 2021; Mayot et al., 2016; Lacour et
al., 2015; D’Ortenzio and d’Alcala, 2009). The step-by-step
methodology used in this study is described in the following.

The first step in the analysis involved computing monthly
climatological time series for the 23 metrics at each model
grid cell. These time series were derived from the monthly
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climatological time series of state variables predicted by the
model from 2009 to 2020. To account for the lognormal dis-
tribution and the wide range of values for metrics in units of
Chl a or POC, a log-10 transformation was applied to these
metrics. Second, to take the 6-month shift in seasons between
the Northern and Southern hemispheres into consideration,
the dates for grid cells located in the Southern Hemisphere
were shifted by 6 months (Bock et al., 2022). Third, to clas-
sify model grid cells based on the seasonality and amplitude
of the 23 metrics, each metric was standardized by subtract-
ing the global mean and dividing by the global standard de-
viation. This ensured that each metric had a mean of 0 and
a standard deviation of 1, enabling comparison across met-
rics with different units. Fourth, to reduce the dimensionality
of the data set, a principal component analysis was applied
to the scaled data. Only the components that explain 99 %
of the variance in the data set were kept, thereby reducing
the dimensions of the data set by 85 %. A k-means cluster-
ing analysis was then performed on the resulting data set.
Following Kheireddine et al. (2021), the number of clusters
was determined based on a silhouette analysis (Rousseeuw,
1987), which yielded a value of eight for the number of clus-
ters.

3.6 Model efficiency

To quantify the model predictive skill, a model efficiency sta-
tistical score (me) was computed for each metric and in each
BGC region:

me = 1−
∑N

i=1(mi − oi)
2∑N

i=1(oi − o)2
, (3)

where mi and oi are the model and BGC-Argo matched
values, respectively; o is the BGC-Argo climatology; and
N is the number of matchups. Assuming that the spatial
variations are small in a given BGC region, o represents
the temporal average and

∑N
i=1(oi − o)2 represents the vari-

ance due to temporal fluctuations. The model efficiency tests
whether the model outperforms the BGC-Argo climatology
(me > 0; Fennel et al., 2022) or, stated differently, if the
model–data mean-square difference is lower than the obser-
vation variance, i.e., 1

N

∑N
i=1(mi − oi)

2 < 1
N

∑N
i=1(oi − o)2.

To ensure the robustness of me, we verified that the number
of matchups for each metric and in each BGC region was
greater than 100; outliers were then removed using Tukey’s
fences (Tukey, 1977).

4 Results and discussion

4.1 BGC regions of the global ocean

The k-means clustering algorithm identified eight distinct
BGC regions (Fig. 2). Six of the eight BGC regions corre-
spond to well-defined spatial regions and are, thus, named

Figure 2. Spatial distribution of the eight BGC regions obtained
with a k-means clustering method applied to a data set of modeled
climatological monthly time series of the 23 assessment metrics.

accordingly: “Arctic”, “equatorial” (Equ.), “Mediterranean
Sea” (Med. Sea), “OMZs”, “subtropical gyres” (Sub. Gyres),
and “Southern Oceans”. The other two BGC regions, i.e.,
“low nutrient bloom” (Low Nut. Bloom) and “high nutrient
bloom” (High Nut. Bloom), are located in the North Atlantic
and North Pacific oceans as well as in the lower latitudes of
the Southern Oceans region. These two BGC regions corre-
spond to ocean basins that experience a phytoplankton bloom
in the springtime (Westberry et al., 2016). The main differ-
ence between these regions is that macronutrients such as ni-
trate and phosphate are abundant in one of them throughout
the year due to phytoplankton growth being mainly limited
by iron (Williams and Follows, 2011). Finally, it should be
noted that outlier grid cells were not removed from the anal-
ysis; these outliers are mainly present in grid cells close to
the coast. Additionally, grid cells with bathymetry shallower
than 1000 m were not included in the clustering analysis, as
metrics associated with mesopelagic processes cannot be cal-
culated in these shallow grid cells.

The BGC regions found in our study are generally coher-
ent with the biomes estimated in Fay and McKinley (2014)
(hereinafter denoted FM2014). The Arctic and Southern
Oceans regions correspond to the FM2014 ice biome. The
Sub. Gyres region corresponds to the FM2014 subtropical
permanently stratified biome. The Equ. BGC region repre-
sents a larger area than the equatorial biome in FM2014. The
Low Nut. Bloom and High Nut. Bloom regions correspond
to the FM2014 subtropical seasonally stratified and subpolar
seasonally stratified biomes, respectively. These two BGC re-
gions are coherent in the North Pacific and the Southern
Oceans in both studies. They differ, however, in the North
Atlantic: in FM2014, the subpolar North Atlantic is divided
between the subtropical seasonally stratified and subpolar
seasonally stratified biomes, whereas in our study this area
is only represented by one BGC region – Low Nut. Bloom.
Finally, the Med. Sea and OMZs BGC regions are not repre-
sented in FM2014. The main differences between our study
and FM2014 are due to variations in the methodology used
to identify BGC regions. In our study, we used 23 input vari-
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ables to identify BGC regions, whereas clustering was based
on only one BGC input variable (Chl a) and three physical
variables (sea surface temperature, MLD, and sea-ice frac-
tion) in FM2014. Our method allows the identification of
specific BGC regions whose main characteristics are deter-
mined by variables other than Chl a, such as the OMZs BGC
region. Furthermore, our method includes coastal areas and
identifies the Med. Sea, which is not included in FM2014
because it is considered a coastal region, as a BGC region.

4.2 Model performance

Figures 3, 4, and 5 display the model efficiency (me) cal-
culated for each assessment metric and BGC region. To en-
hance clarity, the me values are grouped by process, namely
carbonate chemistry, biological carbon pump, and oxygen
levels. The results are presented as bubble plots (Figs. 3b,
4b, 5b), where the size of the bubble is proportional to the
me value. A bar plot (Figs. 3c, 4c, 5c) shows the median me
value for a given assessment metric across all BGC regions,
while another bar plot (Figs. 3a, 4a, 5a) shows the median me
value for a given BGC region across all assessment metrics.
Due to the limited number of assessment metrics associated
with oxygen levels in most regions (i.e., 2), the mean is used
instead of the median. The x and y axes in Figs. 3b, 4b, and
5b are arranged in descending order based on the median me
value across all assessment metrics (as shown Figs. 3a, 4a,
and 5a) and the median me value across all BGC regions (as
shown in Figs. 3b, 4b, and 5b), respectively.

4.3 Carbonate chemistry

The model demonstrates improved performance with re-
spect to predicting certain carbonate chemistry metrics (i.e.,
Alkmeso, DICmixed, Alkmixed, DICmeso, and pHmeso) com-
pared with the BGC-Argo climatology, as indicated by me-
dian me values significantly greater than 0 (Fig. 3b, c). How-
ever, the model’s ability to reproduce instantaneous variabil-
ity in pHmixed is more limited, with a me value close to 0, in-
dicating no improvement over a simple average of observed
values. Furthermore, the model underperforms the BGC-
Argo climatology for pCO2 mixed across all regions. Despite
these limitations, the model provides an overall better esti-
mate of carbonate chemistry dynamics in all BGC regions
compared with the BGC-Argo climatology, as evidenced by
Fig. 3a.

4.4 Biological carbon pump

The efficiency of the model with respect to estimating the
biological carbon pump metrics varies across both metrics
and regions (Fig. 4a, b, c). The model outperforms the BGC-
Argo climatology with respect to estimating PO4 and NO3
in the mesopelagic and mixed layer as well as with respect
to estimating Simeso and Hnit. However, the model’s ability
to predict Si decreases significantly as one moves from the

mesopelagic to the mixed layer. Additionally, the metrics as-
sociated with the first trophic level, such as Chlmixed, HDCM,
ChlDCM, POCmixed, and POCmeso, are systematically outper-
formed by the BGC-Argo climatology, with median me val-
ues less than 0 in nearly all BGC regions (Fig. 4b). Regional
analysis of the median me values (Fig. 4a) shows that the
model performs better than the observational mean (median
me values greater than 0) in only a few regions (i.e., High
Nut. Bloom, Low Nut. Bloom, Med. Sea, and OMZs), in-
dicating that the model performs relatively well in these re-
gions but may not be as accurate in the other regions.

4.5 Oxygen levels

The model provides better estimates of mixed and
mesopelagic O2 concentrations in most BGC regions com-
pared with the BGC-Argo climatology, as evidenced by con-
sistently positive me values in Fig. 5b. However, the BGC-
Argo climatology provides a better representation of the
magnitude of O2 min compared with the model, while the
model performs better than the climatology with respect to
predicting HO2 min, although only in the OMZs BGC region.
These results suggest that, while it performs well with respect
to estimating mixed and mesopelagic O2 concentrations in
most BGC regions, the model does not accurately capture
the depth and magnitude of OMZs.

4.6 Discussion

The model outperforms the BGC-Argo climatology for DIC,
Alk, NO3, and PO4 in the mesopelagic and mixed layers
as well as for Si in the mesopelagic layer. We attribute this
good performance to the effective application of climatolog-
ical damping. As described in the Appendix, climatological
damping mitigates the effects of physical data assimilation
in the offline coupled hydrodynamic–biogeochemical sys-
tem, which can lead to unrealistic drift of various biogeo-
chemical variables. Specifically, we used the World Ocean
Atlas 2013 (Garcia et al., 2013, 2014) for NO3, PO4, O2, and
Si, whereas we utilized GLODAPv2 climatology (Lauvset et
al., 2016) for DIC and Alk. However, our analysis revealed
that the model’s performance with respect to estimating Si in
the mixed layer is significantly degraded compared with the
mesopelagic layer, indicating the presence of additional fac-
tors affecting the model’s ability to accurately estimate this
variable. Further investigation is required to identify these
factors and improve the model’s performance with respect to
estimating Si in the mixed layer.

For the three Chl a-related metrics, the model performs
worse than the BGC-Argo climatology. This is unexpected,
as the model incorporates a reduced-order Kalman filter (Lel-
louche et al., 2013) that assimilates daily L4 remotely sensed
surface Chl a, providing a mixed-layer correction to the mod-
eled Chl a (see Appendix). We verified that the assimila-
tion of satellite Chl a improves the model’s ability to predict
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Figure 3. (b) Bubble plot of the model efficiency statistical score (me) as a function of BGC regions (Arctic, equatorial (Equ.), high nutrient
bloom (High Nut. Bloom), low nutrient bloom (Low Nut. Bloom), Mediterranean Sea (Med. Sea), oxygen minimum zones (OMZs), Southern
Oceans, and subtropical gyres (Sub. Gyres)) and the assessment metrics associated with the carbonate chemistry (depth-averaged pCO2 in
the mixed layer (pCO2 mixed), depth-averaged DIC in the mixed layer (DICmixed), depth-averaged Alk in the mixed layer (Alkmixed), depth-
averaged DIC in the mesopelagic layer (DICmeso), depth-averaged Alk in the mesopelagic layer (Alkmeso), depth-averaged pH in the mixed
layer (pHmixed), and depth-averaged pH in the mesopelagic layer (pHmeso)). The size of a bubble is proportional to the value of me. For
a given assessment metric, the median values of me over all BGC regions are represented as a bar plot in panel (c). Similarly, for a given
BGC region, the median values of me across all assessment metrics are represented as a bar plot in panel (a). In panel (b), the x and y axes
are arranged in descending order of the median value of me over all assessment metrics and the median value of me over all BGC regions,
respectively. The blue and orange colors correspond to a positive and negative me, respectively.

Chl a, as the model–BGC-Argo-data misfit is lower com-
pared with a simulation without assimilation (not shown).
Furthermore, the model–satellite misfit was also found to
be lower than the variability in the satellite data (European
Union-Copernicus Marine Service, 2019). These results sug-
gest that discrepancies between the assimilated satellite Chl a
product and the BGC-Argo data may be responsible for the
observed model–BGC-Argo-data misfit. Therefore, we sug-
gest that future studies investigate the consistency between
ocean color products and BGC-Argo Chl a products at a
global scale, as these two products are expected to be as-
similated together in future operational BGC systems (Ford,
2021).

Overall, the model also performs worse or no better than
the BGC-Argo climatology with respect to predicting POC
concentrations, the magnitude and depth of OMZs, pHmixed,
and pCO2 mixed. The poor performance of PISCES-based
simulations relative to BGC-Argo POC observations has
been extensively studied in Gali et al. (2022). They pointed
out that the large model–data misfit could be the result of
an imperfect BGC-Argo POC–bbp conversion factor, unsuit-
able model parameters associated with POC dynamics, and
missing processes in the model structure. Similarly, the poor
model skill in capturing the OMZs’ dynamics has also al-
ready been documented in several studies (Busecke et al.,
2022; Schmidt et al., 2021; Cabré et al., 2015). All of these
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Figure 4. Same as Fig. 3 but for the assessment metrics associated with the biological carbon pump: depth-averaged Chl a in the mixed
layer (Chlmixed), depth-averaged NO3 in the mixed layer (NO3 mixed), depth-averaged PO4 in the mixed layer (PO4 mixed), depth-averaged
Si in the mixed layer (Simixed), depth-averaged NO3 in the mesopelagic layer (NO3 meso), depth-averaged PO4 in the mesopelagic layer
(PO4 meso), depth-averaged Si in the mesopelagic layer (Simeso), depth-averaged POC in the mixed layer (POCmixed), depth-averaged POC
in the mesopelagic layer (POCmeso), magnitude of the DCM (ChlDCM), depth of the DCM (HDCM), and depth of the nitracline (Hnit).

studies suggested that improving the ocean circulation in
physical models may be the most important factor to improve
the accuracy of OMZs’ model predictions. Finally, the neg-
ative model efficiencies for pHmixed and pCO2 mixed can be
attributed to the fact that these variables are driven by DIC,
Alk, temperature, and salinity. Therefore, even small uncer-
tainties in the model estimates of DIC, Alk (as shown in
Fig. 3b), temperature, and salinity (Lellouche et al., 2018)
can result in poor model performance in capturing the vari-
ability in pH and pCO2. This highlights the importance of
accurately modeling these four variables to improve model
estimates of pH and pCO2.

4.7 Recommendation for the design of the BGC-Argo
observing system

Observing system simulation experiments (OSSEs) have
been the primary tool used to provide information about
the design of the BGC-Argo observing system (Ford, 2021;
Biogeochemical-Argo Planning Group, 2016). OSSEs typ-
ically comprises a realistic “nature run”, which represents
“the truth” from which synthetic observations are sampled.
The synthetic observations represent the observing system to
be designed. To test its impact on improving model’s predic-
tive skill, the synthetic observations are then assimilated in
an “assimilative run”. The accuracy of the assimilative run is
then evaluated against the nature run. Here, we use the real
BGC-Argo observations to provide information about the de-
sign of the BGC-Argo network. More specifically, our aim is
to gain information about the regions where the model errors
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Figure 5. Same as Fig. 3 but for the assessment metrics associated with the oxygen levels: depth-averaged O2 in the mixed layer (O2 mixed),
depth-averaged O2 in the mesopelagic layer (O2 meso), value of the O2 minimum (O2 min), and depth of the O2 minimum (HO2 min). Note
that the bar plot in panel (a) represents the mean value of me over all assessment metrics.

are greater than the variability in the BGC-Argo data and,
consequently, where BGC-Argo observations should be en-
hanced to improve the model accuracy via BGC-Argo data
assimilation or process-oriented assessment studies.

For a given BGC region, we compute a single multivari-
ate score corresponding to the median of the 23 me values
associated with each assessment metric (Fig. 6). This is con-
sistent with the fact that the BGC-Argo floats which are now
deployed observe the five variables used to derive the assess-
ment metrics, i.e., O2, Chla , NO3, bbp, and pH. In the Arctic
and Southern Oceans BGC regions (typically north of 60◦ N
and south of 60◦ S, respectively), the median me is barely
greater than 0, suggesting that, in these regions, the model
performs slightly better than a simple mean of the observed
values. In these two regions, the model is not well con-
strained by the assimilation of remotely sensed Chl a because
satellite observations of ocean color are not possible for most
of the year due to ubiquitous cloud cover. In addition, the
scarcity of in situ observations probably makes the clima-

tological forcing less efficient in these regions. Together,
these factors are likely to lead to poorer model performance
compared with other regions. Consequently, we strongly rec-
ommend enhancing the Arctic region where BGC-Argo ob-
servations are scarce (Fig. 1) and where the winter–spring
months are particularly undersampled (not shown). We also
recommend maintaining the existing high density of BGC-
Argo observations in the Southern Oceans. These observa-
tions are critical to better constrain the model in these two
regions where the constraint of models via the assimilation
of satellite observations is not possible for most of the year.

5 Conclusions

In this study, we propose a method based on the global data
set of BGC-Argo observations, a k-means clustering algo-
rithm, and 23 assessment metrics to simplify model–data
comparison and provide information on the Copernicus Ma-
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Figure 6. Median of the 23 me values associated with each assess-
ment metric by BGC region.

rine Service forecasting system predictive skill and the de-
sign of the BGC-Argo observing system. The k-means al-
gorithm identified eight BGC regions in the model simula-
tion that are consistent with the work of Fay and McKin-
ley (2014). Within each BGC region and for each assessment
metric, we compute a model efficiency statistical score that
quantifies whether the model outperforms the BGC-Argo cli-
matology by comparing the model–BGC-Argo-data mean-
square difference with the observation variance.

Overall, the model surpasses the BGC-Argo climatology
with respect to predicting pH, DIC, Alk, O2, NO3, and PO4
in the mesopelagic and mixed layers as well as Si in the
mesopelagic layer. For the other metrics, whose model pre-
dictions are outperformed by the BGC-Argo climatology, we
provide suggestions to reduce the model–data misfit and,
thus, increase the model efficiency. Regarding the estimation
of Si in the mixed layer, we suggest the presence of additional
factors that may affect the model’s ability to accurately esti-
mate this variable. Further investigation is necessary to iden-
tify these factors and improve the model’s performance in
this regard. For Chl a-related metrics, we recommend check-
ing the consistency between ocean color products and BGC-
Argo Chl a products at the global scale, as this may ex-
plain part of the misfit between the model, which assimilates
satellite Chl a and BGC-Argo observations. The discrepan-
cies between modeled and observed POC and OMZs have
been already investigated in previous studies. It has been
suggested that improving the BGC-Argo POC–bbp conver-
sion factor, tuning the model parameters, and implementing
missing processes in the model structure could decrease the
model–data inconsistencies associated with POC dynamics.
Similarly, improving the ocean circulation in physical mod-
els should improve the accuracy of OMZ model predictions.
Finally, pHmixed and pCO2 mixed should be better modeled if
the uncertainties associated with DIC, Alk, temperature, and
salinity in the mixed layer are reduced.

The proposed method can also be used to optimize the
design of the BGC-Argo network. In particular, the regions
where BGC-Argo observations should be enhanced to reduce
the model–data misfit via the assimilation of BGC-Argo data

or process-oriented assessment studies. We strongly recom-
mend enhancing the observation density in the Arctic region
and maintaining the existing high density of observations in
the Southern Oceans. These are two regions where the model
error is barely less than the variability in BGC-Argo observa-
tions and where it is not possible to use satellite observations
to constrain the models via assimilation most of the year.

Appendix A

The model used in this study features the offline coupled
NEMO–PISCES model with a 1/4◦ horizontal resolution, 50
vertical levels (22 levels in the upper 100 m, and the vertical
resolution decreases from 1 m near the surface to 450 m near
the ocean bottom), and a daily temporal resolution, covering
the period from 2009 to 2020.

The biogeochemical model PISCES v2 (Aumont et al.,
2015) is a model of intermediate complexity designed for
global ocean applications and is part of NEMO modeling
platform. It features 24 prognostic variables and includes five
nutrients that limit phytoplankton growth (nitrate, ammo-
nium, phosphate, silicate, and iron) and four living compart-
ments (two phytoplankton size classes, nanophytoplankton
and diatoms, which are small and large, respectively, and two
zooplankton size classes, microzooplankton and mesozoo-
plankton, which are small and large, respectively); the bac-
terial pool is not explicitly modeled. PISCES distinguishes
three nonliving detrital pools for organic carbon, particles
of calcium carbonate, and biogenic silicate. Additionally, the
model simulates the carbonate system and dissolved oxygen.
PISCES has been successfully used in a variety of biogeo-
chemical studies, both at the regional and global scale (Bopp
et al., 2005; Gehlen et al., 2006, 2007; Gutknecht et al., 2019;
Lefèvre et al., 2019; Schneider et al., 2008; Séférian et al.,
2013; Steinacher et al., 2010; Tagliabue et al., 2010).

The dynamical component is the latest Mercator Ocean
global 1/12◦ high-resolution ocean model system, exten-
sively described and validated in Lellouche et al. (2013,
2018). This system provides daily and 1/4◦ coarsened fields
of horizontal and vertical current velocities, vertical eddy dif-
fusivity, mixed-layer depth, sea-ice fraction, potential tem-
perature, salinity, sea surface height, surface wind speed,
freshwater fluxes, and net surface solar shortwave irradiance
that drive the transport of biogeochemical tracers. This sys-
tem also features a reduced-order Kalman filter based on the
singular evolutive extended Kalman filter (SEEK) formula-
tion introduced by Pham et al. (1998), which assimilates, on
a 7 d assimilation cycle, along-track altimeter data, satellite
sea surface temperature and sea-ice concentration from Oper-
ational Sea Surface Temperature and Sea Ice Analysis (OS-
TIA), and in situ temperature and salinity vertical profiles
from the Coriolis Dataset for ReAnalysis (CORA) version
4.2 in situ database.
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In addition, the biogeochemical component of the cou-
pled system also embeds a reduced-order Kalman filter (sim-
ilar to the abovementioned filter) that operationally assim-
ilates daily L4 remotely sensed surface chlorophyll (Euro-
pean Union-Copernicus Marine Service, 2022). Thanks to a
multivariate formulation of model error covariances, the sys-
tem is able to provide a three-dimensional correction to the
nanophytoplankton, diatoms, and nitrates model concentra-
tions from the surface chlorophyll data provided by satellite
observations.

In parallel, climatological damping is applied to nitrate,
phosphate, oxygen, and silicate with the World Ocean At-
las 2013, to dissolved inorganic carbon and alkalinity with
the GLODAPv2 climatology (Lauvset et al., 2016), and to
dissolved organic carbon and iron with a 4000-year PISCES
climatological run. This relaxation is set to mitigate the im-
pact of the physical data assimilation in the offline cou-
pled hydrodynamic–biogeochemical system, leading to sig-
nificant rises in nutrients in the equatorial belt area and re-
sulting in an unrealistic drift of various biogeochemical vari-
ables, such as chlorophyll, nitrate, and phosphate (Fennel et
al., 2019; Park et al., 2018). The timescale associated with
this climatological damping is set to 1 year and allows a
smooth constraint that has been shown to be efficient to re-
duce the model drift.

Data availability. The Global Ocean Biogeochemistry Analysis
and Forecast system data are publicly available for download via the
Copernicus Marine Service (https://doi.org/10.48670/MOI-00015,
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