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Exploring unseen 3D scenarios of physics variables using machine learning-based synthetic
data: an application to wave energy converters
César Quilodrán-Casas,Qian Li,Ningbo Zhang,Sibo Cheng,Shiqiang Yan,Qingwei Ma,Rossella Arcucci

• We propose a model surrogate for Wave Energy Converters Computational Fluid Dynamics.
• Generative models are used to create unseen scenarios of velocity and dynamic viscosity responses.
• Two different generative models are employed and expand the design space.
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A B S T R A C T
This work aims to use machine learning to produce synthetic data of wave energy converters from
time-expensive 3D simulations based on computational fluid dynamics models. The simulations
to analyse the response of these systems to incoming waves are lengthy and computationally
expensive to obtain. Here, we explore the use of a beta-VAE and a Principal Components-based
adversarial autoencoder for generating new synthetic data. The compression plus the generation
of synthetic data introduces an exceptionally fast model surrogate of the original simulation and
delivers more samples of either dynamic viscosity and velocity fields, enlarging the design space.
The newly generated synthetic samples can have a speed up from 5 to 6 orders of magnitude. The
new design space can be used to improve the prediction of dynamic viscosity given the velocity
fields. The generative model has the potential to capture the transition and the new physical
phenomena under extreme initial conditions.

1. Introduction
Due to the increasing demand for clean energy, various renewable energy resources are being explored, among1

which wave energy is one of the topics with the greatest potential (Glendenning, 1977). Various forms of oscillating2

Wave Energy Converter (WEC) devices have been developed to capture wave energy to generate electricity (Antonio,3

2010).4

WECs are devices that convert the kinetic and potential energy associated with a moving ocean wave into useful5

mechanical or electrical energy. A point absorber is a floating structure that absorbs energy from all directions through6

its movements at or near the water’s surface. It converts the motion of the buoyant top relative to the base into electrical7

power. An interesting interaction to predict is how the dynamic viscosity around the point absorber reacts to the stimulus8

of an incoming wave, and this can be predicted with the velocity fields and the dynamic viscosity from the previous9

time level (Jin, Patton, and Guo, 2018).10

In the process of studying a complete WEC system, it is essential to obtain a general and applicable hydrodynamic11

description of how the device interacts with the incident waves. This mathematical description is important to suggest12

the design of the power take-off (PTO), as well as the development of the control system since these WEC subsystems13

are influenced by the dynamic interaction that the WEC device has with the movement of the waves (Son and Yeung,14

2017). However, Computational Fluid Dynamics (CFD) simulations of how these systems behave due to ocean wave15

perturbations can be computationally expensive to run and time-consuming. Often it can produce a small number of16

samples to work with, yielding poor predictors for a predictive model of the dynamic viscosity due to the lack of a17

high number of samples. Therefore, an attractive solution is to generate new simulations, at a considerable speedup,18

that learn from the original CFD simulations.19
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A classic approach to this difficult problem is Data Augmentation (DA). In DA, the network is trained using20

additional synthetic data. DA was introduced in object recognition in LeCun, Bottou, Bengio, and Haffner (1998).21

The advantages of DA are that it increases the size of the training data; eliminates the overfitting problem; and it22

makes the network more robust to data variations that may exist in any real-world application. The basic idea behind23

DA is to apply transformations so that the semantics of the labels associated with the data does not change. By training24

the network with this extra data, one would expect, its performance on unseen data to be enhanced.25

Quilodrán-Casas, Arcucci, Mottet, Guo, and Pain (2021) used generative models to create stable rollouts for air26

pollution. The experimental design space of microfluidics has also been augmented using generative networks (Chagot,27

Quilodrán-Casas, Kalli, Kovalchuk, Simmons, Matar, Arcucci, and Angeli, 2022). Other successful implementations28

of generative-based augmentation are Karras, Aila, Laine, and Lehtinen (2017); Berthelot, Schumm, and Metz (2017);29

Radford, Metz, and Chintala (2015).30

The generation of high-quality synthetic data allowed the augmentation of small-sample data sets (Forestier,31

Petitjean, Dau, Webb, and Keogh, 2017; Hoffmann, Bar-Sinai, Lee, Andrejevic, Mishra, Rubinstein, and Rycroft,32

2019). Although the use of the synthetic data needs to be developed and adapted for each case (Chen, Lu, Chen,33

Williamson, and Mahmood, 2021), it can be a powerful tool to increase the robustness and adaptability of data-driven34

models (Yoon, Jordon, and Schaar, 2018; Quilodrán-Casas et al., 2021). However, Machine Learning (ML) often35

requires representative data to be effective (Zhou, Pan, Wang, and Vasilakos, 2017; Li, Zhang, Chen, Shen, and Niu,36

2023; Sadeghi, Nguyen, Hsu, and Sorooshian, 2020; Razavi, 2021).37

Recent advances in ML have shown strong predictive power to determine complex correlations and find patterns38

between inputs and outputs (Goodfellow, Bengio, and Courville, 2016). ML has been employed in wave energy studies39

previously. Rodriguez-Delgado, Bergillos, and Iglesias (2019) have used neural networks to assess the efficiency of40

WECs. Li, Yuan, and Gao (2018) used Deep Learning (DL) for assessing the energy absorption of a WEC. Sarkar,41

Contal, Vayatis, and Dias (2016). Sclavounos and Ma (2018) and Mousavi, Ghasemi, Dehghan Manshadi, and Mosavi42

(2021) used ML for forecasting the time series response of WEC and wave energy conversion rates.43

However, generative methods to augment datasets have not been used to augment data and reproduce unseen physics44

conditions. Here, we use data from a high-fidelity CFD simulating 3D velocity and dynamic viscosity of WECs in some45

scenarios and we use ML models to develop a surrogate model to reproduce unseen physics conditions for WECs. Due46

to the problem complexity and the high dimensionality, running this CFD simulation can be computationally expensive47

and time-consuming. To tackle this bottleneck, in this paper, a 𝛽-Variational Autoencoder (VAE) and a Principal48

Components-based Adversarial Autoencoder (PC-AAE) are used to generate synthetic data to enlarge the experimental49

dataset, explore unseen scenarios of this Three-dimensional (3D) simulation in a fast manner. The generated data can50

also be used to train a ML surrogate model for predicting future wave dynamics. To the best of our knowledge, this is51

the first reported attempt to obtain synthetic data of WECs 3D CFD simulations using generative models.52

The contribution of this paper lies in the use of generative networks such as 𝛽-VAE and PC-AAE for the generation53

of unseen synthetic data to expand the relationship between velocity and dynamic viscosity in CFD models, bypassing54

running a different CFD simulation in a supercomputer to create more samples. These generative models allow55

increasing the design space and access to sampled data from a matched distribution of the original data.56

This paper is organised as follows. Section 2 describes the implementation of the 𝛽-VAE and the PC-AAE. Section57

3 describes the irregular wave test case of a point absorber WEC. Section 4 shows the results and discussion of58

the samples of velocity fields and dynamic viscosity generated by these networks. And finally, Section 5 presents59

a summary, conclusion and future work.60

2. Generative models61

In this paper, two different generative models are used: 𝛽-VAE and PC-AAE. These two methods were chosen as62

they are well-established and well-documented for producing high-fidelity results.63

2.1. 𝛽-Variational autoencoder (𝛽-VAE)64

Autoencoder (AE)s were developed to reconstruct high-dimensional data using a neural network model composed65

of an encoder and a decoder. AEs can also reduce the dimensionality of the system with the encoder mapping the66

input onto a bottleneck layer. Furthermore, a 𝛽-VAE instead of mapping onto a fixed vector, maps the input onto an67

arbitrary distribution (Higgins, Matthey, Pal, Burgess, Glorot, Botvinick, Mohamed, and Lerchner, 2016). The 𝛽-VAE68

is a modification of the VAE with a special emphasis to discover disentangled latent factors. Following the same69
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incentive in VAE, the probability of generating real data is maximised whilst maintaining the distance between the real70

and estimated posterior distributions small.71

Let  and  denote the encoder and decoder, respectively. Moreover, let 𝑞(𝐳|𝐱) and 𝑝(�̃�|𝐳) denote the encoding and72

decoding distributions, respectively., where 𝐱 is the input vector, �̃� is the reconstructed input, and 𝐳 is the latent space.73

As suggested by Makhzani, Shlens, Jaitly, Goodfellow, and Frey (2015), a Gaussian posterior can be used assuming74

that 𝑞(𝐳|𝐱) is a Gaussian distribution, where its mean 𝜇 and variance 𝜎 are predicted by the encoder  by adding two75

dense layers of means 𝜇 and 𝑙𝑜𝑔 𝜎 to the final layer of the encoder , and return 𝐳 as a vector of samples (Kingma and76

Welling, 2013). To ensure that 𝐳 ∼ 𝑞(𝐳|𝐱) =  (𝜇, 𝜎2), the aggregated posterior, the reparameterisation trick described77

by Kingma and Welling (2013) was used for backpropagation.78

The minimisation of the Kullback-Leibler Divergence Score (KL) loss (𝐾𝐿) quantifies how much the probability
distribution 𝑎 differs from the probability distribution 𝑏 as:

𝐾𝐿(𝑎, 𝑏) = −
∑

𝑎 𝑙𝑜𝑔
(𝑏
𝑎

)

(1)

where, in this case, 𝑎 = 𝑞(𝐳|𝐱) and 𝑏 = 𝑔(𝐳) =  (0, 𝐈), the arbitrary prior, and 𝐈 is the identity matrix. In other words,
we expect the latent distribution 𝑔(𝐳) to approximate a centred and standard Gaussian distribution. Adam is used as
the optimiser (Kingma and Welling, 2013). The total loss 𝜃 is then defined as 𝜃 = 𝜆𝐾𝐿 + 𝑚𝑠𝑒, where 𝜆 = 0.001
acts as a regulariser. The reconstruction error 𝑚𝑠𝑒 is the mean squared error defined as:

𝑚𝑠𝑒 = ||𝐱 − �̃�||2 (2)
where �̃� is the reconstructed input of experimental data, defined as �̃� = ((𝐱)). The inputs were scaled between 079

and 1.80

The implementation of the 𝛽-VAE is in Python using pytorch (Paszke, Gross, Massa, Lerer, Bradbury, Chanan,81

Killeen, Lin, Gimelshein, Antiga et al., 2019) and the pytorch-lightning wrapper (Falcon et al., 2019). The82

algorithm of the generation of synthetic samples using 𝛽-VAE is shown in Algorithm 1.83

Algorithm 1: 𝛽-VAE
Require : 𝜃 and 𝜃 trainable parameters for encoder , and decoder  , respectively; batch sizes 𝑚 for

; number of epochs 𝑘
for 𝑒𝑝𝑜𝑐ℎ𝑠 = 0,… , 𝑘 do

Match a latent vector of size 𝑚 to a normal distribution 𝐳 ∼ 𝐪(𝐳|𝐱)
Calculate the 𝐾𝐿(𝑞(𝐳|𝐱), 𝑔(𝐳))
Calculate the 𝑚𝑠𝑒

Reconstruction error 𝜃 = 𝐾𝐿 + 𝑚𝑠𝑒

Update the 𝛽-VAE parameters (𝜃 and 𝜃 ) via: 𝜃𝛽−𝑉 𝐴𝐸 ← Adam(𝛽−𝑉 𝐴𝐸)
until convergence detach Decoder  and use it to generate samples

2.2. PC-based adversarial AE (PC-AAE)84

As described by Lever, Krzywinski, and Altman (2017), Principal Component Analysis (PCA) is an unsupervised
learning method that simplifies high-dimensional data by transforming it into fewer dimensions. The PCA consists in
decomposing 𝐱 as 𝐱 = 𝐏𝚷+ �̄� where 𝐏 ∈ ℜ𝑛×𝑛 are the Principal Components (PC)s of 𝐱; 𝚷 ∈ ℜ𝑛×𝑚 are the Empirical
Orthogonal Functions (EOF)s; and �̄� is the mean vector of the model. The dimension reduction of the system comes
from truncating 𝐏 at the first 𝜏 PCs as 𝐱𝜏 = 𝐏𝜏𝚷𝜏 + �̄�, with 𝐏𝜏 ∈ ℜ𝑛×𝜏 and 𝚷𝜏 ∈ ℜ𝜏×𝑚. To further reduce the
system dimension, a number of recent researches combined PCA with deep learning AEs (see Cheng, Jin, Harrison,
Quilodrán-Casas, Prentice, Guo, and Arcucci (2022); Cheng, Chen, Anastasiou, Angeli, Matar, Guo, Pain, and Arcucci
(2023); Gong, Cheng, Chen, Li, Quilodrán-Casas, Xiao, and Arcucci (2022)). In this study, the principle components
are used to train an Adversarial Autoencoder (AAE) (Makhzani et al., 2015). The functional of our PC-AAE is defined
as:

𝑓𝑃𝐶−𝐴𝐴𝐸 ∶ 𝐏𝑡𝑘 → �̃�𝑡𝑘 (3)
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where 𝐏𝐭𝐤 are the scaled PCs time series between -1 and 1 at time-level 𝑘. The AE consists of an encoder  and a85

decoder  , both mirrored fully-connected networks, where the scaled reconstructed PCs �̃�𝑡𝑘 = ((𝐏𝐭𝐤 )). Let 𝑞(𝐳|𝐏)86

and 𝑝(�̃�|𝐳) be the encoding and decoding distributions, respectively. As suggested by Makhzani et al. (2015), we use a87

Gaussian posterior and assume that 𝑞(𝐳|𝐏) is a Gaussian distribution, where its mean and variance are predicted by the88

encoder . This is achieved by adding two dense layers of means 𝜇 and 𝑙𝑜𝑔 𝜎 to the final layer of the encoder , and89

return 𝐳 as a vector of samples. This is achieved similarly to the reparameterisation trick described above for 𝛽-VAE.90

The adversarial training of PC-AAE includes a discriminator 𝐴 to distinguish between the real samples, given
by an arbitrary prior 𝑔(𝐳), and fake samples, given by 𝑞(𝐳|𝐏). Therefore, the adversarial autoencoder is regularised by
matching 𝑔(𝐳) to 𝑞(𝐳|𝐏). The ground truth PCs 𝐏 are fed to the discriminator as real sequences (ground truth). Let,
𝐴(𝛼, 𝛾) represent the discriminator function with an input 𝛼 and a target label 𝛾 such that, for 𝛼 = 𝐳 ∼ 𝑞(𝐳|𝐏), 𝛾 = 1
and for 𝛼 = �̂� ∼ 𝑝(𝐳), 𝛾 = 0, where �̂� is the latent space sampled from 𝑔(𝐳). The training of 𝐴 is based on the
minimisation of the binary cross-entropy loss (𝑏𝑐𝑒), using the Nesterov Adam optimizer (Nadam) (Dozat, 2016). The
adversarial losses 𝑎𝑑𝑣 for 𝐴 and 𝑓𝑃𝐶−𝐴𝐴𝐸 are then defined as:

𝑎𝑑𝑣
𝐴 (𝐏) = 𝑏𝑐𝑒

�̂�∼𝑔(𝐳)(
𝐴(�̂�), 1) + 𝑏𝑐𝑒

𝐳∼𝑞(𝐳|𝐏)(
𝐴(𝐳), 0) (4)

𝑎𝑑𝑣
𝑓𝑃𝐶−𝐴𝐴𝐸 (𝐏) = 𝑏𝑐𝑒

𝐳∼𝑞(𝐳|𝐏)(
𝐴(𝐳), 1) + 𝑚𝑠𝑒(�̃�,𝐏) (5)

where 𝑚𝑠𝑒 is the Mean Squared Error (MSE) between �̃� and 𝐏. The algorithm of the generation of synthetic samples91

using PC-AAE is shown in Algorithm 2.92

Algorithm 2: PC-AAE
Require : 𝜃, 𝜃 , and 𝜃𝐴 trainable parameters for encoder , decoder  , and discriminator 𝐴,

respectively; number of discriminator iterations per AE iteration (𝑛𝐴 ); batch sizes 𝑚 for ;
number of epochs 𝑘

for 𝑒𝑝𝑜𝑐ℎ𝑠 = 0,… , 𝑘 do
Discriminator training: for 𝑖 = 0,… , 𝑛𝐴 do

Sample a latent vector of size 𝑚 from a normal distribution �̂� ∼ 𝐠(𝐳), plus Gaussian noise
Fake samples 𝐳 ← 𝜃 (𝐏)
Update the discriminator 𝐴 to differentiate between real and fake sample via: 𝜃𝐴

← NAdam(𝑎𝑑𝑣
𝐴 )

Update the AE PC-AAE parameters (𝜃 and 𝜃 ) via: 𝜃𝑃𝐶−𝐴𝐴𝐸 ← NAdam(𝑎𝑑𝑣
𝑃𝐶−𝐴𝐴𝐸)

until convergence Detach Decoder  and use it to generate samples of 𝐏

Then the reconstruction �̃� to the physical space is given by:
�̃� = �̃�𝚷 + �̄� (6)

The implementation of the PC-AAE is in Python using tensorflow (Abadi, Agarwal, Barham, Brevdo, Chen,93

Citro, Corrado, Davis, Dean, Devin et al., 2016) and the keras wrapper (Chollet et al., 2015).94

3. Dataset generation methodology95

The dataset applied in this study for the ML training is a 3D unstructured grid CFD simulation of a point absorber96

WEC. Here 𝐱 = [𝑈, 𝜈𝑡] where 𝑈 = [𝑢, 𝑣,𝑤] is the whole velocity field and 𝑢, 𝑣 and 𝑤 are the velocity components in97

the X-axis, Y-axis, and Z-axis, respectively; and 𝜈𝑡 is the dynamic viscosity.98

These high-fidelity CFD simulating results are used for data generation and also as reference results for validation.99

An in-house domain decomposition hybrid solver, qaleFOAM, based on the open-source platform OpenFOAM (Jasak,100

Jemcov, Tukovic et al., 2007) is adopted in this study where a two-phase incompressible Navier-Stokes (NS) solver101

couples with the Quasi Lagrangian-Eulerian Finite Element Method (QALE-FEM) solver based on the fully nonlinear102

potential theory (Ma and Yan, 2006, 2009; Yan and Ma, 2007, 2010; Yan, Ma, and Cheng, 2011). The main target103

of this novel model is to boost the computational efficiency while maintaining the efficiency and details about this104

hybrid model can be found in (Li, Wang, Yan, Gong, and Ma, 2018) and (Yan, Wang, Wang, Ma, and Xie, 2020).105
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Besides, several investigations using this method in various working scenarios have demonstrated the effectiveness106

of the proposed model Yan, Li, Wang, Ma, Xie, and Stoesser (2019) and Yan et al. (2020). Even though significant107

improvement has been seen by applying this hybrid method, the simulation of turbulent effect for the real engineering108

issue is still very computationally expensive. This contributes to the main motivation of coupling the CFD code with109

the technology of machine learning.110

In the Reynolds-averaged Navier Stokes (RANS) model employed in this study, an ensemble averaging method
is applied to the unsteady turbulent flow modelling. This hypothesis introduces the macroscopic representations of
the micro-scale fluctuating flow. It offers access to model the overall effects of small vortexes by correlations and
meanwhile, resolves the larger eddies through the numerical simulation. where 𝜈 is the constant molecular viscosity and
𝜈𝑇 (𝑑𝑖, 𝑡) is the spatial-temporal dependent turbulent/eddy viscosity, and together they compose the effective viscosity
𝜈𝑒𝑓𝑓 (𝑑𝑖, 𝑡):

𝜈𝑒𝑓𝑓
(

𝑑𝑖, 𝑡
)

= 𝜈 + 𝜈𝑇
(

𝑑𝑖, 𝑡
) (7)

where 𝑑𝑖 and 𝑡 represent a point in space at time-step 𝑡.111

As we are more interested in water physics, the kinematic viscosity is supposed to transfer to the dynamic viscosity
𝜈𝑡 before being used in the ML training of generative methods by the following equation:

𝜈𝑡 = 𝜈
[

𝜌𝑎𝑖𝑟 (1 − 𝛼) + 𝜌𝑤𝑎𝑡𝑒𝑟𝛼
] (8)

where water is playing a dominant role and 𝛼 is the phase fraction in the two-phase flow; 𝜈 is the kinematic viscosity112

and 𝜌𝑤𝑎𝑡𝑒𝑟 and 𝜌𝑎𝑖𝑟 are the water and air density, respectively. Regarding the boundary condition setting, the no-slip113

boundary condition is applied on the bottom boundary with the total pressure specified on the top boundary in the114

NS domain. For the subdomain configuration, in the fully nonlinear potential domain, there are wave generation and115

absorption boundaries employed at the inlet and outlet boundary, respectively. Benefiting from the proposed hybrid116

model, the turbulent viscosity is only considered in a refined relatively smaller zone which is the NS domain.117

In this CFD simulation, a 𝑘−𝜔 Shear Stress Transport (SST) turbulent model that belonged to the RANS equation118

catalogue is applied in this study. Here, 𝑘 is the turbulence kinetic energy and 𝜔 is the specific rate of dissipation of119

the turbulence kinetic energy 𝑘 into internal thermal energy. The WEC surface wall treatment is always one of the120

biggest challenges raised in turbulent flow simulation, which can be classified into two categories: the Low-Reynolds121

number (LR) models and High-Reynolds number (HR) models. The LR approach accompanied by a wall function is122

targeting at the sublayer where exists a local low turbulent Reynolds number. One alternative to wall functions is to123

adopt a fine-grid configuration that allows the application of a laminar flow boundary condition. To reach the viscous124

sublayer, the normalised distance (𝑦+ ) from the first mesh cell centre to the body surface is supposed to be around 1,125

where 𝑦+ = 𝑢∗𝑦𝑤∕𝜈𝑒𝑓𝑓 . In numerical practice, the desired 𝑦+ is usually obtained through consistent trials. However, the126

HR model can cope with a much larger 𝑦+ (∼ 30) which integrates with a log-law to estimate the gradient approaching127

the body wall. It should be noted that the first computational mesh should be placed either in the log-layer or the viscous128

sublayer but not in-between (Utyuzhnikov, 2005), since none of the categories can deal with the buffer layer where129

both viscous and Reynolds stresses are significant. All these factors further contribute to the complicity in the turbulent130

flow modelling and also can be a source of error since it highly relies on the experiences of the user. Therefore, by131

cooperating with ML, this study is aimed to deal with these difficulties by employing a surrogate prediction for RANS132

turbulence eddy viscosity.133

3.1. CFD Simulation Configurations134

In the numerical simulation, a rectangular computational domain is adopted. A Two-dimensional (2D) side view135

of the computational domains is given in Figure 1. A series of numerical simulations targeted at the hydrodynamics136

performances of the three principal motions (surge, heave, and pitch) are conducted.137

As the important role played by the CFD dataset, its accuracy is examined before transferring into the ML model. To138

test the viability of the results generated by the adopted qaleFOAM solver, the numerical results have been compared to139

the experimental measurement carried out by Todalshaug, Ásgeirsson, Hjálmarsson, Maillet, Möller, Pires, Guérinel,140

and Lopes (2016) for the same wave energy devices under the regular wave conditions, in which good agreements have141

been achieved in the structure motion response. Figure 2 demonstrates the wave propagation near the WEC and also the142

pressure profile on the WEC surface. Besides, the mesh configuration of the computational domain is generated by the143

SnappyHexMesh tool with the refined zone around the free surface and structure. The CFD work is highly dependent144
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Figure 1: Sketch of the computational domain with boundaries

on the mesh resolution. Therefore, for each wave state, the convergence test against mesh resolution is performed to145

identify the optimised mesh configuration with a minimal computational cost. In the turbulent model, the initial values146

of 𝑘 and 𝜔 are set at the inlet boundary with the WEC surface treatment using the low-Reynolds-number approach147

accompanied by a wall function.148

Figure 2: Wave surface profile around the buoy

The working condition considered in this simulation is an irregular wave generated by the JONSWAP spectrum149

(Hasselmann, Barnett, Bouws, Carlson, Cartwright, Enke, Ewing, Gienapp, Hasselmann, Kruseman et al., 1973). The150

significant wave height is𝐻=8.8 m and the significant wave period is 𝑇=11 s with the numerical wave tank depth 𝑑=50151

m. Within certain mesh configuration, the time step size Δ𝑡 is automatically determined by using the fixed Courant152

number 𝐶0 (𝐶0 =
(

𝑢𝑚𝑎𝑥Δ𝑑
)

∕Δ𝑡, where Δ𝑑 is the mesh size and 𝑢𝑚𝑎𝑥 is the largest velocity value at the current time153

step). This simulation has 𝑛 = 60 time-levels, with 𝑀 = 851101 nodes. Each node contains a scalar feature kinematic154

viscosity 𝜈𝑡 and a three-dimensional velocity vector 𝑈 . The 4 fields account for each node containing 𝑚 = 3404404155

features. A snapshot of the dataset is shown in Figure 3 showcasing the regular mesh and the irregular mesh around156

the buoy.

(a) 3D-view of the WEC CFD unstruc-
tured mesh

(b) Close-up to the unstructured mesh
around the WEC within the global
mesh

Figure 3: 3D and 2D view of a snapshot of the WEC CFD simulation

157
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4. Results158

Four different experiments were performed. For the PC-AAE we constructed the PC-space for inputs in three159

different ways:160

• PC-AAE (Unut_sep): full velocity field 𝑈 and 𝜈𝑡 separated161

• PC-AAE (uvwnut): 3 components of the velocity field 𝑢, 𝑣, 𝑤 and the dynamic viscosity 𝜈𝑡 separated.162

• PC-AAE (Unut): Full velocity field 𝑈 and 𝜈𝑡 together163

The rationale behind this design is to show how the PC-space can be constructed and its effects on the training and164

reconstruction of the physical space. If the velocity field 𝑈 is considered fully along with the 𝜈𝑡 then the values of 𝑈 ,165

being larger than the ones of 𝜈𝑡, will give more weight towards 𝑈 . However, decomposing the PC-space into 𝑈 and166

𝜈𝑡; or 𝑢, 𝑣, 𝑤 and 𝜈𝑡, the balance the reduced-space. For the 𝛽-VAE, no dimension reduction like PCA was applied and167

each variable was independently standardised:168

• VAE: 3 components of the velocity field 𝑢, 𝑣, 𝑤 and the dynamic viscosity 𝜈𝑡 separated.169

Therefore, the networks with PC-AAE are small and deal with tens or hundreds of inputs, whilst the 𝛽-VAE is large170

and has ∼3.4M inputs.171

For each one of these combinations, the data were standardised by its mean and standard deviation of the field. The172

training data set is 80% of the original simulation data and the test data is 20%, These datasets were shuffled randomly.173

For each one of these experiments we tested their accuracy in the ground truth reconstruction (see Section 4.1),174

then we used them as a model surrogate and we tested the accuracy and efficiency of seen and unseen scenarios (see175

Section 4.2)176

4.1. Reconstruction of ground truth using generative networks177

To assess the effectiveness of the generative networks 𝛽-VAE and PC-AAE, the test data of the ground truth is178

reconstructed via the AEs. The test data is composed of 20% of the time-levels from the original CFD simulation, i.e.179

12 time-levels.180

Figure 4 shows the Kernel density estimator (KDE) for ground truth (blue), and the reconstructed test data, predicted181

by different generative methods, of the average values for each node over all samples. There is a good agreement182

between the reconstruction given by the generative models and the ground truth. Moreover, Figure 5 shows the excellent183

overlapping per time-level between the ground truth and the generative methods when the test data is reconstructed.184

The mutual information (Mutual Information (MI)) between distributions was calculated using:

𝑀𝐼(𝑈 ;𝑉 ) =
∣𝑈 ∣
∑

𝑖=1

∣𝑉 ∣
∑

𝑗=1

𝑈𝑖 ∩ 𝑉𝑗
𝑁

𝑙𝑜𝑔
𝑈𝑖 ∩ 𝑉𝑗

∣ 𝑈𝑖 ∣∣ 𝑉𝑗 ∣
(9)

where 𝑈 and 𝑉 are the distributions of ground truth values of the test dataset and the predicted values by the185

generative methods, respectively. Here, a Normalised Mutual Information (NMI) (Strehl and Ghosh, 2002) is used186

where normalisation of the MI score scales the results between 0 (no mutual information) and 1 (perfect correlation).187

The NMI is then defined as:188

𝑁𝑀𝐼(𝑈 ;𝑉 ) =
𝑀𝐼(𝑈 ;𝑉 )
𝐻(𝑈 )𝐻(𝑉 )

(10)
where 𝐻(𝑈 ) and 𝐻(𝑉 ) are the entropies of U and V, respectively.189

Another metric to assess the fidelity of the reconstruction of the test dataset is Normalised Root Mean Squared190

Error (NRMSE). The NRMSE for all points at all time levels is defined by:191

𝑁𝑅𝑀𝑆𝐸 =

√

||𝐲𝐆𝐓 − 𝐲𝐩𝐫𝐞𝐝||2

𝑚𝑎𝑥(𝐲𝐆𝐓) − 𝑚𝑖𝑛(𝐲𝐆𝐓)
. (11)

where 𝑦𝐺𝑇 and 𝑦𝑝𝑟𝑒𝑑 are the unravelled values of the ground truth and predicted values by the generative methods,192

respectively.193

A summary of the different metrics is presented in Table 1.194
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Figure 4: KDE for ground truth (blue), and the reconstructed test data, predicted by different generative methods, of the
average values for each node over all samples.

Figure 5: Error bars for reconstructed test data, averaged over all data points.

4.2. Model surrogates of seen and unseen scenarios195

High-fidelity synthetic data were generated using the 𝛽-VAE (see Section 2.1) and PC-AAE (see Section 2.2).196

These techniques permit to augment experimental datasets, which can be costly and time-consuming to acquire.197

Figure 6 shows the KDE of 𝑢, 𝑣, 𝑤 and 𝜈𝑡 comparing ground truth and synthetic data generated by the198

aforementioned different methods. This is the mean for each node across all samples. For 𝑢, PC-AAE (uvwnut) and199

𝛽-VAE show the best agreement with the ground truth. For 𝑣, all experiments exhibit an excellent match with the200

observed velocity. This can be explained by the fact that 𝑣 is almost negligible and tends to 0, as there are minimal201

wave movement in that direction. For 𝑤, the movement in that axis is more restricted than in the X-axis which yields202
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Table 1
NMI between the ground truth values of the test dataset and the predicted values by the generative methods

Experiments NRMSE NMI
u v w 𝜈𝑡 u v w 𝜈𝑡

Unut_sep 0.029 0.017 0.023 0.015 0.942 0.968 0.942 0.945
uvwnut 0.040 0.022 0.028 0.038 0.942 0.968 0.942 0.945
Unut 0.030 0.018 0.021 0.022 0.942 0.968 0.942 0.945
𝛽-VAE 0.022 0.028 0.038 0.170 0.942 0.954 0.942 0.945

Figure 6: KDE for ground truth (blue), and 100 synthetic data, generated by different generative methods, of the average
values for each node over all samples.

smaller velocities, and here is where the different experiments show greater variations with the ground truth in general.203

Finally, for 𝜈𝑡, all experiments show an excellent agreement with the ground truth distribution.204

In general, the experiments that show the highest fidelity to the ground truth data come from 𝛽-VAE and205

PC-AAE (uvwnut). This can be explained because each field was standardised by its mean and standard deviation.206

This is not the case for the other experiments where the occasional higher values shown in the velocity fields could207

weight the PC space towards them.208

In particular, the generated data with PC-AAE (Unut) shows the biggest distribution spread which expands the209

physical scenarios and explores more extreme velocities, due to a covariate shift. This can help understand how the210

point absorber WEC reacts to larger unseen incoming waves. This characteristic is fundamental for predicting unseen211

scenarios (Yang, Zhou, Li, and Liu, 2021) and we will expand the analysis of this aspect in later.212

Whilst generative networks aim to maximise the probability of generating real data whilst maintaining the distance213

between the real and estimated posterior distributions small, this might not represent any physical meaning. This is214

extremely important in test cases like WEC. In Figure 7, the averaged values of velocities 𝑢, 𝑣 and 𝑤 are plotted215

against the 𝜈𝑡 to showcase its relationship. It is portrayed that this relationship is preserved in all experiments where216

the averaged, over the number of data points, samples clusters overlap. Figure 7 also shows the spread over time-level217

samples from the different experiments. The larger spread is given by PC-AAE (Unut) and the smaller spread of samples218

is yielded by 𝛽-VAE. The latter can be explained due to the large size of the network required to train the 𝛽-VAE which219

has an input and output of 3.4M points making it difficult to train due to memory allocation, rather than the PC-AAE220

experiments which use tens or hundreds of points for input. However, the PC-AAE-related experiments need to store221
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Figure 7: Scatter values of velocities 𝑢, 𝑣, and 𝑤 against 𝜈𝑡 of the average values per time samples over all nodes.

the inverse mapping to the physical space which is of a similar storage size to the original simulation used for training222

data.223

To understand how the distributions of the newly generated samples are related to the distribution of the ground224

truth data, we obtained a t-Student Stochastic Neighbour Embedding (t-SNE) projection (Van der Maaten and Hinton,225

2008). The t-SNE projection is depicted in Figure 8. For velocities, it is clear that the ground truth (𝑈𝐺𝑇 ) clusters226

together with the synthetic samples for all experiments. Similar behaviour can be observed for 𝜈𝐺𝑇
𝑡 (nut_GT) and its227

synthetic samples. Moreover, the relationship between the velocity fields and the dynamic viscosity observed in the228

ground truth samples is observed and preserved in the synthetic data. This is another example of how the physical229

relationship between 𝑈 and 𝜈𝑡 behaves and how it is preserved in the different generative methods.230

The synthetic data are generated by sampling random Gaussian noise, in these cases with a sample size of 16,231

before feeding this into the decoder  .232

As aforementioned, PC-AAE (Unut) is more able to expand the design space, whilst maintaining the physical233

relationship between 𝑈 and 𝜈𝑡. Therefore, for analysing unseen scenarios, only PC-AAE (Unut) will be discussed.234

To further demonstrate the synthetic data’s physical meaning, Figure 9 shows the relationship of real and synthetic235

𝑢, 𝑣, and 𝑤 (X-axis) against 𝜈𝑡 (Y-axis). The scatter plots show 𝑚 = 851101 points and how the synthetic data236

overlaps with the ground truth data. The PC-AAE overlaps and engulfs the spread shown by the ground truth data.237

This demonstrates how the design space is expanded by PC-AAE. As aforementioned, the generated data with238

PC-AAE (Unut) shows the biggest distribution spread which expands the physical scenarios and explores more extreme239

velocities. The access to this part of the design space comes from how the PC was built. In PC-AAE (Unut) all fields240

were considered together giving 𝑢 and 𝑤 a larger weight than 𝑣 and 𝜈𝑡. Thus, PC-AAE can expand the design space241

with larger incoming waves whilst preserving the physical relationship among variables.242

Figures 10a and 10b show 10 newly generated samples of the 𝑈 and 𝜈𝑡 in the XZ planes, respectively, using243

PC-AAE. For these Figures, a new set of 100 samples were generated, however, only 10 samples are shown for display244

purposes.245

As shown, for high-fidelity scenarios it is better to separate all variables and preprocess them individually, i.e246

standardisation, to preserve the statistics without assigning a larger weight to specific fields. However, for expanding247

the design space, a larger weight can be given to the fields with larger values when constructing the PC space on all248

fields, specifically, to the fields mostly affected by the variations of irregular incoming waves.249
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(a) Unut_sep (b) uvwnut

(c) Unut (d) 𝛽-VAE
Figure 8: t-SNE projection of the ground truth data (GT) and 100 synthetic data for the Unut_sep, uvwnut, Unut, and
𝛽-VAE experiments each experiment using the PC-AAE and 𝛽-VAE.

This has tremendous implications for expanding the design space and exploring unseen scenarios of the WEC CFD250

simulation. The generative model has the potential to capture the transition and the new physical phenomenons under251

new extreme initial conditions, as shown in the synthetic data generated by PC-AAE (Unut).252

4.3. Model architectures253

The architectures of both generative models are shown in Table 2 where the networks have been trained with batch254

normalisation before and a dropout of 0.5 between layers. For the PC-AAE-related architectures, the discriminator255

updates 10 times before the generator during training, and Nadam parameters with Learning rate 𝑙𝑟 = 10−3, 𝛽1 =256

0.9, 𝛽2 = 0.999257

4.4. Performance258

The most notable capability of these approaches is the speed of execution and how fast new synthetic samples can259

be obtained. The runtimes, averaged over 10 times, to generate 100 synthetic samples with the different methods are260

10.46 s, 5.23 s, 10.81 s, and 0.64s for PC-AAE: Unut_sep, uvwnut, Unut, and 𝛽-VAE, respectively. For the PC-AAE261

experiments, it only takes ∼ 0.05 s to generate 100 samples in the PC-space before projecting these onto the physical262

space. These times were obtained using a 2.3 GHz 8-Core Intel Core i9 processor. The speed of these generative263

models compares to ∼ 1 week of simulation using OpenFOAM for the original 3D CFD simulation, which only outputs264

60 time-levels. This is a speed-up from 5 to 6 orders of magnitude.265
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Figure 9: Scatter values of velocities 𝑢, 𝑣, and 𝑤 against 𝜈𝑡 of the average values per point for PC-AAE (Unut)

(a) 10 newly generated samples of 𝜈𝑡 using the PC-AAE. Shown in the 𝑋𝑍 plane.

(b) 10 newly generated samples of 𝑈 using the PC-AAE. Shown in the 𝑋𝑍 plane.
Figure 10: Example of newly generated samples of 𝑈 and 𝜈𝑡 using the PC-AAE. Shown in the 𝑋𝑍 plane.

5. Conclusion and Future work266

We have shown how two different ML-based generative models, 𝛽-VAE and PC-AAE, can generate synthetic data267

of WECs quickly and at reduced computational cost. These models can generate several samples in a fast manner,268

compared to 1 week time of simulation using OpenFOAM. The t-SNE projection of the ground truth and generated269
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Table 2
Architectures of the different generative networks 𝛽-VAE and PC-AAE. The encoder , the decoder  and the discriminator
𝐴 are fully-connected layers.

Experiments AE Enc  Dec  Disc 

PC-AAE (Unut_sep) 96 16 16
32 32
16 96

PC-AAE (uvwnut) 192 16 16
32 32
16 192

PC-AAE (Unut) 48 16 16
32 32
16 48

Enc  Dec 
𝛽-VAE 3404404 16

64 32
32 64
16 3404404

samples are located closely spatially, preserving the relationship between the velocity and dynamic viscosity fields.270

Furthermore, this is also shown by the relationship of 𝑢, 𝑣, and 𝑤 with 𝜈.271

The reconstruction of the ground truth using these generative models agrees well with the test dataset. As shown,272

for high-fidelity scenarios it is better to separate all variables and preprocess them individually to preserve the statistics273

without assigning a larger weight to specific fields. However, for expanding the design space, a larger weight can be274

given to the fields with larger values when constructing the PC space on all fields.275

This has tremendous implications for expanding the design space and exploring unseen scenarios of the CFD276

simulation. The generative model has the potential to capture the transition and the new physical phenomenons under277

extreme initial conditions, as shown in the synthetic data generated by PC-AAE.278

Moreover, these generative models can generate snapshots of ∼3.4 M features at a fraction of the cost of the original279

simulation. Future work will include using these generated samples to improve the prediction of 𝜈𝑡 in future time steps,280

by augmenting the design space with physically plausible samples. Additionally, other newer generative models like281

latent diffusion models, due to the number of nodes in these simulations, could be used.282
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RANS Reynolds-averaged Navier Stokes410

411

KL Kullback-Leibler Divergence Score412
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KDE Kernel density estimator414
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