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Abstract
Machine learning is ready to transform the experimental protocol
of birdsong acquisition and playback in ethology and integrative
neuroscience. An emerging methodology, known as differen-
tiable digital signal processing (DDSP), allows to train neural
networks for machine listening so as to fit the synthesis param-
eters which correspond to unlabeled audio data. In this short
article, I present the value of extending DDSP, initially developed
for speech and music processing, to avian bioacoustics. The main
two challenges reside in the definition of a suitable decoder and
learning objective. I review some prior publications in biome-
chanical models of vocal production for passerines, similarity
computing, and differentiable solvers of ordinary differential
equations. Together, these publications hint at the feasibility of
a fully automated and unsupervised algorithm for biologically
plausible resynthesis of birdsong.
Index Terms: birdsong, model-based deep learning, physical
modeling synthesis

1. Extended abstract
Over the past decade, the renewed interest for deep learning
in signal processing has led to a new generation of systems for
passive acoustic monitoring [1]. For example, BirdNET is a deep
neural network which detects bird vocalizations from acoustic
sensor data and recognizes the corresponding species accord-
ing to a predefined taxonomy [2]. Comparable solutions exist
for flight calls [3] and for open taxonomies [4]. Yet, in these
examples, the machine listening system reduces birdsong to a se-
quence of time segments whose boundaries align with the onset
of offset of each song bout [5]. In doing so, it erases spectrotem-
poral patterns which are attributable to intraclass variability.

Although per-species timings may suffice for ecologists who
study wild avian populations, ethologists and neuroscientists
often depend on a richer description of birdsong content as part
of their research protocols. There is abundant literature on the
evolutionary and developmental aspects of vocal learning in
songbirds: e.g., zebra finches, canaries, and budgerigars. More-
over, a well-known study by Pepperberg et al. has shown the
exceptional abilities of an African gray parrot in terms of func-
tional vocalizations when interacting with humans in English
[6]. In these studies, automating species classification would be
useless, since the specimens are known and kept in an aviary.
Rather, a valuable source of information on animal behavior
is found in the fundamental frequency (f0) contours of animal
vocalizations. Unfortunately, f0 tracking is more difficult for
birdsong than for solo music or speech, due to higher rates of
amplitude and frequency modulation. Hence, if f0 tracking of
birdsong is to be automated in the future, it requires a dedicated
approach.

Despite the proven merits of machine learning in bioacoustic
detection and classification, the task of f0 tracking comes with a
challenge of its own: that of collecting training data. Indeed, the
expert annotation of f0 contours is even more costly and time-
consuming than that of species-specific vocal activity detection.
For lack of available ground truth, the task must be approached
via unsupervised learning techniques. Historically, some of these
techniques have been successfully applied to marine bioacoustics
(e.g., [7]) but rarely ever to birdsong, with the notable exception
of spherical k-means [8]. Still, up to recently, unsupervised
representation learning algorithms were unsuitable for highly
time-varying and spectrally rich signals such as birdsong.

The situation has changed recently with the introduction
of a new methodological framework for unsupervised learn-
ing in speech and music, known as differentiable digital signal
processing (DDSP). The key idea behind DDSP is to train an
autoencoder whose encoder contains learnable parameters but
whose decoder does not, while both are compatible with auto-
matic differentiation. Minimizing the reconstruction of error of
the autoencoder over a training set of unlabeled natural sounds
is tantamount to solving an inverse problem whose associated
direct problem is specified by the decoder [9]. In its earliest ver-
sion, the DDSP decoder was a simple additive sinusoidal model
with random Gaussian noise and reverberation. More recently,
a broader range of decoders has been developed, directly mim-
icking the state of the art in acoustical simulation and virtual
analog audio effects: let me refer to [10] for a review. Therefore,
DDSP is a kind of “model-based deep learning” in the sense
that it hybridizes physics-driven and data-driven insights so as
to learn an informative representation of natural sounds [11].

I propose to adapt the DDSP framework to the long-standing
problem of unsupervised representation learning of birdsong.
DDSP has already been successfully applied to f0 estimation
in music signals, under the name of DDSP-inv [12]. My scien-
tific hypothesis is that DDSP-inv has the potential to improve
the state of the art in analysis–synthesis of birdsong, currently
held by hidden Markov models (HMM) [13] and, more recently,
WaveNet [14]. However, I believe that the standard formulation
of DDSP, based on sinusoidal models and multiscale spectro-
gram loss (MSS), is not suitable to birdsong. Indeed, even so the
authors of DDSP have presented a demonstration of birdsong
analysis–resynthesis as part of their “Paint With Music” outreach
project, the result does not sound naturalistic 1. To serve the
needs of ethologists and neuroscientists working on captive birds,
the components of DDSP must be redesigned.

On one hand, the groundbreaking publications of Mindlin,
Laje, Amador, Sitt, Perl, and colleagues have laid the ground-

1Link to “Paint With Music” project:
https://magenta.tensorflow.org/paint-with-music



work for a comprehensive physical description of the vocal ap-
paratus in some well-studied songbirds, e.g., zebra finch and
canary [15, 16, 17, 18, 19]. The commonality between these
publications is to model the syrinx as a nonlinear dynamical sys-
tem whose parameters have a biomechanical interpretation. For
example, Perl et al. [18] apply the theory of Takens–Bogdanov
bifurcations to present a dynamical system governed by the fol-
lowing second-order ordinary differential equation (ODE):

ẍ = γ2α+ γ2βx+ γx2 − γxẋ− γx3 − γ, (1)

where x represents the departure of the midpoint position of the
oscillating labia in the syrinx, α and β are functions of the air
sac pressure and the activity of the ventral syringeal muscle, and
γ is a time scaling factor. Although a Python implementation
is available2 to compute ẋ from θ = (α, β, γ), it depends on
NumPy; as such, it is not interoperable with neural network
training. We propose to reimplement this synthesizer in PyTorch,
a Python framework for differentiable computing. More pre-
cisely, the torchdiffeq library [20] allows to program solvers for
ordinary differential equation in which the solution (x) may be
differentiated with respect to the parameters (θ). Via reverse-
mode automatic differentiation, it will be possible to evaluate the
gradient of a function of x may with respect to neural network
weights W where θ is defined as fW(x) and fW is the encoder.

On the other hand, a new generation of differentiable time–
frequency representations have the potential to improve the con-
ditioning of the inverse problem in DDSP, which may accel-
erate gradient-based optimization when training the encoder.
For example, a differentiable implementation of the joint time–
frequency scattering transform (JTFS) has recently been released
as part of the Kymatio package [21]. Prior work on synthetic
chirps has confirmed that, with JTFS, parameter estimation is
faster, more accurate, and less susceptible to random initial-
ization than MSS [22]. Although there is a gap in acoustical
complexity between synthetic chirps and real birdsong, this re-
sult is encouraging because it directly addresses the issue of
unsupervised learning in the presence of fast spectrotemporal
modulations. Another option would be to use a pretrained neural
network as feature map for similarity computing between the
natural signals and its autoencoded version.

In conclusion, I have described the promise and challenge of
learning to control a physical model of birdsong without supervi-
sion and have outlined the necessary steps to get there. Beyond
the fundamental interest of advancing differentiable digital sig-
nal processing (DDSP), its application to birdsong would unlock
new research protocols in ethology and neuroscience.
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