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Abstract
Summary: Unsupervised deconvolution algorithms are often used to estimate cell composition from bulk tissue samples. However, applying cell- 
type deconvolution and interpreting the results remain a challenge, even more without prior training in bioinformatics. Here, we propose a tool for 
estimating and identifying cell type composition from bulk transcriptomes or methylomes. DECOMICS is a shiny-web application dedicated to unsu
pervised deconvolution approaches of bulk omic data. It provides (i) a variety of existing algorithms to perform deconvolution on the gene expres
sion or methylation-level matrix, (ii) an enrichment analysis module to aid biological interpretation of the deconvolved components, based on enrich
ment analysis, and (iii) some visualization tools. Input data can be downloaded in csv format and preprocessed in the web application (normalization, 
transformation, and feature selection). The results of the deconvolution, enrichment, and visualization processes can be downloaded.
Availability and implementation: DECOMICS is an R-shiny web application that can be launched (i) directly from a local R session using the R 
package available here: https://gitlab.in2p3.fr/Magali.Richard/decomics (either by installing it locally or via a virtual machine and a Docker image 
that we provide); or (ii) in the Biosphere—IFB Clouds Federation for Life Science, a multi-cloud environment scalable for high-performance com
puting: https://biosphere.france-bioinformatique.fr/catalogue/appliance/193/.

1 Introduction
Identification of the cell composition contributing to bulk 
molecular signals is a major challenge in molecular analysis 
in various applications, including cancer research (Nguyen 
et al. 2024). The development of in silico deconvolution 
methods has made it possible to revisit existing bulk omic 
data from large patient cohorts with regard to intra-sample 
heterogeneity, and thus to compare sample cell composition 
with available clinical annotations such as treatment re
sponse. Both supervised (Avila Cobos et al. 2020) and unsu
pervised (Onuchic et al. 2016, Sompairac et al. 2019, Chen 
et al. 2020, Qin et al. 2020, Kang et al. 2021) deconvolution 
methods have been proposed in the literature. Supervised 
methods estimate the component proportions using known 
cell-type reference matrices, whereas unsupervised methods 
estimate both the reference profiles and the component pro
portions, without prior knowledge except for the number of 

components to be considered. Supervised approaches are 
therefore limited by the quality of the reference signatures, 
while unsupervised approaches present difficulties in inter
preting the inferred components and estimating the number 
of components to be considered. An intriguing advantage of 
unsupervised methods is that, unlike supervised methods, 
they can identify new cell populations or populations that 
would not have been taken into account a priori. 
Unsupervised deconvolution approaches have recently been 
used to identify radiogenomic signatures to predict prognosis 
of colorectal cancer (Zhong et al. 2022), to identify cellular 
compartments in unknown tumoral samples (Peng et al. 
2019), or to infer clinical outcomes in melanoma patients 
(Nazarov et al. 2019). Applying unsupervised deconvolution 
approaches to patient cohorts is now possible thanks to re
cent advances in high-throughput sequencing that have gen
erated an enormous amount of transcriptomic data as well as 
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numerous methylome data. This is particularly true in the 
field of oncology, where more and more biological samples 
are being sequenced to help with patient stratification and 
prognosis. However, analyzing this type of data requires pro
fessional coding skills, which are rarely available to clini
cians. In order to appeal large data analysis to a wider 
audience, user-friendly alternatives have been devised, includ
ing the development of the R-shiny package, which enables 
interactive web applications to be built using the R statistical 
and data mining software (Jia et al. 2022). If web applica
tions exist to apply supervised algorithms on clinical datasets 
(Li et al. 2020), exploration of unsupervised algorithms has 
been so far limited to bioinformaticians with computing skills 
and does not provide guidance for biological interpretation 
of their outputs. Here we propose DECOMICS, a user-friendly 
shiny interactive web application designed to perform unsu
pervised deconvolution on transcriptomic and methylome 
(DNAm) data. Six different unsupervised methods are imple
mented in DECOMICS, including the most commonly used 
[independent component analysis (ICA) and non-negative 
matrix factorization (NMF)], and more recent algorithms 
[CDSeq; Kang et al. 2021), debCAM (Chen et al. 2020), 
PREDE (Qin et al. 2020), and EDec (Onuchic et al. 2016)]. 
Our tool also provides guidance during the process and helps 
with the biological interpretation of the results, which should 
be of significant interest for both bioinformaticians 
and clinicians.

2 Software description
DECOMICS is a Shiny application available as an R package 
that can be built from source (GitLab access) or used online 
through the biosphere cloud of the IFB (Institut Français de 
Bioinformatique). The DECOMICS workflow is illustrated in  
Fig. 1. It includes a guide section, which serves as materials 
and methods, and two main modules: the deconvolution 
module and the biological interpretation module (Fig. 1A 
and B).

2.1 Deconvolution module
The deconvolution module (Fig. 1C) is used to load the data, 
carry out the preprocessing, estimate the number of compo
nents, run the deconvolution, and visualize the results. File input 
(i) requires a .csv file containing the omic data (either gene ex
pression or DNAm) with samples in columns and features in 
rows. Gene expression can be in the form of raw counts, 

processed counts, or processed gene expression in the case of 
microarray-based technologies. We offer basic preprocessing 
features for gene expression data in step 2. DNAm data should 
be provided in the form of β-values. Basic preprocessing (ii) of 
the gene expression data can be achieved within the application, 
including normalization adapted to RNA-seq data (Read-per- 
million or DESeq2) and transformation (log2 or pseudoLog). 
Preprocessing also includes the option to select a subset of fea
tures. Specifically, one can choose the top 1000 or 5000 gene 
expressions, or the top 10 000 or 20 000 β-values, based on the 
highest coefficients of variation. The number of components 
(iii) to infer (corresponding to the deconvoluted components) 
has to be estimated by the user. In general, the optimal number 
of components can be identified through various methods, in
cluding Cattell’s rule applied to principal component analysis 
(PCA) eigenvalues (Cattell 1966), the minimum description 
length (MDL; Chen et al. 2020), bootstrapping techniques 
(Houseman et al. 2016), and cross-validation methods (Lutsik 
et al. 2017). However, in a prior benchmark analysis, we found 
that different methods yielded comparable results (Decamps 
et al. 2020). For the sake of clarity, we have chosen to present a 
single method in the application: a guidance plot based on PCA 
eigenvalues. Then deconvolution (iv) is run by one of the six 
unsupervised algorithms provided in the application. 
Depending on the type of omic data provided, a subset of algo
rithms is available: (i) ICA, NMF, CDSeq, debCAM, and 
PREDE for gene expression data, and (ii) ICA, NMF, debCAM, 
and EDec for DNAm data. Finally, deconvolution results (v) 
can be visualized by (i) a “cell-type” signature heatmap display
ing the five top markers of each component, and (ii) a “cell- 
type” proportion heatmap of each component.

2.2 Biological interpretation module
The biological interpretation module (Fig. 1D) performs an 
enrichment analysis on the components estimated by the cho
sen deconvolution algorithm and displays the deconvoluted 
proportion matrix. First, we propose an enrichment analysis 
(vi) step, to help with the biological interpretation of the 
components identified by unsupervised approaches. It pro
poses to perform enrichment analysis [gene set enrichment 
analysis (GSEA) or over-representation analysis (ORA)] using 
various biological databases: “CellMatch” (Shao et al. 2020), 
a reference database derived from various resources and 
other reference ones (GO, GTEx, KEGG, Reactome, Tissue 
Cell Types, Cancer Cell Types, and Cancer Cell lines). 
Second, a proportion visualization (vii) section offers the 

Figure 1. An overview of DECOMICS workflow to perform deconvolution of omics data. (A) Screenshot of the application. (B) Summary of the DECOMICS 
process. (C) Workflow of the module “Deconvolution.” (D) Workflow of the module “Biological interpretation.”
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possibility to visualize the full component distribution for a 
single sample, or the distribution of a single component 
throughout the total cohort.

3 Material and methods
3.1 Deconvolution algorithms
Unsupervised deconvolution problem applied to omic bulk 
data consists in solving an equation of form X¼ A×T where 
T and A are jointly inferred from X. This is achieved by esti
mating the mixture of K cell-types, present in different pro
portions in each sample (cell-type proportion matrix A). 
Therefore, X can be described as a combination of cell-type 
specific molecular profiles (cell-type specific gene expression 
matrix T). The specifics of each existing unsupervised decon
volution algorithm and the reasons for choosing to include 
them or not in the DECOMICS application are presented in 
Supplementary Table S1. In DECOMICS, we provide six dif
ferent algorithms to run deconvolution: ICA is a blind source 
separation algorithm that decomposes signal into statistically 
independent components. In DECOMICS, ICA deconvolution 
is run using fastICA (R CRAN) and the Deconica 
(Czerwinska 2018) R packages. By default, 30 significant 
gene markers are selected to get component scores, using the 
“weighted.mean” summary metric.

� NMF (Gaujoux and Seoighe 2010): In NMF approach, 
the molecular profile matrix X is factorized into two ma
trices A and T, with the property that all three matrices 
have no negative elements. DECOMICS uses the R CRAN 
NMF package with method ¼ “snmf/r.” The estimated A 
matrix is constrained to sum the proportion to 1, and T is 
computed as T ¼ A− 1X using the ginv inverse function 
from MASS R package. Finally, all negative values for T 
are set to 0. 

� CDSeq (Kang et al. 2021) aims at simultaneously estimat
ing A and T matrices using a probabilistic model based on 
latent Dirichlet allocation (LDA). DECOMICS uses the R 
implementation of the CDseq method CDSeqR with the 
following parameters: beta ¼ 0.5, alpha ¼ 5, mcmc_itera
tions ¼ 300. The reduction factor is computed to avoid 
expression values >105; block numbers and gene block 
size are computed such that a block does not exceed 
103 genes. 

� debCAM (Chen et al. 2020) stands for deconvolution by 
Convex Analysis of Mixtures. This method uses a geomet
ric approach to identify a solution to the NMF problem 
in the simplex space. Thus, the proposed solution for A is 
always a proportion matrix. In DECOMICS, the function 
CAM is called from the debCAM R packages using the fol
lowing empirical parameters: cluster.num is computed to 
be five times greater than the number of expected compo
nents, and dim.rdc set to divide the number of input genes 
by a tenth. 

� PREDE (Qin et al. 2020) is a method that offers the possi
bility to conduct partial reference-based deconvolution 
method solved via an iterative Quadratic Programming 
procedure. In DECOMICS, PREDE function is used from 
PREDE R package, with the following parameters: W1 ¼
NULL (which corresponds to a complete deconvolution 
approach), type ¼ “GE,” iters ¼ 100 and rssDiffStrop 
¼ 1e−5. 

� EDec-step1 (Onuchic et al. 2016) estimates both average 
component methylation profiles and component propor
tions using an iterative constrained matrix factorization 
algorithm. This algorithm identifies cell type-specific 
methylation profiles and constituent cell type proportions 
by minimizing the Euclidean distance between the recon
stituted and original mixed methylation matrices. 
In DECOMICS, we use the EDec::run_edec_stage_1 
function with the parameters max_its ¼ 2000 and 
rss_diff_stop ¼ 1e−10. 

3.2 Gene set enrichment analysis
In order to biologically characterize each of the unsupervised 
components identified, biological enrichment analyses are 
performed. For each component, the first step consists in 
ranking the genes according to their coordinates on the com
ponent, in order to identify the most contributing genes of 
the component. For methylation data, CpG coordinates are 
aggregated at the gene level, taking the maximum value ob
served for CpGs of the same gene. This approach is a way of 
considering a gene as strongly contributing to the component 
if it has at least one strongly contributing CpG. In a second 
step, an enrichment analysis is performed either based on 
GSEA (Mootha et al. 2003) or ORA (Goeman and B€uhlmann 
2007). If the coordinates contain sufficient nonduplicate val
ues (threshold set at 30% by default) to enable reliable order
ing of the values, a GSEA analysis is performed using the 
fgsea R package (Korotkevich et al. 2021); otherwise, an 
ORA analysis is performed, taking as gene selection the top 
20% of the component’s most contributing genes and as gene 
universe all the genes available in the user’s dataset. Various 
biological databases can be queried. DECOMICS includes the 
CellMatch database restricted to the human species and cell 
types with at least three marker genes per cell type. After fil
tering, it provides marker genes for 120 different cell types 
across 103 normal tissues and 26 tumoral tissues. DECOMICS 
also includes the latest versions of the following biological 
databases provided on the Enrichr (Chen et al. 2013) 
tool website:

� Cancer Cell Line Encyclopedia (967 terms) 
� CellMarker Augmented 2021 (1097 terms) 
� GO Biological Process 2023 (5407 terms) 
� GO Cellular Component 2023 (474 terms) 
� GO Molecular Function 2023 (1147 terms) 
� GTEx Tissues V8 2023 (511 terms) 
� KEGG 2021 Human (320 terms) 
� MSigDB Oncogenic Signatures (189 terms) 
� NCI 60 Cancer Cell Lines (93 terms) 
� Reactome 2022 (1818 terms) 

Prior to the enrichment analysis, components obtained 
from the ICA-based method are reoriented, following the ap
proach proposed in the deconica R package, which is based 
on the hypothesis that the highest absolute values of a com
ponent's weight should be positive.

4 Availability
Installation instructions can be found on the DECOMICS gitlab 
webpage: https://gitlab.in2p3.fr/Magali.Richard/decomics. There 
are three installation options: (i) full local installation, (ii) running 
locally a virtual machine (VM), or (iii) using the Biosphere-IFB 
cloud. Local installation requires several packages to be loaded. 
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Figure 2. Illustration of DECOMICS-based deconvolution of gene expression data. (A) Parameters used in the DECOMICS application are described. 
(B) Scree plot illustrating the selection process for the number of components to be deconvolved (module 1, step 3: number of cell types). (C, D) 
Deconvolution results are presented: (C) component signatures are plotted and (D) a heatmap showing component proportions (module 1, step 5: 
results). (E, F) Visualization of component distribution: (E) distribution of a specific component across the cohort and (F) distribution of all components 
within a given sample (module 2, step 7: proportion visualization). (G) Enrichment plot displaying the enrichment analysis for each component (module 2, 
step 6: enrichment analysis), ORA indicates if an overrepresentation analysis has been performed, and GSEA indicates if a gene set enrichment analysis 
has been performed for a given sample. Pval corresponds to the adjusted P-values of the enrichment score (ES) after correction for multiple testing.
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To help users, we propose a conda recipe on the DECOMICS 
gitlab webpage. To offer the possibility to run DECOMICS on a 
local VM, we built a docker container. The user simply needs to 
install docker on their machine and launch the provided image. 
Finally, DECOMICS is deployed on the Biosphere portal (search
able through the RAINBio catalog). To use the clouds of IFB- 
Biosphere, users need to create an account and get membership 
of an active group (more information can be found here: https:// 
ifb-elixirfr.github.io/biosphere/signin). Then users can deploy and 
connect to VM using the web interface (tutorial here: https://ifb- 
elixirfr.github.io/biosphere/vm_connect).

5 Application and results
We have provided two use cases to illustrate the DECOMICS 
pipeline. The first use case is based on gene expression data 
(GSE64385; Becht et al. 2016). Dataset is available for down
load in .csv format from the DECOMICS application. This data
set consists of a mixture of six cell types: HTC116, neutrophils, 
natural killer cells, monocytes, B cells, and T cells. As shown in  
Fig. 2, the unsupervised components identified by DECOMICS 
are highly consistent with the constituent cell types. In this ex
ample, the deconvolution algorithm employed is debCAM and 
the functional enrichment analyses were performed using the 
CellMatch database. The second use case utilizes DNAm pro
files from reconstituted mixtures of six purified immune cells 
derived from human blood samples (GSE77797; Koestler et al. 
2016). This example further showcases the efficacy of the 
DECOMICS pipeline for DNAm unsupervised deconvolution 
and biological interpretation of the unsupervised components. 
Detailed information on this use case is provided in 
Supplementary Fig. S1, and the corresponding .csv dataset is 
available for download from the DECOMICS application. In the 
DECOMICS pipeline, the input data consist of simple count 
tables in .csv format, which can be uploaded directly to the ap
plication. Example input files demonstrating the input format 
are available for download from the application. The prepro
cessed data (.csv), deconvolution results (.rds), top 100 contrib
uting genes of each component (.csv), estimated typical gene 
expressions for components (.csv), and proportion estimates (. 
csv) can also be downloaded from the application. Additionally, 
enrichment analyses can be downloaded in the form of a .csv ta
ble containing the enrichment scores and P-values for the que
ried database.

6 Discussion
Despite their advantages over supervised methods, the use of 
unsupervised deconvolution methods is not trivial, as it 
requires a priori knowledge of the number of cell populations 
to be considered, as well as a biological interpretation of the 
estimated components. Here we provide a user-friendly inter
active web-application to perform unsupervised deconvolution 
by assisting the user in the choice of the number of compo
nents and biological interpretation of the results. Significant 
efforts have been made by colleagues to integrate unsupervised 
deconvolution into analysis pipelines, including determining 
the number of components to infer and interpret the biological 
data (Li and Wu 2019, Scherer et al. 2020). However, execut
ing these pipelines in their entirety necessitates the installation 
of R packages and the use of command line interfaces, which 
our web application avoids. Additionally, these pipelines offer 
a limited selection of deconvolution methods, restricted to 

those developed by the authors of the integrative pipeline. In 
this work, we propose an unbiased approach that incorporates 
several deconvolution methods. DECOMICS stands out for its 
ease of use, speed, and comprehensive documentation. It is 
designed to be accessible to users without expertise in R or bio
statistics. With its integrated biological interpretation feature, 
users can seamlessly perform both deconvolution and interpre
tation within the same platform, eliminating the need for exter
nal tools. Moreover, DECOMICS is highly adaptable, allowing 
for easy updates and redeployment as new reference-free meth
ods or enrichment analysis databases become available. This 
flexibility ensures that DECOMICS remains at the cutting edge, 
capable of incorporating the latest technical and methodologi
cal advancements.
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