
HAL Id: hal-04660940
https://hal.science/hal-04660940

Submitted on 26 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Generating Flight Summaries Conforming to
Cinematographic Principles

Christophe Lino, Marie-Paule Cani

To cite this version:
Christophe Lino, Marie-Paule Cani. Generating Flight Summaries Conforming to Cinematographic
Principles. Computer Graphics Forum, inPress. �hal-04660940�

https://hal.science/hal-04660940
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2024
M. Skouras and H. Wang
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 43 (2024), Number 8

Generating Flight Summaries

Conforming to Cinematographic Principles

Christophe Lino1,2 Marie-Paule Cani1

1Ecole Polytechnique, CNRS (LIX), IP Paris, France
2Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

Figure 1: From an input 3D trajectory, our method automatically generates a video preview of a user-specified duration, including well

chosen time ellipses (i.e. gaps in the story). To this end, we jointly tackle two interrelated problems: (i) a best-summary problem, i.e. conveying

the relevant parts of a trip within a limited duration and (ii) a virtual camera control problem, i.e. choosing the parameters and trajectories

for each camera over time to best convey the trip, while enforcing both camera dynamics and the main cinematographic principles.

Abstract

We propose an automatic method for generating flight summaries of prescribed duration, given any planed 3D trajectory of a

flying object. The challenge is to select relevant time-ellipses, while keeping and adequately framing the most interesting parts

of the trajectory, and enforcing cinematographic rules between the selected shots. Our solution optimizes the visual quality of

the output video both in terms of camera view and film editing choices, thanks to a new optimization technique, designed to

jointly optimize the selection of the interesting parts of a flight, and the camera animation parameters over time. To our best

knowledge, this solution is the first one to address camera control, film editing, and trajectory summarizing at once. Ablation

studies demonstrate the visual quality of the flights summaries we generate compared to alternative methods.

CCS Concepts

• Computing methodologies → Procedural animation; Temporal reasoning; • Applied computing → Media arts;

1. Introduction

While many companies are developing new flying vehicles such as
VTOL (Vertical Take-off and Landing Vehicles) to transport pas-
sengers for short flights above cities, the ability to preview such
flights, given an input duration for the video summary, is crucial
for advertisement and would help improving future acceptance by
the public. Generating such flight previews could also be extremely
useful for planning and pre-visualizing drones flights. These two
applications motivated this work.

The Computer Graphics (CG) community has shown a growing
interest in the development of autonomous, yet expressive virtual
cameras, as well as in automating film editing techniques. They

typically inspire from cinematographic principles to automatically
generate camera shots (i.e. the parameters of each camera over
time), then edit and combine shots between multiple cameras to-
wards a coherent storyline. However, producing 3D summaries of
prescribed duration has for now been restricted to road-trips, where
camera control is a 2-dimensional problem, and the summary is
achieved by non-linearly accelerating time to focus more on inter-
esting trip parts. This has the disadvantage of giving a distorted per-
ception of changes in vehicle speed and is particularly ill-suited to
flights, where frequent accelerations and decelerations of the cam-
era could make the observer ill.

In contrast, this work relies on time-ellipses to generate flight

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial
License, which permits use, distribution and reproduction in any medium, provided the original work
is properly cited and is not used for commercial purposes.

2 of 13 C. Lino & M.P. Cani / Generating Flight Summaries Conforming to Cinematographic Principles

summaries. This technique, borrowed to cinematography where is
is commonly used, is defined as the fact to cut out a part of a story
between two specific instants. In our case, time-ellipses allow to
exclude the less interesting parts of a flight, but bring two new
challenges: (i) the best-summary problem, i.e. how to convey the
relevant parts of the journey in a limited duration and (ii) a virtual
camera control problem, i.e. how to choose the parameters and tra-
jectories of each camera over time to best convey the journey. The
latter requires enforcing cinematographic principles, such as view-
points aesthetics and film editing rules across shots.

Our solution relies on jointly solving a discrete and a contin-
uous optimization problem, by alternating their resolution steps.
The discrete problem, expressed in terms of geometric and kine-
matic criteria along the VTOL trajectory, enables to select view-
points of interest along the trip. The continuous problem enables to
optimize the trajectory of one or multiple cameras, used to render
the summarized video, by progressively enforcing viewpoint con-
straints, camera dynamics and continuity-editing rules. We iterate
over both steps to obtain a result which satisfies both the summariz-
ing and camera animation generation steps. In summary, we present
a fully-automated system to generate automatic video summaries of
prescribed duration, by jointly tackling virtual camera control, film
editing, and video summarizing. Our contributions are:

• the use of semantic and geometric criteria to evaluate the interest
of trip segments and the relevance of a given camera viewpoint
along them, leading to a novel interest score function.

• the first formalization of a virtual trip summarizing problem with
time ellipses, as a knapsack problem with conflict graph.

• a comprehensive method to optimize the continuous problem of
camera control and the discrete problem of film editing at once.

2. Related Work

Our work relates to both automatic camera control in virtual cin-
ematography, and to video summarizing, i.e. the problem of short-
ening a video to a prescribed duration. For a broader discussion
of these problems, we refer the reader to [CON08], [Ron21] or
[AAS∗12, ETB15]. Note that deep learning solutions are not rel-
evant to solve the whole problem since they would require large
flight datasets with manually crafted summaries on which to learn.

Automating camera placement requires to set all parameters of
a camera so that the rendered image meets a set of visual crite-
ria. State of the art solutions either rely on constraint-solving or
an optimization-based methods. [GW92] formulate the problem of
placing a set of 3D points at desired 2D screen locations as an in-
verse kinematics problem in the 7-dimensional camera space, pa-
rameterized by 3D position, 3D orientation and focal length. More
recent works rely on more aesthetic criteria inspired by movie
production [TB09b], e.g. screen position, projected size or view-
ing angle of the objects on stage, together with their visibility.
[LC12, LC15] provide efficient solutions, yet limited to two target
objects, by casting computations into a low-dimensional camera
space, called the Toric Space. [RU14] rely on a particle swarm op-
timization in the camera space to provide a more general solution,
including a smart initialization and a lazy search strategy.

Computing camera paths amounts to calculating a continuous se-

ries of camera viewpoints, while considering additional constraints
to ensure the smoothness of camera trajectories and avoid colli-
sions with static or moving objects. There is an abundance of re-
cent works in this domain. Global planning methods pre-compute
a roadmap (as a graph) in which a shortest-path can be planned
between two camera positions potentially accounting for visibility
along the path [OSTG09, Lin13]. Local planning methods update
the camera configuration in a reactive manner, while accounting for
the camera dynamics, for instance by relying on motion predictive
control (MPC) to smoothly move one or multiple cameras while
considering visual properties to satisfy on moving targets and col-
lision avoidance [NAMD∗17,NMD∗17]. Other works directly cast
camera paths as spline curves which are then optimized. [JRT∗15]
manually specify visual compositions through keyframes (i.e. raw
camera positions and orientations) and the timing between them
through easing curves, while [RH16] enables to re-optimize this
timing for infeasible paths, while the path in itself remains fixed.
[LC15] define keyframes directly in terms of visual properties to
satisfy (e.g. screen position, size, and view angle of filmed objects).
Intermediate viewpoints are interpolated in image space then recon-
structed through computations in Toric space. Spline-based tech-
niques were also applied to target following problems. For instance,
[GCLR15] use a viewpoint interpolation similar to [LC15] to gen-
erate a raw camera path which they fit to a smooth Bezier-curve
camera rail, along which they re-optimize the camera position and
orientation. More recent techniques also formulate the target fol-
lowing problem (alone) as learning tasks [GCB∗19, JWW∗20].

None of these works tackled time ellipses. While we reuse
spline-based camera trajectories, we optimize them for the first
time in terms of film editing rules between consecutive shots.

Continuity-editing between virtual cameras boils down to find-
ing when to switch between cameras and to which new viewpoint
to cut to. Achieving this requires to formalize and combine a set of
informal film-editing rules [TB09a]. Several attempts were made
to automate this process: [LC08] jointly tackle the planning of
camera paths and cuts, through a probabilistic roadmap (PRM) lo-
cally defined around a tracked target. They implement an impor-
tant rule, the line of action (which should not be crossed when
cutting) as a partition of the PRM into sub-regions. A cut can be
performed between viewpoints only if they lie in compatible sub-
regions of the PRM. [LCL∗10] also formalize stereotypical view-
points and potential cuts through a spatial partitioning into director
volumes. Cuts are defined as a set of geometric and semantic fil-
ters, encoding editing rules applied on computed volumes. Galvane
et al. [GRLC15] take a precomputed set of camera paths as input.
They cast the continuity-editing problem as a semi-Markov pro-
cess, to find which camera to select at each time frame, and solve
it by using a dynamic programming algorithm. In summary, exist-
ing techniques rely on pre-computed viewpoints and prune unsat-
isfying cuts. In contrast, we rather optimize viewpoints "until" cuts
between them satisfy film-editing rules.

Video summarizing is the automated generation of video pre-
views, synopses, and trailers, to fasten the browsing of large video
collections. Solutions involve analyzing visual, audio, or textual
contents, the extraction of key frames or video clips, among which a
subset is selected to form the targeted lightweight summary. In par-

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

C. Lino & M.P. Cani / Generating Flight Summaries Conforming to Cinematographic Principles 3 of 13

Figure 2: Processing pipeline for generating a flight summary. From an input 3D vehicle trajectory, a target duration, and a cutting rhythm,

we interleave two optimization processes: the first one selects salient trip segments, as a set of shot bounds, where shots are the not-cut time

intervals, interlaced with time ellipses. The second one optimizes camera parameters used for each of these shots, accounting for film editing,

smoothness of camera motion and viewpoint quality constraints. These two steps are iterated until convergence.

ticular, Barbieri et al. [BDA04] derive a set of constraints based on
cinematic rules to ensure storyline continuity and non-redundancy
requirements. After segmenting an input video, they associate an
importance score to each potential summary defined as a selected
subset of segments. The best summary within a specific duration
range is then found by solving a costly, combinatorial optimization
problem. We share the challenges of defining good criteria for de-
tecting the most informative segments, and for evaluating whether
their concatenation provides a good summary under duration con-
straints. We therefore inspired from their methodology. Some re-
cent techniques also attempted to learn interest and redundancy
functions from examples of edited movies, provided side informa-
tion such as substitles [HHFA18] or even the semantics of original
shots [YMCZ17] is also given as input.

All video summarizing techniques share a common drawback: if
the input video does not already conform to cinematic conventions,
the output will not either. In constrast, we have the full control of
camera viewpoints. In this work, we aim at properly capturing the
trajectory from raw 3D data, by optimizing all camera parameters
to adhere to the main cinematographic conventions, while simulta-
neously addressing a summarizing problem.

Virtual trip synopsis relate to the automated generation of vir-
tual journey summaries, motivated by the increasing availability
of tools to plan journeys in virtual, with renderings of increasing
quality or based on real panoramic views. There have been few
solutions that have been proposed, and these are not very recent.
They target the generation of summaries of car journeys (therefore
2D routes). They apply a temporal speedup factor, to devote more
time to interesting parts of a road-trip. [CNO∗09] increase the ve-
hicle speed when traversing long straight sections, and decrease it
during short sections or turns. They also improve anticipation of
turns by rotating the camera to look at a point placed at a fixed dis-
tance ahead on the path. Huang et al. [HLH∗16] is our main con-
current method. They inspire from the speed-dependent zooming
idea [IH00] introduced in the context of document browsing. They
associate an interest score for buildings near the route, depending
on their shape or size. Provided an initial camera path following a

vehicle travelling at constant speed, they render images taken from
sampled cameras along this path. They then compute a global in-
terest for all parts of the trip, which they use to update the vehicle
speed. The speed is inversely proportional to the viewpoint inter-
est score. Viewpoints along the camera path are then updated by
using a camera elevation and distance which increases with vehi-
cle’s speed. They interleave both steps (updating vehicle speed and
camera motion) until convergence. Note that while the prescribed
summary duration is guaranteed, the artificial speed assigned to the
vehicle may distort the user’s perception of the journey.

In summary, existing methods only tackled specific subsets of
our problem. They either do not account for the optimization of
camera paths (computing shots), for continuity editing (cutting and
assembling shots given film editing rules), or for the generation of
time-constrained summaries. In this paper, we propose an approach
capable of solving all of these sub-problems at once.

3. Overview

We target generating a virtual flight preview, as an aesthetically-
pleasing (i.e. more natural to watch) video of a prescribed duration.
Our primary input is the 3D trajectory of the vehicle of interest,
i.e. its continuous position and direction from take-off to landing.
Secondary inputs are: (i) the scene geometry, i.e. a terrain populated
with buildings, roads and rivers, and optionally (ii) the trajectories
of a set of other vehicles – serving as secondary points of interest
during the flight.

Existing trip synopsis techniques might be seen as watching a
trip in a fast-forward mode, where the system controls the speed-
up factor. In contrast, filmmakers adopt another strategy to convey
stories in a concise manner: they omit parts of the story, by in-
troducing time ellipses (i.e. gaps in the story) which are left for
the viewers to fill. Following this strategy, we cast our virtual trip
summarizing problem into two complementary objectives: (i) sum-
marizing the trip, i.e. selecting the most interesting segments of the
rendered camera animation, such that their total duration does not
exceed the prescribed video duration, and (ii) generating an appro-
priate camera animation, i.e. optimizing the position and orienta-

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

4 of 13 C. Lino & M.P. Cani / Generating Flight Summaries Conforming to Cinematographic Principles

tion of a camera following the trip, to best satisfy cinematographic
principles (i.e. shooting and editing rules) [TB09a, TB09b] within
and in-between camera shots. We formulate them as complemen-
tary optimization problems, detailed in sections 4 and 5 (notations
we use are presented in table 1). We run them in parallel (Figure 2),
and combine their results through an interleaved iterative process
(the output of one step feeding the other step), until convergence.

G(x,σ) Gaussian decay, equals to e−x2/(2σ2)

E(x,λ) Exponential decay, equals to e−x/λ

vp(t) Position of main vehicle (protagonist) at time t

v j(t) Position of j-th vehicle at time t

c(t) Camera position

v̂ Normalized vector

[x]+ scalar value of x clamped to R
+, i.e. max(0,x)

(u,v) angle between two vectors

(u,v)β relaxed angle of β degrees, i.e. [(u,v)−β]+

ratio(x,y) min-max ratio of x and y, i.e. min(x,y)/max(x,y)

Table 1: Notations

4. Trip Summarization

In this best-summary step, we select which parts of the trip should
be included in a video of prescribed duration D. The VTOL tra-
jectory is augmented with a camera animation tracking the vehicle
along the trip. This camera animation, initialized as an offset from
the vehicle’s trajectory (this is detailed in section 5.4), is refined
through iterations. The output is a list of camera shots (time in-
tervals, whose total length is D) that best summarize the trip.The
selected shots should be as informative and visually interesting as
possible, i.e. highlight salient trip segments and properly convey
them, while fulfilling cinematographic conventions.

We cast this optimal-selection process as a 0-1 knapsack problem
(KP) where, given items i of weight wi and profit pi, we have to
select a subset of items of total weight W (the knapsack capacity)
and maximum total profit. The solution is a vector x computed as

argmax
x

∑
i

xi.pi under constraint ∑
i

xi.wi ≤W

where xi is a 0-1 variable (1 if the ith item is selected, and 0 if not).

Note that we cannot simply split the trip into small segments of
same duration d (e.g. 1s), consider items (shots) of any duration
di proportional to d (i.e. di = wid, where wi is an integer), and
set the knapsack (i.e. the summary video) to a capacity W = D/d,
then consider non-selected items as time ellipses. Several problems
would remain: (i) finding the right granularity for the segmentation
is a problem in itself ; (ii) filmmakers avoid camera shots which
are either too short or too long – they also avoid introducing cuts
at a regular pace (i.e. using shots of same length), which could
rapidly become visually disturbing for viewers. This naïve formu-
lation must be augmented to overcome these limitations.

Cutting pace control: we allow the user to define a range of pos-
sible shot duration [dmin,dmax], whose bounds must be multiples
of some split duration d. We then generate items so that, all to-
gether, they represent every possibility of a shot with a start time
si = k.d and end time ei = si +di, where k is a positive integer and
di ∈ [dmin,dmax]. This enables to (i) control which moments to con-
vey, and how long to stay in a camera shot (before cutting to a new
one), as well as (ii) avoid cutting at a regular pace.

Yet, two overlapping items (shots) are in conflict. Selecting both
would result in conveying the same moment twice. To enforce this
behavior, we cast our optimization as a Knapsack Problem with

Conflict Graph (KCG) – where a conflict graph G encodes time
interval intersections – which incorporates a new constraint:

∀(i, j) ∈ G, xi + x j ≤ 1 (1)

KCG is known to be strongly NP-hard. For this reason, we do
not target an optimal solution, but rather use an easy-to-implement
KCG solver [YKW02], to demonstrate the validity of our formula-
tion. More precisely, we solve our KCG using the following greedy
algorithm. We order items in decreasing ratio of profit over weight.
In a first step, we progressively insert non-conflicting items.In a
second step, we browse each item outside the knapsack to check (i)
if we can directly insert it (i.e. no conflict exist) or (ii) if swapping it
with conflicting items would improve the profit, until convergence.

Takeoff and landing phases should always be conveyed in the
video. This constraint alone could be cast into another specialized
knapsack, called Knapsack with Forcing Graph (KFG). However,
(i) it is also strongly NP-hard, (ii) in our case it would be reduced
to very few items (the take-off and landing phases), and (iii) we are
not aware of any solution for a combination of a KCG and a KFG.
For all these reasons, we instead integrate this constraint directly
into our KCG solver. Before the first step, we insert the best item
containing the landing phase, and do the same for the takeoff. In
the second step, an item containing the landing or takeoff may only
be swapped with an item conveying the same phase.

Redundancy between shots not limited to direct overlaps. Shots
filmed at close intervals might also convey similar information.
Further, the longer a shot, the more users have time to explore the
images. Hence, the more it might seem redundant with an adja-
cent shot. We express such redundancy as new conflicts in G, by
(virtually) extending the time interval of each shot by an amount
proportional to its duration (in our test we used a 30% extension).

With this solution in mind, we now need to define the interest of
a summarized trip, i.e. assign a profit to each created item. To do
so, we build an interest score by combining two important criteria:
(i) the trip interest, evaluating the amount of information held by a
trip segments, and (ii) the viewpoint interest, evaluating the visual
appeal of the trip segments as filmed by the current camera.

4.1. Trip interests

Selected trip segments should be both informative and salient
(i.e. non-redundant). In this work, we define their importance

through a set of geometric criteria, and their salience through the
amount of temporal variations of these criteria.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

C. Lino & M.P. Cani / Generating Flight Summaries Conforming to Cinematographic Principles 5 of 13

4.1.1. Importance score

After testing different geometric criteria, we selected the following
subset which seems to capture well the essence of 3D trajectories
of flying vehicles. Detailed formulas are given in appendix A. Note
that, for other types of 3D trajectories, other criteria could be used
without changing the general approach.

Context of the flight, and in particular interest points around the
vehicle (e.g. tall buildings), give strong visual hints that ease the
trajectory understanding (e.g. places where it unfolds). For the sake
of simplicity, we use a definition similar to [HLH∗16] for the im-
portance of buildings located along the trip (a mix between its
height, volume and uniqueness), but use geometrical computations
rather than renderings. One benefit is the separation of trip seg-
ment importance from camera view quality, aiding later camera an-
imation optimization. Using this criterion also eases comparisons
with [HLH∗16].

Altitude: Conveying when vehicles quickly go up or down is also
crucial, as it is a factor that directly impacts the VTOL energy
efficiency and noise. In practice, this will not only highlight trip
segments close to takeoff and landing, but also segments with fast
changes of altitude (e.g. to bypass tall buildings or hills). We rely
on the trajectory slope to capture how fast the altitude evolves.

Flying direction: Moments when the vehicle sharply changes its
flying direction along the trip also provide complementary hints
about the shape of the trajectory and travelled aerial corridors.

Velocity: Showing a vehicle travelling at low speed may be boring,
since the surrounding does not change much. Conversely, when
travelling at higher speed (e.g. travelling large distances between
critical waypoints), views tend to be more interesting and informa-
tive. Note that the changes of velocity (i.e. vehicle accelerations)
could also be a relevant criterion, as it is another factor impacting
energy efficiency and noise.

Traffic density: areas of higher traffic density along the trip pro-
vide hints on which aerial corridors have been travelled. We rely on
the K-nearest neighbor vehicles to evaluate this density.

4.1.2. Saliency score

For sake of generality, we define a independent salience measure
for each criteria. To do so, we rely on a Gaussian-weighted center-
surround difference of the importance score I f (t) for a criteria f .

We first compute its Gaussian-weighted average around time t,
i.e. within a time horizon of length H:

GA f (t,H) =

∑
dt∈[−H,+H]

I f (t +dt).G(dt,H)

∑
dt∈[−H,+H]

G(dt,H)
(2)

We then define the salience score S f (t) as the difference with the
average computed on a larger surrounding (2H), i.e. :

S f (t) =
[

GA f (t,H)−GA f (t,2H)
]2

(3)

which we max-normalize. The higher S f (t), the less the held infor-
mation is redundant with what is conveyed before and after. In our
tests, we used H equal to 0.6% of the total trip duration.

4.1.3. Interest score

When combining the importance and salience scores together, for
each criteria, we favor important trip segments (i.e. conveying
enough information) which are also salient (i.e. not conveying the
same information for too long), by blending both scores. We also
let users weight criteria, to specify the ones they care more about.
The trip interest score is then formulated as:

T (t) = ∑
f

w f .
[

α.I f (t)+(1−α).S f (t)
]

(4)

In our test, using α = 0.66 seemed to provide a good balance be-
tween importance and salience.

4.2. Viewpoint quality

Selecting informative trip segments lead to cover the important
events. Though, if badly conveyed by the camera, they become less
interesting for the viewer. Hence, it is crucial that camera view-
points associated to selected trip segments properly convey infor-
mation. Hence, we also compute a viewpoint score, evaluating the
visual aesthetic of viewpoints along the trip. We rely on criteria
mainly inspired from cinematographic conventions [TB09b].

Two classes of criteria impact the quality of viewpoints. First,
some events such as following a vehicle are better conveyed by
viewing them under a certain angle and distance [HLH∗16]. This
preferred view mainly depends on the current vehicle’s speed and
altitude. The vehicle should also always remain visible. Second,
conveying the vehicle’s motion, the scene context, and the traffic
density, requires to properly arrange important objects (e.g. the ve-
hicle, important buildings and other close vehicles) on the screen.
We cast these constraints into a weighted mean of the satisfaction
Q f (t) of each criterion f (where all weights w f sum to 1):

Q(t) = ∑
f

w f .Q f (t) (5)

We rely on four well-accepted visual criteria in the domain (com-
putation formulas are provide in appendix B):

Preferred view: Filming moving vehicles is better conveyed by
placing the camera behind and above them, at a distance closely re-
lated to its speed and altitude. We use a modified version of Huang
et al. ’s preferred view criteria [HLH∗16], where we account for
the specificity of flying vehicles (see the supplementary material).

Thirds rule and Motion space: Filmed moving objects should be
well-arranged on the screen. Firstly, filmmakers usually divide the
screen into three equally-sized areas, horizontally and vertically.
Given the four power lines dividing the screen, important objects
should be placed at key screen positions, i.e. along a line or at an
intersection. Secondly, they also leave space in the apparent mo-
tion direction. From our study of movies picturing flying vehicles,
we also observed that filmmakers usually center vehicles when at
rest, and apply the thirds rule and motion space for vehicles in mo-
tion. We cast this as a desired screen position making the apparent
motion centered on the screen. This is illustrated in Figure 3.

Visibility: The vehicle should remain visible from the camera
along the summarized trip. To evaluate its visibility at time t, we

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

6 of 13 C. Lino & M.P. Cani / Generating Flight Summaries Conforming to Cinematographic Principles

simply rely on ray-casts from the camera to randomly sampled
points in the bounding box of the vehicle. We then compute its
satisfaction as the ratio of rays reaching the vehicle.

Context and traffic inclusion: To support the understanding of
the trip, camera viewpoints should convey the surrounding con-
text and other close vehicles in dense traffic areas. We rely on the
previously computed K-nearest neighbors (buildings and vehicles),
which should be included on the screen.

4.3. Computing the summary

Selected trip segments should be both informative and well con-
veyed by the camera. If at least one score is very low, the segment
should then be discarded. To reflect this behavior, we express the
profit of a knapsack item (i.e. a trip segment) as a product of the
interest and viewpoints scores, accumulated over time:

pi =
∫ t=ei

t=si

T (t).Q(t) dt (6)

After computing the profits and solving the KCG, we are left
with a sequence of items (representing time intervals), selected as
camera shot candidates. At this point, these selected pieces could
be rendered and assembled together into a video. Unfortunately,
the quality of viewpoints, or camera motions, might not be opti-
mal. Further, transitions between shots (cuts), should satisfy film
editing conventions [TB09a], which are not accounted for in the
KCG. Therefore, we might output a video of poor quality. This
motivates interleaving trip summary steps with camera animation
steps, presented next.

5. Camera Animation

In this camera control step our goal is, given a list of selected shots
bounds (i.e. time intervals), to improve the quality of the camera
animation. We account for three key aspects: (i) camera viewpoints
quality should be as good as possible at any time, (ii) camera mo-
tions should be as smooth as possible and (iii) transitions (i.e. cuts)
between consecutive shots should respect continuity-editing rules.
We cast this problem as the continuous optimization of camera pa-
rameters along time, in a way that we enforce such cinematographic
conventions within and in-between camera shots.

(a) Normalized ideal screen location,

regarding projected motion

(b) Application to the screen sub-

division into thirds

Figure 3: Combination of the rule of thirds and the motion space

principles. (a) From the projected motion direction we compute an

ideal screen position on a unit circle. (b) We warp this unit-circle

to power lines (dotted) splitting the screen into thirds.

5.1. Camera animation parameters

We define a camera configuration, at time t, as 6 parameters: the
3D position of the camera in world space, and the 3D position of a
look-at point. NB: both together fully determine its orientation.

To follow the vehicle during the trip, we split our camera ani-
mation into a series of 6D spline curves Ci (i.e. on all 6 camera
parameters). Each corresponds to a distinct time interval, either a
selected shot or a time ellipse. For each interval we regularly sam-
ple keyframes (i.e. 6D camera configurations) along the curve. The
first and last keys match the beginning (si) and end (ei) of the time
interval. To accelerate the optimization, we use a higher sampling
rate for shots (in our tests, 1 for shots and 0.5 for time ellipses).

These curves are independent from each other. C0 continuity is
not desired between two adjacent shot curves. Conversely, time el-
lipse curves simply serve as a smooth transition between two shots,
hence C0 continuity is desired. To do so, we consider the first and
last key frames of a time ellipse as duplicated keys – they must re-
main coherent with the last (resp. first) key of the previous (resp.
next) shot, during the optimization.

Given this representation, we apply a set of constraints, arising
from principles of cinematography and film editing. They are cast
into as a set of costs to be minimized, each being defined on one or
several keyframes. These costs are detailed in appendix C.

For viewpoints’ quality, we designed costs to reflect the same
criteria as in section 4.2. Other criteria are discussed below.

5.2. Camera motion smoothness

Providing smooth camera motion is a very important factor in films,
as jerkiness in the image may cause discomfort to the viewer. Sev-
eral requirements should be enforced, which we cast into a set of
costs.

Viewing angle Generating nice-looking camera views require that
the viewing angle on the vehicle changes as little as possible. We
thus penalize such changes.

Camera path and rotation The camera should move smoothly,
both in terms of world position and orientation. Along a camera
animation curve, we smooth successive camera positions and ori-
entation by penalizing changes in (i) the camera motion direction
and velocity, and (ii) the camera rotation and rotational velocity.

Look-at path The camera rotation being indirectly controlled by
the look-at point, its path should also remain smooth. Hence, we
also penalize changes along the path of the look-at point.

5.3. Film editing conventions

Following film editing guidelines, we also enforce a visual continu-
ity between shots. We express such constraints as costs accounting
for the last key of a shot and the first key of the next one.

Jump Cuts: When cutting to a new viewpoint, enough change
should be introduced in the vehicle’s size (i.e. its distance to the
camera) or its viewing angle (at least 30◦). If not, the transition
will be perceived as a fast camera motion, not as a cut.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

C. Lino & M.P. Cani / Generating Flight Summaries Conforming to Cinematographic Principles 7 of 13

Figure 4: Illustration of the Line of action and the Look-ahead

principles. The apparent direction of motion (orange arrows) is en-

forced by placing the camera on the same side of a line of action

(abstracting this motion) before and after a cut. To show the part of

the trajectory cut by the time-ellipse, we also depict, on the "before

cut" image, the vehicle location after cut as a blue dot.

Line of action: The apparent motion should remain consistent
across cuts, i.e. changes of motion direction in screen-space (to the
left vs. to the right) should reflect changes in world-space. To this
end, we define a plane passing through the vehicle’s positions be-
fore and after the cut (illustrated in Figure 4), which the camera
should not cross.

Screen Position Continuity To avoid jumps in the user’s gaze po-
sition between shots, abrupt changes in the vehicle’s position on
the screen should also be avoided.

Look-ahead We experimentally observed that giving a look-ahead
on the future position of the vehicle (after the cut) helps in filling
the narrative gap created by a time ellipse (e.g. offering clues on
the intermediate travelled areas). To this end, we constrain the last
key of a shot to include this future position in screen-space (this is
also illustrated in Figure 4).

5.4. Optimization algorithm

In our initial camera animation, all keyframes are set so that each
camera position equals the preferred view and the look-at point is
such that the vehicle of interest projects at its ideal screen position
(i.e. we apply the rule of thirds and motion space). We then opti-
mize key frames through a gradient descent over presented costs.

Not all constraints are equally important. Continuity-editing
rules are more important as they will ensure consistency from shot
to shot. Camera motions should then be smooth along each ani-
mation curve. The preferred view and the rule of thirds are guide-
lines. Lastly, though conveying the context is desired, this is an
even softer constraint. We express such priorities through an in-
verse kinematics formulation able to solve primary and secondary

(a) Trip B

(b) Trip C

(c) Trip D

Figure 5: Screenshots from three of our preview videos.

Name Trip Trip Trip Shot
length (kms) duration split (sec) lengths (sec)

Trip A 23.9 11 min 58 sec 1 [4-12]
Trip B 24 11 min 44 sec 1 [4-12]
Trip C 17.3 6 min 32 sec 1 [3-9]
Trip D 14.9 6 min 58 sec 1 [3-9]

(a) Test trips

Name
Video

Iterations Shots
Summary Animation

(sec) (sec) (sec)
Trip A 120 10 17 77 2084
Trip A 60 2 9 15 427
Trip B 60 4 8 29 627
Trip C 45 6 13 19 226
Trip D 45 3 9 9 172

(b) Computation performances of our preview videos

Table 2: Test trips and preview videos statistics. All trips (a) have

been simulated around the Manhattan urban area. For each, we

provide the trip split we use in all preview videos. For all videos (b)

we give the cumulative computation time for both stages.

tasks [BB04]. We split constraints into strict priority levels Lk con-
sidering only a subset of costs. The lower k, the greater the priority.
Levels are then solved incrementally, by projecting the gradient of
a level (i.e. the Jacobian Jk) onto the kernel of prior levels.

We further consider several independent gradient descents. We
optimize all shots together – they are linked by editing constraints
– but each time ellipse alone. We also optimize the camera position
and the look-at position in separate steps. After optimizing shots,
we copy duplicate keys into time ellipses. Duplicate keys are not
optimized for time ellipses. The organization of priority levels and
position/look-at optimization is detailed in appendix (Table 4).

6. Two-step optimization

The camera animation optimization impacts the viewpoint score,
due to film-editing constraints steering cameras before and after
cuts, while path smoothing constraints will adapt intermediate cam-
era positions and orientations. Hence, we iterate on both optimiza-

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

8 of 13 C. Lino & M.P. Cani / Generating Flight Summaries Conforming to Cinematographic Principles

Inputs Outputs
Summary Shot Trip Solver Total
technique duration split (sec) time (sec) profit

KP -
1 0.034 34.97

1.5 0.019 34.99
2 0.014 34.93

Ours (KCG) [4s-12s]
1 3.963 32.83

1.5 0.622 32.26
2 0.193 32.24

Ours (KCG) [4s-8s]
1 0.737 32.34

1.5 0.089 31.51
2 0.063 31.27

(a) Computation time and total knapsack profit

Naïve KP

2 4 6 8 10 12 14 16 18
0

5

Ours (KCG)
[4s-12s]

2 4 6 8 10 12 14 16 18
0

5

10

15

Ours (KCG)
[4s-8s]

2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

(b) Output histograms of shot durations. Colored bars correspond to runs

with trip splits: 1 sec (red), 1.5 sec (green), 2 sec (blue).

Figure 6: Summarization performances of our KCG solver, or a

naïve knapsack (KP) solver, on trip A (120 seconds video). Given

a trip split, the naïve KP outputs a summary not accounting for

shot lengths, nor inclusion of take-off/landing phases. Our KCG-

based solution, while solving these additional constraints, remains

efficient and provides a total profit close to the optimal.

tion steps described earlier (Sections 4 and 5) to progressively im-
prove the camera animation, while pruning trip segments where
camera viewpoints cannot fulfill visual aesthetics criteria. We re-
peat this two-step process until the best-summary output converges.

7. Implementation and Results

We implemented our algorithms within the Unity3D 2019 game en-
gine, and used the MapBox plugin to generate the 3D urban scenes.
We also rely on the AlgLib and Eigen libraries to compute spline
curves, integrate costs, and compute the gradient descent. All our
results were computed on a desktop computer with a Intel Xeon
CPU @3.9GHz and a NVidia Geforce RTX 2080 Super. We also
re-implemented [HLH∗16] rendering-based importance score com-
putation and speedup optimization, for comparison purposes.

We used our tool to generate video previews of different du-
ration, for four different trips. They take place between sky-ports
placed at various locations in a 3D scene reproducing the Manhat-
tan urban area. Screenshots of our preview videos are displayed in

0 100 200 300 400 500 600 700
 0

 30

 60

0 100 200 300 400 500 600 700
 0

 30

 60

 90

120

(a) Ours (KCG), shots lengths = [4-12s]

0 100 200 300 400 500 600 700
 0

 30

 60

0 100 200 300 400 500 600 700
 0

 30

 60

 90

120

(b) Trip Synopsis [HLH∗16]

Figure 7: Time mappings between the preview video (y-axis) and

the conveyed trip portions (x-axis). (a) Using our technique, the

slope is 1 for all shots (no speedup). (b) [HLH∗16] instead devote

more time to some trip portions, and less to boring ones. Our sum-

mary seem consistent with theirs, yet we additionally prune bor-

ing trip portions. As well, for a twice-longer preview video (bottom

rows), we convey more interesting portions, while they seem to de-

vote twice as much time on each portion (even boring ones).

Figures 1 (trip A) and 5 (all other trips), while we include gener-
ated videos in the supplementary material. Statistics on our trips
and video preview computations are also presented in Table 2. We
observe that the most expensive step is the optimization of cam-
era animation parameters. Though, we are confident that this step
could be improved. In particular we currently do not leverage par-
allelization, while our costs could be computed in parallel.

We present below a series of comparisons between our opti-
mization steps and alternative methods. In particular, we compare
summaries computed using our KCG-based formulation against
a naive knapsack formulation, or against the Trip Synopsis sys-
tem [HLH∗16] – the most recent system pursuing similar goals. We
also perform an ablation study on our animation step to show how
levels of priority impact the quality of generated preview videos.

Knapsack formulation: We compare our formulation with a con-
flict graph (referred to as KCG) and a naïve knapsack method (re-
ferred to as Naïve KP). For both, we compute summaries of lengths
120s for Trip A, and vary the split length of trip portions, from 1
second to 2 seconds. For our KCG method, we also vary the pre-
scribed range of shot lengths. Results are presented in Figure 6.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

C. Lino & M.P. Cani / Generating Flight Summaries Conforming to Cinematographic Principles 9 of 13

Preferred Rule of Context Traffic
view thirds incl. incl.

Before 1 1 0.89 0.94
optimization (0) (0) (0.07) (0.09)

Film editing and 0.92 0.99 0.88 0.94
Camera motion (0.06) (0.01) (0.07) (0.10)

All priority 0.96 0.99 0.90 0.95
levels (0.05) (0.00) (0.07) (0.08)

Table 3: Ablation study: viewpoint quality scores (section 4.2), ac-

cording to accounted levels of priority in our camera animation

step. For each, we provide the mean score (the higher the better)

and standard deviation (in brackets) along all shots. While ac-

counting for film editing and camera motion costs degrades the

viewpoint quality, introducing viewpoint quality costs in the last

level of priority enables to reinforce the desired visual layout.

3.5s

29s

49s

(a) Film editing and camera

motion

(b) All priority levels

Figure 8: Ablation study: viewpoints quality. (a) Considering film

editing and camera motion costs is not sufficient: (top) the motion

space is not ensured, (middle and bottom) the context is badly con-

veyed. (b) Considering viewpoint quality costs enables to (top) bet-

ter enforce the motion space and to (middle) better convey the con-

text, among which (bottom) the landing skyport.

For a given trip split length, the naive KP exhibits an optimal
computation time and maximum profit when considering no cine-
matographic constraint as input (e.g. shot durations or inclusion of
the takeoff and landing). As illustrated in Figure 6b, regardless of
the trip split, it provides no guarantee on the duration of generated
shots (some are very short, or very long). In contrast, our KCG can
by design solve these extra constraints, while it allows variations in
the cutting rhythm, and remains quite efficient (Figure 6a).

Comparison with time compression: We also compare our sum-
maries against those generated with our main concurrent technique
[HLH∗16] (referred to as trip synopsis). Figure 7 presents a side-
by-side plot of the time mapping between the preview video and
the conveyed trip segments, on Trip A. From this figure, and the
accompanying videos, it is clear that our summaries are coherent

with those of [HLH∗16]. Yet, they devote a large amount of time to
few short trip segments, and convey the remaining (as well as the
take-off/landing) very rapidly. In contrast, our technique allows a
focus on a broader range of relevant trip segments,while our analy-
sis of redundancy still enables a good coverage of the whole trip.

To evaluate our animation optimization step, we further per-
formed an ablation study on our levels of priority (i.e. cinematic
constraints). For all tests, we input the initial summary computed
by our trip summarizing step, and the initial camera animation. We
then optimize this camera animation while accounting for an in-
creasing number of priority levels: (i) none of the levels (i.e. before
optimization), (ii) film editing costs, (ii) film editing and camera
motion costs, (iii) all costs (i.e. film editing, camera motion, and
viewpoint costs). Hereafter, we comment on our results.

Before optimization: As expected, some initial camera shots
violate film editing conventions (Figure 9a and 9b). Most obvious
violations concern the position continuity rule and the 30 degree
rule. Further, as we initiate camera positions in the local frame of
the vehicle, the camera seem to be rigidly linked to the vehicle.
This lack of camera motion smoothness is clearly visible in Figure
10a, where we observe large variations of the camera acceleration.

Editing costs only: film editing conventions are better satisfied be-
tween pairs of shots (Figure 9c and 9d). Yet, these costs only apply
on the first and last key of each shot, which tends to distort camera
trajectories. In turn, we observe even larger variations of the camera
acceleration during shots (Figure 10b).

Film editing and camera motion costs only: camera motions be-
come smoother during shots (Figure 10c). Yet, both film editing and
camera motion costs steer keyframes in such a way that the camera
position diverges from the preferred view, while the desired visual
layout remain unsatisfied (Table 3 and Figure 8).

All costs: the satisfaction of the viewpoint scores is improved (Ta-
ble 3). Figure 8 clearly illustrates how these costs allow to better
satisfy the rule of thirds, motion space, as well as the context inclu-
sion at different moments of the video. In figure 10d, we also ob-
serve that this improvement of the viewpoints quality comes with-
out sacrificing the smoothness of camera motions.

8. Discussion and Conclusion

In this paper, we introduced a fully automated method to compute
a video of a prescribed duration summarizing an input flight, with
a user-specified cutting rhythm. To our best knowledge, this is the
first approach addressing the three challenging problems of virtual
camera control, film editing, and video summarizing, in parallel.
Our best-summary solution uses time ellipses to prune the boring
parts of a trajectory, enabling to rely on a knapsack problem with
conflict graph for generating the result. This solution allows us to
effectively enforce common shooting and film editing principles,
leading to the generation of summary videos that conform to the
main cinematographic principles.

While this work focused on flight summaries, adapting the so-
lution to other cases would only require the definition of adequate
semantic features, such as considering crashes and collisions as in-
terest points in a car chase case. Therefore, we believe that our gen-
eral approach would easily generalize to a broad range of contexts.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

10 of 13 C. Lino & M.P. Cani / Generating Flight Summaries Conforming to Cinematographic Principles

Before
optimization

(a) Cut 6 (jump-cut) (b) Cut 8 (violates position continuity)

Film editing

(c) Cut 6 (30◦view angle change) (d) Cut 8 (position continuity)

Figure 9: Ablation study: cuts between shots. (a)(b) When not optimizing the initial camera animation, violation of film editing rules are

clearly noticeable. (c)(d) When optimizing with film editing costs: for the same cuts, film editing rules are better enforced.

1 2 3 4 5 6 7 8 9
0

50

100

A
c
c
e

l.
 (

m
/s

²)

1 2 3 4 5 6 7 8 9
0

100

200

300

A
c
c
e

l.
 (

d
e

g
/s

²)

(a) Before optimization

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

(b) Film editing

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

(c) Film editing and Camera motion

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

(d) All levels of priority

Figure 10: Ablation study: camera acceleration per film shot (top: camera position; bottom: camera orientation). (a)(b) As expected, not

considering camera motion costs leads to strong camera accelerations during shots (c) Considering motion costs in our second level of

priority, the camera acceleration is highly reduced during shots. (d) Further levels of priority have low impact on this smoothing.

A remaining challenging task would then be to compare sets of fea-
tures in term of the perceived quality of edited videos [LRGG14].

In the future, our best-summary step would benefit from fur-
ther analysis of redundancy between shots, which is known as a
challenging open problem. In addition, regardless of the method
used to identify them, highly redundant shots could be expressed
as conflicting in our KCG formulation, while keeping the rest of
the pipeline unchanged. Lastly, we would like to extend our ap-
proach to summaries of multiple flights (e.g. a full day of vehicle
flights). This would require analyzing complex spatio-temporal re-
lationships between multiple trajectories, and devising higher-level
methods to optimize the parameters of multiple interrelated camera
animations, under film-editing constraints. From this perspective,
it would be interesting to have a better insight of the perception of
continuity between shots, for example in action films with chases,
and to formalize empirically extracted film-editing rules.

Ackowledgement

We thank the Integrated Urban Mobilty chair between Uber and
Ecole Polytechnique, for funding this work. We also thank V.
Sungeelee for her contributions to a preliminary work on this chair.

References

[AAS∗12] AJMAL M., ASHRAF M. H., SHAKIR M., ABBAS Y., SHAH

F. A.: Video summarization: techniques and classification. In Interna-

tional Conference on Computer Vision and Graphics (2012), Springer,
pp. 1–13. 2

[BB04] BAERLOCHER P., BOULIC R.: An inverse kinematics architec-
ture enforcing an arbitrary number of strict priority levels. The visual

computer 20, 6 (2004), 402–417. 7

[BDA04] BARBIERI M., DIMITROVA N., AGNIHOTRI L.: Movie-in-a-
minute: automatically generated video previews. In Pacific-Rim Confer-

ence on Multimedia (2004), Springer, pp. 9–18. 3

[CNO∗09] CHEN B., NEUBERT B., OFEK E., DEUSSEN O., COHEN

M. F.: Integrated videos and maps for driving directions. In ACM sym-

posium on User interface software and technology (2009), pp. 223–232.
3

[CON08] CHRISTIE M., OLIVIER P., NORMAND J.-M.: Camera control
in computer graphics. In Computer Graphics Forum (2008), vol. 27,
Wiley Online Library, pp. 2197–2218. 2

[ETB15] ELKHATTABI Z., TABII Y., BENKADDOUR A.: Video summa-
rization: techniques and applications. International Journal of Computer

and Information Engineering 9, 4 (2015), 928–933. 2

[GCB∗19] GSCHWINDT M., CAMCI E., BONATTI R., WANG W., KAY-
ACAN E., SCHERER S.: Can a robot become a movie director? learning
artistic principles for aerial cinematography. In 2019 IEEE/RSJ Inter-

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

C. Lino & M.P. Cani / Generating Flight Summaries Conforming to Cinematographic Principles 11 of 13

national Conference on Intelligent Robots and Systems (IROS) (2019),
IEEE, pp. 1107–1114. 2

[GCLR15] GALVANE Q., CHRISTIE M., LINO C., RONFARD R.:
Camera-on-rails: automated computation of constrained camera paths.
In ACM SIGGRAPH Conference on Motion in Games (2015), pp. 151–
157. 2

[GRLC15] GALVANE Q., RONFARD R., LINO C., CHRISTIE M.: Con-
tinuity editing for 3d animation. In AAAI Conference on Artificial Intel-

ligence (2015). 2

[GW92] GLEICHER M., WITKIN A.: Through-the-lens camera control.
In Conference on Computer graphics and interactive techniques (1992),
pp. 331–340. 2

[HHFA18] HESHAM M., HANI B., FOUAD N., AMER E.: Smart trailer:
Automatic generation of movie trailer using only subtitles. In Interna-

tional Workshop on Deep and Representation Learning (2018), IEEE,
pp. 26–30. 3

[HLH∗16] HUANG H., LISCHINSKI D., HAO Z., GONG M., CHRISTIE

M., COHEN-OR D.: Trip synopsis: 60km in 60sec. In Computer Graph-

ics Forum (2016), vol. 35, Wiley Online Library, pp. 107–116. 3, 5, 8, 9,
11, 12

[IH00] IGARASHI T., HINCKLEY K.: Speed-dependent automatic zoom-
ing for browsing large documents. In ACM symposium on User interface

software and technology (2000), pp. 139–148. 3

[JRT∗15] JOUBERT N., ROBERTS M., TRUONG A., BERTHOUZOZ F.,
HANRAHAN P.: An interactive tool for designing quadrotor camera
shots. ACM Transactions on Graphics 34, 6 (2015), 1–11. 2

[JWW∗20] JIANG H., WANG B., WANG X., CHRISTIE M., CHEN B.:
Example-driven virtual cinematography by learning camera behaviors.
ACM Transactions on Graphics 39, 4 (2020), 45–1. 2

[LC08] LI T.-Y., CHENG C.-C.: Real-time camera planning for navi-
gation in virtual environments. In International Symposium on Smart

Graphics (2008), Springer, pp. 118–129. 2

[LC12] LINO C., CHRISTIE M.: Efficient composition for virtual camera
control. In ACM SIGGRAPH/Eurographics Symposium on Computer

Animation (2012), Eurographics Association, pp. 65–70. 2

[LC15] LINO C., CHRISTIE M.: Intuitive and efficient camera control
with the toric space. ACM Transactions on Graphics 34, 4 (2015). 2

[LCL∗10] LINO C., CHRISTIE M., LAMARCHE F., SCHOFIELD G.,
OLIVIER P.: A real-time cinematography system for interactive 3d envi-
ronments. In ACM SIGGRAPH/Eurographics Symposium on Computer

Animation (2010), Eurographics Association, pp. 139–148. 2

[Lin13] LINO C.: Virtual camera control using dynamic spatial parti-

tions. PhD thesis, Université Rennes 1, 2013. 2

[LRGG14] LINO C., RONFARD R., GALVANE Q., GLEICHER M.: How
do we evaluate the quality of computational editing systems? In Work-

shops at AAAI Conference on Artificial Intelligence (2014). 10

[NAMD∗17] NÄGELI T., ALONSO-MORA J., DOMAHIDI A., RUS D.,
HILLIGES O.: Real-time motion planning for aerial videography with
dynamic obstacle avoidance and viewpoint optimization. IEEE Robotics

and Automation Letters 2, 3 (2017), 1696–1703. 2

[NMD∗17] NÄGELI T., MEIER L., DOMAHIDI A., ALONSO-MORA J.,
HILLIGES O.: Real-time planning for automated multi-view drone cin-
ematography. ACM Transactions on Graphics 36, 4 (2017), 1–10. 2

[OSTG09] OSKAM T., SUMNER R. W., THUEREY N., GROSS M.:
Visibility transition planning for dynamic camera control. In ACM

SIGGRAPH/Eurographics Symposium on Computer Animation (2009),
pp. 55–65. 2

[RH16] ROBERTS M., HANRAHAN P.: Generating dynamically feasible
trajectories for quadrotor cameras. ACM Transactions on Graphics 35, 4
(2016), 1–11. 2

[Ron21] RONFARD R.: Film directing for computer games and anima-
tion. In Computer Graphics Forum (2021), vol. 40, Wiley Online Li-
brary, pp. 713–730. 2

[RU14] RANON R., URLI T.: Improving the efficiency of viewpoint com-
position. IEEE Transactions on Visualization and Computer Graphics

20, 5 (2014), 795–807. 2

[TB09a] THOMPSON R., BOWEN C. J.: Grammar of the Edit, vol. 13.
Taylor & Francis, 2009. 2, 4, 6

[TB09b] THOMPSON R., BOWEN C. J.: Grammar of the Shot, vol. 13.
Taylor & Francis, 2009. 2, 4, 5

[YKW02] YAMADA T., KATAOKA S., WATANABE K.: Heuristic and
exact algorithms for the disjunctively constrained knapsack problem. In-

formation Processing Society of Japan Journal 43, 9 (2002). 4

[YMCZ17] YUAN Y., MEI T., CUI P., ZHU W.: Video summarization by
learning deep side semantic embedding. IEEE Transactions on Circuits

and Systems for Video Technology 29, 1 (2017), 226–237. 3

Level Curves Keys Camera Look-at

Line of action 29 L1 S 1, n 1

Jump cut 28 L2 S 1, n 1

Pos. continuity 30 L1 S 1, n 8

Look-ahead 31 L2 S 1, n 0.5

Motion direction 19 L3 S, E [2 ; n-1] 8

Camera speed 20 L3 S, E [2 ; n-1] 0.5

View angle 21 L4 S, E [2 ; n-1] 0.125

Look-at path 24 L3 S, E [1 ; n] 1

Cam. rotation 22, 23 L4 S, E [2 ; n-1] 0.5

Preferred view 14 L5 S, E [1 : n] 0.5

Thirds rule 15 L5 S, E [1 : n] 1

Context inclusion 17 L6 S, E [1 : n] 0.5

Traffic inclusion 17 L6 S, E [1 : n] 0.125

Look-ahead 32 L6 S [1 : n] 0.125

Table 4: Organisation of camera animation costs into priority lev-

els. For each, we indicate if they apply to shots (S) or time ellipses

(E), keys on which they apply to, and if they apply to the camera

positions or look-at positions (with their weight in the Jacobian).

Appendix A: Detailed importance scores

We here detail our trip importance scores. For each, we perform a
max-normalization (i.e. we divide it by the maximum value along
the trip), to ease further calculations.

Context: Showing a tall building located farther along the trip
might provide a better hint (e.g. the skyline of a city) than a small
building located close to the vehicle. Starting from the importance
B j of the jth building (computed using [HLH∗16]), we calculate
its warped distance to the vehicle at time t:

distance(j, t) =
∥b j(t)∥

B j

[

b̂ j(t) · v̂p(t)
]+

f (∥b j(t)∥)
(7)

where b j(t) is the vector from the vehicle to the building top point.
Our middle term gives more importance to buildings in the current

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

12 of 13 C. Lino & M.P. Cani / Generating Flight Summaries Conforming to Cinematographic Principles

direction of flight, to favor the provision of hints on where the ve-
hicle is travelling to. Our right term f (x), equal to min(1,x/xmin),
gives less importance to buildings located closer than a thresh-
old xmin (in our tests we used 150 meters). Indeed, such buildings
would be badly captured by the camera (i.e. only very partially),
and provide very few hints on where the vehicle is going.

As interest points, we use the K-nearest buildings, regarding
this warped distance. They are sorted by decreasing importance Bk

(k ∈ [1,K]). To provide a better hint on where the vehicle is trav-
elling to, we also use the landing location as an additional interest
point, and set its initial importance to BK+1 = 1. We then define a
context score as a density on all interest points, computed as

Icontext(t) = 1−G

(

1
K +1 ∑

k

k

distance(jk, t)
,σc

)

(8)

where jk is the index of the k-th closest building. In our tests, we
used K = 10 buildings, and σc = 2.10−3.

Altitude: We set the slope score Islope(t) to the angle between the
vehicle speed vp(t) and its projection onto the horizontal plane.

Flying direction: We capture the vehicle’s sharp turns by monitor-
ing curvature along its trajectory, which we compute as:

κ(t) = ∥v̇p(s)× v̈p(s)∥.∥v̇p(s)∥−1 (9)

using the arc-length parameterization of the vehicle’s trajectory
vp(s). This is done by constructing a monotonic 1d spline curve
where each travelled distance s is associated to its trip time t

(i.e. vp(s) = vp(t)). We then define the curvature score as:

Icurv(t) = 1−E(κ,1) (10)

The curvature tends to rapidly grow with the actual change in di-
rection. The exponential decaying aims to avoid this effect, so as to
highlight changes in a more linear way.

Velocity: we consider a velocity score Ivel(t) computed as the norm
of the vehicle’s velocity vector ∥v̇p(t)∥.

Traffic density is captured in a way similar to context, by moni-
toring the K most important surrounding vehicles. We compute a
warped importance per vehicle as:

importance(j, t) =
[

b̂ j(t) · v̂p(t)
]+

. f (∥b j(t)∥) (11)

Here b j(t) is the vector between both vehicles (i.e. v j(t)−vp(t)).
As well, function f (x) is a Gaussian decay G(|x− xmin|,σx), aim-
ing to favor vehicles around a preferred distance xmin (in our test we
used 150 meters, and σx = 300). Then, we define the traffic impor-
tance score Itra f f ic(t) using a density function similar to equation
8, where we use the original distance ∥b j(t)∥ instead of a warped
one. In our tests, we used K = 3 vehicles.

Appendix B: Detailed viewpoint quality scores

Preferred view: the preferred camera position is computed in
spherical coordinate, around the vehicle. Its distance, horizontal
and vertical angles are expressed through functions δ(rv,ra,rs),
θ(rv) and φ(rv,ra,rs) of the vehicle velocity (rv), its altitude (ra),
and the trip summarizing ratio (rs). Changes to the functions pro-
posed by [HLH∗16] are detailed in the supplementary material.

Given these functions, we then check how much this view pref-
erence is satisfied by the current camera position at distance δ(t),
horizontal view angle θ(t) and vertical view angle φ(t). The satis-
faction regarding camera distance is expressed as:

Q
δ
view(t) = ratio(δ(t),δ(rv,ra,rs)) (12)

The satisfaction regarding horizontal and vertical camera angles are
expressed as:

Q
θ
view(t)= 1− |θ(t)−θ(rv)|

180
and Q

φ
view(t)= 1− |φ(t)−φ(rv,ra)|

180
(13)

We finally combine them into a global satisfaction:

Qview(t) =
6.Qδ

view(t)+3.Qφ
view(t)+Qθ

view(t)

10
(14)

In other terms, we accept small variations around the preferred
viewpoint, but penalize larger ones. We also place more importance
on distance and vertical viewing angle, which provide more critical
visual cues. Conversely, the horizontal angle has less impact on the
quality of the views, hence small variations should remain allowed.

Thirds rule and motion space are expressed through a desired
screen position Π̂, accounting for both rules, and whose satisfaction
is computed as:

Qthirds(t) = 1− vp(t)− c(t)

∥vp(t)− c(t)∥ ·vΠ̂ (15)

where vΠ̂ is a unit-vector starting from the camera, corresponding
to the screen position Π̂.

To compute Π̂, we rely on the screen projection of the vehi-
cle’s velocity vector, once normalized. To enforce motion space,
the ideal screen position of the vehicle should be opposite to this
projected motion vector (Figure 3a). We then warp this ideal posi-
tion onto the center square formed by the four power lines (Figure
3b), by expressing the ideal screen coordinates as:

Π̂x = −0.33

[

sign(Π(v̇p(t))x).
8

√

Π(v̇p(t))x

]

. 8
√

rv (16)

and similarly for the y component of the ideal screen position.
The left and center parts represent the rule of thirds and the mo-
tion space, respectively. Using an L8 distance (8

√
.) attracts the ideal

screen position to the border of the center square, on the side oppo-
site to the vehicle’s apparent motion, when it is moving fast enough
(Figure 3), and to the screen center when moving slow enough (or
stopped), with a smooth transition between both cases.

Context and traffic inclusion account for the K-nearest neighbors.
For the sake of generality we denote as vk(t) the position of the k-th
neighbor at time t. Neighbors should be included on the screen:

Qcontext(t) =
1

∑k imp(k, t)

K

∑
k=1

imp(k, t).incl(k, t) (17)

imp(k, t) is the warped importance of the k-th neighbor, defined
using equation 11 (traffic density), and the inverse of equation 7
(context). incl(k, t) is the inclusion of k-th neighbor at time t:

incl(k, t) = 1− cos
(

(vk(t)− c(t),d(t))ϕ/3

)

(18)

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

C. Lino & M.P. Cani / Generating Flight Summaries Conforming to Cinematographic Principles 13 of 13

with c(t) and d(t) the camera position and view direction, respec-
tively. ϕ is the camera’s field of view. In other terms, we aim to
position important context and traffic elements as close as possible
to the center third of the screen.

Appendix C: Detailed camera animation costs

Viewpoint quality

Viewpoint costs for any keyframe k along a curve, defined at time
tk, are computed as C f (tk) = 1−Q f (tk) where f is a feature among
{view, thirds, tra f f ic, context}.

Camera motion smoothness

For the sake of simplicity we here use the sub-scripted notation ck,
lk, dk and qk to refer to the camera position, look-at point, view
direction and orientation at a keyframe k.

Camera path: We first constrain the camera motion direction to
change as little as possible, through the cost:

C
direction
path (k−1,k,k+1) = 1− ck − ck−1

∥ck − ck−1∥
· ck+1 − ck

∥ck+1 − ck∥
. (19)

and its speed to change as little as possible, through the cost

C
speed
path

(k−1,k,k+1) = 1− ratio(∥ck − ck−1∥,∥ck+1 − ck∥)
(20)

Viewing angle: We penalize changes in the viewing angle on the
vehicle, with the cost:

C
direction
view (k,k+1) = 1− ĉ

local
k · ĉlocal

k+1 (21)

where ĉlocal
k is the camera position at time tk, transformed in the

local frame of the vehicle then normalized.

Camera rotation: We avoid abrupt linear rotations of the camera:

C
direction
rotation (k,k+1) = 1−dk ·dk+1 (22)

and rotational velocity changes as well:

C
speed
rotation(k−1,k,k+1) = 1−

(

qk.q
−1
k−1

)

·
(

qk+1.q
−1
k

)

(23)

where each component of the dot product represents the rotation
change between two keys, in quaternion space.

Look-at point: its path is smoothed through the cost:

C
position
lookat

(k−1,k,k+1) = 1− lk − lk−1

∥lk − lk−1∥
· lk+1 − lk

∥lk+1 − lk∥
(24)

Film-editing conventions

We consider cuts between two consecutive shots i and j. For the
sake of clarity, we now include the shot index in our sub-scripted
notations (e.g. ci,n is the camera position for the last key of shot i).

Jump Cuts (aka 30◦-rule): avoidance is expressed as the cost:

C
30◦
jump(i, j) =





30−
(

clocal
i,n ,clocal

j,1

)

30





+

(25)

To provide enough size change, we penalize changes on the camera
distance to the vehicle. We compute a ratio of distance change:

ractual = 1− ratio
(

∥c
local
i,n ∥,∥c

local
j,1 ∥

)

(26)

then consider that this ratio is sufficient if it is greater or equal to
rdesired , leading the cost:

C
size
jump(i, j) =

[

rdesired − ractual

rdesired

]+

(27)

In our tests, using rdesired equal to 0.5 (i.e. a logarithmic change of
camera distance) seem to work well.

To avoid jump cuts, one should satisfy at least one rule:

C jump(i, j) = min
(

C
30
jump(i, j),Csize

jump(i, j)
)

. (28)

Line of action: We consider the rule of not crossing the line of
action of a moving object. We here generalize to its line of action
during a time ellipse, by accounting for the vehicle’s positions be-
fore and after a cut (see Figure 4).

We firstly compute the reference frame to this line of action (NB:
it is in fact a plane). Its forward vector (defining the line) is given
by vp(s j)− vp(ei), once normalized (with ei and s j the end time
and start time of shots i and j). Its right vector (defining the plane
normal) r(i, j) is given by the cross product of the forward vector
with the upward vector. We secondly compute the dot product be-
tween the vehicle-camera vector (taken before or after the cut) and
r(i, j). We refer to these two products as as dot(i) and dot(j). To
not cross the line-of-action, their signs should be equal.

To define the side where both cameras should lie, we use the
sign of the dot product of maximum absolute value (we refer to it
as sign(i, j)). We finally express our line-of-action constraint as:

C
motion
continuity(i) =

[dotdesired −dot(i)∗ sign(i, j)]+

1+dotdesired

(29)

for the last key of shot i, and similarly for the first key of shot j.
Here, we force the dot product to be sufficient to reinforce the co-
herence between apparent motion directions. In our tests, we used
dotdesired = 0.25 (i.e. force a 15◦ minimum angle with the line of
action). We then average both costs into a final cost Cmotion

continuity(i, j).

Screen position continuity: We penalize abrupt changes in the ve-
hicle’s position in screen-space:

C
position
continuity(i, j) = 1− vcam

p (ei)

∥vcam
p (ei)∥

· vcam
p (s j)

∥vcam
p (s j)∥

(30)

where vcam
p is the vehicle’s position transformed in the camera

space (hence strongly linked to its screen position).

Look-ahead: We express the inclusion of the future position of the
vehicle (after a cut) on the screen, as a cost on the camera direction:

C
look
ahead(i,k) = 1− cos

(

(vp(s j)− c(ei),d(ei))ϕ/3

)

(31)

To unable the camera to look toward this look-ahead, we also im-
prove the camera positioning (i.e. viewing angle) through the cost:

C
look
ahead(i,k) = 1− cos

(

(vp(s j)− c(ei),vp(ei)− c(ei))ϕ/3

)

.

(32)

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

