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ABSTRACT
Deep Learning (DL) technologies have recently gained significant
attention and have been applied to Network Intrusion Detection
Systems (NIDS). However, DL is known to be vulnerable to adver-
sarial attacks, which evade detection by introducing perturbations
to input data. Meanwhile, eXplainable Artificial Intelligence (XAI)
helps us to understand predictions made by DL models and is an
essential technology for ensuring accountability. This paper fo-
cuses on the relationship between the DL model’s decision-making
processes and adversarial examples (AEs) and proposes a new AE
generation method based on XAI. Our method utilizes XAI to iden-
tify important features when making predictions and perturb them
in real (traffic) space to evade detection by DL-based NIDS. We
implemented our proposed method in a real-world network envi-
ronment. We confirmed that our AEs completely evade detection
without compromising the malicious nature of the attack communi-
cations. This experiment reveals that, unlike many existing studies,
our proposed method is feasible in the traffic space.
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1 INTRODUCTION
Machine learning technology has become more and more popular
not only in research fields but also in society. It has been intro-
duced in various applications such as image recognition, anomaly
detection, text mining, and malware detection [11, 21, 26]. Among
these machine learning algorithms, deep learning (DL), in particular,
has gained significant attention for its astonishing performance,
equivalent to or exceeding human capabilities (such as natural lan-
guage processing and decision-making). The advancements in deep
learning technology have been made possible thanks to the avail-
ability of large datasets for training neural networks, as well as the
remarkable advancements in hardware technology [31].

Recently, DL technologies have been introduced into cyber secu-
rity products such as Network Intrusion Detection Systems (NIDS).
NIDS play an important role in detecting attackers’ malicious ac-
tivities in networks by monitoring network traffic. Formerly, NIDS
were signature-based, which could only find known attack patterns.
In contrast, by introducing DL techniques, they can now detect new
and unknown attacks [17, 27, 38]. Thus, they are now receiving
more and more attention.

DL models have been pointed out to be extremely vulnera-
ble to adversarial attacks, in which attackers perturbed the input
data to cause a machine learning model to make incorrect pre-
dictions [15, 18, 22]. To evaluate and improve the robustness of
machine learning models against them, it is common to construct
Adversarial examples (AEs) to demonstrate the upper bound of
the robustness [4]. This approach has led to a notable increase in
studies focused on generating AEs.

Feature-space attacks (such as FGSM [10]) where attackers di-
rectly modify the feature vectors input to the model effectively
generates AEs for image recognition models. That is because the
mapping from the image space (called the problem space in this
paper) to the feature space is reversible or differentiable, and it is
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easy to find the perturbation in the problem space corresponding to
the modification in the feature space. On the other hand, NIDS pro-
cess flow-based and statistical features extracted from raw network
traffic data as input. It is known that this mapping from problem
space (raw traffic data) to feature space in NIDS is neither invertible
nor differentiable. It is referred to as the inverse feature mapping
problem. Therefore, the feature-space attack is not directly appli-
cable to DL-based NIDS, and different approaches are necessary
to generate AEs for NIDS [29]. In addition to their feasibility in
the problem space, it is also required to mutate malicious traffic
without compromising its malicious nature.

Recently, the connection between eXplainable Artificial Intel-
ligence (XAI) and AEs has been pointed out [20]. XAI offers us
a way to understand the decision-making processes of DL-based
models [33]. XAI has attracted more and more attention, and many
XAI-related techniques have been proposed to gain insights into
ML systems [1, 8]. Interpretations given by XAI can play an im-
portant role in improving the adversary’s capacity and strategy.
For instance, Kumagai et al. [19] propose an XAI-based method for
generating AEs in the image domain, which is superior to previous
ones. Thus, it is also expected that XAI is utilized to generate AEs
for DL-based NIDSs.

1.1 Contribution
In this paper, we propose a new XAI-based method for generating
AEs for DL-based NIDS. In our proposed method, we treat the tar-
get NIDS model as a white box and analyze False Negative (FN)
samples –those classified as benign despite being malicious– by uti-
lizing XAI. Through the analyses, we identify features significantly
contributing to detection evasion and determine how they should
be perturbed. By focusing on important features and minimizing
the number of perturbed features, we address the inverse feature
mapping problem. Specifically, we find feasible transformations in
the problem space that correspond to the perturbations in the fea-
ture space. This approach enables us to generate highly evasive AEs
by fully utilizing the feature space information. Furthermore, we
verified whether attacks perturbed by our proposed method could
evade detection by implementing them in a real-world network
environment. We perturbed two types of network attacks, and both
perturbed attacks bypassed NIDS detection at rates of about 96%
and 100%, respectively. These findings clearly proved the feasibility
of our proposed method and its high rate of evasion from detection.

1.2 Organization of the Paper
We explain the background of our research, such as adversarial
attacks and XAI, in Section 2. Then, we introduce related research
in Section 3. Section 4 describes our proposals. We provide the
experimental settings and describe the results in Section 5. Section 6
concludes this paper.

2 BACKGROUND
2.1 Network Intrusion Detection Systems
NIDS are designed to monitor network traffic for suspicious activi-
ties and potential threats. Unlike Host-based Intrusion Detection
Systems (HIDS), which are installed on individual computers to
monitor inbound and outbound packets only from that particular

host, NIDS are deployed at strategic points within the network to
inspect all traffic in the network [3]. This makes NIDS particularly
effective in detecting attacks that might not be visible at the host
level, such as distributed denial-of-service (DDoS) attacks. Tradi-
tional NIDS relied on signature-based detection methods, which
compare network traffic against a database of known attack sig-
natures. However, the rise of sophisticated and novel attacks has
forced researchers to develop more advanced systems. Deep Learn-
ing (DL)-based NIDS have emerged as a potent solution due to their
ability to learn from data, recognize complex patterns, and detect
anomalies [6].

An important aspect of DL-based NIDS is its classification capa-
bility. They can be configured for binary classification, distinguish-
ing between benign and malicious traffic, or for multi-classification,
which involves identifying the specific type of attack. Depending
on the required capability of NIDS, training methods also differ. For
instance, supervised learning methods with mixed datasets con-
taining both benign and malicious traffic are often adopted to train
multi-classification models. Meanwhile, if NIDS models conduct
anomaly detection, they can be trained by datasets consisting solely
of legitimate traffic.

2.2 Adversarial Examples
AEs cause misclassification in a machine learning model by ma-
nipulating input data. The attacker successfully manipulates the
input data to cross a decision boundary, causing that input data to
be misclassified. This attack can be formulated as follows [37].

minimize ∥𝑥 ′ − 𝑥 ∥
subject to 𝑓

(
𝑥 ′
)
= 𝑙 ′,

𝑓 (𝑥) = 𝑙,

𝑙 ≠ 𝑙 ′,

𝑥 ′ ∈ [0, 1]𝑚,

where 𝑥 ∈ [0, 1]𝑚 is an input to a classifier 𝑓 , 𝑙 is the correctly
predicted class for 𝑥 , and 𝑙 ′ ≠ 𝑙 is the target class for 𝑥 + 𝑟 , with
𝑟 ∈ [0, 1]𝑚 being a small perturbation to 𝑥 .

Adversarial attacks are also classified based on the information
available to the attacker. If an attacker knows all information, includ-
ing input and output data, as well as the weights and classification
labels of the target model, the attack is deemed a white-box attack.
On the other hand, an attack conducted under conditions where the
attacker only has access to information about the input/output data
is called a black-box attack. Gray-box attacks lie in between white-
box and black-box attacks, where the attacker possesses partial
knowledge or limited access to the victim model.

2.3 Explainable Artificial Intelligence
In recent years, DL-based systems are increasingly being introduced
across several domains. Furthermore, the architecture of DL models
has become more complex in order to improve their performance.
With the frequent utilization of such complex DL systems, there is
an urgent need to understand their decision-making process and
to gain insights into the outcomes. That is why XAI has gained
much attention these days. XAI provides us with some helpful



XAI-driven Adversarial Attacks on Network Intrusion Detectors EICC 2024, June 05–06, 2024, Xanthi, Greece

information to understand the decision-making process of ML or
DL systems.

Integrated Gradients [36], a method introduced for attributing
predictions of deep neural networks to their inputs. Formally, let a
function 𝐹 : R𝑛 → [0, 1] representing a deep neural network, an
input 𝑥 ∈ R𝑛 , and a baseline 𝑥 ′ ∈ R𝑛 . The baseline represents a
reference point that satisfies 𝐹 (𝑥 ′) ≈ 0. Most deep neural networks
have a natural baseline in the input space where the prediction
is neutral. For instance, in the object recognition area, it is the
black image. Integrated Gradients are calculated by accumulating
the gradients along the straight-line path in R𝑛 from 𝑥 ′ to 𝑥 . The
integrated gradient (𝐼𝐺) along the 𝑖𝑡ℎ dimension for an input 𝑥 and
baseline 𝑥 ′ is defined as

𝐼𝐺𝑖 (𝑥) =
(
𝑥𝑖 − 𝑥 ′𝑖

)
×
∫ 1

𝛼=0

𝜕𝐹 (𝑥 ′ + 𝛼 × (𝑥 − 𝑥 ′))
𝜕𝑥𝑖

𝑑𝛼 .

The value represents the contribution of 𝑥𝑖 . For example, in object
recognition, we can see which pixels of the image were responsible
for a certain label being predicted. This method also satisfies key
axioms such as completeness, ensuring that attributions sum up to
the difference between the outputs at 𝑥 and 𝑥 ′, and implementation
invariance, making it a robust tool for interpreting complex DL
models. In this paper, we adopt Integrated Gradients as an XAI
model because it relies only on calculating gradients, a fundamental
aspect of neural networks that is independent of the type of data
or the specific architecture of the model. Thus, this can be applied
to the analyses of our targeted NIDS model, which utilizes tabular
data.

3 RELATED RESEARCH
We categorize and introduce existing research on adversarial ex-
amples for DL-based NIDS into feature-space attacks and problem-
space attacks. This categorization allows us to clarify the differences
between our study and previous works, thereby highlighting our
contributions.

In the field of adversarial attacks targeting ML-based NIDS,
feature-space attacks assume the ability of attackers to modify
feature vectors input to NIDS directly. Starting with white-box
attacks, existing gradient-based AE generation algorithms were ap-
plied to evade a DL-based NIDS [25, 39]. Techniques for bypassing
a particular NIDS model, Kitsune [27], were proposed by Clements
et al. [7]. Additionally, strategies for circumventing GAN-based
NIDS detection are introduced by Piplai et al. [30]. There also exist
gray- and black-box attacks. A boundary-based method designed to
produce AEs for DoS attacks was proposed by Peng et al. [28], and
a method for generating AEs against botnet detectors by introduc-
ing random mutations to features was presented by Apruzzese et
al. [2]. Lin et al. [23] developed a GAN-based approach to generate
AEs without any knowledge of the NIDS’s internal structure or
parameters.

Problem-space attacks directly modify or transform network
traffic to evade detection. Hashemi et al. [14] proposed a white-box
attack method for multiple NIDS models. Their maximum evasion
rate for this proposed method in flow-based NIDS is limited to 68%.
Regarding gray-box attacks, Stinson et al. [35] proposed techniques
that evade botnet detection by introducing random mutations, and
Homoliak et al. [16] proposed random obfuscation techniques for

Figure 1: General flow of DL-based NIDS

evading the detection of various classifiers. Han et al. [13] proposed
a black-box attack that preserves the maliciousness of attack com-
munications while being generic and minimally overhead-intensive.

First of all, feature-space attacks cannot be directly converted
to actual network traffic because feature extraction in DL-based
NIDSs is not always invertible [13]. Therefore, their feasibility is
limited, and they are impractical. On the other hand, while problem-
space attacks are more practical than feature-space attacks, they
have several drawbacks compared to our proposed method. Firstly,
the evasion rate of Hashemi et al.’s method [14], which deals with
the same type of attack as our proposed method (problem-space
white-box attack), is only 68% at most. Second, since other existing
problem-space attacks do not fully utilize the information in the
feature space, they have to add a relatively large amount of random
perturbations to the attack communication. In contrast, our method
uses XAI to select important features and finds modifications in
the problem space that perturb them in the feature space. As a
result, the modifications in the problem space are so small that they
may not compromise the feasibility of AEs or the maliciousness of
original attacker traffic.

4 PROPOSED METHOD
We propose a new XAI-based method for generating AEs for DL-
based NIDS. In this section, we explain our proposed method. At
first, we explain our target machine learning model and define the
threat model. We then show how we solve the challenges common
to problem-space attacks. We finally describe the overview of our
proposed method.

4.1 Targeted NIDS and Threat Model
In this paper, we focus on generating AEs against DL-based NIDS.
General DL-based NIDS’ detection flow is described in Figure 1.
First, using a packet-capturing tool, traffic in the target network
is captured. Next, features are extracted from captured raw traffic.
If necessary, the extracted features are pre-processed for shaping.
Finally, the extracted and shaped data are input to the NIDS model,
and the model returns a binary value (0: benign, 1: malicious). We
assume that an attacker conducts a white-box attack where he or
she knows all information about the target NIDS model.

4.2 Challenges and Solutions
Our proposed method solves four main challenges that are common
to problem-space attacks [29]. In the following, we enumerate each
challenge and describe how we solve it.

(1) Available transformations:
Any transformation for generating an AE must be able to be
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performed in the problem space. In other words, we must
show that our proposed AE for NIDS is realized in the real
network. Since it is difficult to clarify this theoretically in our
research, we clarify the feasibility of our proposed method
by realizing the proposed AE in a real-world environment.

(2) Preserved semantics:
In the process of adding perturbations, semantics must be
preserved. Semantics in network traffic refer to each feature’s
link to a host and network attribute, as well as correlations
and dependencies between them [25]. If we perturb a feature
that has a strong semantic value, we also have to perturb
other features that are correlated to it in order to preserve
semantics. To avoid this complicated process, we utilize a
correlation heatmap [24] to select more independent features
and perturb them.

(3) Plausibility:
AEs are required to retain their qualitative properties after
being perturbed. In our case, this means that the perturbed
malicious communication keeps its original maliciousness.
In the network domain, the verification of plausibility is
difficult to show theoretically or quantitatively. It needs to
be analyzed by humans [29]. Therefore, we run our proposed
perturbed attacks against a real system and verify that they
are successful.

(4) Robustness to pre-processing:
In ML-based detection, input data are pre-processed with
non-ML techniques. They may disrupt the adversarial attack.
In our proposed method, we first select important and inde-
pendent traffic features to be perturbed, and the perturbation
we find in the feature space almost corresponds one-to-one
to the modification performed in the problem space. The sim-
plicity of the correspondence between the feature space and
the problem space allows us to generate better perturbations
that also consider the data pre-processing. As a result, our
proposed AEs are robust (unaffected) to data pre-processing.

4.3 Details of Our Proposed Method
Based on the solutions introduced in Section 4.2, we propose a novel
method for creating AEs for NIDS. To achieve a high evasion rate
of generated AEs, it is important to fully utilize information in the
feature space. Therefore, our proposed method identifies effective
perturbations in the feature space and then seeks corresponding
transformations in the problem space. However, there is an inverse
feature mapping problem in the network domain: feature extraction
functions are irreversible and non-differentiable [29]. Due to this
problem, the larger and the more complex the perturbations in the
feature space, the more difficult it becomes to find the correspond-
ing problem-space transformations. To address it, we minimize
the number of features perturbed in the feature space, aiming to
simplify the feature-space perturbations. This approach also makes
our AEs more robust to pre-processing. For implementing effective
AEs with a minimal number of perturbed features, we use XAI to
identify key features that significantly contribute to evade detec-
tion. Additionally, to maintain semantics, we focus on perturbing
the more independent features among the selected ones.

Our proposed method consists of the following five major steps.

Figure 2: Sample 3D scatter plot

(1) We test the model and analyze False Negative (FN) samples
using Integrated Gradients [36] as an XAI model. Then, we
select the top 𝑘 most important features contributing to the
targeted model’s decision on FN samples. In this research,
we deal with the case where 𝑘 = 3.

(2) We plot True Positive (TP) samples and FN samples in the
𝑘 (= 3)-dimensional graph, whose axes are the top 𝑘 features.

(3) We calculate a correlation heatmap [24] and confirm how
independent each important feature is.

(4) From the 3D graphs and heatmap, we select the most suitable
feature to be perturbed

(5) We implement the perturbations (AEs) using the real en-
vironment and confirm whether they keep their original
maliciousness

In Steps (1) and (2), we focus on FN and TP samples. That is because
our goal of generating AEs is similar to transforming TP into FN.
In Step (2), we plot, for instance, a graph like Figure 2. This figure
shows that TP samples are concentrated at the lower end of each
axis. Meanwhile, some FN samples are situated at a higher value
on both the feature B or C axes. Through the analyses, we can
hypothesize that when generating AEs, we should increase the
value of B or C of the malicious communication (in the direction
of the white arrows in Figure 2). For instance, if B is ‘URG flag
Count,’ an attacker might send more packets with the URG flag or
set the URG flag on attack packets to increase the feature value.
Furthermore, if feature B is more independent than feature C, we
select B as the most suitable feature to be perturbed in Step (4).

5 EXPERIMENTAL RESULTS AND DISCUSSION
We implemented our proposed method described in Section 4 and
perturbed two types of web attacks, Brute Force attacks and Cross-
Site Scripting (XSS), in an actual network environment. We then
assessed the extent to which these examples could evade detection
of the targeted NIDS model. In this section, we first explain our
experimental environment and implementation details of the tar-
geted NIDS model. Then, we show the experimental results of the
two attack cases and finally discuss the results.



XAI-driven Adversarial Attacks on Network Intrusion Detectors EICC 2024, June 05–06, 2024, Xanthi, Greece

5.1 Environment Settings
We are required to prepare a real network environment to mea-
sure the performance (feasibility and detection evasion rate) of our
proposed AE generation, as described in Section 4.3. In the environ-
ment, an attacker host (Kali Linux) and a victim server (CentOS) are
set up on the same network so that they can communicate with each
other. Both machines are virtual machines built on virtualization
software, VMware Fusion. All network traffic actually occurred and
was captured using Wireshark. CICFlowMeter performs feature
extraction. The reason why we chose CICFlowMeter is that it al-
lows us to maintain feature consistency with the CIC-IDS2017 [34]
dataset, which is used to build the base model of our targeted NIDS.

5.2 Targeted NIDS Model
Our targeted NIDS model consists of an input layer, two hidden
layers (with 256 neurons), and an output layer. During the learn-
ing process, we compute the cross-entropy between the labels and
predictions as a loss function, and Adam (Adaptive Moment Esti-
mation) with a learning rate of 0.01 is utilized as an optimizer. This
architecture is typical for a feedforward neural network and was
also adopted in previous works [25]. To construct an NIDS model
with sufficient accuracy, we need a sufficiently large and varied set
of training data. However, it was difficult for us to generate such
training data by using our own environment. Therefore, we first
trained the targeted model using the CIC-IDS2017 dataset, which
contains a high volume of traffic and a large number of features to
be observed for anomaly detection. Subsequently, we fine-tuned it
with benign and malicious data generated from our environment
to build the final NIDS model.

We apply some pre-processing to the CIC-IDS2017 dataset and
the data collected from our network environment:

• Feature removal: We extracted features from the data col-
lected from the real network environment by using CICFlowMe-
ter. The features extracted by CICFlowMeter contains ‘Flow
ID’, ‘Src IP’, ‘Src Port’, ‘Dst IP’, ‘Dst Port’, and ‘Timestamp’.
They are not included in the CIC-IDS2017 dataset. We re-
moved them to maintain the consistency of features we deal
within our evaluation.

• Min-Max normalization: We normalized the data to ensure
that features with larger values do not bias the classification
process. This normalization scales the feature values to a [0,
1] range.

• Binary labels: In one attack type, we merge multiple attack
categories into a single binary feature. For instance, when
dealing with brute force attacks (Section 5.3), we categorize
both FTP and SSH brute force attack labels in CIC-IDS2017
under one label, malicious.

5.3 Experiment 1: Brute Force Attack
5.3.1 Building the NIDS model. We trained NIDS model using the
dataset from CIC-IDS2017, which was collected on Tuesday, July
4, 2017. The model’s performance is summarized in Table 1. Sub-
sequently, fine-tuning was performed using benign and malicious
data generated in our actual network environment, which was
generated as follows:

Table 1: Targeted NIDS model performances

Attack Model Precision Recall

Brute Force Before Fine-tuning 99.94% 98.67%
After Fine-tuning 94.12% 94.12%

XSS Before Fine-tuning 93.18% 94.65%
After Fine-tuning 93.55% 93.86%

• Benign traffic: Legitimate client logins to an FTP server (vs-
ftpd), along with file uploads and downloads.

• Malicious traffic: FTP Brute Force attacks using FTP-Patator,
similar to the one used in CIC-IDS2017.

After fine-tuning, we tested the model with test data from the real
environment. As shown in Table 1, it classified benign andmalicious
traffic with high accuracy.

5.3.2 Generating our proposed AEs. We generated AEs of Brute
Force attacks by using our proposed method. The following enu-
merated items correspond to those in Section 4.3.

(1) Using XAI, we analyzed False Negative (FN) samples. We
used the IntegratedGradients function from Xplique [9]
to calculate each feature’s mean impact for every FN sample.
We selected the top 20 features in order of impact and plotted
them in Figure 3. From this figure, we focused on the top
three most important features: (Fwd PSH Flags, Down/Up
Ratio, PSH Flag Count). The explanations of these three
features are as follows [34]:
• Fwd PSH Flags: Number of times the PSH flag was set in
packets travelling in the forward direction (0 for UDP).

• Down/Up Ratio: Download and upload ratio.
• PSH Flag Count: Number of packets with PSH flag.

(2) We created a three-dimensional graph (see Figure 4). From
this 3D scatter plot, it was clear that Fwd PSH Flags was
more suitable to be perturbed than the other two features.
Specifically, reducing its value could likely shift TP to FN.

(3) We checked the independence of each feature by creating a
heatmap (Figure 5) of their correlations. The figure showed
that Fwd PSH Flags had a weak correlation with other
features. Also, our qualitative analysis revealed that Fwd
PSH Flags, being a TCP packets’ flag count in the forward
direction (from a client to a server), had little relation to
other flow data features.

(4) Based on the analyses of Figure 4 and Figure 5, we decided
to generate adversarial examples by perturbing the Fwd PSH
Flags to 0.

(5) We implemented Python scripts to perform FTP Brute Force
attacks without setting a PSH flag. In other words, we set the
PSH flag to 0 for all packets sent from the attacker. We also
confirmed the perturbed attacks worked successfully.

5.3.3 Evaluating our proposed AEs. The perturbed FTP brute force
attack succeeded. Thus, our proposed AEs did not affect the origi-
nal maliciousness of attacker traffic at all. To evaluate the impact
of these adversarial examples, we measured the evasion rate (i.e.,
the fraction of malicious communication misclassified as benign).
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Figure 3: Feature importance for NIDS FN samples in Brute
Force attacks

Figure 4: 3D scatter plot of TP and FN samples in Brute Force
attacks

The evasion rate was 95.65%, which indicates that our proposed
adversarial examples evade detection with a fairly high probability.

5.4 Experiment 2: XSS
5.4.1 Building the NIDS model. Initially, we employed the CIC-
IDS2017 dataset containing traffic related to XSS (specifically those
conducted on Thursday, July 6, 2017) to train our NIDS model. We
excluded data about SQL injection and Brute Force attacks from
this dataset. The performance of the model after the training is
also shown in Table 1. Subsequently, we constructed a real-world
environment for data collection to fine-tune our model. We set up
a web server using Apache and prepared a simple e-commerce site,
deliberately leaving an XSS vulnerability on the login page. For ex-
ample, if an attacker entered <script>alert(‘xss’);</script>
in the username field of the login form, a JavaScript alert, as de-
picted in Figure 6, would appear on the screen. Data collected in
such an environment included:

Figure 5: Correlationmatrix of features inBrute Force attacks

Figure 6: Login page after XSS

• Benign traffic: Legitimate client logins and subsequent page
browsing.

• Malicious traffic: Various inputs of XSS vectors from [32] to
the login page.

After the fine-tuning, we evaluated the performance using test data,
as illustrated in Table1, confirming the model’s high accuracy in
classifying communications.

5.4.2 Generating our proposed AEs. We created AEs of XSS. As
in Case 1, the following enumerated items correspond to those in
Section 4.3.

(1) We analyzed the FN samples using XAI. The results are
presented in Figure 7. From this figure, we selected the top
three features (Fwd Seg Size Min, URG Flag Count, and
Bwd Packet Length Min). The detailed explanations of
these three features are as follows:
• Fwd Seg Size Min: Minimum segment size observed in
the forward direction.

• URG Flag Count: Number of packets with URG flag.
• Bwd Packet Length Min: Minimum size of packet in
backward direction.
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Figure 7: Feature importance for NIDS FN samples in XSS

Figure 8: 3D scatter plot of TP and FN samples in XSS

(2) We plotted TP and FN samples in 3D space, as shown in
Figure 8. The graph revealed that Fwd Seg Size Min was
the most critical and easily perturbed feature to generate
adversarial examples. Specifically, increasing its value seems
to cause the change from TPs to FNs.

(3) We used a heatmap (Figure 9) to verify the independence
of each feature’s correlation. The figure demonstrated that
Fwd Seg Size Min had a sufficiently low correlation with
other features, indicating it is more independent. Through
experimental analyses, under XSS attacks, the attacker’s
packets whose segment size is minimum were SYN or ACK
packets. We hypothesized perturbing these packets would
have minimal impact on other features.

(4) Fwd Seg Size Min had the biggest impact on FN samples
and was independent enough to be perturbed. Thus, we
decided to perturb it.

(5) We implemented the perturbation in the problem space by
padding SYN and ACK packets from the attacker host. Even
with such perturbations, all XSS attacks succeeded.

Figure 9: Correlation matrix of features in XSS

5.4.3 Evaluating our proposed AEs. The fact that perturbed XSS
attacks succeeded proves that our proposed perturbation did not
affect the malicious nature of the attacks. We also evaluated the
evasion rate of the adversarial examples. The rate was 100%, which
showed that our proposed adversarial examples could completely
evade the detection of the NIDS.

5.5 Discussion
Our method attained evasion rates of 95.7% (for Brute Force) and
100.0% (for XSS). Thus, we can consider that our proposed method
can generate highly evasive AEs for DL-based NIDS. However, our
study has some potential improvements. The first is the inadequate
evaluations for the generality of our proposed method. We applied
our approach to two types of attacks, but this is somewhat insuffi-
cient to assert its general applicability. Additionally, we have used
only one type of dataset (CIC-IDS2017) and our targeted NIDS
model. Future work will involve validating our method’s applica-
bility to various attacks, datasets, and NIDS models. The second is
that our method is a white-box attack, where the attacker has full
access to the targeted NIDS information. Such a scenario is often
pointed out to be impractical in previous studies [5, 12, 13]. We
originally assumed that the AEs proposed in this paper could be
utilized to evaluate or improve the robustness of DL-based NIDS.
In this context, our proposed method does not necessarily have to
guarantee complete practicality; that is, it is required to be realized
in traffic space but not to be a black-box attack. However, it is also
important to make our proposed method more realistic, considering
the situation where attackers conduct adversarial attacks against
DL-based NIDS. Thus, we plan to explore the transferability of
our proposed method. If the adversarial examples we generated
demonstrate high transferability, it could extend the utility of our
method to more realistic and practical black-box attack scenarios.
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6 CONCLUSION
This paper proposes a novel method for generating AEs for DL-
based NIDS using XAI. In our proposed approach, we utilized XAI
to analyze the decision-making processes of DL-based NIDS mod-
els, identifying critical features that should be perturbed to evade
NIDS detection. By focusing on these key features and minimizing
the number of perturbed features, we also identify the modifica-
tions in the problem space (traffic space) that could realize these
perturbations in the feature space. In other words, we succeeded
in maintaining the feasibility of our method and the malicious-
ness of the original attack traffic. Furthermore, we implemented
our method in a real-world network environment and executed it
against two types of network cyber-attacks. We generated AEs with
perturbations to only one feature by transforming malicious traffic
in the problem space (traffic space). Furthermore, our proposed AEs
completely evade the NIDS detection.
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