
HAL Id: hal-04660630
https://hal.science/hal-04660630

Submitted on 24 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

Variability in flood frequency in sub-Saharan Africa:
The role of large-scale climate modes of variability and

their future impacts
Job Ekolu, Bastien Dieppois, Yves Tramblay, Gabriele Villarini, Louise J

Slater, Gil Mahé, Jean-Emmanuel Paturel, Jonathan M Eden, Simon Moulds,
Moussa Sidibe, et al.

To cite this version:
Job Ekolu, Bastien Dieppois, Yves Tramblay, Gabriele Villarini, Louise J Slater, et al.. Variability
in flood frequency in sub-Saharan Africa: The role of large-scale climate modes of variability and
their future impacts. Journal of Hydrology, 2024, 640, pp.131679. �10.1016/j.jhydrol.2024.131679�.
�hal-04660630�

https://hal.science/hal-04660630
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://hal.archives-ouvertes.fr


Journal of Hydrology 640 (2024) 131679

Available online 14 July 2024
0022-1694/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Research papers

Variability in flood frequency in sub-Saharan Africa: The role of large-scale
climate modes of variability and their future impacts

Job Ekolu a,*, Bastien Dieppois a, Yves Tramblay b, Gabriele Villarini c, Louise J. Slater d,
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A B S T R A C T

Sub-Saharan Africa (SSA) is strongly affected by flood hazards, endangering human lives and economic stability.
However, the role of internal climate modes of variability in driving fluctuations in SSA flood occurrence remains
poorly documented and understood. To address this gap, we quantify the relative and combined contribution of
large-scale climate drivers to seasonal and regional flood occurrence using a new 65-year daily streamflow
dataset, sea-surface temperatures derived from observations, and 12 Single Model Initial-condition Large En-
sembles (SMILEs) from the Coupled Model Intercomparison Project Phases 5 and 6. We find significant re-
lationships between floods and large-scale climate variability across SSA, with climatic drivers accounting for
30–90 % of the variability in floods. Notably, western, central, and the summer-rain region of southern Africa
display stronger teleconnections to large-scale climate variability in comparison to East Africa and the winter-
rain region of South Africa, where regional circulation patterns and human activities may play a more impor-
tant role. In southern and eastern Africa, floods are mainly influenced by teleconnections with the Pacific and
Indian Oceans, while in western and central Africa, teleconnections with the Atlantic Ocean and Mediterranean
Sea play a larger role. We also find that the number of floods is projected to fluctuate by ± 10–50 % during the
21st century in response to different sequences of key modes of climate variability. We also note that the relative
contributions of large-scale climate variability to future flood risks are generally consistent across all SMILEs. Our
findings thus provide valuable information for long-term disaster risk reduction and management.

1. Introduction

State-of-the-art climate change projections suggest a potential in-
crease in the frequency and intensity of flooding for several regions
across the world (e.g., Gosling & Arnell, 2016; Winsemius et al., 2016)
but large uncertainties remain (e.g., Kundzewicz et al., 2019). To
develop more robust risk prediction and sustainable management stra-
tegies, there is a need to better understand the drivers of regional flood

characteristics, as well as their impact on future change. This is notably
important in vulnerable regions, such as Sub-Saharan Africa (SSA; e.g.,
Niang et al., 2014; Shiferaw et al., 2014), where floods result in loss of
lives, infrastructure damage, and economic losses (Bates et al., 2008).

Many parts of SSA are poorly represented in global climate and hy-
drological datasets (Mahe et al., 2013; Nobre et al., 2017; Tramblay
et al., 2020a; Harrigan et al., 2020; Dixon et al., 2022). Existing studies
are often restricted to the catchment scale (e.g., Valimba et al., 2005;
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Conway et al., 2009; Taye and Willems, 2012; Nyeko-Ogiramoi et al.,
2013; Chun et al., 2021), limiting our interpretation of the relative in-
fluence of climate change and variability on hydrological trends from
that of catchment properties (e.g., groundwater interactions, land-use/
land cover change, and water management activities; Kingston et al.
2020). In recent years, the barriers to progress have been reduced
through efforts aimed at compiling hydrological datasets from diverse
sources (Tramblay et al., 2020a) and creating a complete daily stream-
flow dataset for SSA (Ekolu et al., 2022).

Existing studies have consistently reported increasing trends in flood
magnitude witnessed during the 20th and early 21st centuries over
western Africa (Descroix et al., 2013, 2018; Nka et al., 2015; Aich et al.,
2016; Andersson et al., 2017; Wilcox et al., 2018; Tramblay et al.,
2020b; Rameshwaran et al., 2021; Dembélé et al., 2022; Ekolu et al.,
2022), eastern Africa (Taye et al., 2015; Taye &Willems, 2012; Bernard
et al., 2013; Degefu et al., 2019; Tramblay et al., 2020b; Ekolu et al.,
2022), and southern Africa (Do et al., 2017; Tramblay et al., 2020b;
Ekolu et al., 2022; Franchi et al., 2024). However, as pointed out in
Ekolu et al. (2022), observed trends in the frequency, intensity, and
duration of floods across all SSA regions show significant interannual to
decadal variability, with poorly understood driving factors. Ficchì et al.
(2021) reported a high spatial dispersion and low signal-to-noise ratio in
the relationship between flood magnitudes and different modes of
climate variability, but this study relied on the short duration (i.e., 35
years) and low quality GloFas-ERA-Interim/Land streamflow reanalysis
over Africa (Harrigan et al. 2020). Nevertheless, identifying the large-
scale drivers of those variations in flood characteristics is crucial to
develop more reliable and seamless (seasonal-to-decadal) flood fore-
casting systems. For instance, empirical seasonal forecasts of historical
flood probabilities based on El Niño Southern Oscillation (ENSO) have
been shown to outperform dynamical modelling approaches in many
parts of Africa (Emerton et al., 2019). In addition, there are many other
modes of climate variability that emerge as important and predictable
independent drivers of climate and hydrological variability across SSA.
While ENSO is the leading mode of climate variability affecting rainfall
variability in SSA on interannual timescales (e.g., Reason et al., 2000;
Giannini et al., 2005, 2008; Rodríguez-Fonseca et al., 2015; Parhi et al.,
2016), other studies highlighted significant influences of sea-surface
temperature anomalies (SSTa) over the Tropical North and South
Atlantic (e.g., Camberlin and Okoola, 2003; Losada et al., 2010;Williams
et al., 2012), the Mediterranean Sea (e.g., Rowell, 2013; Fontaine et al.,
2010; Gaetani et al., 2010), and the Indian Ocean (e.g., Saji et al., 1999;
Webster et al., 1999; Black et al., 2003; Manatsa et al., 2012; Manatsa
and Behera 2013). Similarly, the Atlantic Multidecadal Variability
(AMV) and other decadal climate variations in the Pacific and Indian
Oceans were found to play a substantial role in modulating rainfall in
SSA on decadal timescales (e.g., Biasutti et al., 2008; Mohino et al., 2011;
Dieppois et al., 2013, 2016, 2019). Some studies also suggested that
interannual to decadal changes in streamflow and flood magnitude
could be linked to variations in SSTa (e.g., Taye & Willems, 2012; Ber-
nard et al., 2013; Sidibe et al., 2019; Kundzewicz et al., 2019; Tramblay
et al., 2020b; Franchi et al., 2024). How these different modes of climate
variability interact with each other and affect flood characteristics is,
however, less understood (Kundzewicz et al., 2019). To address these
shortcomings, our study takes advantage of a newly developed
observation-based 65-year long daily streamflow datasets, covering all
SSA, to examine the relative importance of each mode of climate vari-
ability on the occurrence of flood hazards across SSA.

Furthermore, as illustrated in various papers focusing on North
America (Deser et al., 2012, 2014, 2016), Europe (Maher et al., 2021;
Deser et al., 2023), and West Africa (Monerie et al., 2017), internal
climate modes of variability, such as ENSO and AMV, are likely to
enhance or dampen the impact of anthropogenic climate change from
one decade to another at the regional scale over the 21st century. Yet,
most existing projections of flood risk typically employ single simula-
tions of global/regional climate models, which does not enable scientists

and stakeholders to quantify and separate the impacts of internal climate
variability and externally forced, i.e., anthropogenic, climate changes (e.
g., Maher et al., 2021; Deser and Phillips, 2023). Most climate change
impact studies also typically used bias-correction approaches, which are
based on the evaluation of a single simulation from one or multiple
climate models (e.g., Hirabayashi et al., 2013; Dankers et al., 2014),
neglecting the impact of internal climate variability (Vaittinada Ayar
et al., 2021; Jain et al., 2023). Utilizing Single Model Initial-Condition
Large Ensembles (SMILEs) in a new framework could reveal how in-
ternal climate variations may modulate future flood risk across SSA.
SMILEs were specifically designed to quantify the impact of internal
climate variations in climate change scenarios (Milinski et al., 2020;
Maher et al., 2021; Suarez-Gutierrez et al., 2021; Deser and Phillips,
2023; Jain et al., 2023).

Here, we aim at estimating the combined and relative contributions
of large-scale internal climate modes of variability on the observed and
future seasonal frequency of flood hazard in SSA. The study is organized
as follows. In Section 2, we present the data and methods. In Section 3,
we identify the large-scale drivers of seasonal flood frequency across
SSA and quantify their relative importance. In Section 4, we evaluate the
potential for different sequences and phasing of these large-scale climate
variations to modulate seasonal flood risks in SSA from one 30-year
period to another over the 21st century using multi-model large-en-
sembles and a statistical modelling approach. Lastly, Section 5 sum-
marizes the main results and discusses their broader implications.

2. Data and methods

2.1. Data

2.1.1. Observed streamflow and flood occurrence
We computed flood occurrence across SSA from a 65-year daily

streamflow dataset (Ekolu et al., 2022). This dataset was curated from
two main sources: i) daily river discharge data from the “Système
d’Informations Environnementales sur les Ressources en Eaux et leurs
Modélisations” (SIEREM: https://www.hydrosciences.fr/sierem/; Boyer
et al., 2006), which is hosted by the French Institute for Research and
Development (IRD) and ii) the Global Runoff Data Centre databases
(GRDC; https://portal.grdc.bafg.de/). Using the SIEREM and GRDC
databases, Ekolu et al. (2022) selected 661 stations, covering 65 years
from 1950 to 2014 with a maximum of 60 % missing data (Fig. 1). The
missing data were then reconstructed using a random forest algorithm.
For details on the data and reconstruction quality control, selection
process, and potential influences of human activities readers are referred
to Tramblay et al. (2020a) and Ekolu et al. (2022). Following the clas-
sification provided by FAO-GeoNetWork, Fig. 1 shows the spatial dis-
tribution of the major hydrological basins, as well as the number of
stream gauges associated with their respective sub-catchments across
SSA.

2.1.2. Observed sea surface temperatures and climate indices
To examine the observed relationships between regional flood fre-

quency and the large-scale climate modes of variability, we utilise the
Extended Reconstructed SST version 5 (ERSST.v5; Huang et al., 2017),
which is an observation-based global monthly SST gridded dataset. This
dataset was produced by the National Oceanic and Atmospheric
Administration (NOAA) using the International Comprehensive Ocean-
Atmosphere Dataset (ICOADS) Release 3.0. It has a 2◦ × 2◦ resolution
and covers the period from January 1854 to present, with enhanced
representations of SST spatial and temporal variability compared to
previous versions of this dataset (Huang et al., 2017). Unlike other
observed SST datasets, ERSST.v5 is not impacted by cold SST biases
brought on by the assimilation of satellite data at the end of the 20th
century, which can occasionally result in a spurious mild slowdown in
the global warming trend and problematic negative decadal signals
(Reynolds et al., 2002).
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Using ERSST.v5, we calculated 16 climate indices (Table 1), which
reflect well-known teleconnections between SSTa, rainfall and stream-
flow variability in SSA (e.g., Fontaine et al., 2011; Rodríguez-Fonseca
et al., 2015; Dieppois et al., 2013, 2015; 2016; Sidibe et al., 2019). Each
climate index is calculated by taking the area weighted average SSTa
over the corresponding SST regions (Table1). We use locally estimated
scatterplot smoothing (LOESS) functions to suppress the seasonal cycle
and detrend the SSTa data prior to calculating the indices. We then
calculated the seasonal averages (i.e., DJF, MAM, JJA and SON) of each
climate index.

2.1.3. Climate models
To estimate potential future impacts of climate variability and

change on regional and seasonal flood occurrence across SSA, we
calculate the 16 climate indices in Table 1 using 12 Single Model Initial-
condition Large Ensembles (SMILEs; from 6 to 100 ensemble members in
each model) from the Coupled Model Intercomparison Project phases 5
and 6 (CMIP5 and 6), totalling 400 realizations of historical and future
climate (1850–2005/14 and 2006/15–2100; Table 2). To examine the
future period, we use the highest emission scenario or forcing level (8.5
W.m− 2), i.e., Representative Concentration Pathway RCP8.5 in the
CMIP5 models, and the Shared Socio-economical Pathway 5 that up-
dates the highest forcing level, i.e., SSP5-85, in the CMIP6 models. Using
SMILEs permits more robust estimates of the combined effects of inter-
nal climate variations and externally forced changes that are directly
associated with rising greenhouse gas concentration in the atmosphere
(e.g.,Deser et al., 2012; Kay et al., 2015; Maher et al., 2019; Lehner et al.,
2020).

To isolate the role of internal climate variations across the different
ocean basins in each SMILE, we calculated monthly SSTa by subtracting
the ensemble means of sea surface temperatures from all individual
ensemble members, at each grid-point and on a monthly scale. By sub-
tracting the ensemble means, which represent the externally forced
signal and trends, to estimate SSTa associated with internal climate
modes of variability. We also reduce the impact that other emission
scenarios or forcing levels could have had on our results (e.g., Deser
et al., 2014, 2023). For instance, following the same approaches, Maher

et al. (2023) and Cai et al. (2022) found very similar changes in the
projected ENSO variations across different emission scenarios.

2.2. Methods

2.2.1. Identifying independent flood peak events
The most common way to analyse changes in the number of flood

events is the Peak-over-Threshold (POT) approach. This method iden-
tifies floods as streamflow events above a specified threshold. However,
the examination of floods assumes that flood occurrences are identically
distributed and independent (WMO, 2009). Baseflow separation
methods are the most used approach for identifying individual flow
events and when combined with a flood selection criterion they allow
for the identification of individual flood events. Different baseflow
separation methods exist (e.g., Nathan and McMahon, 1990; Tallaksen,
1995; Blume et al., 2007; Mei and Anagnostou, 2015), and here we
adopt an automated baseflow separation using a digital filter method
combined with a POT approach.

We first estimate the recession constant k for each station using the
approach suggested in Vogel and Kroll (1996) and implemented in
recent studies (e.g., Thomas et al., 2013; Mangini et al., 2018; Ekolu
et al., 2022). We achieve this by computing the 3-day centred moving
average of the daily streamflow at each station from 1950 to 2014. Then,
we locate the recession period, which begins from a given peak in this
3-day centred moving average time series and continues until the point
where the flow suddenly increases. Subsequently, identification of
recession events is repeated for each peak in the 3-day centred moving
average time series. Note that only recession events longer than 10 days
are selected.

We then calculate the recession constant for each recession event by
applying regression analysis to find the best fit using ordinary least
squares, as described in Equation (1). We compute the average recession
constant across all recession events from 1950 to 2014. In this context,
Qt represents the total flow at any given time t, and Q0 is the initial flow
at the start of the recession period, with ki being the recession constant.

In(Qt) = In(Q0)+ In(ki) × t+ r (1)

Fig. 1. Major hydrological basins and the number of stream gauges associated with their respective sub-catchments across SSA. a) Complete daily streamflow data
from Ekolu et al. (2022) (black hollow circles), with corresponding major hydrological basins (colour shading) and sub-catchments (grey contours) in SSA. b) Total
number of stations per sub-catchment in SSA. Shapefiles of major hydrological basins and sub-catchments are derived from FAO-GeoNetWork (https://www.fao.org/
land–water/databases-and-software/geonetwork/en/; accessed in August 2022). c) Identifier for sub-catchments with 5 stations or more.

J. Ekolu et al.
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Using the estimated recession constant k, we calculate the baseflow
using the digital filter in Equation (2) by Chapman and Maxwell (1996).
We then subtract the baseflow from the total flow to obtain the esti-
mated direct flow. Independent discharge events are separated by in-
tervals during which direct runoff is lower than the baseflow, or lower
than the mean annual direct runoff. Where Qb(i-1) is the baseflow at time
interval i-1, Qd(i) is the direct runoff at time interval i, and k is the
recession constant.

Qb(i) =
k

2 − k
× Qb(i− 1) +

1 − k
2 − k

× Q(i) (2)

Following the identification of independent discharge peaks across
the whole time series, flood series are compiled using the POT selection
approach. This is done by ranking flow events from highest to lowest,
and subsequently selecting the highest 195 events based on a POT cri-
terion of three events per year over 65 years for each station. We provide
an illustrative application of the baseflow separation and event identi-
fication methodology in the supplementary materials, focusing on a

station located in the Congo basin (Fig. S1). To demonstrate the
robustness of our chosen threshold, we evaluate the Spearman’s corre-
lation between the seasonal number of flood events identified using
different POT thresholds (0.5, 1, and 2 events per year) compared to the
chosen threshold of three events per year. These results, presented in
Figure S2, revealed a high correlation (ρ > 0.8) across most stations,
indicating consistent variability in flood occurrence regardless of the
specific threshold within a reasonable range.

In this study, we focus on the flood occurrence, which should be less
sensitive to water management strategies and river regulation than flood
magnitude and duration, hence providing more robust results. For
instance, Brunner (2021) pointed out that flood management infra-
structure (e.g., reservoirs) reduce the severity of a flood by distributing
the flow over a longer period. Each year, we calculate the seasonal total
number of flood events (i.e., from December-February [DJF] to
September-November [SON]), which include a mixture of flood events,
with lower and higher magnitude and duration at the sub-catchment
scale, between 1950 and 2014. Nevertheless, we found significant and
high correlations (ρ > 0.8) between the seasonal number of floods and
the seasonal maximum magnitude and duration of floods at the sub-
catchment scale (Fig. S3). This suggests that periods with higher
(lower) number of floods are associated with higher (lower) maximum
magnitude and duration of floods, and potentially similar large-scale
climate drivers.

2.2.2. Identifying large-scale climate drivers of long-term variations in
seasonal flood hazards

We examine the statistical relationships between large-scale climate
variations and sub-catchment scale flood occurrence. We first analyse
Spearman’s rank correlations applied to four seasons (DJF, MAM, JJA
and SON) and at multiple lag-times (climate indices with 0-, 3-, 6-, 9-
month lag). We then select the most relevant set of climate indices
and lag-times. Next, we reduce the number of variables by fitting a
stepwise generalized linear model (GLMs) with a Poisson distribution.
Finally, we quantify the combined and relative contributions of large-
scale drivers to the seasonal and regional flood occurrences. This is
first achieved using a stepwise model selection based on Akaike infor-
mation criterion (AIC) to reduce the set of potential large-scale climate
predictors after considering multicollinearity (Sauerbrei and Schu-
macher, 1992; Smith, 2018). Secondly, we evaluate the relative
contribution of the selected set of large-scale predictors using a domi-
nance analysis, consisting of decomposing the coefficients of determi-
nation (R2) and quantifying the contribution of each regressor to the
total R2 of the fitted GLM (Budescu, 1993; Azen & Budescu, 2003; Azen
and Traxel, 2009; Luo and Azen, 2013). Note that to assess the sampling
uncertainty, we use 1000 bootstraps in the stepwise model selection and

Table 1
Detailed information for 16 SST indices.

Region Indicator Definition References

Pacific Ocean Nino34 Nino34 SSTa
(− 5◦- 5◦N, 190◦ − 240◦E)

Rasmusson and
Carpenter
(1982)

E Eastern Pacific ENSO
(Nino12 − [0.5 × Nino4];
Nino12 [0-10◦S, 80◦-90◦W]
Nino4 [-5-5◦ N, 160E-150 W])

Takahashi et al.
(2011)

C Central Pacific ENSO
(1.7 × Nino4 − [0.1 ×

Nino12])

Takahashi et al.
(2011)

TPI [IPV] Tripole index of Pacific SSTa
[Interdecadal Pacific
Variability]
(− 50◦- 45◦N, 140◦ − 270◦E)

Henley et al
(2015)

NP [PDV] North Pacific SSTa
[Pacific Decadal Variability]
(20◦- 65◦N, 100◦ − 260◦E)

Mantua et al.
(1997)

Atlantic Ocean TSA Tropical South Atlantic SSTa
(− 20◦- 0◦N, − 30◦ − 10◦E)

Enfield et al.
(1999)

TNSD Atlantic Meridional Mode
(Difference between Tropical
North [5◦-25◦N, − 55◦ −

− 15◦E] and South Atlantic
SSTa [-20◦- 0◦N, − 30◦ −

10◦E])

Enfield et al.
(1999)

SAOD South Atlantic Ocean Dipole
(3rd PC tropical Atlantic SSTa:
− 30◦- 30◦N, − 70◦ − 20◦E)

Enfield et al.
(1999)

NA
[AMV]

North Atlantic SSTa
[Atlantic Multidecadal
Variability]
(0◦- 60◦N, − 80◦ − 0◦E)

Enfield et al.
(2001)

Mediterranean
Sea

EMED East Mediterranean SSTa
(32◦- 44◦N, 15◦ − 36◦E)

Fontaine et al.
(2011)

WMED West Mediterranean SSTa
(32◦- 44◦N, − 6◦ − 15◦E)

Fontaine et al.
(2011)

Indian Ocean SWIO South-West Tropical Indian
Ocean SSTa
(–32-25◦N, 31◦ − 45◦E)

Fontaine et al.
(2011)

TIO Tropical Indian Ocean SSTa
(− 24◦- 24◦N, 35◦ − 90◦E)

Fontaine et al.
(2011)

WTIO West Tropical Indian Ocean
SSTa
(− 10◦- 10◦N, 50◦ − 70◦E)

Fontaine et al.
(2011)

DMI Dipole Mode Index
(Differences between West
[-10◦- 10◦N, 50◦ − 70◦E] and
South-East Tropical [-10◦-
0◦N, 90◦ − 110◦E] Indian
Ocean SSTa)

Saji et al. (1999)

Globe GT Global SSTa
(− 70-70◦N)

Trenberth and
Shea (2006)

Table 2
Detailed information for the CMIP5 and CMIP6 climate models used in this
study.

Model
Version

Climate Model Ensemble
Members

References

CMIP5 CanESM2 49 Kirchmeier-Young et al.
(2017)

− CESM1-LE 40 Swart et al. (2019)
− CSIRO-MK3 30 Jeffrey et al. (2013)
− GFDL-CM3 20 Sun et al. (2018)
− GFDL-ESM2M 30 Burger et al. (2022)
− MPI-GE 100 Maher et al. (2019)
CMIP6 ACCESS-ESM1-

5
10 Ziehn et al. (2020)

− CanESM5 25 Swart et al. (2019)
− GFDL-SPEAR-

MED
30 Delworth et al. (2020)

− IPSL-CM6A-LR 6 Boucher et al. (2020)
− MIROC-ES2L 10 Hajima et al. (2020)
− MIROC6 50 Tatebe et al. (2019)

J. Ekolu et al.
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in the dominance analysis. In addition, we test the statistical significance
of the GLM results for each sub-catchment and season using a Chi-square
test at p ≤ 0.05.

2.2.3. Estimating future impacts of large-scale climate variations on
regional flood hazards

To estimate how large-scale climate variations could potentially alter
the future occurrence of flooding during the 21st century (2015–2100),
we use the same GLM models previously developed (see Section 2.2.2),
but with climate indices derived from 12 CMIP5 and CMIP6 SMILEs as
large-scale predictors (totalling 400 realisations of past, present, and
future climate). This statistical framework enables us to estimate how
different sequences of internal climate variability, reflecting the diver-
gent phases of the large-scale climate predictors (e.g., ENSO, AMV) in
different climate models, or in different realisations of the same model,
can affect the seasonal number of floods in 48 SSA sub-catchments be-
tween 1950 and 2100.

For each model simulation, sub-catchment, and season, we compute
the rolling 30-year average of the simulated number of floods generated
as a result of future variations in the large-scale climate modes. Next, we
standardise the relative change in the future number of floods across the
different SMILEs, to facilitate cross-comparisons. For each season, we do
this by first subtracting the simulated historical mean number of floods

(1985–2014) from each future 30-year rolling mean number of floods.
Then, we divide this difference by the simulated historical mean number
of floods and express the resulting ratio as a percentage.

The potential range of impacts of large-scale climate modes of vari-
ability on the future number of floods is assessed by identifying the
maximum and minimum plausible changes across all SMILEs. For each
sub-catchment and season, the 90th percentile (representing the
maximum plausible increase) and the 10th percentile (representing the
maximum plausible decrease) of the standardized seasonal mean num-
ber of future floods are calculated across all SMILEs. Finally, we evaluate
the potential range of future variability in the seasonal mean number of
floods by computing the standard deviation of the standardized seasonal
mean number of floods across all SMILEs.

In the present study, we first consider all CMIP5 and CMIP6 models
as equal in their representations of large-scale climate modes of vari-
ability. However, recent studies show contrasting performance in rep-
resentations of ENSO, PDV and AMV (Dieppois et al., 2021; Fasullo
et al., 2020; Coburn and Pryor, 2021). Therefore, we also compare the
relative standard deviation of the standardized mean number of floods
simulated in individual CMIP5 and CMIP6 SMILEs to assess whether
somemodels produce unrealistically high and/or low range of variations
in flood hazards in response to the same large-scale climate modes of
variability.

Fig. 2. Relative percentage of seasonal flood occurrences between 1950 and 2014 in SSA. a) Mean percentage of floods occurring in DJF compared to the annual
average number of floods between 1950 and 2014. b-d) Same as a) but for MAM, JJA and SON.
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3. Results

3.1. Seasonal changes in flood hazard

Flood occurrence in SSA shows considerable seasonal variability
(Fig. 2). The northwest regions of southern Africa experience more flood
events when the Inter-Tropical Convergence Zone (ITCZ) is at its
southernmost position in DJF, compared to other seasons (Fig. 2a). This
region of southern Africa, which is also known as the summer-rain re-
gion (Tyson et al., 2000; Roffe et al., 2019), receives up to 60–70 % of
floods in DJF, and between 10–30 % of floods in MAM (Fig. 2b).
Meanwhile, the winter-rain region of southern Africa (i.e., the south-
western cape) shows a seasonal peak in flood occurrence in JJA (Fig. 2c).

In MAM, as the ITCZ starts its northward progression, the south-
eastern equatorial regions of East Africa (Zambezi; Fig. 2b) experience
more flooding compared to other seasons. The south equatorial regions
of East Africa (Zambezi), which typically receive most of their rains
between October and March (Liebmann et al., 2012; Dunning et al.,
2016; Nicholson and Selato, 2000), have between 50 and 80 % of the
floods occurring in MAM and between 30 and 40 % in SON (Fig. 2b).

The northern regions of East Africa (e.g., Blue Nile [Nile-1]) register
between 80 and 90 % of flood occurrences in JJA, when the ITCZ is
approaching its northernmost position (Conway, 2005; Leggesse and
Beyene, 2017). West Africa also records a substantial fraction of floods
in this season (30–40 %; Fig. 2c). However, most flood events in West
Africa (70–80 %) occur in SON (Fig. 2d), following the core of the
Sahelian rainy season in August (Thorncroft et al., 2011; Vizy & Cook,
2018). Interestingly, the middle Niger catchment in West Africa shows
seasonal peaks in flood occurrence in DJF (Fig. 2a). Some Sahelian
catchments have two flood peaks (Descroix et al., 2013; Casse et al.,
2016): i) the Sahelian flood, which occurs during the Sahelian monsoon
season (July to September) due to inflows from the right bank tributaries
upstream of Niamey; and ii) the Guinean flood, which occurs when the
rain belt retreats south (November and February), due the delayed
arrival of floods from the upper part of the Niger.

In summary, as noted in Ficchì and Stephens (2019), the occurrence
and timing of floods in SSA have a close spatial and temporal relation-
ship with that of rainfall and follow the ITCZ seasonal patterns.

3.2. Observed statistical relationships between seasonal flood hazard and
large-scale climate drivers

We have shown that, compared to other seasons, the summer-rain
region of southern Africa experiences the highest frequency of flood
events in DJF and MAM (Fig. 2a-b). In this region, floods show signifi-
cant negative correlations with SSTa in the equatorial Pacific Ocean
(notably, Nino34, C and TPI) and the Indian Ocean (TIO,WTIO and DMI;
Fig. 3a-b). During the same seasons and in the same region, there are
significant positive correlations between flood occurrences and the
North and Tropical Atlantic Ocean (AMV and TNSD) and eastern Med-
iterranean Sea (EMED; Fig. 3a-b). This suggests that warmer (cooler)
Pacific and Indian Ocean, and reversely cooler (warmer) North Atlantic
Ocean and eastern Mediterranean, disfavour (favour) the occurrence of
floods in the summer-rain region of southern Africa. This is consistent
with previous studies on southern African rainfall, highlighting the role
of ENSO and its interactions with the Indian Ocean, the North and
Tropical South Atlantic (e.g., Washington and Preston, 2006; Lyon and
Mason, 2007; Hoell et al., 2015; Dieppois et al., 2016, 2019; Hoell and
Cheng, 2018; Pohl et al., 2018; Ullah et al., 2022). Consistent with
previous studies on the link between ENSO and rainfall in the winter-
rain region of southern Africa (e.g., Dieppois et al., 2016), we find that
ENSO is also linked to flood occurrence in JJA in this region (i.e., South
Africa, West Coast; Fig. 3c). In southern Africa, winter rainfall vari-
ability is indeed strongly related to regional changes in midlatitude
frontal activity, which is typically associated with dipolar SSTa in the
Indian and South Atlantic Oceans (Reason and Rouault, 2005; Dieppois

et al., 2016). Nevertheless, according to Philippon et al. (2012), the
significant influence of ENSOmay only emerge after the 1970 s over this
region.

Concerning East Africa, in the White Nile (Nile-2) and the Africa East
Central Coast catchments, floods are significantly positively correlated
with SSTa in the equatorial Pacific (Nino34, C, and TPI), the Indian
Ocean (SWIO, TIO and WTIO), the South Atlantic Ocean Dipole (SAOD)
in MAM (Fig. 3b). This suggests that warmer (cooler) SSTa over these
ocean basins are likely to lead to more (fewer) floods in the region. This
is consistent with previous studies discussing the role of climate varia-
tions in the Atlantic Ocean (e.g., Camberlin and Okoola, 2003; Williams
et al., 2012), ENSO (e.g., Janowiak, 1988; Ogallo, 1988; Mutai et al.,
1998; Reason et al., 2000; Giannini et al., 2008; Parhi et al., 2016), and
the Indian Ocean Dipole (e.g., Saji et al., 1999; Webster et al., 1999;
Black et al., 2003; Manatsa et al., 2012; Manatsa and Behera, 2013) on
eastern African rainfall. Meanwhile, in the boreal summer (JJA), when
the Blue Nile receives more floods compared to the rest of the year
(Fig. 2c), our results show negative correlations between the number of
floods and climate variations in the equatorial Pacific Ocean (Nino34, E,
C and TPI), and the Indian Ocean (WTIO and DMI; Fig. 3c). At the same
time, we find positive correlations with SSTa in the Atlantic Ocean
(TNSD and AMV) and the eastern Mediterranean Sea (EMED). This is
consistent with previous studies on rainfall-SSTa teleconnections in this
region of eastern Africa, which highlight significant differences in the
tropical dynamics and environmental factors (topography, lakes)
affecting rainfall variability in the While and Blue Nile (e.g., Camberlin,
1995, 1997; Segele et al., 2009; Nicholson and Selato, 2000; Williams
et al., 2012; Omondi et al., 2013; Nicholson and Selato, 2000). El Niño
(La Niña) episodes were shown to be associated with less (more) rainfall
in the Blue (White) Nile (e.g., Camberlin, 1995, 1997; Nicholson and
Selato, 2000; Segele et al., 2009; Nicholson et al. 2017). Meanwhile,
Williams et al. (2012) and Omondi et al. (2013) found contrasted tele-
connections between seasonal rainfall and the Indian and Atlantic
Oceans over the White and Blue Nile regions.

Regarding western and central Africa in JJA and SON, we find that
floods are positively correlated with SSTa in the Mediterranean Sea
(WMED and EMED), the Atlantic Ocean (AMV, TNSD and TSA), and the
North Pacific Ocean (NP; Fig. 3c-d). Negative correlations are found
with the Atlantic Ocean (SAOD and TSA), equatorial Pacific Ocean
(Nino34, C and TPI) and Indian Ocean (SWIO, WTIO and TIO’ Fig. 3c-d).
This implies that a warmer (cooler) North Atlantic Ocean and Mediter-
ranean Sea favour (disfavour) flood occurrences across most parts of
western and central Africa. Meanwhile, a warmer (cooler) equatorial
Pacific, South Atlantic and Indian Ocean disfavour (favour) flood oc-
currences. These statistical relationships thus appear consistent with
existing literature on rainfall-SSTa teleconnections. For instance, cooler
Tropical South Atlantic and warmer North Atlantic were found to favour
rainfall in the West Africa Sahel (e.g., Losada et al., 2010; Dieppois et al.,
2013, 2014). Meanwhile, a warmer (cooler) Mediterranean Sea was
found to be associated with increased (decreased) rainfall in the same
region (e.g., Rowell, 2013; Fontaine et al., 2010; Gaetani et al., 2010).
Similarly, warmer temperatures in the equatorial Pacific and Indian
Oceans were found to favour drought conditions in West Africa (e.g.,
Giannini et al., 2005; Rodríguez-Fonseca et al., 2015; Sidibe et al.,
2019), therefore disfavouring flood occurrences.

3.3. Combined and relative importance of large-scale climate drivers of
long-term variations in seasonal flood hazards

In Fig. 4, we quantify the overall and relative contributions of large-
scale climate modes to year-to-year variations in flood occurrence across
SSA, using stepwise GLM regression models and dominance analysis. We
find that the combined impact of large-scale climate modes of variability
explains 30–90 % of the fluctuations observed in floods across SSA. We
also note that the contribution of large-scale climate modes to seasonal
flood occurrences are higher in western, central and southern Africa
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Fig. 3. Statistical relationships between large-scale climate indices and seasonal flood occurrences in SSA. a) Spearman’s correlation between large-scale climate
indices (x-axis; [left to right]: Nino34, E, C, TPI, NP, TSA, TNSD, SAOD, AMV, EMED, WMED, SWIO, TIO, WTIO, DMI, GT) and the number of floods occurring in DJF
at the sub-catchment scale (y-axis) using four different lag-times (0-, 3-, 6,- 9-month). b-d) Same as a) but for MAM, JJA, and SON. Black dots indicate Spearman’s
correlations that are significant at p ≤ 0.05. Note that on each panel, only sub-catchment experiencing at least 10 % of their annual total amount of floods during the
corresponding seasons are shown.
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than in eastern Africa.
In DJF, when most floods occur in the summer-rain region of

southern Africa (Fig. 2a), the overall contribution of the large-scale
climate modes to southern African flood variability lies between 50
and 60 % (Fig. 4a). We also note that the largest contribution to flood
variability is found in the Pacific Ocean (~14–25 %: Nino34, TPI and
NP), followed by the Indian Ocean (~7.0–20 %: SWI, DMI and TIO) and
the Atlantic Ocean (~5–10 %: AMO, TNSD and SAOD; Fig. 4b). While in
line with previous research highlighting the importance of the combined
impacts of the Pacific, Atlantic and Indian Oceans in modulating rainfall
amount (e.g., Washington and Preston, 2006; Lyon and Mason, 2007;
Hoell et al., 2015; Dieppois et al., 2016, 2019; Hoell and Cheng, 2018;
Pohl et al., 2018; Ullah et al., 2022) and thus flood hazards, these
findings also emphasize the primary importance of the Pacific Ocean in
triggering changes in water supply and flood risks in the summer-rain
region of South Africa. Interestingly, in MAM, we also find that the
same set of large-scale climate modes shows a larger contribution (i.e.,
70–80 %) to variations in flood occurrences over the same region
(Fig. 4c-d). This is consistent with, Monerie et al. (2019), who suggested
that the impact of, and the predictability conferred by, ENSO was larger
over Mozambique than in South Africa.

On the contrary, and consistently with previous studies (e.g., Reason
and Rouault, 2005; Dieppois et al., 2016), the importance of large-scale
variations in the SSTa in modulating the occurrence of floods is lower
over the winter-rain region of southern Africa. Our analysis reveals that
large-scale climate modes explain 30–40 % of the variations in flood
occurrence in the winter-rain region of southern Africa (Fig. 4e). In
addition, the relatively low contributions of large-scale climate modes to
variations in flood occurrence in the southwestern regions of South Af-
rica (winter-rain regions) could reflect a much stronger influence of
human activities (e.g., dams, irrigation, groundwater extraction; Cha-
wanda et al., 2020). Nevertheless, we note that the most important
contributors to flood variations are linked to changing SSTa in the North
and Tropical South Atlantic Ocean (11 %: AMV and TSA), the western
Mediterranean Sea (10 %: WMED), which may share some variations
with the North Atlantic Ocean, and Pacific Ocean (7.0 %: Nino34 and
TPI; Fig. 4f). Meanwhile, the Indian Ocean explains a smaller amount of
variance of flood occurrences (4 %: SWIO and DMI).

In East Africa (i.e., Zambezi, White Nile, and the Africa East Central
Coast), large-scale climate modes only explain between 30 and 50 % of
the variability in the number of floods during MAM. In this region,
changes in the Pacific Ocean (~17–20 %: Nino34 and TPI) seem to be
the primary driver of flood variations, compared to the Indian Ocean
(~7–15 %: SWI, DMI and TIO) and Atlantic Ocean (~5–15 %: AMV,
SAOD and TSA). Regarding the Blue Nile, where most yearly flooding
occurs in JJA, the amount of flood variability linked to changes in large-
scale climate variability is 48 % (Fig. 4e). Most of this variability is
statistically linked to changes in the global ocean temperature (13 %:
GT), the Pacific Ocean (12 %: C, Nino34 and NP), Atlantic Ocean (7.5 %:
TNSD), Mediterranean (12 %: EMED) and Indian Ocean (4.5 %: DMI;
Fig. 4f). This is thus consistent with Omondi et al. (2013) and Segele
et al. (2009), who showed that the main rainfall season of Ethiopia is
influenced by all three oceans (Pacific, Atlantic and Indian Oceans) and
particularly by ENSO.

In western and central Africa, the total variance of flood occurrence
that is linked to changes in large-scale climate variability is very high in
SON (~70–90 %; Fig. 4g). During this season, the Atlantic Ocean
(~9–30 %: AMO and TSA) and the Mediterranean Sea (~13–32 %:

EMED) are the main large-scale drivers of year-to-year variability in
flood occurrence in West and Central Africa (Fig. 4h). The Pacific Ocean
(~3–17 %: Nino34, NP and TPI) and Indian Ocean (~3–19 %: SWIO,
WTIO and DMI) contribute a minor amount to the overall variability
(Fig. 4h). Our findings are in line with Chun et al. (2021), who found
that variations in annual maximum flow in the Niger and Senegal River
are primarily affected by the SSTa in the eastern Mediterranean Sea and
the Atlantic Ocean, while the Pacific and Indian Ocean plays a secondary
role.

3.4. Estimating future impacts of large-scale climate variations in regional
flood hazards

Here, we use the statistical model developed in the previous section
to estimate how, in CMIP5 and CMIP6 SMILEs, different sequences of
internal variability, affecting the phasing and amplitude of key climate
modes (e.g., ENSO, AMV), can alter the number of floods from one 30-
year period to another during the 21st century in 48 sub-catchments
in SSA. In Fig. 5, we illustrate how for an example sub-catchment
(upper Niger sub-catchment), the number of floods simulated in SON
can vary from one 30-year period to another in relation to different
phase and amplitude of key climatic modes during the 21st century in
two different climate models (CanESM5 and GFDL-SPEAR-MED) and in
two realisations of the same model (CanESM5 ensemble members 11
and 16). Comparing CanESM5 and GFDL-SPEAR-MED, we note that
CanESM5 (GFDL-SPEAR-MED) shows two flood-rich and two flood-poor
periods from the 1970 s to 1990 s and from the 2020 s to 2050 s (from
1990 s to 2020 s and from 2050 s to 2070 s), which correspond to
different phasing of EMED, AMV, TIO and NP (Fig. 5b-c). During the
flood-rich period, EMED, AMV and NP tend to be warmer, while TIO
tend to be cooler and vice-versa during flood-poor periods. Similarly,
comparing two realisations (or ensemble members) of the same climate
model, we note that differences in the simulated number of floods,
associated with different phasing and amplitude of internal modes of
climate variability (Fig. 5e-f), can be remarkably like when comparing
two different climate models (Fig. 5a, d).

Applying the same analysis to all SSA sub-catchments and using 12
CMIP5 and CMIP6 SMILEs, we analyse the 90th, 10th percentiles and the
standard deviation, i.e., the upper, lower bound and long-term vari-
ability in the probable impacts of future large-scale climate modes of
variability on flood occurrence over a moving window of 30-years be-
tween 2015 and 2100 (Fig. 6). Overall, we find that different over-
lapping phases and amplitudes of key modes of large-scale climate
variability could be associated with variation in the number of floods of
approximately between ± 10 to ± 50 % on average from one 30-year
period to another across SSA. However, the potential future impact of
large-scale climate variability on flood frequency varies from one season
to another.

In DJF, over the summer-rain region of southern Africa, different
sequences of large-scale modes of variability in different CMIP5 and
CMIP6 SMILEs could lead to potential increases (decreases) in the
number of floods that range from + 21 and + 52 % (− 17 and − 37.5 %)
from one 30-year period to another during the 21st century, as deter-
mined by the 90th (10th) percentile (Fig. 6a-b). In the same region,
using different SMILEs, the future impacts of large-scale climate modes
of variability are found to be associated with relative standard de-
viations in future flood occurrence that are ranging from+ 16 to+ 40 %
across the sub-catchments from one 30-year period to another during

Fig. 4. Combined and relative importance of the large-scale drivers in modulating seasonal flood occurrences in SSA between 1950 and 2014. a) Combined and b)
relative importance of large-scale climate indices to year-to-year variations in the number of floods in DJF, here quantified though the total R2 expressed as a
percentage from the corresponding GLM models, and by decomposing/quantifying the contribution of each regressor (climate indices) to the total R2 using
dominance analysis, respectively. Panels c-d), e-f), and g-h) are the same as panels a-b) but for MAM, JJA, and SON, respectively. On the left panels, hatching
indicates sub-catchments where the total R2 expressed by the GLM models is not significant according to a chi-square test at p ≤ 0.05. On the right panels, only sub-
catchments receiving at least 10 % of their total number of floods during the corresponding seasons are displayed.
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the 21st century (Fig. 6c). In the same region in MAM, future large-scale
climate variations contribute to slightly greater ranges of variation in
flood occurrences, especially in sub-catchments that tend to experience
fewer floods during this time of the year (Fig. 6d-f). In the winter rain
region of southern Africa, where more than 50 % of floods occur in JJA,
the future impact of large-scale climate modes of variability in different
CMIP5 and CMIP6 SMILEs is found to be associated with a relative
standard deviation in future flood occurrence ranging from+ 11 to+ 25
% across sub-catchments from one 30-year period to another during the
21st century (Fig. 6g-i).

In MAM, in East Africa, especially over the White Nile and the Africa
East Central Coast catchments, different phases and amplitudes of large-
scale modes of variability in different CMIP5 and CMIP6 SMILEs could
lead to potential increases (decreases) in the number of floods ranging
from + 22.5 and + 33 % (− 20 and − 28 %) across catchments from one
30-year period to another during the 21st century, as determined by the

90th (10th) percentile (Fig. 6d-e). We also note that the future impacts
of large-scale climate modes of variability are found to be associated
with relative standard deviations in future flood occurrence ranging
from 17 to 27 % across catchments from one 30-year period to another
during the 21st century (Fig. 6f). Across the Blue Nile, in JJA, the future
impacts of large-scale climate modes of variability are found to be
associated with a relative standard deviation in future flood occurrence
of 11 % from one 30-year period to another during the 21st century
(Fig. 6g-i).

Over western and central Africa, in JJA and especially SON, different
sequences of large-scale modes of variability in different CMIP5 and
CMIP6 SMILEs could lead to potential increases (decreases) in the
number of floods ranging from+ 15 and+ 88% (− 11 and − 45%) across
catchments from one 30-year period to another during the 21st century,
as determined by the 90th (10th) percentile (Fig. 6g-h, j-k). We also
found that the future impacts of large-scale climate modes of variability

Fig. 5. Long-term changes in the number of floods in the Upper Niger sub-catchment (Niger_3) and associated changes in large-scale climate drivers in the Atlantic
Ocean, Mediterranean Sea, Indian and Pacific Oceans. a) Thirty-year running mean of the simulated number of floods during SON in response to large-scale climate
variations in the Upper Niger sub-catchment under two CMIP6 models: CanESM5 member 11 (model 1) and GFDL-SPEAR-MED member 6 (model 2). b) Thirty-year
running mean of EMED and AMV indices in the same two CMIP6 models (CanESM5 member 11 and GFDL-SPEAR-MED member 6). c) Same as b) but for the TIO and
NP climate indices. d-f) Same as a-c), but for two different ensemble members from CanESM5 (member 11 and member 16).
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Fig. 6. Potential impact of sequences of large-scale climate variability on seasonal flood hazards in SSA during the 21st century. a-c) 90th and 10th percentiles (left
and middle panels), as well as relative standard deviation (SD; right panel) of the projected impacts of large-scale climate variability on flood frequency across SSA in
DJF in CMIP5 and CMIP6 SMILEs over all projected 30-year periods during the 21st century. d-f), g-i), and j-l) same as a-c) but for MAM, JJA and SON, respectively.
The impact of large-scale climate variations on the number of floods is estimated using a stepwise generalized linear model based on a Poisson distribution. We then
calculate the difference between simulated flood frequency over the historical period (1985–2014) and each future 30-year period (SSP-RCP5.85 scenarios:
2015–2100) in the 12 CMIP5-6 SMILEs (totalling 400 realisations). Note that on each panel, only the sub-catchments experiencing at least 30% of their annual total
number of floods during the corresponding seasons are shown.
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tend to be associated with a relative standard deviation in future flood
occurrence ranging from 10 to 61 % from one 30-year period to another
during the 21st century (Fig. 6i, l).

3.5. Differences between climate models in estimating future flood risk
due to large-scale climate drivers

For each CMIP5 and CMIP6 SMILE, Fig. 7 shows the ensemble spread
in the simulated impact of different sequences of climate variability on
the number of floods between one 30-year period to another in the 21st
century across SSA. We find that all CMIP5 and CMIP6 SMILEs show
regionally consistent standard deviations in the impact of large-scale
climate variability on the number of floods (Fig. 7a, c-d). For each
season and region, the relative standard deviations in the simulated
impact of large-scale climate variability on regional flood frequency
only differ by 10 % on average from one climate model to another.

However, focusing on specific regions, we note non-negligible inter-
model differences in the simulated impact of large-scale climate varia-
tions on flood hazard. For instance, in DJF and MAM over southern
Africa, some models (e.g., CSIRO-MK3, GFDL-CM3, GFDL-ESM2M,
MIROC-ES2L) exhibits greater variability in flood hazard in response
to large-scale climate variability compared to the other climate models
(Fig. 7a-b). On the contrary, over the same season and regions, some
models (e.g., ACCESS-ESM1-5, CanESM5, IPSL-CM6A-LR) show lower
variability in flood hazard in response to large-scale climate variability
(Fig. 7a-b). These differences in the impact simulated by different groups
of climate models are consistent with contrasted performance in simu-
lating the variance of key climate modes of variability for southern Af-
rican floods. For instance, some models underestimate (e.g., GFDL-CM3
and GFDL-ESM2M) or overestimate (e.g., CanESM5, and IPSL-CM6A-LR)
the amplitude of ENSO variations (McKenna et al., 2020). Similarly,
some models underestimate (e.g., CSIRO-MK3, GFDL-CM3) or over-
estimate (e.g., GFDL-ESM2M) the IPV and PDV on decadal timescales
(Coburn& Pryor, 2021). In the Indian Ocean, some models overestimate
(e.g., CSIRO-MK3, GFDL-ESM2M, ACCESS-ESM1-5, CanESM5 and IPSL-
CM6A-LR) or underestimate (e.g., GFDL-CM3) the amplitude of IOD
variations (McKenna et al., 2020).

Similarly, in JJA and SON, over western Africa, some models (e.g.,
CSIRO-MK3, GFDL-CM3, GFDL-ESM2M, MIROC6, MPI-GE) show much
higher variability in flood hazard in response to large-scale climate
variability compared to the other climate models (Fig. 7c-d).
Conversely, other models (e.g., MIROC-ES2L, ACCESS-ESM1-5, Can-
ESM5, IPSL-CM6A-LR) show much lower variability in flood hazard in
response to large-scale climate variability (Fig. 7c-d). These differences
in the impact simulated by different groups of climate models are
consistent with contrasted performance in simulating the variance of the
AMV (Coburn & Pryor, 2021; Richter & Tokinaga, 2020), which appear
to be underestimated in some models (e.g., CSIRO-MK3, GFDL-CM3,
MPI-GE, ACCESS-ESM1-5, IPSL-CM6A-L and MIROC-ES2L) or over-
estimated in others (e.g., GFDL-ESM2M, CanESM5).

4. Discussion and conclusions

This study aims to estimate and understand the combined and rela-
tive contributions of large-scale climate modes of variability in modu-
lating the frequency of seasonal flood occurrence in the observed and
future climates in SSA. While some previous studies have attempted to
characterize past changes in floods in SSA (e.g., Descroix et al., 2013;
Nka et al., 2015; Aich et al., 2016; Do et al., 2017; Wilcox et al., 2018;
Degefu et al., 2019), these endeavours have been generally limited to the
catchment scale, obscuring broader climatic influences on several
catchments in a given region (Kingston et al., 2020).

Using a 65-year daily streamflow dataset, covering over 600 catch-
ments of SSA (Ekolu et al., 2022), we examine the relationship between
large-scale climate variability and regional/seasonal flood occurrence.
Despite potential impacts of human activities (e.g., dams, irrigation,

groundwater extraction) on the detection of flood events (Chawanda
et al., 2020), we find significant statistical relationships between flood
occurrences and large-scale modes of climate variability across all re-
gions of SSA, consistent with previous studies on rainfall (e.g., Fontaine
et al., 2010; Rodríguez-Fonseca et al., 2015; Hoell et al., 2015; Dieppois
et al., 2016; Parhi et al., 2016; Nicholson, 2017; Sidibe et al., 2019). To
further understand the combined and relative importance of each mode
of large-scale climate variability in modulating seasonal and regional
flood occurrence, we use stepwise regressions and dominance analysis.
This analysis revealed that the combined impact of large-scale climatic
drivers can explain between 30 and 90 % of the observed variability in
flood occurrences across SSA between 1950 and 2014. The importance
of large-scale climate variations in modulating flood risks appears to be
particularly important in western, central, and southern Africa. Mean-
while, floods in the winter-rain region of South Africa and in East Africa
showed weaker teleconnections to large-scale climate variability.
Furthermore, while the Pacific and Indian Oceans were found to be the
primary drivers of long-term variations in flood occurrence in southern
and eastern Africa, the Atlantic Ocean and Mediterranean Sea exhibit a
much greater role in western and central Africa. Nevertheless, while
these results reveal statistical associations between flooding in SSA and
modes of large-scale climate variability, more formal causality testing
would help further strengthen our understanding of the causality.

Besides the role of large-scale modes of SSTa, regional circulation
patterns may also play a key role in modulating regional and seasonal
flood risk. For example, recent studies have shown that the Angola low
may weaken or strengthen the effect of ENSO on southern Africa’s
rainfall (Crétat et al., 2019; Pascale et al., 2019). In addition, while
rainfall variability in the winter-rain region of South Africa is known to
be primarily related to midlatitude frontal activity in southern Africa
(Reason and Rouault, 2005; Dieppois et al., 2016), the weaker large-
scale teleconnections observed in this region may also highlight
greater influence of human activities on river discharge (Chawanda
et al., 2020). Such information is particularly important for developing
seamless seasonal and decadal forecasts for flood risk management (Neri
et al., 2019; Emerton et al., 2019; Moulds et al., 2023) but were
currently missing for the SSA region. They are equally important to
further understand how internal climate variability could modulate the
effects of anthropogenic climate change and globally rising tempera-
tures on flood risks over the longer-term future (e.g., Deser et al., 2014,
2016; Monerie et al., 2017).

In this regard, based on a statistical framework using 12 CMIP5 and
CMIP6 SMILEs, we estimate how different sequences of internal vari-
ability, affecting the phasing and amplitude of key climate modes (e.g.,
ENSO, AMV), could alter the number of floods from one 30-year period
to another during the 21st century in 48 sub-catchments in SSA. We find
that the future seasonal mean number of floods in SSA could plausibly
increase by up to + 10–50 %, or reciprocally decrease by up to − 10 to
− 50 %, relatively to the historical average in response to contrasting
sequences of large-scale climate variability from one 30-year period to
another over the course of the 21st century. We also note that the
relative contributions of large-scale climate variations in modulating
future flood risks over the 21st century is regionally consistent across all
CMIP5 and CMIP6 SMILEs. Nevertheless, we found slight discrepancies
between models, which may be related to contrasting performances in
simulating key modes of climate variability, such as ENSO and AMV
(McKenna et al., 2020; Richter & Tokinaga, 2020; Coburn & Pryor,
2021). For example, McKenna et al. (2020) demonstrate that certain
climate models, such as CSIRO-MK3, GFDL-CM3, and GFDL-ESM2M,
tend to overestimate the variance of ENSO and or AMV, and this could
lead to greater variations in flood occurrence in these models compare to
others in our modelling framework.

Furthermore, our analysis reveals significant positive correlations
between the seasonal maximum flood magnitude, duration, and the
seasonal number of floods across most stations in SSA, suggesting shared
underlying drivers across these flood characteristics. This underscores
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that internal climate modes of variability may also modulate future
changes in flood magnitude and duration in SSA. The extent to which
internal climate variability may influence future changes in flood
magnitude and duration, however, remain to be quantified and should
be the focus of future studies.

By advancing the understanding of potential impacts of climate
variability on flooding, our study provides valuable information for
effective disaster risk reduction and management. The identification of
potential predictors presents a pathway for (a) their inclusion in the
design of shorter-term empirical flood risk prediction system, and (b) the
development of storylines of long-term combined impacts of internal
climate modes of variability and anthropogenic climate changes on
flood risks in SSA.

Data and materials availability.
Daily streamflow data are available through the SIEREM (https://

www.hydrosciences.fr/sierem/) and the GRDC databases (https://por-
tal.grdc.bafg.de/). CMIP5 and CMIP6 data are publicly available at
https://esgf-index1.ceda.ac.uk. ERSST.v5 is available at https://cli-
mexp.knmi.nl.

Code availability.
The code used in this study to produce the data analysed was

developed in R programming and can be provided upon reasonable
request to JE.
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Sima, A., Swingedouw, D., Thiéblemont, R., Traore, A. K., Van-coppenolle, M., Vial,
J., Vialard, J., Viovy, N., and Vuichard, N. (2020). Presentation and Evaluation of
the IPSL-CM6A-LR Climate Model. Journal of Advances in Modeling Earth Systems,
12(7), e2019MS002010. Doi: 10.1029/2019MS002010.

Boyer, J.F., Dieulin, C., Rouche, N., Cres, A., Servat, E., Paturel, J.E., Mahé, G., 2006.
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Loizeau, J.-L., Maselli, V., Matanó, A., Olabode, O., Pasqualotto, F., Sengwei, W.,
Tirivarombo, S., Van Loon, A.F., Comte, J.-C., 2024. Prolonged drought periods over
the last four decades increase flood intensity in southern Africa. Science of the Total
Environment 924, 171489. https://doi.org/10.1016/j.scitotenv.2024.171489.

Gaetani, M., Fontaine, B., Roucou, P., Baldi, M., 2010. Influence of the Mediterranean
Sea on the West African monsoon: Intraseasonal variability in numerical simulations.
Journal of Geophysical Research: Atmospheres 115 (D24). https://doi.org/10.1029/
2010JD014436.

Giannini, A., Saravanan, R., Chang, P., 2005. Dynamics of the boreal summer African
monsoon in the NSIPP1 atmospheric model. Climate Dynamics 25 (5), 517–535.
https://doi.org/10.1007/s00382-005-0056-x.

Giannini, A., Biasutti, M., Held, I.M., Sobel, A.H., 2008. A global perspective on African
climate. Climatic Change 90 (4), 359–383. https://doi.org/10.1007/s10584-008-
9396-y.

Gosling, S.N., Arnell, N.W., 2016. A global assessment of the impact of climate change on
water scarcity. Climatic Change 134 (3), 371–385. https://doi.org/10.1007/s10584-
013-0853-x.

Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M.A., Abe, M.,
Ohgaito, R., Ito, A., Yamazaki, D., Okajima, H., Ito, A., Takata, K., Ogochi, K.,
Watanabe, S., Kawamiya, M., 2020. Development of the MIROC-ES2L Earth system
model and the evaluation of biogeochemical processes and feedbacks. Geoscientific
Model Development 13 (5), 2197–2244. https://doi.org/10.5194/gmd-13-2197-
2020.

Harrigan, S., Zsoter, E., Alfieri, L., Prudhomme, C., Salamon, P., Wetterhall, F.,
Barnard, C., Cloke, H., Pappenberger, F., 2020. GloFAS-ERA5 operational global
river discharge reanalysis 1979–present. Earth System Science Data 12 (3),
2043–2060. https://doi.org/10.5194/essd-12-2043-2020.

Henley, B.J., Gergis, J., Karoly, D.J., Power, S., Kennedy, J., Folland, C.K., 2015.
A Tripole Index for the Interdecadal Pacific Oscillation. Climate Dynamics 45 (11),
3077–3090. https://doi.org/10.1007/s00382-015-2525-1.

Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S.,
Kim, H., Kanae, S., 2013. Global flood risk under climate change. Nature Climate
Change 3 (9), 816–821. https://doi.org/10.1038/nclimate1911.

Hoell, A., Cheng, L., 2018. Austral summer Southern Africa precipitation extremes forced
by the El Niño-Southern oscillation and the subtropical Indian Ocean dipole. Climate
Dynamics 50 (9), 3219–3236. https://doi.org/10.1007/s00382-017-3801-z.

Hoell, A., Funk, C., Magadzire, T., Zinke, J., Husak, G., 2015. El Niño-Southern
Oscillation diversity and Southern Africa teleconnections during Austral Summer.
Climate Dynamics 45 (5), 1583–1599. https://doi.org/10.1007/s00382-014-2414-z.

Huang, S., Li, P., Huang, Q., Leng, G., Hou, B., Ma, L., 2017. The propagation from
meteorological to hydrological drought and its potential influence factors. Journal of
Hydrology 547, 184–195. https://doi.org/10.1016/j.jhydrol.2017.01.041.

Jain, S., Scaife, A.A., Shepherd, T.G., Deser, C., Dunstone, N., Schmidt, G.A.,
Trenberth, K.E., Turkington, T., 2023. Importance of internal variability for climate
model assessment. Npj Climate and Atmospheric Science 6, 68. https://doi.org/
10.1038/s41612-023-00389-0.

Janowiak, J.E., 1988. An Investigation of Interannual Rainfall Variability in Africa.
Journal of Climate 1 (3), 240–255. https://doi.org/10.1175/1520-0442(1988)
001<0240:AIOIRV>2.0.CO;2.

Jeffrey, S., Rotstayn, L., Collier, M., Dravitzki, S., Hamalainen, C., Moeseneder, C.,
Wong, K., Syktus, J., 2013. Australia’s CMIP5 submission usingthe CSIRO-Mk3.6
model. Australian Meteorological and Oceanographic Journal 63 (1), 1–13. https://
doi.org/10.1071/es13001.

Kay, J.E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J.M., Bates, S.
C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.-F.,
Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K.,
Vertenstein, M., 2015. The Community Earth System Model (CESM) Large Ensemble
Project: A Community Resource for Studying Climate Change in the Presence of
Internal Climate Variability. Bulletin of the American Meteorological Society 96 (8),
1333–1349. https://doi.org/10.1175/BAMS-D-13-00255.1.

Kingston, D.G., Massei, N., Dieppois, B., Hannah, D.M., Hartmann, A., Lavers, D.A.,
Vidal, J.-P., 2020. Moving beyond the catchment scale: Value and opportunities in
large-scale hydrology to understand our changing world. Hydrological Processes 34
(10), 2292–2298.

Kirchmeier-Young, M.C., Zwiers, F.W., Gillett, N.P., 2017. Attribution of Extreme Events
in Arctic Sea Ice Extent. Journal of Climate 30 (2), 553–571. https://doi.org/
10.1175/JCLI-D-16-0412.1.
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