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Abstract

In this paper, we examine a stochastic two-echelon vehicle routing problem (2e-VRP) using
cargo bikes within hyperconnected networks. The focus is on the integration of both delivery
and pickup of reusable containers, incorporating transshipment operations, time windows, and
stochastic demand constraints. The model also considers the flow consolidation for empty and
full containers at the satellites and allows for load splitting. Moreover, this study introduces an
innovative gradient-descent-based optimization framework to handle the combinatorial com-
plexity of the proposed model, opening new avenues in stochastic programming. Furthermore,
the performance of this novel method is compared against the sample average approximation
method, evaluating both solution quality and computational efficiency. Experimental results
demonstrate the model’s advanced integration and flexibility, significantly enhancing urban
delivery systems and advancing logistics and transportation optimization research.

Keywords: Hyperconnected Logistics Networks, Two-Echelon Vehicle Routing, Cargo Bikes,
Stochastic Demand, Stochastic Gradient Descent

1. Introduction

Urbanization is rapidly transforming city logistics, presenting complex challenges requiring
innovative solutions. The rise of people residing in urban areas leads to a consistent increase
in road freight transport, contributing to a significant portion of transport-induced greenhouse
gas emissions (European-Commission, 2023). This trend is further intensified by the growing
e-commerce market, which increases smaller, more frequent home deliveries. Recent regulatory
efforts to reduce urban truck traffic and promote eco-friendly vehicles for last-mile delivery
are only partially successful and insufficient to address the evolving complexities of urban
logistics (Anderluh et al., 2019). In response, our research proposes a new model that combines
two-echelon distribution, containerization, and consolidation of forward and reverse flows, all
based on the concept of hyperconnected networks (Pan et al., 2019). This approach differs
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from traditional models by fostering horizontal collaboration among multiple suppliers and
customers, crucial for achieving efficiency in urban logistics (Cleophas et al., 2019).

The presented research addresses the challenges of inner-city deliveries by integrating in-
novative last-mile delivery methods within a two-echelon distribution system. In this system,
goods are initially transported to intermediary hubs, known as satellites, using traditional
feeder vehicles like trucks (Bakach et al., 2021). At these satellites, the cargo is transferred to
zero-emission vehicles, such as cargo bikes, which are well-suited for densely populated areas.
The planning and execution of this system involve coordinating the interaction between the
two distinct vehicle fleets, ensuring seamless transition and delivery efficiency.

Facilitated within the hyperconnected network’s operational framework, the proposed
model is based on smart, standardized, modular, shared, and reusable containers that al-
low for efficient handling and transfer of goods (Ballot et al., 2014). Containerization allows
managing the rapid transit of small-sized orders, guarantees swift and secure transitions of
goods from feeder vehicles to last-mile vehicles like cargo bikes, and supports the co-loading
of products from diverse carriers within the same vehicle and satellite hubs. Business models
exemplifying these strategies can be observed in GS1, Amazon, ES3, Flexe.com, and Dark-
store.com (Kim et al., 2021).

Our model integrates the effective consolidation of both forward and reverse flows at the
satellite nodes, which double as cross-docking terminals. This consolidation, including trans-
shipment between satellites for inventory sharing, is not limited to the forward flow of con-
tainers to customers; it also encompasses the reverse flow of containers, ensuring their reuse,
continuity of the distribution operations under stochastic demands, and supporting sustainable
logistics practices.

The challenges of implementing such a model are manifold. Aside from the inherent
complexity of two-echelon vehicle routing problems (2e-VRP), routing decisions become very
complex, as the forward distribution to customers and the return of empty containers to the
satellites for further reuse need to be optimized (Pan et al., 2021; Achamrah et al., 2023).
This also involves consolidating empty and loaded container flows, managing transshipment
operations between satellites, and accommodating split deliveries. These elements and other
constraints are critical, such as time windows, service times, and stochastic demands. These
factors are critical gaps in the 2e-VRP field, as highlighted in a recent survey by Sluijk et al.
(2022). Therefore, the integration of all these constraints makes the problem and its modeling
complex and requires the development of efficient and robust solution algorithms.

By addressing these key areas, our research introduces significant contributions to the field
of logistics and transportation optimization.

• We address a previously unexplored research area by modeling a stochastic 2e-VRP
within hyperconnected networks, encompassing both deliveries and pickups of reusable
containers while incorporating transshipment operations, time windows, and service time
constraints. This comprehensive model also includes the optimization of flow consolida-
tion for both empty and loaded containers, as well as load splitting, ensuring efficient
resource utilization and preventing product or packaging unavailability.

• The paper proposes an innovative gradient-descent-based optimization framework, which
represents a pioneering approach in stochastic programming. By formulating the prob-
lem as a differentiable program and employing a continuous algorithm, this approach
opens new avenues for solving complex logistics optimization challenges. We assess the
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performance of this novel solution method against the sample average approximation
method in terms of solution quality and computational efficiency.

• We conduct experiments to provide valuable insights into how the advanced integration
and flexibility of the proposed model can enhance urban delivery systems, ultimately
contributing to the advancement of logistics and transportation optimization research.

The remainder of this paper is structured as follows. In Section 2, related works are
presented. Sections 3, 4, and 5 describe the problem, formulations, and solution method, re-
spectively. Section 6 provides reports on the experimental results. Finally, Section 7 highlights
the main conclusions and perspectives.

2. Related literature

This section identifies gaps in existing literature regarding two-echelon vehicle routing
problems (2e-VRP), with a specific emphasis on the integration of pickup and delivery flows,
as well as cross-docking in hyperconnected networks. It also underscores the paper’s objective
in addressing these gaps, particularly through advanced mathematical modeling and tackling
combinatorial complexity.

2.1. 2e-VRP
The literature on the 2e-VRP has significantly evolved, driven by the need to address

complex and congested urban logistics. Initially, the focus was optimizing routes from central
depots to final destinations via intermediate satellite nodes. Gonzalez-Feliu et al. (2008) and
Perboli et al. (2011) provided foundational categorizations of 2e-VRP, ranging from basic
models without time considerations to more complex forms incorporating time windows and
synchronization at satellites.

Recent research has expanded the scope and complexity of 2e-VRP models. Zhang et al.
(2023) introduced a stochastic formulation of 2e-VRP integrated with loading bay reserva-
tions, addressing the uncertainty in urban logistics and the coordination of multiple courier
companies. (Yu et al., 2021) proposed a 2e-VRP variant that incorporates covering locations
and occasional drivers, exploring new flexibility in last-mile delivery systems.

Recent trends in 2e-VRP research have further emphasized incorporating sustainable prac-
tices, particularly by integrating zero-emission vehicles. Significant contributions in this area
have been made to explore the use of electric and autonomous vehicles, and cargo bikes for
eco-friendly urban deliveries (Anderluh et al., 2021; Bakach et al., 2021; Jie et al., 2019; Bre-
unig et al., 2019; Yu et al., 2020). This shift is motivated not only by environmental concerns
but also by the aim to optimize operational efficiencies, including the optimization of locations
and vehicle synchronization in urban peripheries, as elaborated by Anderluh et al. (2021) and
Enthoven et al. (2020).

2.2. 2e-VRP with pickup and delivery
In parallel, the aspect of reverse logistics in Vehicle Routing Problem (VRP), particularly

in VRP with mixed and simultaneous Pickup and Delivery (VRPPD), has gained attention
(Guide and Van Wassenhove, 2009; Berbeglia et al., 2007; Battarra et al., 2014). The objective
here is to manage both product deliveries and returns within the same vehicle system (Guide
and Van Wassenhove, 2009), addressing challenges like simultaneous pickup and delivery of
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reusable containers, collaborative pickup and delivery of reusable containers, time window
constraints, product incompatibilities, and scheduling issues among linehaul and backhaul
customers (Iassinovskaia et al., 2017; Achamrah et al., 2022b, 2020; Kassem and Chen, 2012;
Hu et al., 2015; Tarantilis et al., 2013). Nevertheless, notable gaps exist, especially regarding
the 2e-VRP framework and the handling of reusable containers under uncertainty and time
windows, integrating flow consolidation, and transshipment operations.

2.3. 2e-VRP with cross-docking
Cross-docking, a critical aspect in the evolution of VRP and particularly in VRP with

Cross-Docking (VRPCD), has been explored to optimize shipment consolidations from various
sources. Diverse facets of VRPCD have been examined, including single product and lone
cross-dock setups (Lee et al., 2006), multi-product and single cross-dock VRPCD (Benjamin,
2020), and multi cross-docks VRPCD with split deliveries (Wang et al., 2017). Studies have
also integrated time window constraints and promoted transshipment between cross-docks (Ma
et al., 2011; Lim et al., 2005; Chen et al., 2006; Marjani et al., 2012). Further advancing the
integration of cross-docking in 2e-VRP, Qiu et al. (2021) combined production routing with
2e-VRP and cross-docking satellites. However, only a few papers address VRPCD with both
pickup and delivery, integrating reverse flows of products into a single cross-dock VRPCD
(Zuluaga et al., 2016; Kheirkhah and Rezaei, 2015; Kaboudani et al., 2020). Cross-docking
integration within the 2e-VRP framework, particularly in efficiently managing both forward
and reverse flows and transshipment operations under uncertainty, remains underexplored
with limited comprehensive models addressing this aspect.

2.4. 2e-VRP in hyperconnected networks
Building on the foundation of 2e-VRP, this section delves into its evolution within the

framework of hyperconnected networks. From a forward-looking perspective, hyperconnected
networks, such as interconnected, intertwined networks, and the concept of the "Physical
Internet" represent a transformative approach to addressing the complexities of modern logis-
tics. Endorsed by the Alliance for Logistics Innovation through Collaboration in Europe, these
paradigms advocate for a cost-effective, resilient transition towards Net-Zero logistics through
enhanced connectivity and sustainability (Montreuil, 2011; Ballot et al., 2014). Central to
our research is the role of hyperconnected networks in facilitating horizontal collaboration
through the use of smart, standardized, modular, shared, and reusable containers for seamless
interaction and coordination among diverse logistics operators (Pan et al., 2019; Kim et al.,
2021). Within this framework, satellite nodes function as hubs, networks of logistics termi-
nals, serving as crucial consolidation and transshipment points for a highly efficient, scalable,
and flexible logistics infrastructure (Montreuil, 2011; Ballot et al., 2014; Pan et al., 2019; Kim
et al., 2021).

In conclusion, while numerous studies have addressed 2e-VRP, focusing on the use of
zero-emission vehicles for last-mile delivery and integrating flow consolidation through cross-
docking, managing the return flow and reusable containers has received limited attention
(Cuda et al., 2015; Cattaruzza et al., 2017). Additionally, the incorporation of 2e-VRP with
forward and reverse flows in hyperconnected systems is yet to be fully considered. Most
existing literature on hyperconnected networks primarily deals with functional design for a
road-based transit center (Meller et al., 2012), tracking technology for the management of
reusable containers (Roch et al., 2014), VRP with a single echelon (Fazili et al., 2017; Gansterer
and Hartl, 2018), stochastic VRP with transshipment (Achamrah et al., 2023), rule-based
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simulation models for inventory control and collaborative transport network (Pan et al., 2014;
Lafkihi et al., 2020), a single product inventory control with transshipment (Yang et al., 2017),
and Physical Internet-enabled integrated production inventory and distribution (Ji et al., 2019;
Peng et al., 2021). Therefore, this research aims to fill these gaps.

2.5. Solving 2e-VRP
The integration of all the aforementioned constraints presents substantial challenges in

problem-solving. One of the most promising research areas promotes using stochastic and
model-based methods to solve optimization problems with discrete decision variables (Vish-
noi, 2021; Chen et al., 2018). Unlike solution-based approaches such as LNS and genetic algo-
rithms, which derive new candidate solutions by exploring the vicinity of preceding solutions,
model-based techniques produce candidate solutions from a probabilistic model, specifically
a parameterized sampling distribution. This model’s parameters are subsequently updated,
drawing upon the function evaluations of earlier candidate solutions (Zhang et al., 2022; Chen,
2015). These algorithms are not only faster but also exhibit superior computational efficiency.
They have been demonstrated to converge to the optimum with a probability of one (Vishnoi,
2021; Zhang et al., 2022). For instance, Chen et al. (2018) and Chen (2015) proposed a frame-
work for reformulating discrete problems into continuous ones and then using gradient-based
stochastic search to solve them. In addition, the authors applied their framework to solve
selected benchmarks of deterministic TSP.

Of the few applications on stochastic and discrete problems, Zhang et al. (2022) proposed
gradient-based simulation-optimization algorithms that solve large-scale discrete convex prob-
lems under uncertainties. More particularly, the algorithms are applied to solve an optimal
allocation problem under the stochastic arrival of customers and a separable convex mini-
mization problem. To take full advantage of model-based methods and gradient-based search
in terms of fast convergence and global exploration search, our paper is among the first to
use such an approach to address a concrete problem in logistics optimization. For this, we
propose a new gradient-descent-based optimization framework that allows us to reformulate
our stochastic and discrete problem as a differentiable program and then apply the first-order
gradient to optimize the stochastic version of the reformulated program.

3. Problem description

This paper aims to optimize transportation costs for delivery and pickup in a closed-loop
supply chain. It consists of multiple suppliers, customers, and satellites to consolidate, through
cross-docking, the forward and reverse flows of reusable containers. The focus is on the cross-
docking terminals that transfer containers between the echelons’ vehicles. Furthermore, the
distribution network is turned into a hyperconnected network of satellites using conventional
interfaces. Products are stored and distributed in containers. As a result, the suppliers and
customers have significantly more options: suppliers can distribute their products throughout
the network, while retailers have more supply options as requested (see Figure 1). For example,
such a setting is used by La Poste in France and Velove in Sweden to merge several actors
and optimize their network as one single entity (Leveque et al., 2021; Velove, 2019).
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Figure 1: Containers flows in the closed loop supply chain under study

The two-echelon distribution network functions as outlined below. In the first echelon,
routes connect suppliers to designated satellites with set capacities, where cross-docking ser-
vices cater to both full and empty container flows. Traditional vehicles, like trucks, transport
full containers from suppliers to satellites while picking up empty ones from satellites for re-
turn to suppliers. In the second echelon, zero-emission vehicles, such as cargo bikes, move
full containers from satellites to customers. They also collect empty containers from these
customers and return them to the satellites. Furthermore, the transportation infrastructure
accommodates direct shipping for full and empty containers.

Vehicles have the flexibility of revisiting a source node multiple times within a single tour.
Also, some routes may visit multiple suppliers and be managed by one vehicle. Additionally,
destinations might receive their product needs through several split shipments, necessitating
multiple vehicles. This leads to a potential series of operations at every site. A vehicle’s stop
is not solely dictated by the node it visits; it also involves a predetermined set of activities at
each location. Hence, pickup and delivery can be facilitated by multiple vehicles at a single
site, with the possibility of vehicles making multiple stops at identical locations. Therefore,
the visited node and the associated time event define each vehicle stop.

Regarding inventory, an initial stock of full and empty containers is available at supplier
locations. Our mathematical model accounts for stochastic customer demand in terms of
full containers. Satellites are visited to cater to these customer demands. A similar strategy
applies to empty containers. Additionally, both supplier and satellite nodes feature two distinct
storage sections: one for full containers and another for empty ones. Each storage section
comes with its initial inventory level and maximum capacity. Moreover, satellites can transship
between one another, authorizing them to meet each other’s inventory requirements. This
facilitates sharing empty containers, preventing potential shortages and averting excessive
spending on new container purchases.

Finally, in addition to the previously mentioned assumptions, we consider the following:

1. Players are not required to share any information. The assumption is that there is an
orchestrator, an impartial coordinator, who coordinates and manages operations. For
instance, this orchestrator can be a 4PL or a "trustee," also responsible for allocating
profits. A control tower may also handle logistics activities, including management,
execution, and monitoring. Several industrial applications can be found in (Pan et al.,
2019).

2. Time window restrictions for delivering and picking up loaded/empty containers should
be satisfied.

3. Each vehicle’s maximum capacity and service time must not be exceeded.
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4. The system has enough empty containers to satisfy demand.
5. All damaged containers are either repaired or replaced.

4. A deterministic mathematical formulation

For clarity, this section presents a deterministic formulation of the 2e-VRP under consider-
ation, substantially extending the problem formulation of previous works (Dondo et al., 2009,
2011) in which a deterministic multi-level VRP with cross-docking and direct shipments is
addressed. New variables and constraints are added to integrate pickup and delivery of loaded
and empty containers at each supplier, satellite, and customer, flows consolidations, routing
constructions, and transshipment operations at satellite nodes.

The problem is modeled on a graph G = (L,A), where L = S ∪K ∪N encompasses sup-
pliers, satellites (cross-docks), and customer locations, respectively. The arc set A represents
routes connecting suppliers to satellites and satellites to customer zones. Nodes in S denote
suppliers distributing products to satellites represented by K and subsequently to customer
locations N . Each arc (i, j) ∈ A connecting nodes (i, j) carries an associated transportation
cost cij based on distance and a time of travel dij .

Further contextualizing the problem, we have the set P , denoting the products encased
in containers. These products travel from suppliers, are consolidated at satellites, and finally
reach customers. The set V stands for the vehicles, with trucks or similar vehicles employed for
the first echelon and cargo bikes utilized for the second echelon, facilitating product delivery
to their final destinations. Given that any cumulative shipment should not eclipse a vehicle’s
carrying capacity, both the weight uwp and volume uvop of each container p are imperative
to our calculations, just as the weight qwv and volume capacities qvov of each vehicle v are.

Furthermore, vehicles are stationed at and operate from specific depots at supplier sites or
satellite locations. Let Depv designate the possible depot locations for a particular vehicle v.
Also, specific customer zones, represented as i, are generally serviced by predefined satellites
and are accessed by cargo bikes, represented by (Vi ⊂ V ). These bikes embark on their delivery
routes from these designated satellite locations.

Using the notations, parameters, and decision variables reported in Table 1, the determin-
istic 2e-VRP with forward and reverse flows is formulated as follows:

min
∑
v∈V

Ctv +
∑
v∈V

∑
i,j∈L

∑
t∈Ti

αvztijv (1)

Subject to:

∑
i∈Depv

∑
t∈Ti

ytiv ≤ 1 ∀v ∈ V (2)

∑
v∈Vi

ytiv ≤ 1 ∀t ∈ Ti, i ∈ L (3)

∑
v∈Vi

ytiv ≥
∑
v∈Vi

yt′iv ∀t, t′ ∈ Ti, t < t′, i ∈ L, (4)
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Table 1: Model Notations

Sets
L Nodes (all echelons)
V Vehicles (all echelons)
Lv Nodes serviceable by vehicle v (all echelons)
Vi Vehicles able to visit node i (all echelons)
Depv Possible depots for vehicle v (all echelons)
S Suppliers (S ⊂ L)
K Satellites (K ⊂ L)
N Customers (N ⊂ L)
T Events (i.e., vehicle stops)
Ti Events specific to node i ∈ N
P Containers

Parameters
cij Cost of transportation from node i to node j
αv Cost of deploying vehicle v, associated with the actual movement or operation of the vehicle
Mc Upper bounds on transportation cost
Dpi Demand for loaded container p at customer node i

I0,lpi Initial inventory of loaded container p at source i

If,lpi Final inventory of loaded container p at source i

Ii,epi Initial inventory of empty container p at source i

If,epi Final inventory of empty container p at source i

wv Weight capacity of vehicle v
vov Volume capacity of vehicle v
utmaxip Load/unload time for container p at node i

uwl
p Loaded container p weight

uvolp Loaded container p volume
uwe

p Empty container p weight
uvoep Empty container p volume
ML Upper bounds on load - capacity
ai, li Node i’s earliest and latest service times
βi Stop time at node i
Mv Upper bounds on the number of stops for v
tmaxv Maximum route time for vehicle v
dij Travel time between nodes i and j
utmaxip Load/unload time for container p at node i

Variables
ytiv 1 if vehicle v visits node i at event t, 0 otherwise
ztijv 1 if arc (i, j) is traversed by vehicle v during event t, 0 otherwise
qltip Additional loaded containers p received at node i after event t
qetip Additional empty containers p received at node i after event t

Ql
tipv Loaded containers p on vehicle v at stop (t,i) from source i

Qe
tipv Empty containers p on vehicle v at stop (t,i) from source i

Al
tipv Loaded containers p delivered by vehicle v to node i at stop (t,i)

Ae
tipv Empty containers p delivered by vehicle v to node i at stop (t,i)

Qtltipv Cumulative loaded containers p on vehicle v up to stop (t,i)
Qtetipv Cumulative empty containers p on vehicle v up to stop (t,i)
Atltipv Cumulative loaded containers p delivered by vehicle v up to stop (t,i)
Atetipv Cumulative empty containers p delivered by vehicle v up to stop (t,i)
Cti Travel cost to node i from start up to stop (t,i)
Ctv Total travel cost for vehicle v
Tti Travel time to node i from start up to stop (t,i)
Ttv Total travel time for vehicle v
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∑
j∈Lv ,i ̸=j

ztijv +
∑

j∈Lv ,i ̸=j

ztjiv = 2ytiv ∀i ∈ Lv, v ∈ V, t ∈ Ti (5)

∑
i∈E ,

∑
j∈E ,i ̸=j

xtijv ≤
∑
i∈E

ytiv − ytιv ∀E ⊆ Lv, ι ∈ E , v ∈ V, t ∈ Ti (6)

∑
i∈Lv

∑
t∈Ti

ytiv ≤Mv

∑
i′∈Depv

∑
t∈Ti′

yti′v ∀v ∈ V (7)

Cti ≥
∑

i′∈L,i′ ̸=i

∑
t′∈Ti′

ci′iyt′i′v −Mc(1− ytiv) ∀v ∈ Vi, t ∈ Ti, i ∈ L (8)

Ct′i ≥ Cti −Mc(2− ytiv − yt′iv) ∀v ∈ Vi, t, t
′ ∈ Ti, t < t′, i ∈ L (9)

Ctv ≥ Cti +
∑

i′∈Depv

∑
t′∈Ti′

ci′iyt′i′v −Mc(1− ytiv) ∀v ∈ V, t ∈ Ti, i ∈ L (10)

Tti ≥
∑

i′∈L,i′ ̸=i

∑
t′∈Ti′

di′iyt′i′v + βi′ +
∑
p∈P

utmaxi′p(Q
l
ti′pv +Qe

ti′pv)−Mc(1− ytiv)

∀v ∈ V, i ∈ L, t ∈ Ti (11)

Tt′i ≥ Tti + βi +
∑
p∈P

utmaxip(Q
l
tipv +Al

tipv +Qe
tipv +Ae

tipv)

−Mc(2− ytiv − yt′iv) ∀v ∈ Vi, t, t
′ ∈ Ti, t < t′, i ∈ L (12)

Ttv ≥ Tti + βi +
∑
p∈P

utmaxip(Q
l
tipv +Al

tipv +Qe
tipv +Ae

tipv)

+
∑

i′∈L,i′ ̸=i

∑
t′∈Ti′

dii′yt′i′v −Mc(1− ytiv) ∀v ∈ V, t ∈ Ti, i ∈ L (13)

ai ≤ Tti ≤ bi ∀t ∈ Ti, i ∈ L (14)
Ttv ≤ tmaxv ∀v ∈ V (15)

∑
v∈Vi

∑
t∈Ti

Ql
tipv ≤ I0,lpi ∀i ∈ S, p ∈ P (16)

∑
v∈Vi

∑
t∈Ti

Qe
tipv ≤ I0,epi ∀i ∈ S, p ∈ P (17)

∑
v∈Vi

∑
t′∈Tit′≤t

Ql
t′ipv ≤ I0,lpi + qltip ∀t ∈ Ti, i ∈ K, p ∈ P (18)
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∑
v∈Vi

∑
t′∈Tit′≤t

Qe
t′ipv ≤ I0,epi + qetip ∀t ∈ Ti, i ∈ K, p ∈ P (19)

∑
v∈Vi

∑
t∈Ti

Ql
tipv ≤ I0,lpi +

∑
v∈Vi

∑
t∈Ti

Al
tipv − If,lpi ∀i ∈ K, p ∈ P (20)

∑
v∈Vi

∑
t∈Ti

Qe
tipv ≤ I0,epi +

∑
v∈Vi

∑
t∈Ti

Ae
tipv − If,epi ∀i ∈ K, p ∈ P (21)

∑
v∈Vi

∑
t∈Ti

Al
tipv ≥ Dpi ∀i ∈ N, p ∈ P (22)

Ql
tipv ≤MLytiv ∀t ∈ Ti, i ∈ (S ∪K), p ∈ P, v ∈ Vi (23)

Qe
tipv ≤MLytiv ∀t ∈ Ti, i ∈ (K ∪N), p ∈ P, v ∈ Vi (24)

Al
tipv ≤MLytiv ∀t ∈ Ti, i ∈ S, p ∈ P, v ∈ Vi (25)

Ae
tipv ≤MLytiv ∀t ∈ Ti, i ∈ S, p ∈ P, v ∈ Vi (26)

Al
tipv ≤ Dpiytiv ∀t ∈ Ti, i ∈ N, p ∈ P, v ∈ Vi (27)

∑
i∈S∪K

∑
t∈Ti

Ql
tipv =

∑
i∈N∪K

∑
t∈Ti

Al
tipv ∀p ∈ P, v ∈ V (28)

∑
i∈N∪K

∑
t∈Ti

Qe
tipv =

∑
i∈S∪K

∑
t∈Ti

Ae
tipv ∀p ∈ P, v ∈ V (29)

Qtlt′ipv +Qtet′ipv ≥ Qtltipv +Ql
t′ipv +Qtetipv +Qe

t′ipv −ML(2− ytiv − yt′iv)

∀v ∈ Vi, t, t
′ ∈ Ti, t < t′, i ∈ L, p ∈ P (30)

Atlt′ipv +Atet′ipv ≥ Atltipv +Al
t′ipv +Atetipv +Ae

t′ipv −ML(2− ytiv − yt′iv)

∀v ∈ Vi, t, t
′ ∈ Ti, t < t′, i ∈ L, p ∈ P (31)

Ql
tipv ≤ Qtltipv ≤

∑
i′∈S∪K

∑
t′∈T ′

i

Ql
t′i′pv ∀v ∈ V, t ∈ Ti, i ∈ Lv, p ∈ P (32)

Qe
tipv ≤ Qtetipv ≤

∑
i′∈N∪K

∑
t′∈T ′

i

Qe
t′i′pv ∀v ∈ V, t ∈ Ti, i ∈ Lv, p ∈ P (33)

Al
tipv ≤ Atltipv ≤

∑
i′∈S∪K

∑
t′∈T ′

i

Al
t′i′pv ∀v ∈ V, t ∈ Ti, i ∈ Lv, p ∈ P (34)

Ae
tipv ≤ Atetipv ≤

∑
i′∈S∪K

∑
t′∈T ′

i

Ae
t′i′pv ∀v ∈ V, t ∈ Ti, i ∈ Lv, p ∈ P (35)
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∑
p∈P

uwl
p(Qtltipv −Atltipv) + uwe

p(Qtetipv −Atetipv) ≤ wv

∀v ∈ V, t ∈ Ti, i ∈ Lv, p ∈ P (36)∑
p∈P

uvolp(Qtltipv −Atltipv) + uvoep(Qtetipv −Atetipv) ≤ vov

∀v ∈ V, t ∈ Ti, i ∈ Lv, p ∈ P (37)

Qtltipv −Atltipv ≥ 0 ∀v ∈ V, t ∈ Ti, i ∈ Lv, p ∈ P (38)

Qtetipv −Atetipv ≥ 0 ∀v ∈ V, t ∈ Ti, i ∈ Lv, p ∈ P (39)

qlt′ip ≥ qltip +
∑
v∈Vi

Al
t′ipv ∀t, t′ ∈ Ti, t < t′, i ∈ K, p ∈ P (40)

qet′ip ≥ qetip +
∑
v∈Vi

Ae
t′ipv ∀t, t′ ∈ Ti, t < t′, i ∈ S ∪K, p ∈ P (41)

∑
v∈Vi

Al
tipv ≤ qltip ≤

∑
v∈Vi

∑
t′∈T ′

i

Al
t′ipv ∀t ∈ Ti, i ∈ K, p ∈ P (42)

∑
v∈Vi

Ae
tipv ≤ qetip ≤

∑
v∈Vi

∑
t′∈T ′

i

Ae
t′ipv ∀t ∈ Ti, i ∈ S ∪K, p ∈ P (43)

The objective function (1) is to minimize the overall transportation cost, encompassing
both fixed and variable components. Constraints (2) ensure that every vehicle v, when utilized,
begins and ends its route at the designated base node i ∈ Depv. Constraints (3) specify that
a predefined event t at node i, represented by the vehicle stop (t, i), can only be assigned to
one vehicle v. Constraints (4) mandate that the stop (t’, i) cis allocated to vehicle v only if all
earlier stops (t, i) at node i, with (t<t′), are already assigned to vehicles. Constraints (5) and
(6) define degree and sub-tour elimination constraints. Constraints (7) allow vehicle v to serve
multiple stops (t, i) on different nodes provided it has previously been assigned to a base node
i′. Constraints (8) dictate that the minimal cost to reach any node i should at least equal the
direct travel cost from node i′ to node i, given by ci′i. Constraints (9) ensure vehicle v can
make consecutive stops at node i, while event t always occurs before t′ (t<t′). Constraints (10)
account for the cost from the last visited node i on the v-trip to the base depot i′. Constraints
(11) determine the minimum time needed to arrive at the first node, combining the travel time
for arc (i′, i) and the total service time at the base node i′. Constraints (12) demand that
for multiple stops by vehicle v at node i, event t should precede t′ when t<t′. Constraints
(13) define the duration each vehicle v spends on its journey. Constraints (14) and (15) define
the time window and maximum service time. Constraints (16) and (17) restrict the total
container p quantity suppliers to not exceed the initial inventory at node i. Constraints (18)
and (19) ensure that all containers p taken from satellite i up to event t do not exceed the
sum of the initial inventory and the number of containers p received from other sources until
event t. Constraints (20) and (21) define the overall container balance at each satellite i.
Constraints (22) stipulate the delivery of container p to every customer node i satisfies their
demand. Constraints (23) and (24) guarantee that a vehicle v can only pick up at source node
i during stop (t, i), if ytiv = 1. Constraints (25)– (27) state that a delivery task by vehicle
v at stop (t, i) is feasible only if this stop is allocated to v. Constraints (28) and (29) define
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the overall container balance for each vehicle v. Constraints (30) quantify the cumulative
containers p picked up by vehicle v up to the stop (t, i). Constraints (31) denote the total
amount of container p delivered by vehicle v up to (t, i). Constraints (32)– (35) define bounds
on variables Qtltipv, Qtetipv, Atltipv and Atetipv. Constraints (36)-(39) define vehicle capacity
constraints. Constraints (40) and (41) specify the added inventory of container p received at
cross-dock i up to stop (t’,i). Constraints (42) and (43) define bounds on variables qltip and
qetip.

5. Stochastic and continuous transformation of the deterministic model

The transformation of our optimization problem from a discrete framework, suitable for
deterministic demands, to a continuous one, adaptable to stochastic variability, is a nuanced
process. This section delves into the methodologies involved in this transition, ensuring that
the continuous framework remains relevant and feasible for the original discrete problem.

5.1. Stochastic formulation of the problem
Central to our approach is the reformulation of the deterministic model to accommodate

stochastic demands by introducing random variables D. Accordingly, as shown in Expression
(45), the objective function shifts from a deterministic focus to minimizing expected costs over
various independent demand realization scenarios, noted Ω. Therefore, the stochastic model
can be written as:

x̂ ∈ argminx∈χOF(x) (44)

With :
OF(x) := EΩ [OF (x,D)] (45)

And x̂ represents the optimal solution, x = [x1, x2, ..., xn]
T the solution vector and n

the problem’s dimensionality. The solution space, denoted as χ, is a non-empty and finite
subset of Rn. Specifically, each component xi is confined to a finite set x1i , x

2
i , ..., x

mi
i , with mi

marking the dimension of the solution space for the ith coordinate (i.e., a decision variable).
Moreover, the objective function, OF(·), is a deterministic function with real values, and it is
consistently defined over the domain χ.

5.2. Model transformation
The methodology for transitioning to a continuous model involves several critical steps,

guided by principles of gradient-based optimization and adaptive stochastic search (Zhou and
Hu, 2014; Chen et al., 2018). We employ a robust optimization technique within the parameter
space of a probability density model. This involves generating solutions tailored to each
demand scenario and re-calibrating parameters based on the objective function evaluations
through a stochastic gradient descent algorithm. The process includes converting the discrete
problem into a continuous problem and iteratively refining potential solutions and parameters,
as described in Algorithm (1).
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Algorithm 1 Overview of the steps involved in the transformation

1. Initialize parameters within the boundaries of a probability density model.
2. Repeat until convergence:

(a) Generate potential solutions based on the parameterized distribution.
(b) Update parameters using a stochastic gradient descent algorithm to converge to

the optimal solution.

In the following sections, we further detail each of these steps.

5.2.1. Probabilistic model formulation and parameter space
The introduction of a probabilistic model, parameterized by θ, is a pivotal step. This

model effectively captures the potential solutions within the stochastic landscape, reflecting the
inherent variability in each demand scenario. The treatment of solution variables as random
variables within this model allows for a more nuanced approach to stochastic optimization.

To elaborate further, let us consider f(x; θ) which represents a family of probability density
functions parameterized by θ, for a given realization scenario. Here, x is an element of the
solution space χ, while the parameter θ belongs to a subset Θ of Rd, and d denotes the
dimensionality of the parameter space.

The parameter space Θ is defined to facilitate the application of this probabilistic model
as follows:

Θ =

{
θ ∈ [0, 1]

∑n
i=1 mi ,

mi∑
j=1

θij ∀i = 1..., n

}
(46)

Since it is simpler to sample from the independent distribution, this paper uses an inde-
pendent probabilistic model on the solution space. This model has also been employed in
many model-based approaches showing solid empirical performances (Hu et al., 2007). An-
other justification for employing an independent distribution is the principle of "localization",
frequently invoked for dimension reduction across diverse fields such as filtering and commu-
nication networks (Chen et al., 2018). Accordingly, within the defined parameter space and
for a given realization scenario, the probabilistic model f(x; θ) takes the form:

f(x; θ) =
n∏

i=1

( mi∑
j=1

θijI{xi = xji} θ ∈ Θ

)
(47)

With θij is the probability that the ith component of the problem’s solution takes a value
xji , and I the indicator function. For example, an f(ytiv; θ

tiv) can represent the probability θtiv

that the vehicle v visits a node i at the event t (i.e., ytiv = 1), and f(qltip; θ
tip) the probability

that transshipped quantity of loaded containers received at node i after the event t equals to
a value qltip.

5.2.2. Continuous expression of the optimization problem
With the probabilistic model and parameter space defined as continuous, the objective

function OF(x̂) becomes bounded by the inequality (48), involving f(x; θ). This transforma-
tion leads to the derivation of a novel objective function that is both continuous and differen-
tiable with respect to the parameter θ. It is worth noting that equality is attained when an
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optimal parameter θ̂ exists, causing the probability function f(x; θ̂) to be concentrated solely
on a subset of the optimal solution set.

OF(x̂) ≤
∑
x∈χ
OF(x)f(x; θ) ∀θ ∈ Θ (48)

Given the Expression (48), the minimization problem is reformulated into a continuous
one, within the parameter space Θ, as follows:

θ̂ ∈ argminθ∈Θ
∑
x∈χ
OF(x)f(x; θ) = argminθ∈ΘEf(·;θ)[OF(χ)] (49)

Finally, we adapt a gradient-based optimization algorithm to our stochastic continuous
model. This adaptation is crucial for facilitating the swift adjustment of parameter θ, thus
leading to convergence towards optimal solutions. This approach leverages the strengths
of stochastic gradient descent and robust optimization techniques, offering a comprehensive
solution to complex stochastic problems. In the following, we delve into more details of the
technique we use.

5.2.3. Stochastic gradient descent for parameter updating and solving the continuous mini-
mization problem

To solve the reformulated version of the problem (noted RF (θ)) under stochastic demands,
we relied on the ADAptive Moment estimation-based algorithm (ADAM ) developed in Kingma
and Ba (2014) and supported by Google Deepmind. More specifically, this paper conducts
the following two steps for each demand realization scenario:

1. Generate candidate solutions based on the probabilistic model f(x; θ).
2. Use ADAM to update the parameter θ to enhance solutions.
3. Use a projection method to ensure the updated parameters remain within the feasible

region (see Section(5.2.4))

The ADAM algorithm optimizes stochastic objective functions solely based on first-order
gradients, utilizing adaptive estimations of lower-order moments. ADAM is easy to imple-
ment and computationally efficient with minimal memory demands. It remains invariant to
diagonal re-scaling of the gradients, making it particularly adept for problems with extensive
datasets or parameters. Moreover, the algorithm’s hyper-parameters are intuitively compre-
hensible and generally require minimal fine-tuning (Kingma and Ba, 2014). Further, in diverse
contexts, ADAM has been applied and consistently demonstrates a regret bound on its con-
vergence rate that aligns with, if not surpasses, the best-known outcomes within the online
convex optimization framework. Finally, empirical results underscore ADAM ’s compelling
performance in real-world scenarios, showcasing its superior capabilities compared to other
stochastic optimization techniques.

As described in Algorithm (2), our resolution algorithm allows us to minimize the expected
value of RF (θ) under stochastic demands, E[RF (θ)], with respect to the parameters θ. Let
RF1(θ), ....RFΩ(θ) be the realization of the stochastic function for each scenario 1, ...Ω.

Moreover, for each realization scenario ω, we generate candidate solutions within a given
number of iterations. The objective is to bring into play the advantages of population-based
methods in exploring the solution space compared to the algorithms that use a single candidate
solution for each iteration (Zhou and Hu, 2014).
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Let xk,ω be the candidate solutions to the original problem for a scenario ω, and in iteration
k generated according to f(xk,ω; θk,ω). And let gk,ω = ∇k,θRFk,ω(θk,ω), be the gradient, i.e.,
the vector of partial derivatives of RFk,ω, with respect to θk,ω evaluated for each scenario ω
and iteration k.

Furthermore, in this algorithm, we use exponential moving averages for both the gradient,
represented as mk,ω, and the squared gradient, denoted vk,ω. These averages are regulated by
hyper-parameters ϕ1;ϕ2, both lying within the range [0, 1], which determine the decay rates
of the respective moving averages. Essentially, mk,ω gives an estimate of the gradient’s first
moment (or the mean), while vk,ω captures its second raw moment (essentially the uncentered
variance).

Algorithm 2 The solution method employed in this paper
Require: Step size σ
Require: Exponential decay rates ϕ1, ϕ2 ∈ [0, 1] for moment estimates
Require: Initial parameter vector θ0,ω for each scenario ω
1: m0,ω ← 0 ▷ Initialize 1st moment vector
2: v0,ω ← 0 ▷ Initialize 2nd moment vector
3: k ← 0 ▷ Initialize iteration counter
4: repeat
5: repeat
6: k ← k + 1
7: Generate candidate solutions using f(xk,ω; θk,ω)
8: gk,ω ← ∇θRFk,ω(θk−1,ω−1) ▷ Get gradients for scenario ω at iteration k
9: mk,ω ← ϕ1mk,ω + (1− ϕ1)gk,ω ▷ Update biased first moment estimate

10: vk,ω ← ϕ2vk−1,ω−1 + (1− ϕ2)g
2
k,ω ▷ Update biased second moment estimate

11: ˆmk,ω ← mk,ω/(1− ϕk,ω
1 ) ▷ Correct bias for first moment estimate

12: ˆvk,ω ← vk,ω/(1− ϕk,ω
2 ) ▷ Correct bias for second moment estimate

13: θ
′
k,ω ← θk−1,ω−1 − σ ˆmk,ω/(

√
ˆvk,ω + ϵ) ▷ Update θ

′
k,ω, the parameter vector, not

yet projected onto the feasible region (Θ′)
14: θk,ω ← Project(θ′

k,ω, Θ′) ▷ Apply Algorithm (3) to project the intermediate vector
onto Θ′, and ensure it meets the problem’s constraints

15: until maximum iterations reached
16: ω ← ω + 1 ▷ Advance scenario counter
17: until θk,ω converges (i.e., any improved solution, in a certain number of sequential itera-

tions, is returned) or maximum scenarios reached
18: θbest ← θk,ω ▷ Set best parameter vector to final iteration’s vector
19: return Solutions x derived from f(x; θbest)

Ensuring the feasibility of solutions, derived from f(x; θbest), throughout the optimization
process is a critical aspect of the stochastic and continuous transformation approach. Indeed,
while ADAM iteratively improves the solution by moving in the direction of the steepest
descent, it does not inherently account for the feasibility with respect to the defined constraints.
To address this, as shown in Algorithm (2), we integrate a projection method immediately
following each parameter update, θ′

k,ω, to maintain the integrity of our solutions within the
feasible region of the parameter space.

When the stopping criteria are met, the algorithm stops, and the current best parameter,
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denoted as θbest, is retrieved, and the corresponding solution, x, is generated using f . Oth-
erwise, the process proceeds to step 6. The stopping criteria are considered satisfied if either
any improved solution is found within a specified number of consecutive iterations, or the
maximum number of scenarios has been reached.

In the following, we describe the projection method.

5.2.4. Feasibility of solutions
In the optimization process using Algorithm (2), we encounter a crucial step where the up-

dated parameter vector, denoted as θ′
k,ω, must be adjusted to meet the problem’s constraints.

In the case of the canonical simplex, these constraints may require that these parameters all
be non-negative and sum to one.

The adjustment is made through a projection method. This projection, as described in
(Chen, 2015) and presented in Algorithm (3), maintains the feasibility of solutions by adjusting
θ
′
k,ω to ensure they stay within the feasible region, Θ′, defined by the constraints. This step

involves sorting the elements of the parameter vector and then adjusting them according to
a computed threshold value (τ) that ensures all constraints are satisfied. The outcome is a
feasible parameter vector θk,ω, ready for the next iteration and guaranteed to remain within
the simplex’s boundaries. Thus, ensuring that the solution, x, generated using θbest will be
the feasible solution that provides the best performance in terms of minimizing the objective
function, taking into account the constraints and stopping criteria, as described in Algorithm
(2).

For instance, let us consider Constraints (2). In our discrete model, these constraints
ensure that each vehicle v can be assigned to at most one event at a depot. Translated
into the continuous framework, this becomes a probabilistic representation where θtiv denotes
the probability of vehicle v attending event v at depot i. Thus, ensuring feasibility in the
continuous setting involves projecting parameter updates onto a canonical simplex, making
sure that probabilities sum up to 1 (Chen, 2015).

In addition, when it comes to interactions with other constraints, such as Constraints (4),
the projection method ensures that any adjustments made to satisfy Constraints (2) do not
lead to the violation of Constraints (4). Indeed, if the adjustment for Constraints (2) pushes
the parameters outside the feasible region of Constraints (4), the projection method must
then reconcile this by finding the closest point within the feasible region that satisfies both
constraints, as described in Algorithm (3).

Algorithm 3 Projection onto the Feasible Region

1: Require θ
′
k,ω ∈ Rmi ▷ Updated parameter vector from ADAM (Algorithm (2), Line 13)

2: Require Θ′ ▷ Canonical simplex, representing the feasible region of the solution space
3: Sort the elements of θ′

k,ω to obtain θ
′,(1)
k,ω , . . . , θ

′,(mi)
k in ascending order

4: Compute the cumulative sum Sj =
∑mi

l=j θ
′,(l)
k,ω for j = 1, . . . ,mi

5: Find the largest j such that θ
′,(j)
k,ω + 1

mi−j+1(1− Sj) > 0 ▷ To determine the threshold τ

6: Compute τ = 1
mi−j+1(1− Sj) ▷ Using the j found in the previous step

7: Update θ
(i)
k,ω = max{θ

′,(i)
k,ω − τ, 0}, for i = 1, . . . ,mi ▷ The parameter vector

8: Output: θk,ω
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6. Experimental design and results

In this section, we initially outline the data generation and parameter fine-tuning processes
that were incorporated into our methodology. Subsequently, we provide a detailed description
of the three experiments we conducted. The first experiment focuses on assessing the quality
and speed of our proposed solution method, the second experiment examines the performance
of the distribution settings and the resolution algorithm, and the third experiment involves
assessing the robustness of each model to enable the generalization of our findings.

6.1. Experimental design
This section covers three integral components of our experimental design, namely the data

generation process, the fine-tuning of parameters, and the experimental setup.

6.1.1. Data generation
We generated the dataset randomly as no benchmarks were available in the 2e-VRP and

hyperconnected networks literature with the same constraints. To ensure a realistic dataset, we
followed some of the standards for instances generated for the 2e-VRP, as described in (Sluijk
et al., 2022; Dondo et al., 2009), and for the production-inventory-distribution problem in the
hyperconnected network, as given in (Ji et al., 2019; Peng et al., 2021).

In our data generation process, we created a dataset consisting of 1000 instances, with
the parameter N (denoting the number of customers) taking on values of 10, 20, 30, up to
100. This enabled us to create 10 sets, each corresponding to a specific N value (e.g., the first
set with N = 10, the second with N = 20, and so on). Within each set, we generated 100
instances, varying the remaining parameters as outlined in Table 2.
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Table 2: Data generation patterns

Sets
Set of suppliers S U(2,20)
Set of satellites K U(3,10)
Set of vehicles V 100 (60 conventional vehicles, 40 cargo bikes)
Set of possible depots, for vehicle v,
Depv

U(2,11)

Set of events, for each customer
node i, Ti

2

Set of containers P U(1,10)
Parameters

Cost of transportation cij U(1.5,3) ($ per km)
Cost of using vehicle αv U(20,500) ($)
Demand Dpi Random variable associated to the stochastic demand following

N(100, 20); Normal distribution N(µ, σ)
Initial Inventory of loaded contain-
ers I0,lpi

U(0,2600), uniform distribution, per unit of loaded container

Final Inventory of loaded contain-
ers If,lpi

U(0,600) per unit of loaded container

Initial Inventory of empty contain-
ers I0,epi

U(0,2600) per unit of empty container

Final Inventory of empty containers
If,epi

U(0,600) per unit of empty container

Weight capacity wv U(5, 20000) (kg)
Volume capacity vov U(1,35) (m3)
Maximum route time tmaxv 10 hours
Weight of loaded container uwl

p U(1,6) kg per unit of loaded container
Volume of loaded container uvolp U(0.005,0.01) m3 per unit of loaded container
Weight of empty containeruwe

p U(1,4) kg per unit of empty container
Volume of empty containeruvoep U(0.005,0.01) m3 per unit of loaded container
Load/unload time utmaxip U(200,300) of unit of loaded/empty container per hour
Earliest service time ai U(0.4,5) (hour)
Latest service time li U(0.4,6) (hour)
Stop time βi U(0.5,1) (hour)
Average speed U(25,90) km per hour
Distance U(100,300)(km) between suppliers, between satellites, and be-

tween customers
Distance U(300,500)(km) from suppliers to satellites, and from satellites

to customers

6.1.2. Parameter fine-tuning
We used the Irace package developed by López-Ibáñez et al. (2016) for tuning the pa-

rameters of the robust optimization algorithm. The software package employs automated
configuration procedures, including the iterated F-race algorithm. Furthermore, following the
data generation process previously described, we generated a separate set of representative
instances for the parameter tuning. Specifically, we created 4 sets with 15, 30, 50, and 100
customers each, resulting in 400 instances. These instances were exclusively used to tune the
parameters to ensure the robustness and generalizability of our model. Table 3 reports the
parameters tuning adopted.
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Table 3: Parameters tuning for our solution method using Irace package

Parameters Chosen value
Number of demand realization scenarios 100
Number of iterations 100
Step size σ 0.001
Exponential decay rate ϕ1 0.9
Exponential decay rate ϕ2 0.999

Regarding the parameterized distribution f , in practice, it should be chosen based on
the prior knowledge of the structure of the objective function. Since no prior knowledge is
available, we set the initial distribution f(x0,ω, θ0,ω) to be the uniform distribution on the
solution space, as in (Chen et al., 2018).

Finally, all the optimization steps are carried out on a personal computer (MacBook Pro,
macOS Monterey, Apple M1 Pro, 32 GB of RAM). We implemented the proposed algorithms
using CPLEX 12.9 (academic version) and Python 3.10.

6.1.3. Setup for the first experiment: Insights into the performance of the solution method
To get insights into the robustness of our solution method, we compare the results with

those obtained using Sample Average Approximation (SAA) as an exterior sampling method.
As described in (50), SAA approximates the expected objective function E[OF (x)] under
stochastic demands by the sample average function (Kleywegt et al., 2002). Accordingly, the
problem is solved using a deterministic optimization algorithm (in our case, the Branch-and-
Cut solver of CPLEX).

1

Ω

Ω∑
ω=1

OF (x, ω) (50)

In SAA, Ω independent samples, each of size L, are generated, and the related deterministic
problem is solved (see Section (4)). Let η1L, η

2
L, ..., η

Ω
L and x̂1, x̂1, ..., x̂Ω be the objective function

values and candidate solutions respectively. Let ηL be the average of the optimal objective
function values. ηL provides a statistical estimate for a lower bound on the optimal value of
the true problem (Kleywegt et al., 2002; Achamrah et al., 2022a). In addition, the variance of
this estimator can be calculated as follows:

ν̂2ηL =
1

(Ω− 1)Ω

Ω∑
ω=1

(ηωL − ηL)
2 (51)

Moreover, for any feasible solution x̂, the statistical upper bound, η̂L′(x̂), for the optimal
value is expressed as follows (Verweij et al., 2003; Mohammadi Bidhandi and Patrick, 2017):

η̂L′(x̂) =
1

L′

L′∑
ω=1

OF (x̂, ω) (52)

where L′ is a sample size chosen to be quite large, L′ > L. In addition, the variance of this
estimator can be calculated as follows:

ν̂2η̂L′ (x̂) =
1

(L′ − 1)L′

L′∑
ω=1

(OF (x̂, ω)− η̂L′(x̂))2 (53)
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For the entire problem, the optimal solution x̂∗ is determined as follows:

x̂∗ ∈ argmin{η̂L′(x̂); x̂ ∈ {x̂1, x̂1, ..., x̂Ω}} (54)

The quality of the solution x̂∗ is evaluated by calculating the optimality gap estimate O
(Kleywegt et al., 2002; Verweij et al., 2003; Achamrah et al., 2022a; Mohammadi Bidhandi
and Patrick, 2017):

O = η̂L′(x̂∗)− ηL (55)

The estimate variance of O is computed as follows (Kleywegt et al., 2002; Verweij et al., 2003):

ν̂2 = ν̂2η̂L′ (x̂∗) + ν̂2ηL (56)

In this experiment, we applied SAA to solve the proposed model, with the parameters
Ω = 4;L = 50;L′ = 100. Without loss of generality, we run tests on ten instances generated
as per the data generation process previously described. Furthermore, to compare the results
with those obtained using our newly proposed algorithm, we computed the optimality gap
estimate O and its estimate variance ν̂2 for the objective values obtained using each solution
method. It is worth noting that we used the lower bounds estimates computed with SAA. In
addition, we report CPU time in seconds for each resolution algorithm.

6.1.4. Setup for the second experiment: Impact of the proposed model on the distribution
network performance

In this experiment, we aim to better understand the potential advantages our proposed
model, with its enhanced collaboration, flexibility, and openness, can bring to urban delivery
systems (Cleophas et al., 2019). We evaluate its effectiveness against the dedicated system
(DS) model described in (Yang et al., 2017). Within this system, each supplier independently
manages delivery routes, either with their own fleet or through an exclusively contracted one.
Figure (2) shows that this network represents a multi-echelon hierarchical configuration. It
encompasses upstream levels (like plants and warehouses) overseen by suppliers and down-
stream sites (such as distribution centers and retail sales points) managed by retailers. It falls
upon retailers to define and refine their segment of the logistics framework. Throughout the
network, products are also shipped using reusable containers owned by suppliers. Similarly,
the system also integrates the pickup of empty containers from customer areas, ensuring they
are returned to the original suppliers for subsequent utilization. In addition, the DS model
does not consider the costs associated with contracting fleets nor inventory sharing through
transshipment. All other assumptions outlined in this paper remain valid within the DS model.
Finally, the primary decisions in this model revolve around minimizing transportation costs,
and determining the quantity and timing of deliveries and pickups under stochastic demand
and time window constraints.
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Figure 2: Dedicated system vs. our model

To compare the results, we run tests using 10 sets generated as described in Subsection
(6.1.1). In addition, we used cost saving, capacity utilization, number of used vehicles, and ser-
vice time as the primary key performance indicators (KPIs). The following ratios to represent
the results are computed:

The performance ratio C related to cost saving:

C =
TotalCostDS − TotalCost2eV RP

TotalCost2eV RP
100 (57)

The performance ratio U related to the vehicle -capacity- utilization (VU):

U =
V U2eV RP − V UDS

V U2eV RP
100 (58)

The performance ratio R related to the number of vehicles used (NV):

R =
NVDS −NV2eV RP

NV2eV RP
100 (59)

The performance ratio S related to service time (ST):

S =
STDS − ST2eV RP

ST2eV RP
100 (60)

To assess the performance of the resolution algorithm, we also report the CPU times for
each model and instance under consideration.

6.1.5. Setup for the third experiment: Insights into the robustness of the model setting and the
resolution algorithm

To generalize the findings, we assess the robustness of each model setting as per the data
generation process described in Subsection (6.1.1). The objective is to evaluate each model
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with regard to its responsiveness to uncertainty and sensitivity to demand profiles. This paper
considers the following scenarios of demand realizations:

• Scenario S1 (best case): Dpi ∈ [µ− 2σ,µ− σ]

• Scenario S2: Dpi ∈ [µ− σ, µ]

• Scenario S3: Dpi ∈ [µ, µ+ σ]

• Scenario S4 (worst/stressing case) : Dpi ∈[µ+ σ, µ+ 2σ]

6.2. Experimental results and managerial insights
This section reports the results of the three experiments we conducted to assess the perfor-

mance of the proposed algorithm and our model in terms of savings, flexibility, and openness.

6.2.1. Results of the first experiment: Insights into the performance of the solution method
Table 4 summarizes our algorithm’s and SAA’s comparison results for all instances under

consideration. It reports the optimality gap estimate O and its estimate variance ν̂2 computed
for each solution method. It also reports CPU time in seconds.

Table 4: Comparison results of SAA and our resolution algorithm

Instance O (%) ν̂2 (%) CPU time (s)
# Suppliers Satellites Customers Containers SAA Our algorithm SAA Our algorithm SAA Our algorithm
1 2 3 15 1 0.23 0 0.01 0 1322 12
2 2 3 15 2 0.24 0 0.01 0 5494 25
3 2 3 15 3 0.26 0.01 0.01 0 7692 38
4 2 3 15 4 0.88 0.01 0.03 0 12325 67
5 2 3 15 5 5.34 0.01 0.43 0 >18000 94
6 2 3 15 6 7.22 0.01 3.52 0 >18000 111
7 2 3 15 7 11.32 0.02 5.02 0.01 >18000 130
8 2 3 15 8 15.01 0.04 8.96 0.01 >18000 124
9 2 3 15 9 22.66 0.02 11.2 0.01 >18000 186
10 2 3 15 10 27.43 0.02 18.31 0.01 >18000 152

From Table 4, we observe that our solution method is more robust in providing high-quality
solutions with less computational effort than SAA for all instances under consideration. The
solutions obtained are within an average estimated optimality gap of less than 0.01% compared
to 9.06% for SAA. The same goes for the estimated variance of this gap. Our algorithm
provides estimates, on average, less than 0.01% compared to 4.75% for SAA. Moreover, the
table shows that our algorithm requires less computational effort (on average 93.84 seconds)
than SAA. The reason is that, unlike SAA, our solution method does not need more samples to
converge as it combines the advantage of the fast convergence speed of continuous algorithms
(i.e., gradient descents) with the insensitivity to the problem’s size and the global exploration
of stochastic search methods.

6.2.2. Results of the second experiment: Impact of the proposed model on the distribution
network performance

Figure (3) reports the average total transportation costs computed for our model and DS
settings. In addition, Figure (4) provides the average CPU time in seconds, computed for
each setting. Finally, Figure (5) provides C , U , R, and S in % computed with respect to
DS for all instances under consideration. Finally, a t-test is performed to verify the statistical
differences among the solutions computed for our and the DS models (p− value < 0.0001).

Results in Figures (3), (4), and (5) highlight that the average total costs obtained using
the proposed model are the lowest: the average total cost is reduced by 25%. This implies that
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this model, unlike DS, enables exploiting a high level of integration, flexibility, and openness.
In other words, cost savings follow as the distribution becomes more flexible. Furthermore,
the distribution flexibility is extended by enabling lateral transshipment of filled and empty
containers, implying better service quality.

As for DS, frequent transportation is required to reach the same performance level as in
our model, which implies increasing transportation costs. Indeed, because the DS network
is hierarchical, decentralized, and fragmented, transportation is inefficient, even with lower
quantities of products that must be shipped. That is, fulfilling stochastic demands efficiently
and under time constraints would be much more challenging.

In addition, results show that the proposed model minimizes resource utilization R (on
average by 16%, see Figure (5)) while increasing vehicle capacity utilization U (on average
21%), resulting in considerable cost savings C (on average 25%, see Figure (5)). Accord-
ingly, our model allows for more efficient transportation of containers within the network
while implicitly considering the negative impact on the environment. Also, at satellite levels,
loaded/empty container flows from various streams can be re/deconsolidated multiple times.
Therefore, both echelons’ underused vehicle capacity may be better utilized without exerting
unnecessary effort. Additionally, the cost savings increases with the network size.

Moreover, our model takes advantage of the interconnectedness and synergy among the
network levels to consolidate the fragmented and overlapping transportation flows of both
loaded and empty containers. As a result, more nodes are visited, and heterogeneous vehicle
fleets are effectively managed. Also, given the small capacity of cargo bikes, compared to
traditional vehicles, the routes are likely to be limited in length, restricting the service time
(duration)-and distance of a route. Cargo bikes may, therefore, be utilized for multiple trips
while keeping a lower carbon footprint. In addition, integrating warehousing, cross-docking,
and transshipment operations at satellites enables efficient fulfillment of all actors’ needs when
initial stocks of full and empty containers are insufficient to meet customer demand within
time windows. On the other hand, when the vehicle capacity is insufficient, the proposed
model becomes less advantageous, implying the generation of several routes, including more
than a single tour with multiple stops.

Furthermore, containers are reusable and may be shared among players to increase their
utilization rates. Thus, containers are more effectively managed in terms of investment level
and utilization rate compared to the DS model. Moreover, loaded/empty containers may be
shipped to destinations by employing all open hyperconnected satellites and other logistical
resources. This enhances transportation efficiency and stock turnover, reduces implicit in-
ventories, and results in total cost savings. Accordingly, in our model, the service time S
is reduced (on average 25%, see Figure (5)) since the loading and unloading of containers is
faster due to their modular and standard characteristics. Also, when compared to DS, the
consolidation of container flows and their (trans)shipment to destinations by vehicles occurs
with little to no delay. Therefore, results stress that the model’s flexibility and openness
directly reduce order-cycle time and indirectly reduce storage space requirements.

Regarding the solution method’s performance, we notice from Figure 4 that it is robust
and well-suited for solving such combinatorial problems. It allows for consistently providing
solutions on different instance sizes within a reasonable CPU time; for DS, on average, it took
356 seconds and 221 seconds for our model.
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Figure 3: Average total cost computed for each distribution setting

Figure 4: Average CPU time (s) computed for each distribution setting
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Figure 5: Key performance indicators computed with respect to DS, for all the sets under consideration

6.2.3. Results of the third experiment: Insights into the robustness of the model setting and
the resolution algorithm

In this section, we compute the total cost for each of the four scenarios under consideration.
Without loss of generality, we run tests on the first 3 sets. For each scenario, we compare
the corresponding average total cost (TC) to the solution obtained in each scenario and each
setting. Figure 6 presents the results of the comparison.

Figure 6: Results of comparison of the total costs

From Figure 6, we notice that the total cost in each scenario is highly sensitive to the de-
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mand variation for both DS and our model. We also observe that the total cost in DS increases
significantly with the size of the sets as the distribution network becomes highly stressed to
keep up with high demand. This highlights the flexibility and robustness of our model, and
enables us to navigate uncertainty thanks to its hyperconnected distribution network.

To demonstrate the actual performance of the solution method, let TCr be a robust solution
to our model and DS model, which corresponds to the minimum recovery distance to all
optimal solutions of the expected scenarios (Goerigk and Schöbel, 2011). Also, the following
metric noted Dev is computed as follows:

Dev = |TC − TCr| (61)

Figure 7 depicts the variation of TC and TCr for each set.

Figure 7: Robustness metric for each model setting

For the robustness assessment of each model setting, we notice that TC is slightly higher
than TCr for DS compared to our model, as each model’s resolution does not require the
same treatment in terms of optimality and feasibility. In addition, for both configurations,
the proposed algorithm allows us to find near-robust solutions as it combines the advantage
of good values with lower deviation. Therefore, the results show that our algorithm highlights
the trade-off between good solution quality and robustness under uncertainty for DS and the
proposed model.

7. Conclusions & perspectives

This paper investigates a two-echelon cargo bike distribution system with pickups and
deliveries of reusable containers in hyperconnected networks. The paper introduces and mod-
els deterministic and stochastic 2e-VRPs with container forward and reverse flows. Also, it
considers the consolidation of empty and loaded container flows at satellite nodes, transship-
ment operations, and load splitting. Moreover, it takes into account time windows and service
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time constraints. Furthermore, to deal with the combinatorial complexity of the model, we
propose a gradient-descent-based optimization-based framework to solve it. Furthermore, we
conduct experiments to highlight the performance of our solution method and demonstrate
the advantages of the proposed model compared to DS.

Experimental results highlight that, unlike DS in which suppliers optimize delivery routes
served by their own or exclusively contracted fleet of vehicles, the proposed model allows
for economies of scale thanks to its high level of integration, flexibility, and openness. In
addition, our model allows for creating robustness against uncertainty for all instances under
consideration. Moreover, the results stress that distribution flexibility is further enhanced by
enabling lateral transshipment and flow consolidation of loaded and empty containers. On
the other hand, due to the limited capacity of cargo bikes, the proposed model becomes less
advantageous, as it implies the generation of several routes, including more than a single
tour with multiple stops, to meet customers’ demand within time windows and service time
constraints. Finally, the results highlight the good performance of the proposed algorithm in
terms of robustness and providing high-quality solutions with reduced CPU times.

The practical application of our proposed model can be realized through a systematic
approach that aligns with the hyperconnected network paradigm described in our paper.
Decision-makers can implement this model by first establishing a network of satellite nodes
that function as consolidation and transshipment points, as outlined in Section (3). The
stochastic nature of customer demand, a key feature of our model, can be addressed by
utilizing historical data and advanced forecasting techniques to generate the demand scenarios
described in Section (5.1). The gradient-descent-based optimization framework presented in
Section (5.2) can be integrated into existing logistics management systems, allowing for real-
time route optimization that accounts for both forward and reverse flows of containers. As
demonstrated in our experimental results (Section (6.2.2)), the model’s ability to reduce total
costs by an average of 25% while improving vehicle utilization by 21% provides a clear incentive
for practical adoption. Companies can implement this model incrementally, starting with basic
two-echelon routing and gradually incorporating more complex features such as transshipment
and flow consolidation. The robustness of the model to different demand scenarios, as shown
in Section (6.2.3), further enhances its applicability in volatile urban logistics environments.

Since the 2e-VRP in hyperconnected networks is very complex, it leaves room for improve-
ment regarding the integration of information and inventory management at each echelon, the
limited storage capacity of satellites, uncertainty in travel time, and the design of efficient
policies for costs and information sharing, and to deal with the case where demands are dy-
namic and stochastic. Other disruptive events, such as vehicle delays, maintenance breaks,
and unserviceable satellites, could also be investigated. Finally, further supporting the find-
ings would be interesting by applying the model and the resolution method to real data and
using other parameterized distribution models.
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