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In this work we investigate the effect induced by a cavity on the moisture diffusion behavior of a polymer 
matrix. Diffusion at the interface between the matrix and cavity is modeled owing to a thermodynamic 
approach. In this study, the effects related to crack shape and volume fraction on the overall diffusive 
behavior are accounted for. Two cases were treated: the case where the cavity is closed and located within 
the bulk of the matrix volume and another one where the cavity corresponds to an open crack. Two 
parameters were chosen for modeling the cavity: its geometric configuration and its volume fraction. In the 
case of a crack contained in the bulk of the material, several numerical examples have been performed for 
either a single cavity or for several cavities. In this second case, the effects related to the spatial dispersion of 
these cavities were investigated. The identification results for the diffusion coefficient show an increased 
sensitivity to the presence of damage in the form of cracks, especially when these cracks tend towards a 
flattened shape. In addition, a remarkable diffusion anisotropy takes place.
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Introduction

Polymer matrix composite materials have physico-

chemical properties that make them predominant in

many industrial sectors. Currently, their use is growing

in many areas ranging from the leisure sector to that of

nanotechnology. Although advanced technology is

omnipresent in the manufacturing processes of these

materials, their microscopic inspection often reveals

numerous defects, including fiber/matrix debonding,

fiber fracture. Moreover, matrix porosities or micro-

cracks are also frequently detected.1–4 These micro-

structural defects are considered as favorable sites for

damage initiation and propagation as a consequence of

mechanical or environmental loading. This damage can

result in macro-defects such as inter-plies debonding or

transverse cracking.5,6 The diffusive behavior modeling

of damaged materials received less consideration com-

pared to their mechanical behavior, for which the prob-

lem has received emphasis consideration in which more

refined solutions have been proposed by several

authors.7–9 In composites with polymeric matrix, the

moisture uptake in the presence of damage in the

form of pores or microcracks is generally investigated

taking into account the damage parameter. This

parameter significantly affects the moisture uptake, as

shown by the deviations reported to occur between the

experimental moisture uptake collected on damaged

specimen and those predicted by the classical theoreti-

cal models.10–16 However, particular attention has been

paid to the study of a related problem in the work of

Gueribiz et al.17,18 The authors modeled the effects

induced by the presence of voids on the diffusion coef-

ficient and the maximum moisture absorption capacity

by assuming that at saturation these voids were filled
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with water in the liquid phase. These studies were real-

ized assuming spherical shaped cavities only and were

focused on the case of samples submitted to immersion

conditions. In what follows, we thus propose a model

of the moisture diffusion in the cavity based on a ther-

modynamic approach while remaining within the

framework of an uncoupled approach (the diffusive

behavior is supposed to be independent from the

mechanical states in the considered material). First,

we consider the case of a damaged matrix in which

the damage is described as an elliptical-shaped internal

cavity. Subsequently, complementary simulations will

be carried out to study the effect of the cavity geometry

and that of its volume fraction on the overall diffusive

behavior. The case of an open crack will be treated in a

separate section.

Diffusion in undamaged matrix

We consider the representative elementary volume

(REV) of the undamaged matrix consisting of a con-

tinuous medium in which no porosity or other defect

exists (Figure 1). On its boundaries is imposed the max-

imum capacity of moisture absorption (matrix mois-

ture content Mm(%). In this work, it will be assumed

that this quantity is related to the maximum moisture

absorption capacity (matrix moisture content) Mm (%)

according to the expression identified by Loos and

Springer19 as valid over a wide range of polymers and

polymer matrix composites20

Mm ¼ aHRb (1)

where b and a depend on the polymer matrix.

Each point of the domain occupied by the REV

is identified by its coordinates (x, y). Under the

assumption cited above, diffusion is supposed to

be governed by Fick’s law.21 In this case,

the local problem to be solved in the REV can be

expressed by

@mðx; y; tÞ
@t

¼ DDmðx; y; tÞ inW� Rþ
�

mðx; y; tÞ ¼ Mmð%Þ at the boundaries XC � Rþ
�

mðx; y; 0Þ ¼ m0ðx; yÞ 8 x; y 2 W

(2)

XC represents the boundaries of the domain W:

XC ¼ DW. Mm is the maximum moisture absorption

capacity corresponding to the relative humidity (HR)

(%) imposed on the matrix domain boundaries, D

stands for the diffusion coefficients of the polymer

matrix; mðx; y; tÞ is the moisture content at each time

and m0ðx; yÞ is the initial moisture content existing in

the REV at time t¼ 0, which is often considered to be

null. To solve problem (1) we use the finite element

method, owing to the software (Comsol V
R
). The param-

eters used for performing numerical computations are

shown in Table 1.

For this resolution, equation (2) will be nondimen-

sionalized by performing the following variable change:

g ¼ x
L
; u ¼ y

L
; s ¼ D

x2
t (where L represents the length of

the REV; as a result, the dimensions of the REV

become equal to 1� 1 instead of L� L).

Figure 2(a) shows the distribution of moisture con-

tent obtained during transient stage of the diffusion

process. Indeed, the center of the REV is not yet satu-

rated compared to the area close to the boundaries. In

Figure 2(b), the REV has attained permanent stage: the

moisture content is uniform and corresponds

to the moisture content imposed at the boundaries. In

this case, one can consider that the matrix is in ther-

modynamic equilibrium with its surrounding environ-

ment. This solution has been obtained under the

assumption that the matrix presents an ideal micro-

structure. In reality, this structure is often far to be

Figure 1. Undamaged matrix REV.

Table 1. Input data used for solving the diffusion
problem.19,22,23

Material parameters Pure resin (Epoxy 5208)

Relative humidity (HR) (%) 80%

a 0.059

b 1

Coefficient of diffusion Dm (mm2/s) 7.312� 10–8

Water vapor coefficient of diffusion

in air Da (mm2/s)

5.9 �10–5

Bulk density q (kg/m3) 1265

Temperature 20�C
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ideal: micro-cavities in the form of porosities are

reported to exist in polymer matrix and in their

composites due to manufacturing process.2,24–31 It is

conventional to define porosity as the property of a

medium to contain voids at the microstructural scale.

It is often described by a volume fraction expressed by

the ratio between the sum of the volumes of these voids

and the total volume of the medium. The authors

cited above report in their work that for small

volume fractions of porosities (<1%), the hygro-

mechanical properties are not significantly affected.

On contrary, for higher porosity levels, the effective

properties of the material may be significantly affected.

For the polymer matrixes and their composites, two

types of porosities can be distinguished: the open

type, communicating with the outer faces of the mate-

rial and those closed which are far from the outer faces

and located inside of the material. In addition, the

work of Wisnom et al.32 highlights the possible initia-

tion of cracks from porosities as soon as their lengths

exceed a certain threshold.

The study is specifically focused on two types of

cavities, depending on whether the cavity is located

inside the material or opens out. Theoretical work on

the modeling of the diffusion behavior of composites in

the presence of porosity predicts a significant modifica-

tion of this behavior.17,33,34 Similarly, the experimental

work conducted by Costa et al.35,36 reveals increasing

levels of saturation with the porosity rate. In what fol-

lows, we will solve the diffusive problem in the presence

of damage in the form of porosity.

Diffusion in damaged matrix

In this case, we consider that the representative REV of

the damaged medium consists in an elliptical cavity

embedded in an infinite medium, which represents the

polymer matrix Figure 3. On the edges of this REV is

imposed the maximum moisture absorption capacity

corresponding to the relative humidity (HR) (%) of

the surrounding environment. Initially, the moisture

diffuses into the matrix then into the cavity, which is

assumed unsaturated, filled with dry air. In the matrix,

diffusion is supposed to be governed by Fick’s law37,38

under the assumption that the diffusion of moisture in

the hydrophilic matrix is considered independent of the

mechanical state. In this case, the REV is supposed to

be constituted by two phases: the matrix and the cavity.

The cellular problem of diffusion to solve in the REV is

defined by the following system of dimension-

less equations

@mðg;/; sÞ
@s

¼ DDmðg;/; sÞ in each phase W�Rþ
�

mðg;/; sÞ
Mm

¼ 1 atmatrix bounderies XC �Rþ
�

mfðg;/; sÞ ¼ �X at cavity=matrix interface

mðg;/; 0Þ ¼ m0ðg;/Þ
Mm

8 x; y 2 W

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(3)

Problem resolution in the case of the

damaged matrix

To solve the problem, we used Comsol V
R
software. In

this case, the dimensions of the REV and the diffusion

parameters correspond to those of the undamaged

matrix (see Table 1). The diffusion coefficient in the

cavity is taken equal to that of diffusion of the moisture

in air, that is approximately 1000 times that of the

matrix (see Table 1), since the diffusion of humidity

in the air is very fast compared to the diffusion of

Figure 2. Moisture content distribution in undamaged matrix: (a) transient stage and (b) permanent stage (saturation).
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moisture in a dense material. The volume fraction of

this cavity is taken equal to 5% of the REV, this value

is close to the limit value of the porosity rate or micro-

cracks in high performance composites.39 The geomet-

ric shape of the cavity is expressed by the parameter k,

which represents the ratio between the two axes (minor

axis and major axis) of the ellipse that represents the

cavity. In this work, we consider three geometrical

shapes for the cavity, depending on whether the

cavity has a flattened shape, corresponding to low

values of k, either a convex shape, relative to mean

values of k, as well as the limiting case of a sphere,

corresponding to k equal to 1.

Determination of the moisture content at

the matrix/cavity interface

We assume that the cavity is filled with air and we

reason in terms of its relative humidity. This relative

humidity depends on the external environment: in our

case, the polymer matrix surrounding the cavity. Based

on the thermodynamics laws for air containing a quan-

tity of water vapor, its specific humidity or the mixing

ratio X, which is defined as the ratio of the mass of

water vapor in an air element to the mass of dry air for

the same element, is expressed by40

X ¼ 0:622� PV

Patm � PV

(4)

where

PV ¼ PVS �HR

100
(5)

where Patm, PV, PVS, X are, respectively, the atmospher-

ic pressure, the water vapor partial pressure, the

saturation vapor pressure and the absolute humidity

expressed in (kgeau/kgairsec). By replacing the vapor

pressure PV in equation (4) by expression (5), we get

a new form for the absolute humidity in the cavity

X ¼ 0:622� HR� PVS

100� Patm �HR� PVS

(6)

Let us assume that at each instant a thermodynamic

equilibrium is established for the moisture content in

the matrix and the cavity, at the boundary of the

cavity. We will assume that equation (1) remains

valid in the polymer matrix at the boundary with the

cavity so that we can get the corresponding relative

humidity, in it by

HR ¼ Mm=að Þ
1
b

(7)

By replacing the relative humidity HR by form (7) in

expression (6), we obtain the relationship at the inter-

face between the moisture content in the matrix and the

absolute humidity X in the cavity. We can deduce the

moisture content in the cavity, which will be denoted

by �X in the following

�X ¼ 0; 622� PVS � Mm=a
� � 1

b

100� Patm�PVS � Mm=a
� � 1

b

(8)

In the case where b=1, one obtains

�X ¼ 0; 622� PVS � Mm=a
� �

100� Patm�PVS � Mm=a
� � (9)

(a) (b)

Figure 3. REV relative to the damaged medium: (a) unidirectional diffusion according to X-axis only and (b) according to Y-axis only.
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Thus, at the interface we use equation (9) for the tran-

sition from the matrix to the cavity. The saturation

pressure of the saturating vapor PVS at a given temper-

ature is obtained by using the NIST Steam Tables.41

After defining all the parameters, the steps for solving

the problem are summarized as follows: for each time,

one must solve the diffusion problem (3) in the matrix

for a given boundary condition. Then one calculates

the moisture content in the cavity by equation (9).

Figure 4 shows the diffusion problem solution in the

case of a flattened cavity, during the transient phase,

corresponding to
ffiffiffi

s
p ¼ 0:2 on the diffusion kinetics

curve (Figure 5). Figure 4(a) displays the results

obtained for a damaged matrix exposed to moisture

along X-direction, whereas Figure 4(b) provides the

results obtained for an undamaged matrix submitted

to the same loading. Figure 4(c) and (d) displays the

results obtained when the moisture loading is applied

along Y-direction, for either a damaged or an undam-

aged matrix, respectively. In the case when moisture

load corresponding to moisture content Mm is applied

in the X-direction, the moisture content at the bound-

ary with the matrix tends rapidly to that imposed to

matrix edges, since the diffusion is very fast in the crack

compared to the diffusion in the matrix. However,

crack reaches the saturation before the surrounding

matrix. Consequently, diffusion will take place from

the crack to the matrix in the transverse direction. In

this situation, the saturated crack behaves then as a

moisture source for the surrounding matrix see

Figure 4(a). It should be noted that in this case the

saturation is rapidly reached. As a first approximation,

it seems that the flattened crack behaves like an addi-

tional boundary with the external environment. On the

other hand, in the case of a loading according to

Y-direction (Figure 4(c) and (d)), the contribution of

the cavity to diffusion process is insignificant, since the

edges of the cavity are far from the loading.

Figure 5 shows the evolution of the diffusion kinet-

ics for different loading cases. We find that the evolu-

tion for the damaged matrix is similar to that of the

undamaged matrix which is Fickien. We note a

Figure 4. Problem resolution in the case of the damaged and undamaged matrix (k¼ 0.07 and for crack void rate of 5%): (a,b)
according to X and (c,d) according to Y, intermediate stage.
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significant difference between diffusion kinetics curve

obtained in case of moisture loading in X-direction and

that obtained in case of undamaged matrix. This is

explained by the fact that the edges of the cavity are

very close to the borders where the moisture loading is

applied. On the other hand, in the case of a loading

according to Y, this difference is less significant, since

the cavity is far from the borders. This is illustrated by

the diffusion evolution in Figure 4. Consequently, dif-

fusion anisotropy takes place between the moisture

loadings in two directions. This anisotropy is due to

the fact that in the case of a hygroscopic loading next

X, the cavity will quickly reach saturation as it is closer

to loading. Therefore, diffusion will take place from the

cavity to the surrounding environment. On the con-

trary, in the case of diffusion in the Y-direction, the

cavity is very far from the boundaries exposed to the

humid environment, so it cannot contribute to acceler-

ate the process. On the other hand, it should be noted

that the difference in moisture content at saturation

between the damaged matrix and undamaged matrix

is a long way from being significant. This is due to

the fact that the amount of moisture (in gaseous

form) captured by the cavity is very small compared

to the overall matrix moisture up take.

The relative humidity evolution in cavity can be

determined from equations (7) and (8)

HR ¼
�X � Patm � 100

PVS � ð �X þ 0:622Þ (10)

In Figure 6, the evolution of the relative humidity in

the cavity plotted in the two case of loadings gives an

explanation to the difference observed in the diffusion

kinetics predicted. We note in the case of a loading

according to Y, moisture took time to reach the

cavity; this delay is indicated by the first part of the

curve which is on the time axis at the first diffusion

stage compared to the case when the loading is in the

X-direction, at which the cavity is half saturated.

Determination of effective diffusion

coefficients

In the following, we will determine the effective diffu-

sion coefficient in the presence of cavity in order to

quantify its influence on the equivalent macroscopic

diffusive properties of the material.

Identification method

In order to determine the effective diffusion coefficients

in the presence of an elliptical cavity, we use a numer-

ical solution of the diffusion problem based on the

finite element method using Comsol V
R
software. The

interest of the numerical solution is to determine the

diffusion kinetics curve of the damaged matrix, since in

this case the analytical solution is non-existent. This

curve will subsequently be used in the determination

of effective diffusion coefficients using an equivalent

model for the damaged matrix. This model consists

of an undamaged matrix supposed to have the same

kinetics of diffusion of the damaged matrix (the same

moisture content) Figure 7. This method is simply

based on the adjustment of two curves: For unidirec-

tional moisture loading under the assumption of a uni-

directional diffusion either along X or Y, we determine

D
eff
X or D

eff
Y by introducing each time the values of these

coefficients in the equivalent model until the curve

obtained fits the damaged matrix curve.

Figure 5. Diffusion kinetics evolution for the damaged matrix (k¼ 0.07 and cavity volume fraction of 5%).
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Thus, the values of D
eff
X and D

eff
Y introduced corre-

spond to the effective diffusion coefficients. In order to

obtain more precision on the effective diffusion coeffi-

cient, we use the least squares method, which can be

expressed by the following equation

Q ¼
X

i

mðtÞdamaged �mðtÞundamaged
� �2

< e (11)

where m(t)damaged, m(t)undamaged are the moisture con-

tents at time t of the damaged and that of the undam-

aged equivalent model, respectively, e is a small value

for acceptable discrepancy below which the adjustment

of the actual model is considered to be satisfactory (11).

The diffusion anisotropy, defined by the parameter ~A

will thus be determined by the ratio between the diffu-

sion coefficients identified in the two directions, namely

~A ¼ D
eff
X

D
eff
Y

(12)

Then, under the assumption that the diffusion

anisotropy estimated from unidirectional loading

cases remains the same when the diffusion occurs

simultaneously along X and Y, we will estimate the

effective diffusion coefficients D
eff
X and D

eff
Y on the

basis of the anisotropy ratio ~A determined beforehand

when it comes to identifying the diffusive behavior

Figure 6. Evolution of the relative humidity in the cavity (k¼ 0.07 and void volume fraction of 5%).

(a) (b)

Figure 7. (a) Damaged matrix and (b) equivalent REV.
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resulting from a case of loading in biaxial moisture.

Since the evolution of diffusion kinetics in the damaged

matrix remains Fickian, Figure 5, D
eff
X and D

eff
Y are

determined using the following equation

@C

@t
¼ D

eff
X

@2C

@x2
þ 1

A

@2C

@y2

 !!

(13)

We note that these coefficients are higher than that

of the undamaged matrix, even for minimal volume

fractions. As predicted by the evolution of the diffusion

kinetics shown in Figure 5, the diffusion coefficient in

the X-direction is greater than that in the Y-direction

and to that of the undamaged matrix (Figure 8). In

Figure 9, anisotropy coefficient ~A has been plotted as

a function of the cavity volume fraction. This figure

confirms some of the comments relating to Figure 5:

the gap between the two effective diffusion coefficients

increases with the cavity volume fraction. The coeffi-

cient of anisotropy thus exceeds the value of 1.6 for a

cavity volume fraction of 5%.

Effect of cavity geometry on

diffusion anisotropy

In this section, we study the diffusion anisotropy in the

case of cavity geometric configurations described in

Figure 10 and which is expressed by different values

of the parameter k. Table 2 represents the identification

results for the four cavity geometric configurations

shown in Figure 10.

Figure 8. Effective diffusion coefficient obtained in the case of the damaged matrix by imposing uniaxial moisture loading according
to X or according to Y (k¼ 0.07)).

Figure 9. Anisotropy of diffusive behavior according to the crack volume fraction (k¼ 0.07).
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Note that the results for the three configurations

(k¼ 0.07; 0.18 and 1), corresponding to a cavity

volume fraction equal to 5%, are compared to a con-

figuration where the cavity is extremely flattened

(k¼ 0.013) and in which the volume fraction cannot

exceed 1% for a single cavity by REV. These results

shown an increase in the effect of the presence of the

cavity on the diffusion expressed by diffusion anisotro-

py when cavity tends towards extremely flattened geo-

metrical configurations, including minimal volume

fractions. On the other hand, when the cavity tends

towards convex forms, this anisotropy decreases: the

diffusive behavior becomes thus isotropic in the limit

case where the cavity form is a disc, the curves plotted

in Figure 11 confirm these findings.

Damage modeling in case of

several cavities

In the previous section of this work we are focused on

damage modeling, assuming that all damage could be

represented by a single cavity having a well-defined

geometric configuration and whose volume fraction is

equivalent to the damage global rate. In this section, we

consider here the modeling of the damage in the form

of several cavities having an identical geometric config-

uration and occupied REV which have the same

damage rate of an REV with single cavity. The material

diffusive behavior anisotropy was then studied consid-

ering several cavity dispersions in the matrix, as indi-

cated in Figure 12. In Figures 13 and 14, the diffusion

kinetics curves obtained in the damaged matrix for the

dispersions illustrated in Figure 12 are plotted in the

case of a cavity moderate elongation corresponding to

Figure 10. The moisture content for different geometric configurations of the crack during the transient regime (
ffiffiffi

s
p ¼ 0:2).

Table 2. Identification results of effective diffusion coefficients.

fvð%Þ 1% 5% 5% 5%

0.013 0.07 0.18 1 1

D
eff
X 1.78 1.96 1.18 1.16

D
eff
Y 1.18 1.30 1.14 1.16

~A 1.5 1.5 1.03 1

9
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k¼ 0.07 and in case of most pronounced elongation

expressed by k¼ 0.013.

For a cavity with moderate elongation, the diffusion

kinetics curves for the different dispersions seem to be

in agreement and are very close to that for a single

cavity per REV. For a flattened cavity, we find a

significant deviation between the diffusion kinetics

curves obtained by different dispersions. In this case,

the diffusion kinetics curve obtained for concentrated

cavities with angle 0� is the closest to that obtained for

a single cavity by REV, even considering a volume

fraction of 1%.

Figure 11. Anisotropy of diffusive behavior as a function of the volume fraction of damage for different cavity configurations.

Figure 12. Transient numerical simulation of the moisture content field in a damaged matrix. Effect of the parameters taken into
account to represent the distribution of cavity within the REV (

ffiffiffi

s
p ¼ 0:2).

10
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The main remark that can be drawn from these

curves is that the diffusive behavior of the damaged

matrix remains Fickien, whatever is the cavities

number per REV and that for all the considered

dispersions. In addition, we can notice, that the

curves obtained are characterized by a slope which

increases with the length of the cavity. In Figure 15,

the diffusion behavior anisotropy is plotted versus

the number of cavities per REV, for the dispersions

illustrated in Figure 12. Two configurations of the flat-

tened cavity are considered which, respectively, corre-

spond to k¼ 0.07 for a moderate elongation and

k¼ 0.013 for a more pronounced elongation of the

cavity. The purpose of these simulations is to detect

the effect on material diffusive behavior in case of the

multiplicity of cavities with a similar geometrical

configuration.

The curves of Figure 15(a) initially reveal a signifi-

cant fluctuation of the anisotropy between the value

obtained for a single cavity and the values obtained

by considering an REV with several cavities.

This fluctuation tends to disappear as we increase

the number of cavities inside the REV. In addition,

the evolution of anisotropy seems to have increased

sensitivity to cavity dispersion in the REV. For an aver-

age elongation of the cavity corresponding to k¼ 0.07,

and in the case of a uniform dispersion, we find that for

an REV with five cavities, the anisotropy drops by

nearly 30% of the predicted value in the case of a

single crack. For the same dispersion, and for a

larger number of cavities, there is an increase, which

reaches approximately the value of 1.7 for 100 cavities

per REV. For random angle dispersion, we note an

anisotropy inversion in case of five cavities in REV

then it returns to normal when the number of cavities

increases and it reaches that of a single cavity for 100

cavities per REV. We note that for the other disper-

sions, the anisotropy decrease is less accentuated; how-

ever, beyond a certain number of cavities by REV, the

anisotropy becomes less sensitive to the number of cav-

ities and that obtained for different dispersions tends to

converge to a single value, except in the case of a

Figure 13. Diffusion kinetics evolution of damaged matrix for different distributions of cavities within the REV (k¼ 0.07).

11



Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 14. Evolution of the kinetics of diffusion for a damaged matrix for different distributions of cavities within the
REV (k¼ 0.013).

(a) (b)

Figure 15. The diffusive behavior anisotropy versus crack number by REV: (a) k¼ 0.07 and (b) k¼ 0.013.
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uniform dispersion with a random angle where it

becomes close to anisotropy obtained in the case of

single cavity.

This value differs according to the dispersion. The

coefficient of anisotropy then decreases and all the

dispersions tend to get closer. Nevertheless, the differ-

ence between them remains very important even for

100 cavities per REV. For this number of cavities,

the maximum of the anisotropy is comparable to the

case of a uniform dispersion. On the other hand, the

minima corresponds to that of a dispersion concentrat-

ed at an angle of 0� and which approaches the anisot-

ropy obtained for a single crack by REV. In Figure 15

(b) is illustrated the evolution of diffusion anisotropy

as a function of cavity dispersion within the REV for a

form factor k¼ 0.013. In this case, the anisotropy evo-

lution of the diffusive behavior presents minima for an

REV with a single cavity. Then, very large fluctuations

of the anisotropy coefficient occur with the increase of

the number of cavities in the REV. The anisotropy

coefficient maximum is obtained for all REV cavities

dispersions and differs according to the dispersions.

The maximum that exceeds slightly nine is reached

for a uniform dispersion.

Case of open cavities

Let us consider here the diffusion in case of a polymer

matrix containing an open cavity. In this case, the

cavity starts at one of the boundaries of the REV and

extends inside it as shown in Figure 16. As part of the

modeling of the moisture diffusion process in case of

materials containing emerging cavities, the boundary

condition applied on cavity boundaries is the same as

that imposed on matrix REV boundaries.14,42–44

Figure 17 shows the diffusion kinetics predicted for a

damaged matrix sample, as a function of the shape of

an open cavity. Diffusion rate is significantly affected

in the case of flattened cavity, by comparison with

other cavity geometrical configurations.

Diffusion rate decreases when the cavity geometry

tends towards that of a disc. For a cavity volume

fraction equal to 1%, the rate of the diffusion

kinetics for flattened cavity exceeds all the diffusion

Figure 16. Moisture content profile in a polymer sample with open cavities of various shapes (
ffiffiffi

s
p ¼ 0:2).
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rate of the kinetics predicted for the others geometries

considered for the cavity, even in the case when a

significantly higher cavity volume fraction is accounted

for (5%).

Figure 18 shows the anisotropy of diffusive behavior

as a function of the volume fraction of the cavity and

its geometrical configuration. Note that the anisotropy

is calculated by following the same approach as for a

cavity in the shape of a disk.

We can see that this anisotropy differs considerably

depending on the geometry of the cavity. It reaches

considerable values for flattened forms of cavity, even

for small volume fractions, whereas it tends to disap-

pear as the cavity becomes more and more convex

(when its shape becomes close to that of a disc).

Figure 19 shows a comparison between the diffusive

behavior anisotropy predicted in the case of an internal

closed cavity and that of an open one. This comparison

shows significant discrepancies even for small volume

fractions, in the case of cavities presenting a flattened

shape. This deviation between the calculated anisotro-

py coefficients is always important when the cavity

takes a convex shape, but it decreases when the cavity

geometry tends towards a disc shape.

(a) (b)

Figure 17. Diffusion kinetics evolution for a damaged matrix for different cavity geometrical configurations: (a) fv¼ 1% and
(b) fv¼ 5%.

Figure 18. Evolution of the diffusion anisotropy as a function of the volume fraction and shape of an open cavity.
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Conclusion

This work deals with the problem of moisture diffusion

in a damaged polymer matrix. Diffusion in the matrix

is assumed to be governed by Fick’s law, whereas in the

damaged area a thermodynamic approach has been

implemented. Two cases were treated: the case where

the damage is closed and located within the bulk of the

matrix, whereas the other one deals with open cracks.

Two parameters were chosen for damage modeling: its

geometric configuration and its volume fraction. In the

case of open cracks, several numerical examples have

been treated: the case where the damage is represented

by a single cavity and the configuration where the

damage forms several cavities. In this last case, the

effects induced by a variability of the distribution of

these cavities were investigated. With a single cavity,

the results obtained show a significant anisotropy of

the diffusion when the cavity has a flattened shape.

Moreover, this anisotropy is very sensitive to the

damage volume fraction. For elongated forms of the

cavity, this anisotropy tends to decrease without ever

disappearing completely. In the case where the damage

is represented by multiple cavities within the considered

REV, fluctuations, depending on the number of cavi-

ties, were observed. However, these fluctuations disap-

pear when the number of cavities considered exceeds a

certain threshold: the anisotropy then tends to con-

verge towards a constant value for cavity with convex

shapes. However, for elongated flattened cavities, one

always finds significant differences, especially when a

considerable number of cracks is contained in the REV.

In the case of an open crack, the results show a

significantly different behavior compared to the case

of an internal closed crack.
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