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Abstract—The resource-constrained environment and the cer-
tification requirements underlying embedded safety-critical real-
time systems impose an adapted development process for software
applications. In this work, we propose an efficient and traceable
implementation of an existing blocked general matrix multipli-
cation (GEMM) algorithm. We target time-predictability in a
COTS processor with single-instruction multiple-data (SIMD)
extensions. We provide a set of rules for tuning the algorithm
parameters and predict with precision its number of memory
accesses and cache misses, which paves the way for a static
WCET analysis. Our experiments show that time-predictability
comes at the cost of a performance degradation of only 2.54%
on average. Moreover, tuning the parameters allows for reducing
cache misses by up to 60% in certain parts of the algorithm.

Index Terms—Real-Time, GEMM, SIMD, cache analysis.

I. INTRODUCTION

Basic Linear Algebra Subprograms (BLAS) libraries [1] con-
sist of highly optimized algorithms to perform common linear
algebra operations, including the general matrix multiplication
(GEMM) routine. This routine is at the core of traditional
scientific simulations as well as the most recent machine
learning tasks, in particular to implement convolutions.

Context: While GEMM optimization benefits from years of
research in the high-performance computing (HPC) domain,
a different approach is required for its use in the embed-
ded safety-critical real-time sphere. Indeed, the development
process of software applications in safety-critical real-time
systems must follow safety standards throughout the construc-
tion, validation, and verification (V&V) development cycle.
In the avionics domain, the DO-178C [2] involves conducting
reviews and analyses of high-level and low-level requirements,
software architecture, and source code; but also explicitly
imposes deriving tight worst-case execution time (WCET)
bounds [3]. This raises the challenge of developing predictable
software that achieves high performance levels, by efficiently
exploiting the available hardware resources.

Motivation: The authors of [4] proposed a first GEMM
implementation using vector extensions in real-time safety-
critical systems. However, they do not implement the full
GEMM algorithm with matrix blocking and do not detail how
predictability can be ensured. In this work, we have three
objectives, the first being to implement the blocked GEMM
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agreement ANR-19-P3IA-0004. It was also supported by a grant overseen
by the French National Research Agency (ANR) as part of the MeSCAliNe
(ANR-21-CE25-0012) project and by the DGAC PHYLOG 2 project.

algorithm. Second, we want strong guarantees on the WCET
estimation, and static WCET analysis [5] is a trustful way to
compute such upper bounds. However, these methods require
among other things to determine if instructions lead to miss
or hit in the cache hierarchy. If approaches exist for the
instruction cache, the analysis is harder for data caches as it
is necessary for each memory instruction to determine which
range of addresses it can access, then to determine the possible
access patterns, and finally to combine these information to
determine a conservative bound on the number of misses
caused by the memory instruction. Each of these steps is
complex and usually degrades the precision of the analysis [6].
Finally, our last objective is to allow the GEMM algorithm
parameters to be tuned to improve the predictability.

Contributions: We target single-core processors equipped
with vector (SIMD) extensions. The implementation is single-
threaded and bare-metal. We study, adapt and implement an
existing architecture-aware GEMM algorithm focusing notably
on 1) removing compiler optimizations, while still trying
to achieve an efficient implementation that leverages vector
extensions and, 2) exploiting the memory hierarchy effectively
and predictably. In addition, our objective is to provide an-
alytical formulae of a tight upper bound on the number of
cache misses and of the number of memory accesses of the
GEMM algorithm, in order to later use these numbers in e.g.
the Implicit Path Enumeration Technique (IPET) to tighten
the WCET estimation. These formulae are obtained using our
detailed knowledge and understanding of the memory access
patterns implemented in these routines. We only targeted an
L1 data cache since the L2 cache on our target platform is not
predictable, but these formulae can be extended to support
any number of layers in a cache hierarchy, as long as each
cache has a predictable replacement policy. Our experiments
show that time-predictability in our code comes at the cost of
a performance degradation of only 2.54% on average.

The outline of the paper is as follows. Section II introduces
the GEMM algorithm on which our implementation is based.
Section III discusses related work. Section IV presents the tar-
get processor and accompanying concepts for the experimental
part. Section V describes and evaluates the optimizations
performed to obtain a predictable yet efficient implementation
of the algorithm. Section VI details our formulae, together
with the experimental results. Finally, Section IX provides
concluding remarks.
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Algorithm 1: Blocked GEMM as introduced in GotoBLAS [7]
Parameters: nc, mc, kc, mr , nr

Input: Matrix A of shape (m, k), Matrix B of shape (k, n)
Input/Output: Matrix C of shape (m,n)

(L1) for jc “ 0 to n ´ 1 step nc do
(L2) for pc “ 0 to k ´ 1 step kc do
E1 B̃c “ Bppc : pc ` kc ´ 1, jc : jc ` nc ´ 1q; // Packing Bc

(L3) for ic “ 0 to m ´ 1 step mc do
E2 Ãc “ Apic : ic ` mc ´ 1, pc : pc ` kc ´ 1q; // Packing Ac

(L4) for jr “ 0 to nc ´ 1 step nr do // Macro-kernel
(L5) for ir “ 0 to mc ´ 1 step mr do
(L6) for pr “ 0 to kc ´ 1 step 1 do // Micro-kernel
E3 Ccpir : ir ` mr ´ 1, jr : jr ` nr ´ 1q `“

Ãcpir : ir ` mr ´ 1, prqB̃cppr, jr : jr ` nr ´ 1q;
end

end
end

end
end

end

II. ARCHITECTURE-AWARE GEMM ROUTINE

The GEMM routine computes C Ð αA ¨ B ` βC where C,
A and B are matrices and α and β are scaling factors. For
the applications targeted in this study, we consider α “ 1 and
β “ 1. The core optimization principle of GEMM consists in:
1) performing a blocked matrix multiplication by dividing A,
B, and C into submatrices, or blocks, such that 2) those blocks
fit in the different levels of cache in order to improve spatial
and temporal locality. To further favor locality, the blocks
are copied in copy blocks so that elements are contiguous in
memory and can be efficiently accessed. This copy is called
packing routine in the literature.

An optimized GEMM algorithm is described in [7] and is the
base of the implementation of many popular BLAS libraries,
including OpenBLAS [8] and BLIS [9]. The algorithm is
parameterized by five parameters to be tuned by the designer
depending on the hardware. More precisely, three blocking
parameters nc, kc, and mc are chosen according to cache
memory features, and the mr and nr parameters are chosen
in view of the processor registers. Given these parameters,
the algorithm (see pseudo-code in Algorithm 1) essentially
consists of six nested loops around an outer product that is
highly optimized to update each time a small tile of C residing
in registers.

Blocking for caches. The partitioning of A, B and C
into submatrices targeting cache layers is performed by the
three outermost loops. Loop L1 traverses matrices C and B
along the n dimension (i.e. the columns) and partitions them
in column panels of shapes mˆnc and kˆnc respectively.
The second loop L2 operates on the k dimension and divides
matrix A into column panels of shape m k̂c, as well as divides
a column panel of shape kˆnc of B into blocks Bc of shape
kc ˆnc. Then, loop L3 further partitions a column panel of
shape mˆkc of A into blocks Ac of shape mcˆkc. Finally,
the current column panel of C is also divided into blocks Cc

of shape mcˆnc. The blocks are shown in Figure 1. Each Bc

and Ac block is copied into B̃c and Ãc with a packing routine.
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Fig. 1. Partitioning of matrices A, B and C, all stored in row-major order.
A block Cc is computed using the whole row panel with blocks Ac and the
column panel with blocks Bc. The dashed lines represent the micro-tiles Cr

in Cc as well as the micro-panels Ar and Br in Ac and Bc, respectively.

This step is detailed later.
Macro-kernel. The macro-kernel (Loops L4 to L6) com-

putes the block Cc of shape mcˆnc as the result of the ac-
cumulation of the previous value of Cc and the multiplication
of Ãc and B̃c. Note that the complete computation of one
block Cc requires calling the macro-kernel several times as it
results from the multiplication of all blocks Ac of the green
row of Figure 1 by the blocks Bc composing the blue column.
Within a macro-kernel, loop L4 partitions a copy block B̃c

into micro-panels named Br of shape kc ˆnr and loop L5
partitions a copy block Ãc into micro-panels named Ar of
shape mr ˆkc. A block Cc is divided into micro-tiles Cr of
shape mr ˆnr. Figure 4, which appears further in the text
as it helps understand cache-related formulae, illustrates the
order in which the micro-tiles Cr are computed and which
micro-panels are involved.

Micro-kernel. The micro-kernel (loop L6) is the last level
of decomposition as it updates a micro-tile Cr, via a sequence
of kc outer products (a vector-scalar multiplication). At each
iteration, it computes the product of one column of a micro-
panel Ar, i.e., a vector of shape mr ˆ1, and one row of a
micro-panel Br, i.e., a vector of shape 1ˆnr. The sizes of
these column and row vectors (mr and nr) are chosen to take
advantage of the vector registers of the architecture. Figure 2
illustrates the operation that is performed inside the micro-
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Fig. 2. Result of the packing routines to create copy blocks Ãc and B̃c. The
arrows represent the order in which the elements are laid out in memory and
accessed in the micro-kernel routine. A micro-panel Ar is stored in column-
major order, with a leading dimension mr , while a micro-panel Br is stored
in row-major order, with a leading dimension nr .
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kernel, with an example where mr “ nr “ 4.
Packing routines of A and B. The motivation for packing

(copying and rearranging) Ac and Bc to create copy blocks
Ãc and B̃c is to favor cache locality and thus increase per-
formance. Concretely, micro-panels Ar of Ac are copied and
stored in Ãc in column-major order, with a leading dimension
mr. Column-major [10] means: elements within a column are
stored sequentially in memory, each column is read one after
the other and the leading dimension is the stride between
consecutive columns. Similarly, each micro-panel Br of B̃c

is arranged in row-major order, with a leading dimension nr.
Likewise, row-major means: elements within a row of Br are
stored sequentially and the stride between consecutive rows is
nr. Figure 2 shows the memory layout of copy blocks and the
benefit for the micro-kernel.

For more details about the blocked GEMM algorithm the
reader is referred to [9] and [11]1.

III. RELATED WORK

A. Optimized implementation of GEMM-based algorithms

Since our focus is on embedded targets with vector exten-
sions we highlight works that studied optimized implementa-
tions of GEMM-based algorithms on ARM cores.

Vanilla GEMM. The authors of [4] propose an imple-
mentation of a non-blocked GEMM algorithm in ARM pro-
cessors with vector extensions. They explicitly employ vector
instructions (via NEON intrinsics), in opposition to compiler-
generated vectorization, and show great gains in performance
compared to the non-vectorized versions of the algorithm.
However, they also observe that when the matrices are too big
to fit in the L1 data cache, the potential of vector registers is
not fully exploited. Our work can be considered an extension
of theirs, as we follow their guidelines on SIMD usage in real-
time safety-critical systems and go further on exploiting the
hardware architecture for performance and predictability.

Blocked GEMM. The authors of LIBXSMM [12] propose
optimized implementations of the blocked GEMM algorithm
for small matrices based on just-in-time compilation to only
build the required micro-kernel variant at run time. This
idea is very powerful but not suitable for our application
domain as we must privilege a static approach. In contrast,
BLASFEO [13] consists of a static library designed to op-
timize small and irregularly-shaped matrix multiplications.
The authors adopt the OpenBLAS GEMM algorithm principles
but propose modifications such as converting the layout of
matrices to improve cache locality and conditional use of
packing routines, as they may be too expensive in small
workloads. LibShalom [14] extends the library approach of
[13] to perform packing in parallel to computations and
also proposes an instruction scheduling optimization targeting
ARM v8 multi-core processors. However, these works only
target performance improvement and rely notably on intensive
compiler optimizations. In addition, LibShalom uses OpenMP
for parallel execution. We thus consider that their ideas about

1The figures in this section were also inspired by the ones found in [11].

conditional packing and customized matrices layouts can be
adapted to our work scope as future work.

Direct convolution using blocked GEMM ideas. Recent
works have proposed a loop-blocking strategy to optimize the
original direct convolution algorithm. A 2D-convolution direct
algorithm is a 7-dimensional nested loop, thus an architecture-
aware loop-tiling strategy such as the one used for GEMM can
be derived. The work of [15] introduces a strategy for mapping
loops to the architecture and proposes new data layouts for
the input and convolution weights tensors so that data is
accessed in a cache-friendly way. In [16] the authors adapted
the blocking strategy presented in [15] to allow for preserving
the conventional NHWC data layout used in convolution layers
and also presented a variant capable of exploiting GEMM
micro-kernels. Both works target high performance on ARM
v8 cores. In future work, we aim to extend our work to this
application domain and add a predictability perspective to their
approach.

B. Choice of blocking parameters for GEMM algorithm

One can perform empirical searches to find the best matrix
block shapes for a given hardware and matrices configurations,
as is done in [17]. Although pertinent, this method is very
time-consuming. The authors of [11] develop an analytical
approach based on the modeling of the target architecture to
tune the parameters of the GEMM kernels with a focus on
single-threaded implementation. It is the methodology that
we adopted and will further discuss in Section V. Finally,
some works investigate the use of an auto-tuning framework
to search for the optimal parameters, such as [18], [19] and
[20]. In the work of [21] the authors enhance the auto-tuning
approach by relying on a structured search space that embeds
expert knowledge about the target and imposes divisibility
constraints on tile sizes and unroll factors to exclude non-
feasible cases. This work can be complemented by ours with
the addition of predictability constraints in their selection of
blocking parameters.

IV. EXPERIMENTAL SETUP

A. Presentation of the target processor

For our study, we conducted experiments on the Texas In-
struments KEYSTONE II SoC [22], which integrates a Cortex-
A15 processor quad-core cluster, implementing the ARM v7-A
architecture. The studied ARM Cortex-A15 has a Level 1 data
cache (L1D), and a Level 1 instruction cache (L1I) of size
32KB (sizeL1) each. Both L1 caches have an associativity
degree (wL1) of 2, a cache line size (cL1) of 64B, a number
of sets (sL1) of 256, and implement a Least Recently Used
(LRU) cache replacement policy. The Level 2 cache (L2) of
4MB (sizeL2) is shared among the four cores. It has a 16-
way set-associative cache structure (wL2), with a fixed cache
line size of 64B (cL2), 4,096 cache sets (sL2), and a random
replacement policy.
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B. SIMD instructions

Vector extensions are functional units that implement SIMD
(single-instruction multiple-data) instructions, which process
in parallel and independently distinct data elements arranged
into vectors. Vector instructions have the same structure as a
scalar instruction, i.e., a mnemonic, source register(s), and a
destination register. The particularity is that vector registers
can accommodate multiple values of different sizes and types.
Thus unlike scalar instructions that operate on one element at
a time, vector instructions exploit data-level parallelism.

In the remainder of this work, we consider the NEON
instructions [23], which is the SIMD extension to the ARM
v7-A instruction set, implemented in our target. It has 32 64-
bit registers (D0-D31), which can also be seen as 16 128-bit
registers (Q0-Q15). Each of the Q0-Q15 registers maps to a
pair of D registers. Using the notation of [11], we note NVEC as
the number of elements of size sdata that a vector register can
hold, which is a dimensionless quantity. Additionally, each
vector instruction has a throughput of NINST, expressed in
cycles´1, and a latency of LINST, expressed in cycles.

C. Performance monitor unit

In order to obtain quantitative results for the performance
of the GEMM implementation discussed in Section V as well
as the cache usage analysis introduced in Section VI we used
the performance monitor unit (PMU) [24] present in the target.
The PMU architecture uses specific codes to identify events
and then associates an event to a counter so that only one
event is monitored at a time. The advantage of using PMU
counters directly is that they are natively implemented and
thus do not require any external monitoring feature, which
guarantees accuracy and minimizes the impact of measures
on the analyzed values. The studied core has six configurable
event counters plus a specific cycle counter. Among the events
we tracked are the number of cycles taken to execute a
function, the L1D cache accesses and the L1D cache refills.

Our measurement methodology consisted of (1) selecting
the event counter to use and assign an event to track; (2) re-
setting existing counter value; (3) reading the selected counter
register; (4) executing the code portion under analysis and
(5) reading the final value in the selected counter register.

V. EFFICIENT IMPLEMENTATION OF GEMM ROUTINES

In this section, we discuss our methodology to attain an
efficient yet predictable and traceable implementation of the
GEMM algorithm presented in Section II. We note that the
different parts of the GEMM algorithm, namely packing Ac,
packing Bc, macro-kernel, and micro-kernel, are implemented
as separate functions. It allows us to provide a library with
modular code, enables reusability, and facilitates the study of
the software behavior.

A. Determination of blocking parameters

In practice, the blocking parameters nc, kc,mc,mr and nr

are adjusted taking into account the latency of the vector units,

the number and size of vector registers, and the size/asso-
ciativity degree of the cache levels. The objective is that a
micro-panel Br (of shape kc ˆ nr) resides in the L1 cache,
so it can be rapidly accessed by

Q

mc

mr

U

successive calls to the
micro-kernel, as it is reused. Similarly, it is convenient that
the copy block Ãc (of shape mc ˆ kc) stays in the L2 cache
as its micro-panels are needed for the entirety of the macro-
kernel function. Finally, the copy block B̃c (of shape kc ˆnc)
is suitable to reside in the L3 cache if one is present in the
architecture.

For the following experiments, we applied the formulae
of [11] to analytically determine the convenient GEMM param-
eters. For our target, we have NVEC “ 4 for a single-precision
floating-point implementation, NVMLA “ 0.5 for the throughput
of the VMLA instruction and LVMLA “ 8 for its latency. Thus,
the formulae provide the following parameter values:

mr “

R?
NVEC ¨ LVMLA ¨ NVMLA

NVEC

V

¨ NVEC “ 4

nr “

R

NVEC ¨ LVMLA ¨ NVMLA

mr

V

“ 4

kc “
sL1 ¨ cL1

2 ¨ mr ¨ sdata
“ 512

mc “
pwL2 ´ 2q ¨ sL2 ¨ cL2

kc ¨ sdata
“ 1, 792

Since the ARM Cortex-A15 does not have an L3 cache,
this methodology claims that the value of nc is not crucial.
The only advice is to choose a number big enough to avoid
redundant partitioning of matrices B and C, and that is a
power of two, for cache alignment reasons. We thus adopted
nc “ 4, 096. More details on how the formulae are obtained
can be found in [11].

B. Optimizations in source code

As explained in Section I, the certification process requires
the guarantee that the designed source code and the final binary
have the same behavior, thus a certain level of traceability of
the transformations performed between the two representations
is required. To achieve this task one can rely on formally
verified compilers [25] or depend on generic widely-used
compilers, but without using any of their optimizations.

We decided to use the GCC compiler, because of its popular-
ity and support for various architectures, including our target.
However, when no optimizations are allowed, the compiler
produces binaries with very inefficient register allocation,
resulting in many redundant store and load operations to and
from the stack. Such behavior is detrimental to traceability, as
an instruction in source code is mapped to various instructions
in binary, and efficiency, as the extra memory accesses signif-
icantly increase execution time. To remedy this, we proceeded
to carefully place all the intermediate variables directly in
registers and, whenever possible, inline functions to limit stack
usage. This approach improved the code while using at most
10 general-purpose registers simultaneously, which is less than
the number of general-purpose registers available in the ARM
v7 architecture.
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TABLE I
MEASURED EXECUTION TIMES, IN CYCLES, ON AN ARM CORTEX-A15 WITH -O0 FLAG. DIFFERENCE W.R.T. Base IS GIVEN IN PARENTHESES.

Matrix configuration GEMM implementation

m n k
Base First optimized Optimized

with intrinsics
Optimized

in assembly

272 272 272 mean 2 543 708 367 988 682 239 (-61.13%) 2 220 393 123 (-12.71%) 235 168 329 (-90.75%)
min 2 543 704 067 988 676 103 2 220 386 698 235 153 669
max 2 543 711 485 988 692 654 2 220 398 214 235 181 181

min-max var. 2.92e´4% 1.67e´3% 5.19e´4% 1.17e´2%
528 528 528 mean 6 920 673 125 2 883 613 750 (-58.33%) 3 312 934 607 (-52.13%) 1 566 589 440 (-77.36%)

min 6 920 653 603 2 883 100 642 3 312 863 994 1 566 565 684
max 6 920 698 753 2 888 548 217 3 312 956 562 1 566 603 968

min-max var. 6.52e´4% 1.89e´1% 2.79e´3% 2.44e´3%
192 736 528 mean 5 789 246 930 3 622 514 818 (-37.43%) 3 875 069 543 (-33.06%) 778 924 693 (-85.55%)

min 5 789 237 191 3 622 514 793 3 875 069 520 778 923 061
max 5 789 266 393 3 622 514 892 3 875 069 565 778 926 162

min-max var. 5.02e´4% 2.73e´6% 1.16e´6% 3.98e´4%
256 784 2,016 mean 2 120 705 709 579 964 569 (-72.65%) 857 163 412 (-59.58%) 134 562 545 (-93.65%)

min 2 120 700 674 579 962 833 857 161 851 134 561 357
max 2 120 709 745 579 966 116 857 165 391 134 563 809

min-max var. 4.28e´4% 5.66e´4% 4.13e´4% 1.82e´3%

C. Micro-kernel implementation in assembly

The NEON instructions can be accessed through special
functions called NEON intrinsics. Intrinsic functions and data
types provide access to low-level NEON functionality at C (or
C++) source code level. These allow the creation of C variables
that directly map to NEON registers, allowing NEON vectors
to be passed as function arguments or return values. Then, in
the compilation toolchain, the function calls are replaced by
the appropriate NEON instruction(s). Unfortunately, in our
setting where the use of compiler optimizations is limited, the
generated binary includes many redundant instructions and a
great amount of register spills. For the totality of a micro-
kernel code, 397 extra instructions are identified in the binary
when using NEON intrinsics.

To circumvent the aforementioned issues, we proceeded
to manually implement the GEMM micro-kernel using inline
assembly in order to completely control the selection of vec-
tor instructions and the register allocation. The micro-kernel
function can have its instructions separated into three main
subroutines in order to facilitate verification of correctness,
which are: load the micro-tile Cr into registers, update the
value of Cr in the registers and finally store it. In Algo-
rithm 2 we expose the pseudo-code of the micro-kernel for
mr “ nr “ 4, in single-precision floating-point (sdata = 4B).
It means that every NEON Q register (128-bit) contains 4
floating-point elements.
D. Evaluation of optimizations in GEMM implementation

We evaluate the GEMM algorithm on square matrices and
on irregular-shaped configurations that are common in deep
learning workloads [26], [27]. Table I presents the measured
execution times of the different GEMM implementations on
an ARM Cortex-A15 with no compiler optimizations. For
each experiment, the reported measures contain the mean, the
maximum and the minimum observed times of 100 executions.
The Base implementation is the one without any optimizations,
and the First optimized contains register allocation and func-
tion inlining techniques. The last two implementations extend

the First optimized version by using the NEON: Optimized
with intrinsics uses the intrinsics functions whereas Optimized
in assembly is the full optimized version. The percentages
represent the reduction in the mean measured execution times
with respect to the Base implementation.

We observe a great reduction in overheads (compared to the
Base implementation) after the first optimization of the source
code, with execution times reduced by 92.00% in the best
case. The execution times are increased compared to the first
optimization when using NEON intrinsics, contrary to what
one could initially expect, due to the very inefficient register
allocation performed by the compiler. Finally, when the micro-
kernel is also manually optimized with the introduction of
assembly blocks, we obtain performances that are comparable
to a first level of compiler optimization (-O1 flag). We remark
that the amount of improvement brought by the different
optimizations is not constant but highly dependent on the
configuration of the matrices. In addition, we observe a min-
imal timing variability in our bare-metal implementation, as
evidenced by the reported minimum and maximum observed
execution times.
VI. TIME-PREDICTABILITY OF EFFICIENT GEMM ROUTINES

The GEMM algorithm presented in Section II is intrinsically
predictable: there is no conditional branching and all the

Algorithm 2: Micro-kernel implementation
Q0, Q1, Q2, Q3 “ V LOADpCrq // Load Cr into quad-registers
// Update Cr
for pr “ 0 to kc ´ 1 step 1 do
// Load mr (resp. nr) elements of micro-panel Ar (resp. Br)
Q4 “ V LOADpArp0, prqq

Q5 “ V LOADpBrppr, 0qq

// Vector-scalar multiplications
Q0 “ VMLApQ4, Q5r0s, Q0q

Q1 “ VMLApQ4, Q5r1s, Q1q

Q2 “ VMLApQ4, Q5r2s, Q2q

Q3 “ VMLApQ4, Q5r3s, Q3q
end
// Store quad-registers values to Cr
Cr “ V STOREpQ0, Q1, Q2, Q3q
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blocking parameters are known at compile time. However, to
the best of our knowledge, no existing static analysis method
is capable of detecting and leveraging precisely the memory
access patterns that GEMM routines implement.

A. Philosophy of the approach

We perform an analytical study by deriving the formulae for
the total number of memory accesses and defining an upper
bound on the number of data cache misses in each part of
the algorithm. We focus on these two numbers as they can be
exploited in static WCET estimation techniques such as IPET
in order to tighten the WCET bound. More precisely, looking
at Algorithm 1, we assert that memory accesses are caused
only by the packing and the macro-kernel routines. Indeed,
the for-loop associated variables are stored in registers and
thus do not generate memory accesses. We thus focus on the
core of the routines, which are represented in Algorithm 1 by
expression E1, which manages the packing of Bc, expression
E2, which manages the packing of Ac, and expression E3,
which manages the tile Cc. Stack accesses are performed at
the beginning and at the end of the calls to the functions that
implement these routines. We identified their exact number in
the assembly code and count them separately. Our objective
is to reason about the data cache behavior and to be able to
obtain formulae that 1) for the packing routines, guarantee that
the number of cache misses is the theoretical minimum and
2) for the macro-kernel routine, only slightly overestimate the
actual number of cache misses.

We summarize the notations in Table II. Subsequently,
we start by presenting general results on matrix placement
in caches and then focus on each of the aforementioned
expressions.

TABLE II
NOTATION USED ON THE STUDY OF GEMM IMPLEMENTATION.

Notation Description

m Height of matrices A and C
n Width of matrices B and C
k Width of matrix A and height of matrix B

mc Height of a block Ac (Ãc) and of a block Cc

nc Width of a block Bc (B̃c) and of a block Cc

kc Width of a block Ac (Ãc) and height of a block Bc (B̃c)
mr Height of a micro-panel Ar

nr Width of a micro-panel Br

sizeLi Size of Li cache
wLi Associativity degree of Li cache
sLi Number of sets of Li cache
cLi Cache line length of Li cache
sdata Size of data
XLi = cLi

sdata
Number of elements per cache line of Li cache

B. Mapping a matrix to a data cache

We consider a data cache with sLi sets. We number the
cache blocks in memory starting with index zero.

Theorem 1. Let b, n P N. If n is odd, then the cache blocks
of indices b, b`n, b`2 ¨n, . . . , b`psLi ´1q ¨n are all mapped
to different cache sets.

Proof. Let us consider the following function that associates
cache block indices to their corresponding set in the cache:

f : tk ¨ n | k P v0, sLi ´ 1wu Ñ v0, sLi ´ 1w

x ÞÑ x mod sLi

For each cache block to be mapped to a different cache set,
function f must be bijective. If we represent v0, sLi´1w as the
cyclic group Z{sLiZ equipped with the classical ` operator,
then f bijective is equivalent to saying that n is a generator
of pZ{sLiZ,`q. Now, the generators of pZ{sLiZ,`q are the
integers that are coprime with sLi. As a consequence, f is
bijective iff n is coprime with sLi. Since the number of cache
sets is usually implemented as a power of two, it is sufficient
that n be odd to ensure the property. Finally, the property holds
for any set that is isomorphic to the set tk¨n | k P v0, sLi´1wu,
in particular if we apply a translation by a constant integer
b.

Let XLi be the number of elements a cache line can store. A
data cache has sLi sets, each with wLi ways. Thus, using only
one way per cache set it is possible to store at most sLi ¨XLi

elements.
We consider a matrix M of shape u ˆ v, stored in row-

major order, aligned in memory to the start of a cache block,
such that v is a multiple of XLi. Then the number of cache
blocks occupied by a row of matrix M is Nb “ v

XLi
. We now

consider a slice of M composed of XLi adjacent columns on
sLi consecutive rows, also aligned in memory to a cache block
boundary. We study how to store such a slice using exactly
one way of each data cache set.
Corollary 1. If Nb is an odd integer, any slice of shape
sLi ˆ XLi of matrix M , whose first row is aligned to the start
of a cache block, has each of its sLi cache blocks mapped to
a different cache set.

Proof. First, we suppose that the first row of the first slice of
shape sLiˆXLi of matrix M is mapped to the cache block
of index c P N. Since v is a multiple of XLi, each row of
M (and thus of the slice of shape sLi ˆ XLi) starts at the
beginning of a cache block. In particular, the second row of
the first slice of shape sLi ˆXLi of M is mapped to the cache
block of index c ` Nb. The third row is mapped to the cache
block of index c ` 2 ¨ Nb. Finally, the k-th row is mapped to
block c ` pk ´ 1q ¨ Nb.

From Theorem 1 we have that if Nb is an odd integer, the
sLi consecutive rows of the first slice of shape sLi ˆ XLi

of matrix M are mapped to different cache sets. In fact, the
property holds for any slice of shape sLi ˆ XLi aligned in
memory to the start of a cache block, and thus separated from
the first slice of shape sLi ˆXLi by an integer offset multiple
of XLi.

We introduce a running numerical example to facilitate the
discussion of the following sections on the time-predictability
of the GEMM algorithm with respect to the data cache.

Example 1. We consider square matrices A, B and C wherein
m “ n “ k “ 528. We analyze an L1D cache like the one
of our target, with the following characteristics: an LRU

6



nc

Bc

...

n

nr

k

B

kc

XL1

cL1

way 0 way 1

set i

L1 data cache

B̃c

XL1

kc×nr
XL1

Br

set j
set j+1

Fig. 3. Mapping rows of matrix B (Bc) and B̃c to cache blocks. The rows of
a block Bc read during packing are not mapped into contiguous cache sets.
In contrast, the different micro-panels Br of B̃c are stored in sequence.

replacement policy, associativity degree of 2, size of 32KB,
a cache line size (cL1) of 64B, and with a number of sets
(sL1) of 256. Moreover, we consider single-precision floating-
point data, where sdata is 4B. Thus, the number of elements
per cache line in this example is XL1 “ cL1

sdata
“ 16.

C. L1D cache behavior in packing Bc

As explained in Section II, the packing algorithm reads
elements from Bc and writes them in a copy block B̃c. Both
operations are done alternately, i.e. a reading instruction is
followed by a writing instruction. Thus, to optimally use
the data cache, the objective is to share it between the two
operations. We do not wish that writing operations evict cache
blocks loaded for the reading and that still may be needed. The
contrary is also true: we do not want cache blocks loaded for
the writing to be replaced before all their elements are stored.
Practically, to prevent this kind of conflict, we dedicate half of
the cache for lines used to read from Bc and half of the cache
for lines to write to B̃c. As our processor comes with a 2-way
set associative L1D cache, for each cache set, one cache way
is dedicated to Bc and the other to B̃c. Note that the idea can
be generalized to any even (ą 1) or odd associativity degree
cache. Figure 3 illustrates this philosophy.

The process of writing B̃c is done linearly to contiguous
addresses. The corresponding cache blocks are thus allocated
to cache sets with contiguous indices. Hence, to adhere to
efficiently use only half of the cache for the writing, we
must have kc “ sL1. In contrast, the process of reading from
matrix Bc is done by groups of nr contiguous elements before
treating the next matrix row, which is n elements away. In
total, kc matrix rows are accessed before returning to the first
row of Bc, which has already been charged in the cache. Thus,
for the reading, we find kc ď sL1. In order to avoid conflicts
and under-utilization of the cache sets, we wish to guarantee
that each cache block with elements of Bc needed at a time is
loaded to a different cache set. We thus choose to set kc “ sL1.

However, since the elements read from Bc to form one
micro-panel are not contiguous in memory, the question of
the mapping between matrix rows and cache sets arises. To
guarantee that these blocks are mapped to distinct cache sets,
it is sufficient (Corollary 1) that the number of cache blocks
composing a row of B be an odd integer. This can be ensured
by padding each row of B by 1 cache block if necessary.

For Example 1, n
XL1

“ 33, thus no padding is required,
and kc is chosen so that kc “ sL1 “ 256.

C.1. Number of memory accesses

A block Bc of shape kc ˆnc is partitioned in
R

nc

nr

V

micro-

panels. We define:

‚ np “

Z

nc

nr

^

: number of complete micro-panels in Bc (N.1)

‚ nf “ncmodnr: width of the potential incomplete
last micro-panel

(N.2)

The np full micro-panels of shape kc ˆ nr are read and
then stored in the order they are accessed in the micro-kernel
function, i.e. in the row-major order. For the incomplete micro-
panel, nf elements are read and then padded with zeros during
writing, to attain a width of nr and completely use the vector
register’s size.

To pack full micro-panels into B̃c, there are 2 ¨ np ¨ kc ¨ nr

memory accesses (same number of accesses for read and
for write). To pack the last incomplete micro-panel, there
are 2 ¨ nf ¨ kc ` pnr ´ nf q ¨ kc memory accesses. The total
number of memory accesses involved in packing Bc is
2 ¨ np ¨ kc ¨ nr ` 2 ¨ nf ¨ kc ` pnr ´ nf q ¨ kc.

For Example 1, nr “ 4 and nc “ 528, i.e. the minimum
between n and the nc tailored for the target (see Section V-A).
It follows that np “ 132 and nf “ 0. Matrix B is then
partitioned into 3 blocks Bc of shape kc ˆnc: the first two are
of shape 256ˆ528 and the third has shape 16ˆ528. Thus, the
total number of memory accesses for packing the Bc blocks
into B̃c blocks is 557, 568.

C.2. Upper bound on the number of cache misses
In order to argue on the number of cache misses in the L1D,

we make the following assumptions:

‚ B and B̃c are aligned to a cache block boundary, (A.1)

‚
n

XL1
is an odd integer, (A.2)

‚ nr is a divisor of XL1, (A.3)
‚ kc “ sL1 (A.4)

In addition, we present the following notation relevant to
the discussions of this section:

‚

R

nc

XL1

V

: number of slices of shape kcˆXL1 in Bc (N.3)

To create a copy block B̃c, a Bc block is read by groups
of kc ˆ nr elements, i.e. the micro-panels. To read the first
micro-panel (leftmost), there are:

kc misses ` kc ¨ pnr ´ 1q hits.

Remember we chose kc so that performing these first reads
loads exactly kc cache blocks in the L1D cache, each in a
different set (A.4). Since nr is a divisor of XL1 (A.3), the
reads for the next XL1

nr
´1 micro-panels target the same cache

blocks and thus do not generate additional misses.
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Figure 3 illustrates this reasoning for a slice of shape
kc ˆ XL1 of matrix Bc, where the darker gray color represents
the cache misses at the beginning of each matrix row and the
clearer gray represents the subsequent cache hits. We observe
that there exist

Q

nc

XL1

U

slices of shape kcˆXL1 in matrix Bc

(Notation N.3).
Thus, for reading the whole Bc block of width nc, the

algorithm performs:

kc ¨

R

nc

XL1

V

misses

Similarly, for the writing of matrix B̃c we reason in terms
of slices of shape kc ˆ XL1, aligned to the start of a cache
block. We find that, at the beginning of each row of such a
slice there is one cache miss, followed by cache hits to write
the remaining pXL1 ´ 1q elements present in the same cache
block. Since B̃c is also composed of

Q

nc

XL1

U

slices of shape
kc ˆ XL1 (Notation N.3), we find in total:

kc ¨

R

nc

XL1

V

misses as well.

For Example 1, the first slice of shape kcˆXL1 of Bc

contains the elements:
Br0s...Br15s;Br528s...Br543s; ...;Br134640s...Br134655s.
We then look at the first micro-panel, which is composed of:
Br0s...Br3s;Br528s...Br531s; ...;Br134640s...Br134643s.
When Br0s is read, the cache loads the block composed
of Br0s...Br15s. Without loss of generality, let us assume
this block is mapped to set #10. When Br0s is written in
B̃c, the cache loads the corresponding block. Again, without
loss of generality2, let us assume this block is mapped to
set #3. The reading and writing of the next three elements
of the first micro-panel (Br1s...Br3s) cause no extra cache
misses, as the corresponding block is already in the cache.
The next element to be read is Br528s. It belongs to another
cache block that is loaded in set #p10 ` 33q mod 256 “ 43,
because

Q

n
XL1

U

“ 33. Its writing however is done in the cache
block present in set #3. When element Br1584s, i.e. the first
of the fourth row of the first micro-panel, is written in B̃c,
a new cache block is loaded in set #4. The same reasoning
applies until the 256th matrix row. When the copies of the
second micro-panel start, with element Br4s, its reading
causes no extra misses, while its writing loads a new cache
block in set #p3 ` 256{4q mod 256 “ 67.

In the end, since
Q

nc

XL1

U

“ 33, packing the three Bc blocks
results in 34, 848 L1D cache misses.

D. L1D cache behavior in packing Ac

The process of packing Ac to create the copy block Ãc

is similar to the one of packing Bc: reading and writing
happen alternately as well. We can thus also partition the cache
between the two operations.

The difference is that now, to construct the micro-panels
of shape mr ˆ kc, we read one element from mr consecutive

2In particular, the block could also be mapped to set #10.

rows of Ac before returning to the first of these mr rows to
read another element. This process is repeated kc times (see
Figure 2). It follows that, for reading from Ac, only mr cache
blocks are needed at a time. As explained, mr represents a
quantity to be stored in vector registers, which is significantly
smaller than sL1. To ensure that the corresponding mr cache
blocks are mapped to distinct cache sets, once again following
Corollary 1, it is sufficient that each row of Ac be composed
of an odd number of cache blocks. As with B, this can be
enforced by padding each row of A with one cache block if
necessary.

Finally, the mr ¨ kc elements of a micro-panel are written
to contiguous memory addresses in Ãc. Thus, once a cache
block gets loaded, it is filled by stores before the next one is
loaded, at which point the block is no longer needed.

D.1. Number of memory accesses
We define mp (resp. mf ) in the same way as np

(resp. nf ) for block Ac. In order to pack full micro-
panels present in Ac, the algorithm does 2 ¨ mp ¨ kc ¨ mr

memory accesses. To pack a potential incomplete micro-
panel of Ac, 2¨ mf ¨kc ` pmr´mf q¨kc memory accesses are
performed. In total, to create a copy block Ãc, there are
2¨mp ¨kc ¨mr ` 2¨mf ¨kc ` pmr´mf q¨kc memory accesses.

For Example 1, we have mc “ 528, mr “ 4, mp “ 132
and mf “ 0. A is then also partitioned into 3 Ac blocks.
Thus, the total number of memory accesses during the
packing of blocks Ac is 557, 568.

D.2. Upper bound on the number of cache misses
To reason about the packing of Ac, we add the following

assumptions:

‚ A and Ãc are aligned to a cache block boundary, (A.5)

‚
k

XL1
is an odd integer, (A.6)

‚ kc is a multiple of XL1, (A.7)

We also introduce the following relevant notations:

‚

R

kc
XL1

V

: number of cache blocks used by kc elements (N.4)

‚

R

mr ¨kc
XL1

V

: number of cache blocks occupied byAr (N.5)

‚

R

mc

mr

V

: number of micro-panels Ar in Ac (and Ãc) (N.6)

To read one micro-panel of shape mr ˆ kc of Ac, knowing
Notation N.4, we find:

mr ¨

R

kc
XL1

V

misses

Thus, to read the whole Ac block, there are:
R

mc

mr

V

¨ mr ¨

R

kc
XL1

V

misses.

To write one micro-panel in Ãc,
Q

mr¨kc

XL1

U

cache blocks are
needed (Notation N.5). We thus have, for one micro-panel, a
bound of:

R

mr ¨ kc
XL1

V

misses.
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Ar(0)

Ar(2)

Ar(3)

Ar(1)

Br(0)Br(1)Br(2)Br(3)Cr(0)

Cr(2)

Cr(3)

Cr(1)

Cr(4)

Cr(6)

Cr(7)

Cr(5)

Cr(8)

Cr(10)

Cr(11)

Cr(9)

Cr(12)

Cr(14)

Cr(15)

Cr(13)
·+ =

Cc Ãc B̃c

⌈
mc
mr

⌉

⌈
nc
nr

⌉
kc nr

nc

Fig. 4. Macro-kernel algorithm for mc
mr

“
nc
nr

“ 4. To update the micro-tile
Crp0q, micro-panels Arp0q and Brp0q are used. The next treated micro-tile
is Crp1q, using micro-panels Arp1q and again Brp0q. Micro-tile Crp9q, for
example, is updated by micro-panels Arp1q and Brp2q.

Consequently, to write the whole Ãc block (Notation N.6),
we find:

R

mc

mr

V

¨

R

mr ¨ kc
XL1

V

misses.

In Ex. 1, the first micro-panel of Ac is composed of:
Ar0s, Ar528s, Ar1056s, Ar1584s;
Ar1s, Ar529s, Ar1057s, Ar1585s; ...;
Ar255s, Ar783s, Ar1311s, Ar1839s

While reading element Ar0s from Ac, a new cache block is
loaded to, let us assume, set #5. Writing Ar0s to Ãc loads a
cache block to, again hypothetically, set #1. Since k

XL1
“ 33,

for the reading of element Ar528s, a cache block is loaded
to set #p5 ` 33q mod 256 “ 38, and this element is written
to the cache block present in set #1. Reading element Ar4s

causes no extra cache misses as this block was already loaded,
but its writing requires a new cache block, which is mapped
to set #2. Copying element Ar16s, for example, requires a
new cache block both for reading and for writing, mapped re-
spectively to sets #6 and #p1 ` 16{4q mod 256 “ 5. Hence,
packing the different Ac blocks into Ãc blocks results in
34, 848 L1D cache misses.

E. L1D cache behavior in macro-kernel

In the macro-kernel function, the copy blocks Ãc and B̃c are
partitioned in micro-panels used to update a different micro-
tile Cr in each call to the micro-kernel function (cf. Algorithm
1). Between successive calls to the micro-kernel, a new micro-
tile Cr, as well as a new micro-panel Ar, are brought into
registers. The algorithm was designed to favor each micro-
panel Br to stay in the L1D cache for

Q

mc

mr

U

executions of
the micro-kernel function before being replaced. However, not
knowing exactly where the elements of these matrices are
mapped in memory, it is not possible to guarantee that the
expected behavior occurs. Figure 4 illustrates the macro-kernel
algorithm.

Example 2. The sequence of operations performed in the
macro-kernel applied to the example of Figure 4 is:

R-Crp0q; pR-Arp0q∥R-Brp0qq;W -Crp0q;

R-Crp1q; pR-Arp1q∥R-Brp0qq;W -Crp1q;

R-Crp2q; pR-Arp2q∥R-Brp0qq;W -Crp2q; ...

Where R stands for reading and W for writing. The ∥ symbol
highlights that Ar and Br are read alternately, by groups of
mr (respectively nr) elements, as shown in Algorithm 2.

E.1. Number of memory accesses
Hereby we outline the following clarifying notation:

‚

R

mc

mr

V

¨

R

nc

nr

V

: number of micro-tiles Cr in a block Cc (N.7)

The micro-kernel routine is then executed
R

mc

mr

V

¨

R

nc

nr

V

times.

In the micro-kernel, a micro-panel Ar is accessed kc times to
load mr consecutive elements into registers each time. Since
in our case mr has the same size as one vector register (4
FP32 elements), with one memory access it is possible to fill
the register. Thus, there are kc memory accesses to read Ar in
the micro-kernel. The same is also true for a micro-panel Br,
with kc memory accesses to read it in the micro-kernel. The
micro-tile Cr, in contrast, is accessed mr ¨nr times for reading
because the elements required in the registers for Cr are not
contiguous in memory (as they come from multiple rows, see
Figure 4) so reads cannot be grouped. The same applies for
the mr ¨ nr writes. Thus in total, given N.7, there are:

R

mc

mr

V

¨

R

nc

nr

V

¨ p2 ¨ kc ` 2 ¨ mr ¨ nrq

memory accesses in the macro-kernel function.

For Example 1,
R

mc

mr

V

¨

R

nc

nr

V

“ 17, 424. The macro-kernel

is also called 3 times, twice with kc “ 256 and once with
kc “ 16. Hence, the total of memory accesses in the macro-
kernel function is 20, 072, 448.

To reason about the L1D misses in the macro-kernel, we
add the following assumption:

‚ C is aligned to a cache block boundary. (A.8)

Let us recall some properties of the submatrices involved in
the macro-kernel:

Property 1. Ãc and B̃c are linear arrays in memory. Thus,
for all i, micro-panels Arpiq and Arpi`1q occupy contiguous
memory addresses and are mapped to distinct - and adjacent
- cache sets. The same holds for Brpjq and Brpj`1q for all j.

Property 2. Within a micro-panel Ar (or Br), the elements
are placed at contiguous memory addresses. It follows that the
cache blocks corresponding to a micro-panel are mapped to
distinct cache sets.

Property 3. The mr rows of each of
Q

mc

mr

U

successive micro-
tiles Cr are mapped to distinct cache sets. This property
derives from Corollary 1 and potential padding of C to achieve
Assumption A.2.

Property 4. Because in our study mr “ nr, micro-panels
Ar and Br occupy the same number of cache blocks (see
Notation N.5). Thus, a micro-panel Ar cannot share cache
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sets with more than two micro-panels Br, and conversely. See
Figure 5 for illustration.

E.2. Upper bound on the number of cache misses -
general case

In the following steps, we study the cache behavior in the
macro-kernel algorithm for the expected lifetime of a micro-
panel Br, i.e. for

Q

mc

mr

U

successive calls to the micro-kernel.
a) Upper bound on cache misses due to reading Cr:

A micro-tile Cr occupies mr cache blocks. For any given
micro-panel Br,

Q

mc

mr

U

micro-tiles are updated, leading to:
R

mc

mr

V

¨ mr misses. (1)

Let us consider the first micro-tile, Crp0q. For Example 1, it
is composed of the elements:
Cr0s...Cr3s;Cr528s...Cr531s; ...;Cr1584s...Cr1587s.
Assuming that element Cr0s is mapped to cache set #0,
element Cr528s (resp. Cr1056s and Cr1584s) is mapped to
cache set #p0 ` 33q mod 256 “ 33 (resp. #66 and #99).
Reading Crp0q, incurs 4 cache misses. Hence, to read the

Q

mc

mr

U

micro-tiles, there are 132 ˆ 4 “ 528 cache misses.
b) Upper bound on cache misses due to reading Ar:

A micro-panel Ar occupies
Q

mr¨kc

XL1

U

cache blocks. For any

given micro-panel Br,
Q

mc

mr

U

micro-panels Ar are read, leading
to:

R

mc

mr

V

¨

R

mr ¨ kc
XL1

V

misses. (2)

For Example 1, let us consider the first micro-panel, Arp0q.
It contains 1, 024 elements. Its first element corresponds to
Ãcr0s, which we assume is mapped to cache set #1. Since
the elements within a micro-panel are placed in contiguous
addresses in memory (Property 2), Ãcr16s is mapped to cache
set #2, while Ãcr1023s is loaded to cache set #64. Reading
micro-panel Arp0q causes 64 cache misses, and reading the
Q

mc

mr

U

needed micro-panels generates 8, 448 misses.
c) Upper bound on cache misses due to reading Br:

i) Initial reading of Br

A micro-panel Br occupies
Q

kc¨nr

XL1

U

cache blocks. As we
focus on the lifetime of a micro-panel Br, for its initial loading
in the cache we find:

R

kc ¨ nr

XL1

V

misses. (3)

For Example 1, let us consider the first micro-panel, Brp0q.
Assuming its first element B̃cr0s is mapped to cache set #3,
element B̃cr1023s is then mapped to cache set #66. Thus, for
reading micro-panel Brp0q there are 64 cache misses.

ii) Br becomes the least recently used because of Ar

and is evicted by Cr

Let us consider the sequence of operations presented in
Example 2 from R-Crp0q to R-Crp1q.

Following Properties 1 and 4, the worst case of conflicts be-
tween cache blocks of micro-panels Ar and Br happens when,

for example, the mapping of micro-panel Arp0q starts exactly
one cache block above the micro-panel Brp0q, as depicted in
Figure 5. In this case, after the sequence pR-Arp0q∥R-Brp0qq,
all the cache blocks of Brp0q become the least recently used of
their respective sets, except for the last one. Then, if Crp0q and
Crp1q are both mapped to cache sets where Brp0q is old, the
actions of W -Crp0q and R-Crp1q cause the eviction of blocks
of Brp0q. From Property 3 we know that Crp0q and Crp1q are
not mapped to the same cache sets, thus each of the micro-tiles
can contribute to a maximum of mr misses in Brp0q. Following
Property 4 only Arp0q and Arp1q conflict with blocks of Brp0q.
Thus only Crp0q and Crp1q can evict blocks of Brp0q, as they
are loaded and stored in the same time frame as Arp0q and
Arp1q.

According to Property 4, this scenario can happen at most
once each time the

Q

mc

mr

U

micro-panels of Ãc fill one cache
way of all cache sets. In the worst case we thus have:

»

—

—

—

Q

mc

mr

U

¨

Q

mr¨kc

XL1

U

sL1

fi

ffi

ffi

ffi

¨ 2 ¨ mr misses. (4)

For Example 1, after the pR-Arp0q∥R-Brp0qq sequence, el-
ements B̃cr492s...B̃cr495s and Ãcr528s...Ãcr531s are present
in set #33, with the elements of Brp0q being the least recently
used (due to the fact that B̃c starts in set #3 and Ãc in
set #0). Thus, when Cr528s, which belongs to a block that
is also mapped to set #33, is written, the block containing
B̃cr492s...B̃cr495s is evicted.

iii) Br becomes the least recently used because of Cr

and is evicted by Ar

We now consider a sequence of operations comprising three
micro-kernel executions, such as the one starting with R-Crp0q

and ending with W -Crp2q in Example 2.
We suppose that cache blocks of Brp0q are mapped to the

same cache sets as cache blocks of Crp1q and of Arp1q. In
this case, when the cache blocks of Brp0q become the least
recently used after R-Crp1q, they are evicted by the operations
of R-Arp1q. Following the algorithm, when they become old
again after W -Crp1q, they cannot be evicted by R-Arp2q,
because by construction the cache sets that are occupied by
the blocks of Arp1q and Arp2q are distinct (Property 1).

Thus, reading and writing to a given micro-tile Cr cannot
contribute to evicting Br twice. Again, we must multiply the
cache blocks occupied by Br by the number of times one
cache way of each cache set is filled with the

Q

mc

mr

U

micro-
tiles Cr. We thus have:

»

—

—

—

Q

mc

mr

U

¨ mr

sL1

fi

ffi

ffi

ffi

¨

R

kc ¨ nr

XL1

V

misses. (5)

For Example 1, after the pR-Arp0q∥R-Brp0qq sequence, Brp0q

has the most recent blocks in sets #65 and #66. Then writing
Cr1056s, of Crp0q, in set #66 makes Brp0q old in this set. In
the next sequence, Arp1q is read. When element Ãcr1040s is
read and its block loaded in set #66, the reads of Brp0q have
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Ar(0)

Cr(0)

C
r(

sL1
mr

−1)

Cr(1)

Ar(1)

...

Br(0)

... ...

Cache sets
occupied by Cr

Cache sets
occupied by Br

Cache sets
occupied by Ar

Fig. 5. Potential mapping of micro-tiles Cr , micro-panels Br and Ar in
cache sets. The hatched lines represent a cache set where a conflict exists.

not yet reached the block mapped to set #66, so the Brp0q

block that was loaded in this set gets evicted.
d) Upper bound on cache misses due to writing Cr:

We now look at the first four operations of Example 2. As
the cache blocks within any given micro-panel do not conflict
(Property 2), the problematic case is when cache blocks of
Arp0q and of Brp0q are mapped to the same cache sets as
cache blocks previously loaded for Crp0q. In this case, R-Arp0q

makes elements of Crp0q to be the least recently used, and
R-Brp0q can evict them.

Now considering the
Q

mc

mr

U

consecutive calls to the micro-
kernel, Figure 5 illustrates a potential mapping of successive
micro-tiles Cr to cache sets. Each micro-tile occupies mr

(potentially scattered) cache blocks (Property 3) and sL1

mr

micro-tiles are needed to fill one way of each cache set (for
space reasons, not all sets are present in the figure). The figure
also depicts a possible mapping of a micro-panel Br and of
micro-panels Ar. Since our studied L1D cache only has two
physical ways, conflicts can arise. However, we also observe
that only the cache blocks of micro-tiles Cr that are mapped
to the same sets as Br can be evicted, i.e. a maximum of
Q

kc¨nr

XL1

U

cache blocks.
For Example 1, it corresponds to writing element Cr528s

of Crp0q to cache set #33, since after the pR-Arp0q∥R-Brp0qq

sequence both Arp0q and Brp0q have a block in this set.

We must multiply it by the number of times that the
Q

mc

mr

U

micro-tiles Cr load a block in one cache way of each set once,
which leads to an upper bound of:

»

—

—

—

Q

mc

mr

U

¨ mr

sL1

fi

ffi

ffi

ffi

¨

R

kc ¨ nr

XL1

V

misses. (6)

Finally, to obtain the upper bound on the total number of
cache misses in the macro-kernel one must sum up all the
previous formulae and multiply the sum by

Q

nc

nr

U

, i.e. the
number of micro-panels Br. We thus have:

R

nc

nr

V

¨ pp1q ` p2q ` p3q ` p4q ` p5q ` p6qq misses.

For Example 1, we find an upper bound of 2, 703, 897 L1D
cache misses in the macro-kernel executions.

VII. EVALUATION OF THE ANALYSIS

The results of Section V-A were obtained using the param-
eters from Low et al. [11]. Using the formulae of this section,
we select new blocking parameters (called Ours subsequently):

kc “ 256 mc “ 1, 792 nc “ 4, 096 nr “ 4 mr “ 4

In our experimental setup, we enforce Assumptions A.1,
A.5 and A.8 using the aligned attribute of the C language,
Assumptions A.2 and A.6 by padding the matrices rows by
at most 1 cache block if necessary, and Assumptions A.4
and A.7 by choosing proper values for the parameters. Finally,
our target hardware platform validates Assumption A.3.

To the values obtained using the formulae detailed in
the previous sections, we add the number of accesses and
cache misses caused by the stack management when calling
the packing Ac, packing Bc, macro-kernel and performance
monitoring functions. These extra accesses are invariant for
each call of the functions, and are obtained by carefully
reading the assembly code of the program.

Table III summarizes the measures obtained for the memory
accesses and L1D refill for each part of the GEMM algorithm.
We note that the measured memory accesses in Ours are
exactly the same as expected, thus the values are only dis-
played once in the table. For the L1D refill evaluation, together
with the measures for Ours and Low et al., we present the
theoretical values derived from the formulae of Section VI. For
memory accesses and L1D refills, the percentages represent the
difference w.r.t. measurements using our blocking parameters.

The measures of the number of memory accesses of Low et
al. are slightly inferior to Ours. It is explained by the choice of
parameter kc: since it is smaller in our case (256 vs 512), the
matrices are partitioned into more blocks. As a consequence,
the functions for packing Ac, packing Bc and the macro-kernel
are called more times, which adds a small overhead.

We also notice that, particularly for the packing Bc routine,
carefully choosing the parameter kc allows us to control and
reduce the number of L1D refills by more than 60%, in
the best case, compared to Low et al. Note that in matrix
configuration (iv), n

XL1
is not an odd integer. The asterisk

indicates that each row of matrix B was padded with zeros so
it occupies an odd number of cache blocks. This modification
only affects the stride between successive rows.

In matrix configuration (iii), we padded matrix A because
k

XL1
is not an odd integer. However, we remark from the L1D

refills when packing Ac in the column of Low et al. that for
this particular matrix there are no extra misses, even though
the rows of A occupy an even number of cache blocks. As
explained, for packing Ac this condition is not as crucial as
for the other functions as only mr cache blocks are used at
a time to read Ac, which reduces the occurrence of two of
these blocks being mapped to the same set. Depending on the
application, the potential padding of matrices A and B can be
performed beforehand or using DMA copies. Otherwise, the
padding routine must be included in the execution time. For the
evaluation of cache misses in the macro-kernel, the first three
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TABLE III
MEASURES FOR THE NUMBER OF MEMORY ACCESS AND L1D REFILL OF THE GEMM ROUTINE.

Matrix configuration Memory accesses L1D refill
m n k Ours Low et al. Ours Low et al. Theoretical

(i) 272 272 272 Packing B 148 032 148 000 (-0.02%) 9 253 10 612 (12.81%) 9 254 (0.01%)
Packing A 148 032 148 000 (-0.02%) 9 252 9 251 (-0.01%) 9 254 (0.02%)

Macro-kernel 2 811 414 2 663 435 (-5.26%) 333 950 347 307 (3.85%) 384 886 (13.23%)
Total 3 107 478 2 959 435 (-4.76%) 352 455 367 170 (4.01%) 403 394 (12.63%)

(ii) 528 528 528 Packing B 557 664 557 632 (-0.01%) 34 856 78 145 (55.40%) 34 857 (0.00%)
Packing A 557 664 557 632 (-0.01%) 34 854 34 852 (-0.01%) 34 857 (0.01%)

Macro-kernel 20 072 481 19 514 902 (-2.78%) 2 552 600 2 509 309 (-1.73%) 2 703 897 (5.60%)
Total 21 187 809 20 630 166 (-2.63%) 2 622 310 2 622 306 (0.00%) 2 773 611 (5.46%)

(iii) 256 784 2,016˚ Packing B 3 161 344 3 161 216 (0.00%) 197 591 341 213 (42.09%) 197 592 (0.00%)
Packing A 1 032 448 1 032 320 (-0.01%) 64 528 64 520 (-0.01%) 64 536 (0.01%)

Macro-kernel 53 788 760 52 183 084 (-2.99%) 6 894 927 6 766 186 (-1.90%) 7 217 528 (4.47%)
Total 57 982 552 56 376 620 (-2.77%) 7 157 046 7 171 919 (0.21%) 7 479 656 (4.31%)

(iv) 192 736˚ 528 Packing B 777 312 777 248 (-0.01%) 48 584 121 948 (60.16%) 48 585 (0.00%)
Packing A 202 848 202 784 (-0.03%) 12 677 12 675 (-0.02%) 12 681 (0.03%)

Macro-kernel 10 174 497 9 891 862 (-2.78%) 1 248 905 1 258 791 (0.79%) 1 322 057 (5.53%)
˚ Padding applied. Total 11 154 657 10 871 894 (-2.53%) 1 310 166 1 393 414 (5.97%) 1 383 323 (5.29%)

configurations use the general formulae of Section VI-E.2., and
for the fourth configuration, the last macro-kernel corresponds
to a particular case, presented in [28]. We observe that in most
matrix configurations our formulae overestimate the number
of misses in the macro-kernel by approximately 5%, which
is reasonable given the complexity of the analysis. For matrix
configuration (i), the overestimation is more significant. In this
case, the dimensions of the submatrices of the last macro-
kernel are slightly bigger than in [28] but the remainder is not
large enough to fill the cache. This leads to a larger overhead,
as our formulae assume full usage of the cache.

Finally, Table IV shows the mean (and variability between
minimum and maximum) execution times of the GEMM algo-
rithm when using our parameters, as well as the difference
with the execution times obtained with the parameters of Low
et al. (from Table I). We observe that the cost of predictability
does not exceed 4.22% in our experiments.

The L2 cache of our target has a random replacement policy,
so our formulae cannot be extended for it. However, in our
experiments, it was large enough not to interfere.

VIII. GENERALIZABILITY OF THE ANALYSIS

The formulae presented in Section VI are tailored for the
state-of-art GEMM algorithm of [7] and for an ARM v7-A core
of the KEYSTONE II SoC. Our discussions do not focus on
whether this algorithm is the most efficient, but reason on
how to make it time-predictable. To analyze a different GEMM
algorithm (e.g. different matrix partitioning so that Ac, instead
of Bc, stays in the L1D cache [14]), the formulae must be
adapted, following the same reasoning that is detailed in this
paper. Theorem 1, regarding the maximization of data sets
usage when performing strided matrix accesses, is general.

Regarding the hardware model, our main assumptions con-
cern the associativity degree (ą1) and the replacement policy
(LRU) of the L1D cache, as well as the absence of prefetching
mechanisms. Thus, if the assumptions hold, the formulae
remain valid and can simply be tuned to a different target,
as they are parameterized by key hardware characteristics
(e.g. vector units latency, cache sizes). When considering a

TABLE IV
MEASURED EXECUTION CYCLES, ON AN ARM CORTEX-A15 WITH -O0

FLAG. DIFFERENCE W.R.T. Low et al. IS GIVEN IN PARENTHESES.

Matrix config. Execution time
m n k Low et al. Ours

272 272 272 mean 235 168 329 241 592 816 (2.66%)
min 235 153 669 241 590 696
max 235 181 181 241 594 779
var. 1.16e´4% 1.69e´3%

528 528 528 mean 1 566 589 440 1 588 903 889 (1.40%)
min 1 566 565 684 1 588 886 193
max 1 566 603 968 1 588 925 463
var. 2.44e´3% 2.47e´3%

256 784 2,016 mean 134 562 545 140 491 277 (4.22%)
min 134 561 357 140 490 036
max 134 563 809 140 492 596
var. 1.82e´3% 1.82e´3%

192 736 528 mean 778 924 693 793 768 157 (1.87%)
min 778 923 061 793 765 272
max 778 926 162 793 769 629
var. 3.98e´4% 5.49e´4%

distinct instruction set architecture (ISA), such as a RISC-V,
only the micro-kernel function (Algorithm 2) must be adapted,
requiring minimal changes to the library.

IX. CONCLUSION

We propose a predictable and traceable yet efficient im-
plementation of a blocked GEMM algorithm. Compared to a
non-optimized implementation, we reduce the execution time
by up to 99%, without compiler optimizations. Moreover,
within each part of the algorithm, we find the correct number
of memory accesses. The number of L1D cache misses is
only overestimated by around 5% in all but one of the
tested matrix configurations. Our results show that the cost of
predictability is less than 5%. In future work, we will extend
our formulae to predictable L2 (and potentially L3) caches.
We will also refine the analysis for cache misses in the macro-
kernel function when the submatrices do not consistently fill
the cache. Lastly, we will automatize the generation of the
proposed GEMM algorithm code for a given architecture and
matrix configuration, and integrate it in larger applications,
such as machine learning frameworks.
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