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Abstract. In this paper, we place ourselves in the context of the Bayesian framework

for image segmentation in the presence of varying blur. The proposed approach is

based on Triplet Markov Random Fields (TMRF). This method takes into account,

during segmentation, peculiarities of an image such as noise, blur, and texture. We

present an unsupervised TMRF method, which jointly deals with the problem of

segmentation, and that of depth estimation in order to process fluorescence microscopy

images. In addition to the estimation of the depth maps using the Metropolis-Hasting

and the Stochastic Parameter Estimation (SPE) algorithms, we also estimate the model

parameters using the SPE algorithm. We compare our TMRF method to other MRF

models on simulated images, and to an unsupervised method from the state of art on

real fluorescence microscopy images. Our method offers improved results, especially

when blur is important.

Keywords: Markov random fields, image segmentation, deconvolution, fluorescence

microscopy
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1. Introduction

1.1. Context

Probabilistic methods have experienced great success in the context of image segmentation

since the publication of the work of Geman and Geman [1]. They are used to solve many

problems in machine learning, inverse problems, pattern recognition, and image analysis

being that of interest in this paper.

Markov Random Field (MRF) models are a statistical class of models for inference

in images. A vast amount of published works using these models can be found, with

applications including image restoration [2], edge detection [3], reconstruction [4], and

segmentation [5], the problem of interest in this contribution. It consists in partitioning

an image formed by a finite set of pixels S into k non-overlapping regions with k = |Ω|
and Ω = {ω1, ω2, ..., ωk} is the set of values. Let us consider s ∈ S a pixel and Ns the

neighborhood of s. We consider X ∈ Ω|S| a vector of random variables defined on S.
Then, X has a MRF distribution if and only if the conditional probability of realization

of x on a site s depends only on realizations of x within its neighborhood Ns:

p(xs|xS\s) = p(xs|xNs) (1)

This ability to describe local properties makes MRF useful for image processing

because regions in real-life images are often homogeneous in the sense that neighboring

pixels tend to have similar properties, such as intensity, color, and texture.

Throughout this work, we consider fluorescence microscopy images. Fluorescent

microscopy is a technique that uses fluorescence to generate an image and visualize

structures within biological specimens. However, measurements in fluorescence

microscopy are affected by blur that acts as a convolution of the object of interest

with the microscope’s Point Spread Function (PSF). The PSF describes how a point

source of light is represented in the image and is a fundamental characteristic of the

optical system. This blurring effect can obscure fine details and reduce the overall clarity

of the image, making it more challenging to accurately analyze the structures of interest.

We can distinguish two different causes of blur: depth defocus blur, when the observed

sample is not in the focal plane, and shake blur, when the lens or an object in the scene

moves during the acquisition. In our microscopy observation conditions, the latter can

be neglected, but not the former, as we have no guarantee that the observed sample is

exclusively in the focal plane. Defocus blur is partially known because the PSF is known

at the instrumental level, (see Fig. 1). For later processing of fluorescence microscopy

images, one can experimentally measure the PSF, using sub-resolution fluorescent beads,

acquiring their images through the optical system. The interested reader will find in Ref.

[6] detailed explanation and protocol to perform this task. This ensures that the actual

microscope characteristics are measured, but the procedure can be tedious, and measured

PSFs can be noisy. An improvement therefore consists in denoising the experimental

PSF [7, 8], or fitting a Gaussian model [9], or a computed PSF to the measured one
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2 µm

Figure 1: Typical PSF h3D in fluorescence microscopy generated via PSF generator

[14], with axial and longitudinal slices of the central plans. The PSF in fluorescence

microscopy is non-homogeneous, aberrations clearly appear in the xz view inducing

asymmetry along the optical z-axis, but are less visible in the xy view.

[10]. Finally, if acquisition parameters are well known, the PSF can be computed using

scalar [11] or vectorial [12, 13] models of image formation, depending on the required

accuracy. In this work, as the microscope characteristics and acquisition parameters

are known, we use, for its accuracy and ease of use, the model of Kirshner et al. [14],

as implemented in the software PSFGenerator [15]. However, the depth at which the

sample is located remains unknown, and it must therefore be estimated at each site

s in the image. Thus, it is necessary to jointly address the problem of non-stationary

deconvolution and segmentation.

1.2. Problem statement

We consider that the blurred and noisy observation image y is the result of a convolution

of a hidden field z, representing the intensity classes, with the instrument PSF H. Since

H is variable according to the region of the image, we parameterize it by a second hidden

field v, so that the model writes as:

y = H(v)z+ n, (2)

where n is an independent Gaussian noise. The covariance of n is Σn ∈ RB×B×|Ω|, since

we decided to define a covariance per class. The observation y ∈ RS×B is a colored image

with S = |S| pixels and B colors, e.g. B = 3 in the case of RGB images. z ∈ RS×B

results from a realization of a MRF x ∈ ΩS. The latter represents the different classes in

the image while z represent their colors, so ∀s, xs = ωk ⇐⇒ zs = µk, and µk ∈ RB. In
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other words, z corresponds to the noiseless and blur-less version of the observation. We

will discuss in detail different MRF models in Section 2.

The operator H(v) ∈ RS×S translates the fact that the convolution varies in the

image as a function of the latent field v ∈ RS. In each site s in the image, we define it

∀s ∈ S as:

(H(v)z)s =
〈
h3D
s,vs , z

〉
(3)

h3D ∈ RS×S×P is known only on a 3D grid, see Fig. 1. P represents the depth of the

PSF, h3D
s,vs ∈ RS represents the PSF of the system at depth vs in the site s. In other

words, H forms a depth-selection operator to model the blur. It is also important to

note that the field v does not necessarily have a physical interpretation, its sole purpose

is to parameterize the 3D PSF.

1.3. Related work

Popular approaches to solving segmentation problems include clustering-based methods

[16, 17], graph-based methods [18], or Bayesian methods [19, 20, 21, 22, 23]. A lot of

works used Bayesian methods to solve complex segmentation problems when dealing

with noisy and blurred [24], textured [25], or even fluorescence images [26]. In recent

works with a related formulation, one can cite [24], in which the authors proposed

a pairwise MRF model allowing for the unsupervised Bayesian segmentation of faint

sources in astronomical hyperspectral images, known to be blurry and noisy. Authors

in [27] also presented a probabilistic model called Gaussian Pairwise Markov Random

Field (GPMRF), for images corrupted by long-range spatially correlated noise.

In addition to segmentation, deconvolution is a necessary step when dealing

with blurry images. Several studies developed methods for image deconvolution

or segmentation/deconvolution purposes. For instance, authors in [28] present a

deconvolution method based on Gaussian and non-Gaussian MRF prior. A method for

deconvolution-segmentation of textured images is given in [29]. This method relies on a

hierarchical model and a Bayesian strategy to jointly estimate the labels, the texture,

and the hyperparameters. Other deconvolution methods are applied to fluorescence

microscopy images in which the fluorescent points are perceived as a blur. The authors

in [30, 31, 32, 33] propose deconvolution methods applied to different types of real

images: ultrasound, scanner, and others. In [34] the author proposes a deconvolution

method based on MRF. The PSF is considered spatially invariant, as in [35] where the

PSF intervenes within a model of pairwise MRF. The authors in [36] have on the other

hand considered that the PSF is spatially variant, which is more realistic for actual

microscopy images. Indeed, as previously stated, in fluorescence microscopy, blur varies

with depth [37]. To be able to work with a continuous PSF, the authors in [26] consider a

constant per area PSF. These methods have been proven effective on simulated and real

images. Although the authors conclude that their methods can just as easily be applied

to microscopy images, their algorithms do not take into consideration the peculiarities

of these kinds of images. The blur in fluorescence microscopy images is often much
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more important than the one we can see in macroscopic ones. Besides, none of the cited

methods has been tested on actual fluorescence images.

We seek a method that takes into account the depth-varying PSF, and that does

both deconvolution to return a blur map and segmentation to return the labels. We also

seek unsupervised segmentation since we do not have a database of grapevine images, so

we need to estimate the parameters.

In this paper, we present a method that makes it possible to jointly estimate x, v,

and the parameters of the model, from the sole knowledge of y and h3D. First, we discuss

the different MRF models and their applications (Section 2). Then, we discuss the

joint deconvolution/segmentation method we developed with the parameter estimation

(Section 2.3 and 3), and we finish by presenting the results we obtained.

Note that in this article, we use the terms convolution and deconvolution in order

to qualify kernel-varying convolution and deconvolution. This variation in the window

(kernel) represents the slices of the PSF. For the annotations, Roman letters refer to

random variables, while bold letters refer to random vectors. x is a realization of

the random field X, and for simplification, when there is no ambiguity, we will write

p(X = x) = p(x), and the same annotation will be used for the other random vectors.

2. Models

In this section, we discuss different levels of complexity of MRF models within a Bayesian

framework. The simplest and yet efficient model used in literature is the Hidden Markov

Random Field (HMRF). Pairwise Markov Random Fields (PMRF) were introduced in

the case where the hidden class field is not necessarily Markovian [25], so one assumes

the couple (class field X, observation field Y) is Markovian. The latter-described models

may fail in the case of a non-stationary process. To tackle this problem, Triplet Markov

Random Fields (TMRF) were introduced [38]. They are formulated by adding an

auxiliary random field to the class and observation ones so that the three together (X,

Y, V) are considered as Markovian.

2.1. Hidden Markov Random Field

In HMRF, one makes two assumptions. The first one is about the class field X, one

assumes that X has a Markov field distribution that can be modeled with a Gibbs

representation:

p(x) = γ exp(−U(x)), (4)

with:

U(x) =
∑
e∈E

ψe(xe), (5)

where γ is a normalization constant, sometimes called the partition function, ψ is a

potential function, and E is the pixel sets of cliques on the image. In this work, we

consider cliques of size 2. The most popular examples of such models used in literature
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are the Ising model and the Potts model (used here). We consider the MRF X taking

values in ΩS. The law of x is written as:

p(x) = exp

−α
∑

(s,t)∈E

(
1− 2δ(xs, xt)

) , (6)

with α > 0 the parameter modulating the granularity of x, and δ the Kronecker symbol.

In the following, without loss of generality, x will have values in two classes Ω = {ω0, ω1},
which means that k = 2. Indeed, this corresponds to the application on real images (see

Section 4.3).

The second classical HMRF assumption is about the observation y. We assume an

independent noise so the probability of the observed data is obtained as:

p(y|x) ∝
∏
s∈S

p(ys|xs) (7)

In the case of Gaussian white noise with a class covariance Σn,k ∈ RB×B and color

µk ∈ RB (k represents the classes in the image):

p(ys|xs = ωk) ∼ N (ys;µk,Σn,k) (8)

By taking into account Eqs. (6)(8), the law of the HMRF model is rewritten as:

p(x,y) = p(x)
∏
s∈S

p(ys|xs)

∝ exp

−α
∑

(s,t)∈E

(
1− 2δ(xs, xt)

) (9)

×
∏
s∈S

exp

(
−1

2
(ys − µk)

TΣ−1
n,ks

(ys − µk)

)
where ks ∈ Ω is the class of xs. We can represent the HMRF with a dependence graph, as

in Fig. 2 (a). In this model, the set of parameters is ΘHMRF = {α,Σn,0,Σn,1,µ0,µ1}.

2.2. Pairwise Markov Random Field

The estimation of X = x from Y = y requires the knowledge of the posterior distribution

p(x|y), which is easily available in the HMRF case. This is in fact possible if we assume

that the couple (X,Y) has a Markov field distribution. In this case, we call (X,Y) a

PMRF [25]. It is different from a HMRF since X is not necessarily Markovian, and

neither Y.

Considering an independent noise and a blurry image with an invariant PSF

h2D ∈ RS×S, we can write:
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Figure 2: Dependency graph of the three MRF models used in this paper, conditionally

to a site s (colored). The absence of link between two variables means that they are

independent given the variables in the s site. Note that for clarity, only one dimension

of the lattice is represented.

p(y|x) =
∏
s∈S

p(ys|x)

=
∏
s∈S

exp

(
−1

2

(
ys − [h2Dz]s

)T
Σ−1

n,ks

(
ys − [h2Dz]s

)) (10)

Then, taking into account Eqs. (6)(10), the law of the PMRF model is given by:

p(x,y) ∝ p(x)
∏
s∈S

p(ys|x)

= exp

−α
∑

(s,t)∈E

(
1− 2δ(xs, xt)

) (11)

×
∏
s∈S

exp

(
−1

2

(
ys − [h2Dz]s

)T
Σ−1

n,ks

(
ys − [h2Dz]s

))
The set of parameters in this case is the same as in HMRF as h2D is known, so

ΘPMRF = {α,Σn,0,Σn,1,µ0,µ1}.

2.3. Triplet Markov Random Field

In TMRF, a third process V is introduced, and the triplet (X,Y,V) is assumed to

be Markovian. TMRF makes it possible to more efficiently work with non-stationary

images, and possibly deal with non-Gaussian correlated noise [39]. Generally speaking,

the field V might have or not have a physical interpretation, so it can be used to describe

latent phenomena with no direct interpretation in the image; it could be used to define

different homogeneities of (X,Y), such as the possible non-stationarity of the distribution

p(x,y), as it could also be used to model textures. To our knowledge, in previous works

mentioning TMRF, V is always discretely valued. In this work, we assume V ∈ RS, and

it represents the depths of the observed points with respect to the PSF, as introduced in
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the observation model (Eqs. (2) (3)). We choose to simplify the Markov distribution of

TMRF as follows:

p(x,y,v) ∝ p(y|x,v)p(x,v) (12)

By choosing x and v independents:

p(x,y,v) ∝ p(y|x,v)p(x)p(v) (13)

The distribution of y conditionally to x and v can be written as:

p(y|x,v) ∝ exp

(
−1

2

(
y −H(v)z

)T

Σ−1
n,ks

(
y −H(v)z

))
(14)

The dependency graph corresponding to a TMRF is shown in Fig. 2 (c).

We work with PSF h3D as described in Eq. (3). We assume that v is a realization

of a zero-mean Gaussian Markov random field:

p(v) ∝ exp

(
−1

2
vTΣ−1v

)
(15)

We assume that Σ ∈ RS×S is a circulant covariance matrix, whose basis is

parameterized by a Gaussian correlation function r. This means, for any pair of pixels

(i, j) in the image:

Σi,j = σ2
vr(i, j; ρ) = σ2

v exp

(
− 1

ρ2
∥i− j∥2t

)
(16)

where σv is the standard deviation, ρ the range of typical correlations between pixels,

and ∥i− j∥t represents the distance on the torus between sites i and j. We consider

an image defined on a torus: the left edge connects to the right edge, and the top edge

connects to the bottom edge. We will also note the precision matrix Q = Σ−1. Q and Σ

are circulant matrices, so they are characterized by their bases, denoted bQ ∈ R and

bΣ ∈ R respectively. The calculation of the base in the Fourier domain is sufficient in

this work, instead of the calculation and the storage of the matrix Σ or Q. In practice,

the base bQ can be calculated as follow:

bQ = IDFT(1÷DFT(bΣ)) (17)

xQ = IDFT(DFT(x)⊗DFT(bQ)) = x ∗ bQ (18)

Where DFT is the Discrete Fourier Transform, and IDFT its inverse; ÷ and ⊗ are

element-by-element division and multiplication, respectively, so there is no need to

handle Q or Σ entirely.

Finally, taking into account Eqs. (6)(14)(15), the law of the TMRF model we

introduce is expressed as:
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p(T) ∝ p(x)
∏
s∈S

p(ys|x,v)p(v)

= exp

−α
∑

(s,t)∈E

(
1− 2δ(xs, xt)

) (19)

×
∏
s∈S

exp

(
−1

2

(
ys − [H(v)z]s

)T

Σ−1
n,ks

(
ys − [H(v)z]s

))
× exp

(
−1

2
vTΣ−1v

)
,

all the parameters of the model being gathered in Θ = {Σn,0,Σn,1,µ0,µ1, α, ρ, σv}.
Since we are in the context of unsupervised segmentation, Θ has to be estimated. We

will discuss in the next section the different Bayesian estimation methods we consider in

this work.

3. Bayesian Inference

In this section, we show how to estimate x in the context of Eq. (19) from the observation y

and h3D, and without knowing neither v nor Θ. For this, we first study how to estimate

each element of (x,v,Θ) when y and the other two vectors are known, in order to

afterward design an alternating algorithm.

3.1. Estimation of x

By fixing v and Θ, we find ourselves in the context of supervised segmentation within

the framework of PMRF, which takes into account a blur, here fixed prior to estimation

[24]. For this, we resort to Bayesian estimators. Bayes law and the Markovian properties

of X in PMRF, of (X,Y) in PMRF, and of (X,Y,V) in TMRF allow us to use different

Bayesian estimators methods as the Maximum A Posteriori (MAP):

x̂MAP
s = argmax

ω∈Ω
pΘ(x = ω|y), (20)

or the Marginal Posterior Mode (MPM):

∀s ∈ S : x̂MPM
s = argmax

ω∈Ω
pΘ(xs = ω|y), (21)

The MAP estimator can be approached using the Iterative Conditional Mode (ICM)

algorithm introduced in [40]. This algorithm is known for its ease of implementation and

efficiency. Authors in [41] presented an algorithm for approximating the MPM estimator.

The latter uses the Gibbs sampler [1] to generate a number of estimations of x̂. MPM

estimator is time-consuming and gives in preliminary experiments a similar estimation

of x as in the MAP estimator. We therefore decide in the following to focus only on the

MAP estimator.
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3.2. Estimation of v

Finding an estimator for v similar to MAP/MPM estimators is not easy, because v does

not intervene linearly in the image model (Eq. (2) (14)). However, if we consider that x

and Θ are fixed, the posterior pΘ(v|x,Θ) is accessible via the likelihood (Eq. (2)) and

the prior on v (Eq. (15)), so we can write:

pΘ(v|x,y) ∝ p(y|x,v)p(v) (22)

To estimate v, we use the Metropolis-Hastings (MH) algorithm [42], which iteratively

allows for making proposals on v, to evaluate their posterior distributions, and to either

retain them or not. The main steps of the MH algorithm are reported in the following:

(i) At a step t of the MH algorithm, the proposal made is a disturbance of the current

state v(t):

vproposal = v(t) + ϵvdisturbance, (23)

where vdisturbance sampled from a multivariate normal law N (0,Σv), with the same

parameters as v (Eq. (15)), and where ϵ > 0 defines the amplitude of the disturbance.

(ii) Then the proposal is accepted with probability:

min

(
1,
pΘ(v

proposal|x,y)
pΘ(v(t)|x,y)

)
. (24)

If the proposal is not accepted, then v(t+1) = v(t).

The whole, sufficiently repeated, forms a Markov chain whose stationary state provides:

vMH ∼ pΘ(v|x,y) (25)

Various Markov Chain Monte Carlo (MCMC) methods exist in the context of

sampling complex distributions. Examples include Metropolis-adjusted Langevin

algorithms, Hamiltonian Monte Carlo, and Hamiltonian-assisted Metropolis sampling

[43]. These methods exploit the gradient information in the target density (see Eq. (22)).

However, this is not applicable in our case because v acts as a depth selection operator

within a discrete object, the PSF. Therefore, we work with the simpler MH algorithm.

3.3. Estimation of Θ

In unsupervised segmentation, each model parameter must be estimated. Note that we

assume here that x, v, and y are known.

Mean and variance estimation. The Maximum Likelihood Estimator (MLE) is used to

estimate the parameters of the normal distributions, namely µ0, µ1, σv, Σn,0, and Σn,1.
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Granularity coefficient estimation. In works involving the Potts model, the granularity

parameter is either fixed or estimated. There exists no MLE for the estimation of α. A

Pseudo MLE does exist [44]. An improvement of this method for Potts MRF model

parameter estimation is presented in [45]. It approaches α as follow:

α̂ =
k2

2(k − 1)
(Fneq − 1

k
) (26)

with k the number of classes in the image, and Fneq representing the frequency of

neighbor pairs of different classes:

Fneq =
1

k

∑
(s,t)∈E

δ(xs, xt) (27)

Our choice for estimating α in the context of segmentation is the Pseudo MLE

method, which is easy to implement yet provides sufficient accuracy.

Correlation estimation. To our knowledge, there exists no MLE for ρ, so we will use a

Least Squares (LS) method as in [46]. It allows for fitting a Gaussian function to the

correlogram C(d) of v, d (between 0 and N) being the distance on the torus of a pair of

pixels. The LS estimator yields:

ρ̂ = ((ETE)−1ETw)−1 (28)

with wT = (log Ĉ(0), ..., log Ĉ(N)) and ET = (0, ...., N) a vector of N + 1 elements.

The correlogram Ĉ of the zero-mean field v for a distance d can be estimated by:

Ĉ(d) = 1

|D(d)|
∑

(s,s′)∈D(d)

1

σ̂2
v

vsvs′ (29)

where D(d) is the set of pixel pairs whose Manhattan distance on torus is d:

D(d) = {(s, s′) ∈ S2 : ||s− s′||t = d} (30)

3.4. Unsupervised segmentation

In the context of unsupervised segmentation, we only possess the observation y. We

are therefore interested in the joint estimation of x, v, and Θ from the observation y

and the knowledge of h3D. A popular method, in this case, is Expectation-Maximization

(EM) proposed in [47]. Its algorithm cycles between computing the expectation of x

and maximizing the complete data log-likelihood to obtain the MLE of Θ. EM has

proven convergence properties, but there is no guarantee to find the global maxima [48].

Its stochastic variant (SEM) [49] is a viable alternative. This algorithm incorporates a

stochastic step, which simulates a realization of xt based on the current estimate Θt.

The addition of this step makes it possible to not remain stuck at local minima, unlike

conventional EM. Many articles compare EM and SEM, [48, 50, 51, 52]. All agree that
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SEM is the least computationally demanding, may display faster convergence, as well as

improves the ability to locate the global maximum of the likelihood function.

These methods consider exclusively MLE, which is not the case for the estimation

of the parameters ρ (Eq. (28)) and α (Eq. (26)). We also need to estimate the field v,

which we consider as a necessary parameter to find x. Here we provide a method based

on the SEM algorithm, which we call Stochastic Parameter Estimation (SPE) as in [27].

The latest will return the estimated parameters Θ and v that we will use in a MAP

estimator to find x (Eq. (20)). The procedure is described in Algorithm 1. The field v is

initialized randomly. The class field x is set up using the k-means algorithm [53] on the

observation y. The mean and covariance parameters in Θ can be initialized randomly or

for a gain of time, using a quasi-SEM algorithm on the initialized fields x and v. To

summarize, our method consists in:

• From y and H, we estimate Θ̂ and v̂ (SPE in algorithm 1).

• From y, Θ̂ and v̂, we estimate x̂ (ICM [40]).

Algorithm 1 Stochastic Parameter Estimation (SPE) procedure

Require: y, H.

Ensure: v̂, Θ̂ = {Σ̂n, σ̂v, µ̂, α̂, ρ̂}.
1. Initialisation: give initial configurations for x(0), v(0) and values for Θ(0).

repeat (iteration t+ 1):

2. Simulate x(t+1) ∼ pΘ(t)(x|y,v(t)) by running a Gibbs sampler for t iterations.

3. Simulate v(t+1) ∼ pΘ(t)(v|y,x(t+1)). (25)

4. Estimate Θ(t+1) from y,x(t+1),v(t+1) using :

- MLE estimator for Σn, σv, µ0 and µ1.

- Pseudo MLE for α. (26)

- LS estimator for ρ. (28)

until Stability of Θ̂.

The SPE algorithm is stochastic, so it does not converge pointwise. Thus, in practice,

we stop it when the result Θ̂
t
of the last iteration deviates sufficiently little (less than

5%) from the average of the previous 10 iterations.

4. Numerical Results

This section gathers the performances of the model we propose. First, we review in

detail the algorithmic considerations for the practical implementation of SPE. Then,

we evaluate the models from Section 2 under varying blur and Signal to Noise Ratio

(SNR). Finally, we test our TMRF model on real images and compare the result to those

obtained from another filtering method from the literature, discussed in detail in Section

4.3.
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(a) 4-neighbors (b) 8-neighbors

Figure 3: Two colored model and four colored model on sets S containing 3× 3 sites of

the chromatic Gibbs sampler. Each circle represents a site and each color is a subdivision

of S.

4.1. Algorithmic consideration

Chromatic sampling. The estimation of x (Eq. (20)) requires the use of a Gibbs sampler

[1], a popular MCMC algorithm used to simulate samples from the joint distribution.

The Gibbs sampler is constructed by sequentially sampling each variable in the model:

• Select a prior p(x = k) from k = |Ω|.
• Construct conditional given the neighborhood NG

s .

• Update the variable.

NG
s is the neighborhood considered in the Gibbs sampling. The Gibbs sampler is ergodic

and easy to implement, but time-consuming. Authors in [54] have proposed a method

to accelerate Gibbs sampling, called the chromatic Gibbs sampler. It applies the graph

coloring technique in order to obtain a direct parallelization of the classic sequential

scan Gibbs sampler. To work with the chromatic sampler, we need to ensure that only

independent variables are sampled simultaneously; the neighborhood of a pixel must not

be sampled while sampling that particular pixel. To do so, the PSF must be ignored

outside the disk of radius r (see Fig. 4). To determine in practice, the best radius r, we

change r beyond which the PSF is ignored and run our algorithm on synthetic images.

We also test the case where the previously mentioned condition is not respected, by

fixing the size of the neighborhood NG
s = Ns and vary r.

The results are reported in Fig. 5. The error rate is calculated by dividing the

number of misclassified pixels by the total number of pixels in the image. As one can see

in Fig. 5(a), the higher the value of the radius, the smaller the error, because by choosing

a higher value of r, we keep most of the information in the PSF. We can also see by

comparing the two graphs, MAP with varying neighborhood NG
s and MAP with fixed

neighborhood NG
s = Ns, that the difference between the two methods is very small for

low values of r (≈ 1%). This difference is slightly higher for higher values of r (≈ 4%).

Now, if we look at the time a segmentation takes, see Fig. 5(b), this error is compensated

by an important gain of time when working with the MAP with a fixed neighborhood.

This method allows us to take larger values of r and do the segmentation in a shorter

time.
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r

r

Figure 4: Two examples of neighborhoods Ns in the left and NG
s in the right, with their

corresponding truncated PSF in the case of the chromatic sampler.
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Figure 5: (a) Error rates and (b) time as a function of the radius r estimated by 100

different realizations. The graph is obtained by running the algorithm with images of

size 100× 100 pixels.

In this article, we use the principle of the chromatic sampler to implement the ICM

algorithm, from which all the results are obtained, with a time gain factor of 1000 with

respect to the classical sequential sampler.

PSF discretization. The PSF we consider in our model is numerically discretized, so a

discrete version of the Gaussian field v (see Fig 6a) is used during the selection of depths.

We want to find the best value of τ that gives a good compromise between precision

and cost. To do so, we vary the values of τ and run the algorithm on synthetic images

and for different values of the radius. From the results presented in Fig. 7, we deduce

that the smaller the value of τ the more precise the segmentation. The higher the value

of τ , the faster the segmentation, but the higher the error. Our goal is to choose the

smallest value of the error in the function of the step and the radius. This corresponds

to choosing r = 20 and τ = 2.

MH disturbance amplitude ϵ In Eq.(23), ϵ defines the amplitude of the disturbance

for the proposals made in MH. A low value will produce a high acceptance rate, but

low-risk taking, and therefore a slow convergence; conversely, a value that is too high
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Figure 6: Gaussian field used to represent blur. The yellow color corresponds to the

regions affected with the upper half of the PSF, the green and blue-green colors correspond

to those affected with the middle part of the PSF, while the dark blue and purple colors

correspond to regions affected with the lower half part.
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Figure 7: (a) Error rates and (b) time as a function of the step τ estimated by 100

different realizations. The graph is obtained by running the algorithm with images of

size 100× 100 pixels.

can produce propositions too implausible to be accepted. Sometimes, when the nature

of the target distribution is known, an optimal value of ϵ is proposed, as in the case of a

Gaussian posterior distribution of dimension D for which ϵ = 2.38/
√
D [55]. This is not

applicable to our case because the posterior pΘ(v|x,y) (cf Eq 22) is not Gaussian since

there is a discretization that intervenes in Eq. (3). We therefore take a value of ϵ, which

empirically gives the best compromise between acceptance rate and risk-taking. This

value is fixed for all experiments ϵ = 20 and modifies only the computation speed.

4.2. Results on synthetic images

In this part, we test using synthetic images the different above-cited models, HMRF,

PMRF, and TMRF. Microscopy images are noisy and blurry, so to test the models,

at first, we will vary the Signal to Noise Ratio (SNR), to test them on different noisy
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Figure 8: Summary of the experiment on synthetic images. The graphs were obtained

by running the algorithms with images of size 100 × 100 pixels. Each point corresponds

to the average of 100 different realizations.

images. Then, we will vary the PSF Full With at Half Maximum (FWHM), in order to

test them on different blurry images. The SNR used was defined as follows:

SNR = 10 log10

(
∥Hx∥2

σnS

)
(31)

All the algorithms are unsupervised. Results are shown in Figs. 8(a) and 8(b).

As one can see from Fig. 8(a), our TMRF achieved better results compared with

the HMRF and PMRF for all values of the SNR. One can also remark that from SNR=3

dB, the HMRF achieves better results than the PMRF. This can be interpreted by the

fact that the PSF considered in PMRF is invariant, which is not true in reality, so we

can say that it is better not to take into consideration the PSF when using HMRF than

using a wrong PSF in PMRF. Remark that in the case of very noisy images (SNR=-3dB)

the PMRF performs better than HMRF. One can also remark from the three graphs,

that the less noisy the image, the better the result, as expected.

We also varied the FWHM of the PSF. The larger the FWHM, the blurrier the image.

The results of the three methods are shown in Fig. 8(b). The first remark is that the

three curves are decreasing, meaning that for all methods, the less blurry the image, the

better the result, again as expected. One can also remark that our TMRF achieves better

results compared to the PMRF which achieves in turn better results than the HMRF. The

latter is not intended to deal with blur. We can deduce from the curves that, fully taking

into account a 3D PSF and a possibility of variations is better than a 2D and invariant

one on varying blur images. Segmenting an image of size 100 x 100 using the TMRF

model takes approximately 15 minutes using a standard laptop. The code used in this

article will be made publicly available on https://github.com/courbot/BISUVAB-TMF

upon acceptance of this manuscript

4.3. Fluorescence microscopy images

In this section, we test our model on real microscopy images. We work on fluorescence

microscopy grapevine wood images (cf. Fig. 9) infected with the esca-associated fungus

https://github.com/courbot/BISUVAB-TMF


17

1000µm 100µm

Figure 9: Examples of pathogen in vine wood images observed with a fluorescence

microscope, at x10 magnification on the left and x40 on the right. The pathogen

fluorescence appears as green-yellow filaments, while wood auto-fluorescence appears as

yellow-brown.

Neofusiccicum parvum. Esca is a wood disease causing early plant decline [56]. We

specifically focus on the problem of segmentation of the pathogen in the wood. This

fungal, which was colored using WGA-FITC dye appears with a light green fluorescent

color and has a filamentary texture, while the wood exhibits auto-fluorescence and is

very textured, contrary to the pathogen. The images are noisy, textured, and have blurry

areas, which makes them difficult to segment. The images are obtained using a wide-field

BX51 Olympus microscope with a laser excitation at 480 nm, and an ORCA-Fusion

Hamamatsu CMOS camera.

4.3.1. Acquisition protocol. R.P, a researcher at LVBE and a grapevine-microbe

interaction expert, was in charge of making the images. He inoculated one-year-old

potted Gewurztraminer cuttings with fungal mycelium, cut the 25µm thick slices using

a microtome, and observed them in the microscope after a WGA-fitc staining treatment

according to [57]. We ended with a small bank of vinewood images. He also provided

us with the ground truth images that he obtained by manually segmenting each image.

As in this case, we don’t have the real ground truth, we use the expert segmentation

as ground truth, which means there could be some room for error. All the coming

segmentations are done on x40 magnification images, so they have the same scale as the

left one in Fig. 9.

4.3.2. Alternatives. In [58], the authors present a filtering method dealing with the

segmentation of 2D curvilinear structures. They test their method on retinal and

crack images, finding good results, especially on crack images that have a really noisy

background. Since our microscopy images do present filiform structures and a textured

background, we compare our work to the one presented in this article. The method is

called RORPO (Ranking the Orientation Responses of Path Operators). It uses the

principle of path operators and tends to avoid false detections that other local analysis

methods may produce. RORPO returns two features, a directional feature that provides

local orientation and an intensity feature that can be seen as a curvilinearity measure.
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In this work, we are interested by the latter feature. RORPO returns images in gray

level. To be able to compare with our binary resulting images, we converted the obtained

RORPO images binary images using the mean threshold.

4.3.3. Results. In Fig. 10, we show some segmentation results using the three studied

HMRF, PMRF, and TMRF models, and the RORPO method. These methods are able

to detect the filamentary mycelium in wood. Differences mainly appear in the blurry

areas and areas where the texture of the wood is really visible (vessels and cells). Several

comments can be made:

• In the first image, the pathogen grew outside the wood. There, no textured

background is visible, which makes the segmentation task easier, and both RORPO

and the Markov models give good results.

• In the second image, the pathogen is located inside a vessel. The latter has a

filamentary structure and a frequency similar to the one of the pathogen. The

RORPO, HMRF, and PMRF methods detect the pathogen and some parts of the

vessel (autofluorescence), while TMRF could make the difference between the two.

It is also the case in the third image where RORPO and the HMRF detect wood and

pathogen, while TMRF detects only the pathogen. The PMRF failed to segment

this image.

• The structure of the pathogen appears differently depending on the woodcut, which

can be transverse or lateral. The fourth image is a transverse cut: the pathogen

doesn’t appear filamentary anymore. The TMRF method gives good segmentation

results, which in this configuration is not the case for the three other methods.

• The last image was obtained from a different microscope and a different camera.

Since we do not have detailed information about this material, we work with the

same theoretical PSF as used for the other images. We can see that this image is

blurry. The RORPO, HMRF, and PMRF methods do not detect any pathogen in

the blurry areas. The TMRF detects all the pathogens even in the blurry part of

the image.

• In addition to the segmentation, TMRF returns a depth map v̂. v̂ estimates that

the yellow and dark blue regions represent the blurry areas, hence areas where

segmentation is difficult. Whereas the light green regions represent the focal plane.

5. Conclusion and perspectives

In this paper, we presented a TMRF model considering the problems of segmentation

and non-stationary deconvolution of an image. We detailed how parameter estimation

and joint kernel varying deconvolution and segmentation are made possible within the

proposed model. Simulations and experiments concerning the segmentation quality were

also introduced and showed the model to be relevant to the considered problem, and

more efficient than its HMRF and TMRF counterparts. The model has also been tested
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HMRF x̂HMRF
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Blur maps v̂

Figure 10: Segmentation results on vine wood fluorescence microscopy images with

associated blur maps. The best error rate for each image is shown in bold

on real images, and a comparison with a state-of-the-art method was introduced. The

algorithm behavior yields satisfactory results for our needs.

Future works could focus on the possible algorithmic developments from this model.

We could also consider the use of a Gaussian field for the simulation of x instead of a

Markov field. Finally, considering the blind deconvolution to estimate the PSF of the

system could also be of interest.
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[45] Levada A L, Mascarenhas N D and Tannús A 2008 Pseudolikelihood equations for Potts MRF

model parameter estimation on higher order neighborhood systems IEEE Geoscience and Remote

Sensing Letters 5 522–526

[46] Cressie N 2015 Statistics for spatial data (John Wiley & Sons)

[47] Dempster A P, Laird N M and Rubin D B 1977 Maximum likelihood from incomplete data via the

EM algorithm Journal of the Royal Statistical Society: Series B (Methodological) 39 1–22

[48] Dias J G and Wedel M 2004 An empirical comparison of EM, SEM and MCMC performance for

problematic Gaussian mixture likelihoods Statistics and Computing 14 323–332

[49] Celeux G, Chauveau D and Diebolt J 1996 Stochastic versions of the EM algorithm: an experimental

study in the mixture case Journal of statistical computation and simulation 55 287–314
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