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Abstract—This paper introduces a novel fault location method 

utilizing polynomial-chaos expansion (PCE) designed specifically 

for non-uniform transmission lines affected by uncertain 

parameters. It considers the uncertain parameters arising from 

height and ground conductivity in transmission lines, examining 

their impact on conventional fault location methods, such as 

natural frequency and full-transient analysis approach. These 

uncertainties lead to considerable location errors, particularly 

magnified with increasing fault distances. To address this issue, 

we propose a fault location approach based on PCE and 

correlation estimation. Simulations cover fault distances ranging 

from tens to hundreds of kilometers, considering variations in 

non-uniform line section-lengths, and examining scenarios with 

single and multiple conductors. Results demonstrate that the 

proposed method exhibits robustness across different degrees of 

uncertainty parameters in non-uniform settings, reducing the 

relative location error to below 1%. In terms of computational 

efficiency, the PCE method can accelerate calculations by up to 

12 times compared to the Monte Carlo method. Furthermore, the 

PCE method has been validated using fault transient data from 

an actual 220 kV power line achieving a location error of 2.41%, 

which demonstrates its practical applicability in real-world 

power grid scenarios. 

 

Index Terms— Fault location, parameter uncertainty analysis, 

polynomial chaos expansion, natural frequency analysis, full 

transient analysis, correlation coefficient, surge compression. 

 

I. INTRODUCTION 

he High Voltage Direct Current (HVDC) 

transmission system boasts several advantages, 

including extended transmission distances, reduced 

line costs, and high transmission capacity [1]. The precise and 
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prompt localization of faults plays a pivotal role in ensuring 

the safe and stable operation of HVDC systems. The presence 

of intricate geographical features and challenging terrains can 

increase the likelihood of faults occurring. Moreover, these 

factors can complicate the accurate fault localization process 

for power transmission lines in mountainous area. 

In the existing HVDC transmission systems, transmission 

distances can extend to thousands of kilometers, traversing 

complex and diverse terrain. Taking the actual HVDC 

transmission system in China as an example, the Xiangjiaba-

Shanghai ±800kV UHVDC transmission project passes 

through 8 provinces, covering a total length of 1891km. 

Within this route, precipitous mountains account for 16.26%, 

general mountains account for 34.41%, hills cover 20.76%, 

river networks constitute 12.51%, and flat land comprises only 

16.06% of the terrain. In the Jinping-Sunan ±800kV UHVDC 

transmission project, flat land represents merely 9.4% of the 

total 2059km route [2]. The power transmission line cross 

through mountainous areas introduces non-negligible 

uncertainties into the parameters of the transmission line, 

particularly in terms of line height and ground conductivity. 

These parameters are closely tied to geographical factors and 

can exhibit significant variations in such complex 

geographical regions. 

In the event of a fault in the power transmission system, the 

commonly employed method for fault location is the 

Traveling Wave Method (TWM), which is widely used in the 

field of fault location. This method calculates the fault 

distance based on the time difference [3]. The Frequency-

Based Method (FBM) is a specific type of TWM that analyzes 

resonance frequencies to estimate the length of the faulted line 

in the frequency domain. The fault distance is determined 

through the natural frequency, traveling wave velocity, and the 

phase shift of the reflection coefficient at the transmission line 

terminal [4]. The accuracy of the location result is closely tied 

to above three influencing factors. 

The Full Transient-Based Method (TBM) avoids the need 

for waveform feature extraction and relies on the similarity 

between measured and simulated transients as a localization 

criterion [5][6]. However, it necessitates a simulation model of 

the power line that closely approximates reality to ensure a 

high correlation coefficient. 

For traditional TWM and FBM methods, the impact of 

transmission line parameters on wave velocity is typically 

T 
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disregarded, and empirical wave velocities are employed for 

fault location calculations. In the context of HVDC 

transmission systems, to achieve precise wave velocity, [7] 

introduced an active pulse injection method. This method 

utilizes the actions of sub-modules within the Modular Multi-

level Converter in High-voltage direct current (MMC-HVDC) 

system to generate pulses in the transmission line under 

normal operating conditions for wave velocity determination. 

Furthermore, the concept of a hybrid circuit breaker has been 

proposed to produce injecting pulse voltages as well [8]. In 

contrast, [9] suggested the installation of multiple fault 

transient measuring devices for wave velocity estimation, 

although this approach is not recommended for very long lines 

due to signal attenuation and dispersion of the traveling wave. 

To mitigate the influence of traveling wave velocity in the 

fault location equation, [10] proposed the use of multi-

terminal fault signals to eliminate the wave velocity factor in 

the calculation equation, thereby enhancing accuracy through 

multi-terminal data. This solution assumes a constant wave 

velocity, independent of frequency variations, and does not 

address the frequency-dependent nature of propagation 

velocity. 

Uncertainty quantification in transmission lines has been 

explored, particularly in the context of field-line coupling. 

Key research approaches encompass statistical methods based 

on sampling and polynomial chaos expansion methods [11]. In 

the realm of sampling-based statistical methods, the widely 

employed Monte Carlo method demands extensive 

simulations. The Polynomial Chaos Expansion (PCE) method, 

originally introduced by N. Wiener [12], has seen substantial 

development in fields such as vehicle dynamics [13], 

communication systems [14], and power systems [15], etc.     

P. Manfredi utilized the PCE technique to systematically 

investigate the radiation sensitivity of transmission lines and 

crosstalk between cables [16]-[18]. To the best of the authors' 

knowledge, there is limited literature addressing uncertainty 

parameters in fault location for transmission lines, with the 

exception of [19]. Reference [19] primarily pertains to 

univariate cases in single conductor lines. It does not account 

for the stochastic variations in parameters along the 

transmission line, which arise from the diverse terrain 

encountered in practical HVDC transmission systems. 

Additionally, it does not encompass cases involving multiple 

conductors and multivariable cases as well. 

Given the inevitable random variations in height and ground 

conductivity along the transmission line, the influence of 

uncertain parameters poses a challenge for existing 

conventional fault location methods. This paper seeks to 

mitigate uncertainty-induced location errors introduced by 

transmission line parameters by integrating the PCE technique 

with TBM. 

The paper is structured as follows: In Sec. II, we illustrate 

the influence of transmission line parameter uncertainty on 

traditional fault location methods, using the monopolar HVDC 

transmission line as an example. Sec. III introduces the theory 

of combining TBM with PCE. The impact of non-uniform 

section lengths on the proposed method's location accuracy is 

discussed in Sec. IV. Sec. V provides a comparison of the 

performance of various fault location methods, taking into 

consideration uncertainty parameters in the monopolar HVDC 

system. Sec. VI delves into the scenario of bipolar HVDC 

transmission lines. The time consumption and coping 

optimization strategy is evaluated in Sec. VII. Sec. VIII 

demonstrates the location ability of the proposed method in an 

actual power system. Finally, conclusions and discussions are 

presented in Sec. IX. 

II. ASSESSMENT OF TRANSMISSION LINE PARAMETER 

UNCERTAINTY TO THE FAULT LOCATION 

A. Parameters Analysis for Overhead Lines 

In the high voltage power transmission scenario, 

transmission lines will traverse diverse landscapes involving 

mountainous regions. In mountainous regions, especially 

when power lines traverse valleys, the elevation of the line 

undergoes substantial fluctuations, spanning from tens of 

meters to hundreds of meters, which often exceed the height of 

the transmission towers. Concurrently, ground conductivity 

exhibits a wide range of variation. The long-distance HVDC 

transmission lines traverse various landforms, resulting in 

considerable variability in ground conductivity as well [2]. 

In the presence of random variable ξ1 in height h and ξ2 in 

ground conductivity σg , based on transmission line theory 

[20], the formula of parameters can refer to Appendix A. Due 

to the uncertainty in these two parameters, the wave velocity 

will be influenced by uncertainty parameters in transmission 

line, whose mathematical formula can be written as: 

 
1 2

' '

1 2 1 1

( , )
Im ( ( , ) ( ))( ( ))g w

v
Z Z j L G j C


 

     


  

(1) 

Fig.1 shows how the interval of random variation of the 

velocity varies with the frequency, simulated by Monte Carlo 

method. The random range of height is [30, 130] m while the 

ground conductivity is [0.001, 0.1] S/m. The uncertainty range 

shrinks as the frequency increases. Considering the impact of 

the height, for 1 kHz, the maximum span of the velocity is 

3.182×107 m/s, corresponding to an absolute distance bias of 

15.91 km, based on the dominant natural frequency, from 

equation L=v/2f. For 100 Hz with the distant fault, the velocity 

uncertainty 3.5950×107  m/s corresponds to a location 

uncertainty of 180 km; and 2.03×107  m/s with an error of 

1015 m, at 10 kHz. For the ground conductivity σg , the 

velocity and distance uncertain interval are 3.7470×107 m/s, 

18.73 km under the natural frequency of 1 kHz. At 10 kHz, the 

values are 2.031×107 m/s, 1015 m respectively. It is evident 

that these location errors are significant and difficult to be 

ignored, especially in long-distance power lines.  

B. Uncertainty Analysis of Natural Frequency 

According to the resonant frequency analysis based on fault 

transient [4], the line resonance is followed by the equation 
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(a) 

 
(b) 

Fig. 1.  Interval of velocity uncertainty changes with frequency, (a) varies 

according to the height of the line, and (b) varies with ground conductivity. 
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where s is the Laplace variable, the reflection coefficients of 

the fault and the power-station terminal are represented as Γs 

and ΓT, respectively. The k-th order resonance frequency ωk 

can be computed by solving (3),  

 S T

( )
( 2 ), 0,1,2...

4

k

k

v
k k

L


   


     (3) 

where L is the fault distance, θS, θT are the phase-shift angles 

of Γs and ΓT. For a low fault impedance short circuit fault, the 

fault impedance is much lower the line characteristic 

impedance which means ΓS≈-1, θS=π. The impact on θT by 

incomplete terminal model has been discussed in [21]. In the 

following sections, we will assume simplified terminations for 

the sake of simplicity, although it is worth noting that the 

proposed method can be extended to more realistic 

configurations. To emphasize the impact of the transmission 

process on overhead transmission lines, θT≈0 is assumed as 

for a high impedance [22]. The fault distance can be 

calculated: 

 
( )ˆ ( 2 ), 0,1,2...

4

k

k

k

v
L k k


 


    (4) 

The fault distance L̂k  can be calculated from (4) by the 

natural angular frequency ωk, and propagation velocity v̂(ωk) 

which is highly dependent on ωk. In actual power transmission 

lines, the presence of uncertain parameters, as indicated in (1),  

 

TABLE I 

 TRANSMISSION LINE PARAMETERS 

Line parameters Values 

Diameter [cm] 42.3 

DC resistance [Ω/m] 1.88×10-7 

Reference Height [m] 30 

Ground conductivity [S/m] 0.01 

Fault impendence [Ω] 10 

Line length [km] 300 

 

leads to a bias between the assumed v̂(ωk) in the calculation 

process and the true value. The imprecisely estimated wave 

velocity can result in a nonnegligible fault line distance bias, 

denoted as ΔLk=L̂k(ξ)-L, where L represents the actual fault 

distance. 

To evaluate the impact of uncertainty parameters in 

transmission lines on the natural frequency-based fault 

location method, we created a uniform transmission-line 

model using MATLAB with the parameters detailed in Table 

I. Given that the voltage level of the transmission line is 

500kV, the tower height is 30m, and the ground conductivity 

is set as 0.01 S/m. The line radius was determined based on 

the equivalent radius of the commonly used 500kV split lines. 

Accounting for variations in topography, the actual height of 

the transmission line was set within the range of [30, 130] 

meters, while the conductivity ranged from [0.001, 0.1] S/m. 

Transmission line parameters would therefore exhibit random 

variations along the line. When we utilize formulas (3) and (4) 

to calculate natural frequencies and fault distances, the 

boundary values of uncertainty were employed to represent 

extreme mismatches in line parameters. 

Based on the parameters in Table I, when uncertainties in 

the height of the transmission line and ground conductivity are 

introduced, we present the relative location errors of the 

natural frequency-based method for distances ranging from 

1km to 300km in Fig. 2, based on the natural frequencies 

computed from (3). Since the height interval is specified as 

[30, 130]m, with the lower limit representing the reference 

tower height, only one set of relative error curves is present in 

Fig. 2(a) when the height is 130m. 

In Fig. 2(b), fault natural frequencies are determined for 

ground conductivities of 0.001 S/m (solid line) and 0.1 S/m 

(dotted line). Taking into account the parameters uncertainty, 

the traveling wave velocity in (4) corresponds to the wave 

velocity associated with frequencies when the reference tower 

height is 30m and the ground conductivity matches the 

empirical value of 0.01 S/m. 

The results illustrate that within the [1, 300] km range, the 

line parameters uncertainty leads to a general increase in the 

relative location errors as the fault distance grows. 

Additionally, different natural frequency orders are compared  

in Fig. 2, denoted as n. Utilizing higher-order fault frequencies  

will reduce the error introduced by the line parameters 

uncertainty. This indicates that the parameters uncertainty 
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exerts a more noticeable impact on lower frequencies,  

 
Fig. 2.  Relative location error for a different resonance order n involving 

height and ground conductivity uncertainty, when assuming a nominal 

velocity: (a) height is 130m and ground conductivity is 0.01 S/m; (b) height is 

30m and ground conductivity is 0.001 S/m for solid line while height is 30m 

and ground conductivity is 0.1 S/m for dotted line. 

 

corresponding to longer fault distances. 

C. Location Uncertainty of Full-transient Correlation 

Estimator Method 

Taking the occurrence of a short-circuit fault as an example, 

the fault transient vm(t,L)  is measured and recorded by the 

voltage sensor at the terminal with a fault distance of L. 

During the simulation or precomputation phase in TBM, 

multiple simulated voltages v̂m(t,L̂) are collected at different 

guessed lengths L̂ . In the existing literature, two location 

criteria choices are commonly found to provide a quantitative 

metric. The first one involves a posteriori normalization by the 

maximum value of the projection, which can be explained as a 

form of global normalization. 

 
( , )

( , )
max ( , )

n

x

P L L
P L L

P L x
  (5) 

This projection is used in EMTR (Electromagnetic Time 

Reversal) norm metrics [24]. Additionally, correlation 

estimator methods are employed as a position-dependent 

paradigm [5]. 

 
( , )

( , )
( , ) ( , )

P L L
L L

P L L P L L
   (6) 

The correlation estimator essentially represents a linear inner 

product, and it has been demonstrated to exhibit a more robust 

performance in lossy [24] or multiple branch transmission line 

networks [25]. In the TBM correlation-based method, fault 

positions are estimated based on the maximum ρ(L,L̂). It is 

known that the correlation estimator fault location method 

relies on the impulse response correlation coefficient 

maximum criterion [5]. The line impulse response hm can be 

estimated from the measured transient vm by applying inverse 

filtering and surge compression, as detailed in [26].  

It is clear that a specific fault distance L will produce a 

certain ωk  for a given parameter configuration. However, 

when stochastic transmission line parameters are considered, 

there is a shift bias between ωk  and ω̂k , leading to two 

consequences: the maximum correlation coefficient will be 

less than one, and the peak value of the correlation coefficient 

will shift towards the error location.  

III. FULL TRANSIENT BASED FAULT LOCATION METHOD 

COMBINED WITH PCE  

The conventional approach to address stochastic problems 

involves conducting a substantial number of deterministic 

simulations with random parameters, creating a database of 

random responses. The Monte Carlo (MC) method is a classic 

example of this approach. However, its primary drawback is 

the significant computational burden it imposes. On the other 

hand, the polynomial chaos expansion approach offers the 

capability to provide statistical information with much higher 

efficiency compared to MC analysis. 

A. Transmission Line Modelling by PCE  

The primary concept behind the PCE is to represent a 

stochastic unknown response in the form of a polynomial 

expansion to approximate the actual system output response 

[27]. The PCE technique involves a spectral expansion of a 

stochastic process y(ξ) using a truncated series of orthogonal 

polynomials. Following the Askey scheme, PCE approximates 

y(ξ) mathematically as follows: 

 
0

( ) ( ) ( )
P

k k

k

y y c   


   (7) 

where P is the order of the expansion, ϕ
k
(ξ) is the orthogonal 

polynomial basis, ck are the unknown coefficients in the 

expression. We can determine the coefficients through 

Galerkin projection.  

 
0

( ), ( ) ( ), ( )
P

k k i i k

i

c y c      


    (8) 

The ϕ
k
(ξ) are orthonormal with respect to the inner product 

defined as 

 , ( ) ( ) ( )m n m n mnw d        



   (9) 

The function w(ξ)  serves as the weight function that 

resembles the Probability Density Function (PDF) of the 

random variable ξ.  

 

TABLE II 

WINNER – ASKEY POLYNOMIAL EXPANSION 

Distribut

ion 

 

Polyno

mial 

Chaos 

Weight 

function 
Range 

Normal Hermite 𝑒−𝑥2/2/√2𝜋 (-∞, +∞) 

Uniform Legendre 1/2 [-1, +1] 

Gamma Laguerre 
𝑥𝛼e−𝑥

Γ(𝛼 + 1)
 [0, +∞) 

Beta Jacobi 
(1 − 𝑥)𝛼(1 + 𝑥)𝛽

2𝛼+𝛽+1𝐵(𝛼 + 1, 𝛽 + 1)
e−𝑥 [-1, +1] 
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The Wiener-Askey scheme offers a guideline for selecting 

the optimal polynomial basis shown in Table II. Considering a 

single conductor overhead line above a lossy ground, the 

height h is treated as a random parameter. As a result of this 

stochastic variable input, the deterministic transfer function 

will yield a stochastic output response. We assume that h 

follows a normal distribution with a range of [30, 130]m,  

 h hh      (10) 

Here, μ
h
 represents the mean value, σh denotes the standard 

deviation of h and ξ is the random variable. Consequently, the 

telegraph equation for the transmission line, taking into 

account parameter uncertainty, can be expressed as: 

 

( , , ) ( , ) ( , , )

( , , ) ( , ) ( , , )

d
V z Z I z

dz

d
I z Y V z

dz

     

     

 

 

 (11) 

where 

 
( , ) ( , ) ( , )

( , ) ( , ) ( , )

Z R j L

Y G j C

      
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 

 
 (12) 

The per-unit-length parameters Z and Y, as well as the 

responses V and I, are represented in the PCE format as: 
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


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 (13) 

Substitute (13) into (11): 

 
0 0 0
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Take the inner product of both sides of (14) 
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 (15) 

where αkji=
〈ϕkϕj,ϕi

〉

〈ϕi,ϕi
〉

, Ṽ=[V0,…,Vp]
T,  Ĩ=[I0,…,Ip]

T
, (15) can be 

further represented in matrix format. 

 

( , ) ( ) ( , )

( , ) ( ) ( , )

d
z z

dz

d
z z
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I Y V

 (16) 

The matrix Z̃ , Ỹ  are (P+1)×(P+1) dimensional square 

matrix which is produced by multiplying matrices Z and α. 
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According to the principles of TBM, the transmission line 

model should be constructed based on the prior information of 

the power grid system. If the parameters are deterministic, the 

transfer function can be computed straightforwardly. 

However, when we account for uncertainty in the parameters 

of the model, an analytical approach using the chain 

parameters matrix is employed to solve equation (17). 

B. Proposed Fault Location Algorithm Based on PCE 

Due to the uncertainty disparity between real parameters 

and simulated parameters, an inherent location bias arises in 

the correlation estimator method. Additionally, the maximum 

correlation coefficient ρ is less than 1, indicating a mismatch 

between measurements and simulations. To address this issue, 

we have introduced a novel full transient-based fault location 

algorithm, which combines the correlation estimator with 

PCE. The detailed process is outlined as follows: 

1) Collect prior information, including conductor line and 

tower structure, power grid topology, ground electrical 

parameters, and other relevant data. 

2) Simulate fault transients using the uncertainty proxy 

model of the transfer function based on the PCE. Create 

a database of fault transients for different guessed fault 

locations. Once the proxy model is established, it allows 

for rapid synthesis of fault responses for all partitioned 

locations and heights (using random variables as an 

example). Solving the proxy model provides coefficients 

for orthogonal polynomials, which can be used to obtain 

fault responses, as shown in (8), corresponding to all 

random variables for a specific fault location. 

3) Measure and record the actual fault transients. Apply 

surge compression strategy to the measured and 

simulated transient signals to estimate the transfer 

functions Hm(ω) and Hs(ω) of the fault-transient spectra 

Vm(ω) and Vs(ω), as detailed in [26]. 

4) Calculate the correlation coefficient ρ
HH

 between the 

proxy model and the fault transient transfer functions Hs 

and Hm. 

5) Correlation ρ
HH

 will vary with the stochastic variation 

(ξ1, ξ2, …ξn,L̂). Set (ξ
1
, ξ2, …ξn) and estimated position L̂ 

corresponding to the maximum ρ
HH

. The fault position is 

then determined by the following condition: 
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 1 2arg max ( , , )f HH nx L    , . . . ,  (18) 

When calculating the correlation coefficient in a frequency 

band containing finite m frequency points, each one results in 

an equation, for a total of m equations. However, the 

independent variables considered are the uncertainty 

parameters and the fault distance, and the number of 

independent variables is much smaller than the number of 

equations, making the solution unique. When the correlation 

coefficient is equal to 1, it will yield parameters perfectly 

consistent with the real system. Although the resolution of 

constraint variables may prevent the occurrence of a 

correlation coefficient equal to 1, due to the uniqueness of the 

solution, the values of the independent variables obtained in 

the solution will approach the unique solution. 

PCE is introduced to efficiently model the transmission 

line, taking into account uncertainty parameters, and obtain 

the line parameters that closely match the realistic values by 

considering the maximum correlation coefficient. This 

optimization ultimately enhances the location reliability. The 

overall method can be likened to exploring all positions and 

all random variables. The construction of the surrogate PCE 

model simplifies the process of acquiring fault responses for 

all random variables, making it more straightforward and 

efficient. 

IV. IMPACT OF THE NON-UNIFORM SECTION-LENGTH TO 

LOCATION ACCURACY 

Taking the single conductor line from Table I as an 

example, the total length of the line is divided into different 

sections, and the number of divided sections is used to model 

the non-uniformity of the transmission line. The height of the 

transmission line in each section is randomly generated within 

the interval [30, 130] m following a truncated normal 

distribution, as mentioned in Sec. II. In this section, the 

transmission line with a total length of 300 km is evenly 

divided into 30, 300, and 3000 sections, resulting in section 

lengths of 10 km, 1 km, and 100 m, respectively. A section 

length of 100 m implies an impedance discontinuity every 100 

m. In MC simulation, 100 verification simulations are 

conducted for each section length. The height used in each 

simulation is randomly generated within the height interval. A 

performance comparison between the TBM and the proposed 

method is presented in Fig. 3. 

 

 

(a) 

 
(b) 

Fig. 3.  Relative location error comparison of TBM and proposed method for 

different lengths of uniform line sections: (a) TBM method (b) PCE method. 

The boxes represent the 50% probability margin of relative error, the short 

horizontal black lines mark the upper and lower limits corresponding to the 

99.3% probability margin of relative error, while the circles represent outliers 

with a probability of 0.7%. 

 

For TBM, the ground conductivity used is 0.01 S/m, and the 

height is set to the reference tower height of 30 m, with the 

height uncertainty ignored. At different fault distances and for 

different degrees of non-uniformity along the line, the location 

error of TBM is approximately 5%. For TBM, the maximum 

range of the 99.3% probability margin is [3%, 6.4%], the 50% 

confidence interval is [4.4%, 5.4%], and the maximum median 

is 5.45%. For the proposed PCE method, the relative errors are 

significantly reduced and fall within the ranges of [-0.8%, 

0.8%], [-0.2%, 0.2%], and 0% for the section lengths of 10km, 

1km and 100m. Additionally, the error range becomes 

narrower as the section length decreases. This is because non-

uniform uncertainty changes tend to have a weaker impact on 

the location result for shorter line lengths. In other words, 

longer line sections are associated with higher relative error 

rates. 

In the Fault Generated Phase (FGP), the height varies from 

30 m to 130 m, while the estimated height remains fixed at   

30 m during the Simulation Phase (SP). Consequently, the 

velocity of the traveling wave is lower in the FGP than in the 

SP, leading to positive location errors at different fault 

distances, shown as Fig. 3(a). When the height h follows a 

normal distribution, the estimated fault distance may be 

shorter or longer than the actual position, resulting in location 

errors that could be negative or positive in Fig. 3(b). The 

proposed PCE method significantly improves the relative 

location error, reducing it from the range of [3%, 6.4%] to     

[-0.8%, 0.8%] with a 99.3% confidence interval. 

V. SINGLE-CONDUCTOR OVERHEAD LINE 

In the previous section, the robustness of the proposed 

method in relation to the section length of a non-uniform 

transmission line was demonstrated through MC simulations. 

In this section, using a single conductor transmission line as an 

example, we consider uncertainties in both the height and 

ground conductivity when the transmission line spans a long 

distance. We provide numerical examples to quantify distance 

uncertainty when univariate and multivariate uncertainty 
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parameters exist in the line. These examples serve to 

demonstrate the effectiveness of the proposed method. 

Furthermore, we also compare the location performance 

between traditional fault location methods and the proposed 

method. 

A. Height Uncertainty Analysis 

It is assumed that the height of the transmission line follows 

a normal distribution [27], which can be represented as 

h=80+
50

3
ξ . According to the formulas (8)-(14) in Sec. III, 

Hermite orthogonal polynomials are used to expand Z and Y, 

which include uncertain parameters up to the second order.  

Once the Z and Y matrices of the expanded circuit are 

determined using the PCE, the fault response of the expanded 

circuit is computed within the frequency range of 1 Hz to 10 

kHz using the chain parameter calculation formula. This 

process allows for the creation of a proxy model for the fault 

response shown as: 

 
0

( ) ( ) ( )
P

s k k

k

V t V t  


  (19) 

Fig. 4 displays the normalized proxy model of the fault 

response when a 10 Ω short-circuit-to-ground fault occurs at 

100 km. In Fig. 4, the red curve represents the fault response 

of the transmission line when the height is 30 m, and the grey 

area represents the fault response of the transmission line 

when the height varies between 30 and 130 m. When the 

transmission line traverses areas with significant terrain 

fluctuations, such as mountains, the actual height of the 

transmission line may not align with the true height of the 

tower. As shown in Fig. 4, the fault response of the 

transmission line exhibits considerable variations in such 

scenarios. 

In Sec. IV, we demonstrated the robustness of the proposed 

method with respect to the degree of inhomogeneity in the 

transmission line's height. Therefore, in this section, to save 

computational time, the 300 km transmission line is divided 

into 30 sections, and the height of each section is randomly 

generated between 30m and 130 m according to a normal 

distribution. 

To illustrate the location process of the proposed method, 

Fig. 5 presents the location results for a short-circuit fault at 

100 km. With the height following a normal distribution, the 

change in ξ within the range of [-3, 3] corresponds to the 

variation in height within [30, 130] m. For each ξ value, the 

corresponding height h=80+
50

3
ξ  can be determined in the 

proxy model of formula (19). The reference fault response at  

different fault locations under ξ can be used in formula (6) to 

compute the correlation coefficient curve at height h(ξ), and 

the fault location corresponding to the maximum correlation 

coefficient is the result for h(ξ). 

 

 
Fig. 4.  Normalization fault voltage at 100km.  

 

 
Fig. 5.  The location process of the proposed method at 100km. The asterisk 

denotes the coordinate (CCv=0.9999, ξ=-0.18), while the upward-pointing 

triangle represents (ξ=-0.18, L=100.10 km). 

 

Therefore, as shown in Fig.5, the maximum correlation 

coefficient value (CCv) corresponding to every ξ and the 

corresponding location result can be obtained. The correlation 

coefficient represents the similarity between the reference 

fault signal and the actual fault signal. The only difference 

between the reference transmission line and the actual 

transmission line is the height and the fault distance. Actually, 

the fault transient varies with line height h and fault distance 

L.  While calculating the correlation coefficient in a certain 

frequency band, although the correlation coefficient is only a 

single value, during the calculation process, every frequency 

point in the frequency band is equivalent to an equation to be 

solved, which is equivalent to solving an overdetermined 

equation system about h and L. At this time, h and L have the 

unique solution.  

 

TABLE III  

CONSIDERING HEIGHT UNCERTAINTY IN SINGLE-CONDUCTOR 

OVERHEAD LINE 

Fault 

length  

[km] 

TWM 

Δ𝜖/ |
Δ𝜖

𝐿
| 

FBM 

Δ𝜖/ |
Δ𝜖

𝐿
| 

TBM 

Δ𝜖/ |
Δ𝜖

𝐿
| 

PCE 

Δ𝜖/ |
Δ𝜖

𝐿
| 

50 -3.40/6.80% -2.91/5.82% -2.22/4.44% 0.40/0.80% 

100 -6.80/6.80% -5.61/5.61% -5.12/5.12% 0.10/0.10% 

150 -13.53/9.02% -9.40/6.27% -7.72/5.15% 0.10/0.07% 

200 -16.93/8.47% -12.41/6.21% -10.82/5.41% 0.30/0.15% 

250 -20.33/8.13% -16.04/6.42% -13.52/5.41% 0.10/0.04% 

Δ𝜖 is the absolute location error, |
Δ𝜖

𝐿
| is the relative location error. 
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Hence, when h(ξ) approaches the height of the actual 

transmission line, the maximum correlation coefficient 

obtained becomes larger. As shown in Fig. 5, the maximum 

correlation coefficient reaches its maximum value along the ξ 

variation curve. At this point, it is considered that the h(ξ) 

corresponding to the maximum value is closest to the height of 

the actual transmission line, and the fault location 

corresponding to the maximum value is the final location 

result. 

Table III presents a comparison of the location results using 

different fault location methods under non-uniform height 

conditions along the transmission line. The single-ended 

traveling wave method and the natural frequency-based 

method (FBM) both utilize line parameter settings with a 

reference tower height of 30m and a ground conductivity of 

0.01 S/m. The fault location is determined by TWM after 

extracting the time delay when the traveling wave arrives at 

the measuring point twice in a row. However, due to the 

influence of height uncertainty on wave velocity, as shown in 

Table III, TWM exhibits a significant location error, with a 

relative location error of up to 9.02% at 150km. 

In the natural frequency-based method, due to the influence 

of the uncertain parameters, the relative location error at the 

set fault location is around 6%. For TBM, the height of the 

tower is also used as the line parameter when the reference 

signal is generated. Due to the mismatch of the transmission 

line height, the fault resonance peak shifts over the entire 

frequency band, resulting in a relative location error of about 

5% at the set fault location.  

In the proposed method, the 300km line is divided into 10 

km steps, and the calculation frequency band is set to [1Hz, 

10kHz] with a frequency step of 1Hz. After solving the proxy 

model along the line, the maximum value of the correlation 

coefficient in the proxy model is determined. The results 

demonstrate that the proposed method, when compared to 

traditional fault location methods, can reduce the location 

error to less than 1%. The relative location error is less than 

0.1% at distances of 100km, 150km, and 250km. This 

indicates that the proposed method is applicable for fault 

location in scenarios involving nonuniform height along the 

transmission line. 

 

TABLE IV  

CONSIDERING GROUND CONDUCTIVITY UNCERTAINTY IN 

SINGLE CONDUCTOR OVERHEAD LINE  

Fault 

length L 

[km] 

TWM 

Δ𝜖/ |
Δ𝜖

𝐿
| 

FBM 

Δ𝜖/ |
Δ𝜖

𝐿
| 

TBM 

Δ𝜖/ |
Δ𝜖

𝐿
| 

PCE 

Δ𝜖/ |
Δ𝜖

𝐿
| 

50 -0.08/0.02% 2.18/4.36% 1.68/3.36% 0.10/0.20% 

100 -0.15/0.15% 3.94/3.94% 3.62/3.62% 0.20/0.20% 

150 -3.55/-2.37% 5.63/3.75% 4.40/2.93% -0.10/0.08% 

200 6.37/3.19% 7.53/3.77% 7.04/3.52% -0.20/0.10% 

250 9.62/3.85% 9.76/3.90% 8.90/3.56% 0.20/0.08% 

 

B. Ground Conductivity Uncertainty Analysis 

Typically, when creating a simulation model for a 

transmission line, a ground conductivity value of 0.01 S/m is 

assumed. However, in this section, we aim to assess whether 

the proposed fault location method can effectively handle 

transmission lines with varying ground conductivity along 

different length. Being consistent with Sec. V-A, we divided a 

300km transmission line into 30 sections to replicate an actual 

scenario where ground conductivity is not uniform. The 

ground conductivity within each segment is generated using a 

lognormal distribution within the range of [0.001, 0.01] S/m, 

as detailed in reference [28],[29]. 

The mean value of this distribution is approximately 0.003 

S/m, which significantly deviates from the typical value of 

0.01 S/m. This deviation is introduced to replicate scenarios 

where ground conductivity varies substantially along the 

transmission line. The comparison of location results for 

different methods is presented in Table IV. While TWM 

performs relatively well at fault distances of 50km and 100km, 

its accuracy diminishes for other fault distances, resulting in a 

relative location error of approximately 3%. For FBM, relative 

location errors of 2% to 5% are observed at various fault 

distances. The TBM also experiences a relative location error 

of about 3% due to ground conductivity discrepancies. In 

contrast, the proposed method effectively mitigates the issue 

of a ground conductivity mismatch, reducing the relative 

location error to less than 1%. Furthermore, at the specified 

fault distance, absolute location errors do not exceed 200m for 

fault distances of 250 km. 

C. Height and Ground Conductivity Uncertainties Analysis 

In Sec. V-A and B, we provide comparisons of various fault 

location methods in scenarios where single uncertain 

parameters existed in the transmission line. However, in real-

world transmission lines, variations in both height and ground 

conductivity can occur simultaneously due to the diverse 

landforms they traverse. In this section, we introduce a fault 

location method that considers multiple uncertain parameters 

and provide simulation cases to illustrate its performance. 

The multivariate fault location method presented in this 

section is fundamentally similar to the univariate approach, as 

it also relies on the largest correlation coefficient as the key 

indicator for fault location. The primary distinction between 

the multivariate and single-variable applications is found in 

equation (8). When applying PCE to model line parameters 

that encompass multiple sources of uncertainty, the orthogonal 

polynomial basis employed becomes a tensor product of the 

individual univariate orthogonal polynomial bases. 

Specifically, for the height and ground conductivity 

parameters, which utilize Hermite orthogonal polynomials as 

their basis, the multivariate expansion employs tensor 

products of these Hermite orthogonal polynomial bases.  
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(a) 

 
(b) 

Fig.6.  The location process of the proposed method at 100km while 

multivariate uncertainty parameters existing. (a) The max correlation 

coefficient curve corresponding to ξ1 and ξ2, (b) The guessed position based 

on the maximum correlation coefficient corresponding to different random 

variables ξ1 and ξ2. 
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 (20) 

When the multivariate expansion is carried out up to the 

second order, the ZY matrix will transform into a 6×6 matrix. 

By solving the fault response of this expanded circuit, a fault 

response proxy model is established, taking into account 

uncertainties in both the transmission line height and ground 

conductivity. Subsequently, the fault location can be executed 

following the same computational process as in the case of 

univariate uncertainty parameters. 

Fig. 6 presents the fault location results for a 10 Ω short-

circuit fault occurring at a distance of 100 km when there are 

uncertainties in both the height and ground conductivity. The 

simulation settings used to generate the actual fault signal 

align with those in Sec. V-A and B. The 300 km transmission 

line is divided into 30 sections, and the height and 

conductivity of each section utilize the same random numbers 

as in the previous sections. In the figure, ξ1 represents height, 

and ξ2 represents ground conductivity. When the correlation 

coefficient reaches its maximum value, the location result is 

99.40 km, with a relative error of only 0.6%. 

,g g 

Negative polePositive pole

h=30m

d=10m

 
Fig.7.  Bipolar HVDC transmission line structure 

TABLE V  

CONSIDERING HEIGHT AND GROUND CONDUCTIVITY 

UNCERTAINTIES IN SINGLE CONDUCTOR OVERHEAD LINE  

Fault 

length L 

[km] 

TWM 

Δ𝜖/ |
Δ𝜖

𝐿
| 

FBM 

Δ𝜖/ |
Δ𝜖

𝐿
| 

TBM 

Δ𝜖/ |
Δ𝜖

𝐿
| 

PCE 

Δ𝜖/ |
Δ𝜖

𝐿
| 

50 -3.40/6.80% -1.62/3.24% -1.30/2.60% 0.10/0.20% 

100 -6.80/6.80% -4.69/4.69% -4.00/4.00% -0.60/0.60% 

150 -10.20/6.80% -7.91/5.23% -6.00/4.00% 0.30/0.20% 

200 -13.60/6.80% -10.26/5.13% -9.10/4.55% 0.70/0.35% 

250 -17.00/6.80% -14.37/5.75% -12.30/4.92% -0.50/0.20% 

 

Without loss of generality, Table V provides the location 

results at different fault distances. In comparison with the 

location errors of the traditional method in Table III, the 

relative location errors of the traditional method in this section 

are generally reduced. This reduction occurs because the 

randomly generated height and ground conductivity have 

opposite effects on transmission line propagation concerning 

the transmission line parameters. The randomly generated 

height tends to increase the ZY parameters of the line, 

whereas the randomly generated conductivity has the opposite 

effect. Therefore, under the influence of both factors, the 

relative location error of the traditional fault location 

algorithm is smaller than that in Table III, ranging between 

2% and 8%. 

However, the proposed method can reduce the location 

error caused by multivariate uncertainty to less than 1%. At 

the set fault location, the method proposed in this paper 

exhibits a maximum relative location error of 0.6%. 

VI. MULTICONDUCTOR OVERHEAD LINE 

This section sets out to verify that the phenomena in the 

case of the multiconductor overhead line. Take the bipolar 

HVDC transmission lines for example, there is coupling 

between the positive and negative poles. The similarity 

transformation is adopted to decouple the phasor signal into 

modal signals as explained in [20].  
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where the subscripts p and n denote the positive and negative 

poles, the subscripts 1 and 0 denote the 1-mode and 0-mode 

components based on the positive pole, respectively. To 

investigate the impact of uncertainty parameters on the fault 

location of bipolar HVDC transmission lines, both univariate 

and multivariate uncertainty parameters are considered in the 

context of fault location for these transmission lines. 

A. Height Uncertainty Analysis 

A bipolar HVDC transmission line is modeled in 

MATLAB. Fig. 7 illustrates a cross-section of the 

transmission line under investigation, which is representative 

of the 500 kV power towers commonly used in China.  

Using a positive pole-to-ground fault as an example, Table 

VI presents the location results obtained from different mode 

components following the pole-mode transformation. It is 

noticeable that the impact on the 1-mode component is 

reduced and the relative location error is substantially smaller, 

with some fault distances exhibiting errors of less than 1%, 

which meets the actual requirements of the project. However, 

pole-mode transformation cannot entirely eliminate the 

influence of uncertain line parameters on the 1-mode 

components, resulting in noticeable location errors, 

particularly evident at a distance of 200km, for instance. 

Nevertheless, due to the cumulative effect of uncertain 

parameters, the relative location error for the 0-mode 

component increases significantly in comparison to the 1-

mode component. When using the proposed method, the 

location error can be entirely eliminated when employing the 

1-mode component at the specified fault distances. 

Additionally, the relative location error can also be reduced to 

below 1% even when using the 0-mode component. 

B. Ground Conductivity Uncertainty Analysis 

Continuing from the extreme ground conductivity scenario 

described in Sec.V-B, a bipolar transmission line with 

nonuniform ground conductivity along its length is 

established, focusing on pole-to-ground fault. After applying 

pole-mode transformation to the fault response, the location 

results from various methods are presented in Table VII. The 

results indicate that the proposed method can reduce the 

relative error to less than 0.2%, regardless of whether the 0-

mode or 1-mode component is used. This demonstrates that 

the proposed method exhibits robustness against parameter 

uncertainty in the context of bipolar transmission lines with 

nonuniform ground conductivity. 

 

 

 

 

 

TABLE VI  

CONSIDERING HEIGHT UNCERTAINTY IN DOUBLE CONDUCTOR 

OVERHEAD LINE  

Fault 

length L 

[km] 

TWM 

Δ𝜖/ |
Δ𝜖

𝐿
| 

FBM 

Δ𝜖/ |
Δ𝜖

𝐿
| 

TBM 

Δ𝜖/ |
Δ𝜖

𝐿
| 

PCE 

Δ𝜖/ |
Δ𝜖

𝐿
| 

50 
0 -7.49/14.98% -1.39/2.78% -2.30/4.60% 0.30/0.60% 

1 2.41/4.82% -0.80/1.76% -0.50/1.00% 0/0% 

100 
0 -12.70/12.70% -3.58/3.58% -4.40/4.40% -0.10/0.10% 

1 1.07/1.07% -2.77/2.77% -0.80/0.08% 0/0% 

150 
0 -19.94/13.29% -4.73/3.15% -3.80/2.53% -0.30/0.20% 

1 -0.26/0.17% -4.42/2.94% 7.20/4.80% 0/0% 

200 
0 -20.92/10.46% -5.24/2.57% -14.20/7.10% 0/0% 

1 -1.60/0.80% -4.58/2.29% -3.90/1.95% -0.10/0.05% 

250 
0 -11.91/4.76% -7.19/2.88% -19.90/7.96% 0/0% 

1 -2.93/1.17% -1.87/0.75% 1.00/0.40% 0/0% 

 

TABLE VII  

CONSIDERING GROUND CONDUCTIVITY UNCERTAINTY IN 

DOUBLE CONDUCTOR OVERHEAD LINE  

Fault 

length L 

[km] 

TWM 

Δ𝜖/ |
Δ𝜖

𝐿
| 

FBM 

Δ𝜖/ |
Δ𝜖

𝐿
| 

TBM 

Δ𝜖/ |
Δ𝜖

𝐿
| 

PCE 

Δ𝜖/ |
Δ𝜖

𝐿
| 

50 
0 -4.49/8.98% -0.58/1.16% 1.90/3.80% 0.10/0.20% 

1 4.28/8.56% 0.15/0.30% 0.90/1.80% 0/0% 

100 
0 -2.65/2.65% -2.39/2.39% 3.60/3.60% -0.20/0.20% 

1 -0.05/0.05% 0.17/0.17% 1.60/1.60% -0.10/0.10% 

150 
0 -11.25/7.50% -2.87/1.91% 4.00/2.67% -0.60/0.40% 

1 -0.26/0.17% 1.01/0.67% -0.50/0.33% 0/0% 

200 
0 26.94/13.47% -2.21/1.11% 7.50/3.75% -0.20/0.10% 

1 -0.10/0.05% 0.97/0.49% -0.80/0.40% -0.20/0.10% 

250 
0 -1.25/0.50% -4.89/1.96% 10.90/4.36% -0.10/0.04% 

1 0.06/0.02% -3.38/1.35% 3.30/1.32% 0/0% 

 

TABLE VIII  

CONSIDERING HEIGHT AND GROUND CONDUCTIVITY 

UNCERTAINTIES IN DOUBLE CONDUCTOR OVERHEAD LINE  

Fault 

length L 

[km] 

TWM 

Δ𝜖/ |
Δ𝜖

𝐿
| 

FBM 

Δ𝜖/ |
Δ𝜖

𝐿
| 

TBM 

Δ𝜖/ |
Δ𝜖

𝐿
| 

PCE 

Δ𝜖/ |
Δ𝜖

𝐿
| 

50 
0 -7.01/14.02% -4.50/9.00% -1.30/2.60% 0.30/0.60% 

1 -0.21/0.42% 3.73/7.46% -0.10/0.20% 0/0% 

100 
0 -11.50/11.50% -2.36/2.36% -2.70/2.70% 0/0% 

1 -0.05/0.05% -0.83/0.83% -0.10/0.10% 0/0% 

150 
0 -18.52/12.35% -3.49/2.33% -3.40/2.27% -0.10/0.07% 

1 -0.26/0.17% 1.27/0.85% -0.80/0.53% 0/0% 

200 
0 -26.16/13.08% -7.34/3.67% -10.10/5.05% -0.20/0.10% 

1 -0.47/0.24% 2.37/1.19% 0.10/0.05% 0/0% 

250 
0 -10.42/4.17% -7.19/2.88% -15.70/6.28% -0.60/0.24% 

1 -0.31/0.12% -4.56/1.82% -0.80/0.32% 0/0% 

 

C. Height and Ground Conductivity Uncertainties Analysis 

In the context of multiple uncertainty parameters in bipolar 

DC transmission lines, following the height and ground 

conductivity settings described in Sec. V-C, and after 

performing pole-mode transformation on the fault signal. As 

shown in Table VIII, the relative location error for the 

traveling wave method and TBM is no more than 1% when 

using the 1-mode component for location. However, 

significant location errors occur when using the 0-mode 

component. In contrast, the proposed method exhibits 
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outstanding location performance for both 0-mode and 1-mode 

components, with the largest relative error being 0.6%, 

observed when using the 0-mode component at 50km. When 

the 1-mode component is employed, the location error can be 

completely eliminated at the set fault distances. 

VII. TIME CONSUMPTION OF METHOD 

As illustrated in Sec. III.B, the PCE method comprises two 

parts: pre-simulation procedure and online calculation 

procedure. In the pre-simulation phase, specific to a 

transmission line, the necessary computations are conducted in 

advance to generate a simulation database encompassing 

parameter uncertainties. Subsequently, when a fault transient 

is detected in the real power system, the only remaining task is 

to calculate the correlation between the measured fault signal 

and the simulation database. Given the consideration of 

uncertainty parameters, numerous simulations and calculations 

are likely conducted in pre-simulation for each scenario.  

Therefore, the simulation time is approached from two 

perspectives. The calculation platform employed is an i5-

12400K CPU with the memory size of 16GB. Firstly, using a 

single-conductor over lossy ground as an example, we 

compare simulation times for a specific simulated fault 

location. This comparison is between employing Polynomial 

Chaos Expansion (PCE) to establish a simulated fault response 

proxy model and using Monte Carlo (MC) sampling for 

simulated fault responses under various random variables. 

Table III below illustrates the comparison, where 300 

samplings are conducted for both MC and proxy models. The 

results indicate that utilizing PCE can significantly reduce 

time consumption, especially when establishing a fault signal 

proxy model along the line. 

 
TABLE IX 

TIME-CONSUMING COMPARISON OF PCE AND MC IN  

PRE-SIMULATION PHASE 

Method PCE MC 

Time [s] 1.01 12.57 

 
Secondly, to achieve real-time or near-real-time fault 

localization, a heuristic acceleration algorithm is utilized in the 

calculation process of correlation coefficients between the 

actual fault signal and simulation databases [30]. Using a 

single-conductor transmission line over lossy ground as an 

example, the calculation times for determining the maximum 

correlation coefficient at 100 km are provided using 

exhaustive calculation and the heuristic algorithm. The step of 

the random variable ξ is set at 0.05 within the range of [-3, 3]. 

During online calculation, the adoption of the heuristic 

algorithm significantly reduces the localization time, 

facilitating real-time or near-real-time fault localization 

scenario. 

 

 

 

 

 

TABLE X  

TIME-CONSUMING COMPARISON OF EXHAUSTIVE 

CALCULATION AND HEURISTIC ALGORITHM IN ONLINE 

CALCULATION PHASE 

Uncertainty 

parameter 

Exhaustive  

calculation 

Heuristic 

algorithm 

h 27.13 s 0.78 s 

h and σg 2876.69s 2.54s 

 

VIII. EXPERIMENTAL VALIDATION 

The location performance of the proposed method was also 

tested in a real power line with uncertain height and soil 

conductivity for a real phase-to-ground fault transient recorded 

in a 220 kV AC power line in a mountain region, in Yunnan 

Province, China. The structure diagram of the cross section of 

the tower is shown in Fig.8. The power line length is 192 km 

which contains 389 towers in all, the phase-to-ground fault 

occurred in the phase C of No. 77 tower, with fault distance of 

37.29 km.  

The measured fault transient currents in the time and 

frequency domains are depicted in Fig. 9. The sampling rate of 

the recording equipment was 1 MHz, and the overall recording 

duration 1.25 ms. In Fig. 8, the time difference between the 

arrivals of the first two traveling signals is 0.23 ms. In TWM, 

the traveling wave propagation velocity is estimated using an 

approximate value of 1/√LC, which may introduce location 

errors due to signal velocity bias arising from frequency 

variation [31]. In this study, the velocity corresponding to the 

main natural resonance frequency of 4.77 kHz is utilized for 

calculations, with a value set at 2.83×108 m/s. Consequently, 

the fault position is estimated as 32.55 km using TWM. 

When employing FBM, to enhance the resolution and 

accuracy of the location results, high-order natural frequencies 

are extracted for fault location [21],[25]. In Fig. 9(b), five 

orders of resonant frequency are extracted, specifically 21.94 

kHz, 26.06 kHz, 30.50 kHz, 34.99 kHz, and 38.98 kHz. By 

incorporating the traveling wave velocity corresponding to 

each frequency, the final average location result is determined 

to be 34.27 km. 

Considering the effect of the uncertainty in the transmission 

line height on the propagation velocity and attenuation, the 

line model is based by the method of PCE according to the 

real configuration of the tower in Fig.8. The line height is set 

to obey a normal distribution in the range of [15m, 45m]. In 

Fig.10, the CCv and fault position varies with ξ, with the fault 

position finally estimated for a maximum CCv=0.9153 which 

is found at a 36.39 km distance. According to the electrical 

company, the real fault distance was found at 37.29 km. 

A comparison of the location results of different methods is 

given in Table XI. TWM and FBM have a non-negligible 

absolute location error of 4.74 km and 3.02 km which both 

exceed 5%. By contrast, PCE limits the error to 0.9 km with a 

relative location error of 2.41%. 



12 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

18 m

6.2 m

6.7 m

6.7 m

5.7 m

5.2 m

4.8 m

4.5 m

 
Fig. 8.  The cross section of the 220 kV transmission line tower in the actual 

project. 

 
(a) 

 
(b) 

Fig. 9.  The measured transient current in time and frequency domain. 
 

 
Fig. 10.  The CCv and fault position estimation results by actual fault data. 

 

TABLE XI  

LOCATION RESULTS OF DIFFERENT METHOD UNDER THE 

ACTUAL FAULT DATA 

Method 
Absolute error  

[km] 

Relative error 

[%] 

TWM 4.74 12.72 

FBM 3.02 9.13 

PCE 0.9 2.41 

 

IX. DISCUSSIONS AND CONCLUSION 

This paper focuses on achieving precise fault location for 

short-circuit ground faults in power-transmission lines 

affected, by uncertainties related to the conductor height and 

the ground conductivity. These uncertainties are prevalent in 

existing power transmission systems due to varying terrains. 

Using a single-conductor transmission line above a lossy 

ground as an example, the impact of parameter uncertainties 

on parameters of the transmission line is examined. The 

research also presents relative location errors resulting from 

parameter uncertainties in the natural frequency-based 

method. For single-conductor transmission lines, it is observed 

that parameter uncertainties can lead to relative location errors 

of up to approximately 9%. 

A novel location method robust against such uncertainties is 

introduced, based on a polynomial-chaos expansion approach, 

while exploiting the ability of full-transient based methods to 

measure the similarity between measured fault transients and 

reference propagation models. Results indicate that the 

proposed method exhibits a very high robustness when dealing 

with non-uniform degrees of uncertainty parameters along the 

line, with location errors systematically within 1 %. 

The paper provides several comparisons of the location 

performance between existing fault location methods and the 

proposed method in both monopolar and bipolar HVDC 

transmission lines. In monopolar HVDC transmission lines, 

uncertainties related to line height and ground conductivity 

can result in substantial relative location errors in traditional 

fault location methods. In bipolar HVDC transmission lines, 

due to pole-mode transformation, the influence of uncertainty 

parameters on the 1-mode component is weakened. However, 

the 0-mode component is more susceptible to uncertainty 

parameters, making traditional fault location methods 

ineffective in this case. In contrast, the proposed method, 

when used for fault location, consistently delivers accurate 

results, whether employing 1-mode or 0-mode components, 

with relative location errors remaining below 1%.  

It is also shown that the computation-intensive simulation 

phase required in full-transient methods is accelerated by PCE, 

with a reduction in the computation duration by up to 12 times 

compared to a Monte Carlo method. Additionally, for 

achieving real-time fault localization scenarios, a heuristic 

optimization algorithm can complete a simulation case in 2.54 

seconds, whereas exhaustive calculation takes 2876.69 

seconds. 
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Finally, the practical performance of PCE is validated using 

recorded fault current data in actual 220 kV power grid. PCE 

effectively reduces the relative location error to 2.41%, 

compared to relative errors of 12.72% and 9.13% for TWM 

and FBM, respectively. 

Future work will extend these results to more additional 

phenomena of multi-modal propagation and more fault type.  

APPENDIX 

A. The per-unit-length parameters  

The per-unit-length parameters of the single overhead 

conductor can be expressed as: 
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Where L'  is inductance in series, C'  is the capacitance in 

parallel, Zg
'  is the ground impedance in series, Zw

'  is the 

conductor impedance in series, G' is the admittance and Yg
'  is 

the ground admittance in parallel. γ
g

 is the propagation 

constant in the ground with γ
g
(ξ2)=√jωμ

0
(σg(ξ2)+jωε0εg). The 

μ
0

, ε0 , σair  are electrical parameters of the air; σg , εg  are 

electrical parameters of the ground; rw, h are radius and height 

of the conductor. 

B. Fault transient calculation by chain parameter  

In this paper, all simulations are carried out in MATLAB 

and the fault response is calculated by chain parameter.  

 
Fig. 11.  Chain parameter equation diagram. 

 

In figure 10, V0 and I0 are the fault voltage and current at 

line head, and Vl and Il are the fault voltage and current at line 

end. At the fault node, transmission line is divided into left 

and right parts. Ishort is the fault branch current, 
r

midI  and 
l

midI  

is the current flowing before and after the fault node, r  and 
l  are the chain parameters of the two sections, specifically: 
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Defining the positive direction of current from the beginning 

of the line to the end of the line, and the boundary conditions 

from the beginning and end of the line are: 
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Therefore, the calculation formula of the chain parameters 

from line head to the fault node is: 
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The calculation formula of the chain parameters from the fault 

node to line end is: 
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Thus, the current around the fault node can be expressed by 

the voltage V0 as 

 

1

21 0 22 0

1

12 22 21 11

1

11 12 0

( ) ( )

[ ( ) ( )] [ ( ) ( )]

[ ( ) ( ) ]

l l l

mid s

r r r r r

mid l l

l l

s

z z

z z z z

z z







 

  



I Φ V Φ Z V

I Φ Z Φ Z Φ Φ

          Φ Φ Z V

 (7) 

At the fault node, the boundary conditions between the line 

current and the fault node current are: 
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Above all, the expression of the fault voltage at line head in 

the frequency domain is derived as: 
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