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Abstract This operando study of the structural response of epitaxial ferroelectric Pb(Zr0.48Ti0.52)O3 capaci-
tors grown on Silicon substrates reports synchrotron radiation based diffraction experiments during hysteresis
loop measurements in the kHz frequency range. We explain the rounding of the polarization (P − U) and
strain (η − U) hysteresis loops in a time-domain perspective: The polarization and the structural motion
within the unit cell are coupled to the strain along the c-axis by the piezoelectric effect. The driving stress
σ(t) is calculated as the product of the voltage U(t) and polarization P (t), which lags behind U(t) when the
domain wall velocity is to slow to support high frequencies. Unlike electrical variables, the driving stress and
the lattice strain η(t) oscillate at twice the frequency of the applied electrical field. We extract the phase shift
ϕσ−η of the strain to the driving stress due to damping of the structural motion.

Ferroelectric (FE) thin films are technologically impor-
tant and are found in different applications in our daily
lives. For example, FEs are used for non-volatile mem-
ories because of the ability to switch their polarization
under an applied electric field or for sensor and actua-
tor devices exploiting the strong coupling of electric field
E and mechanical strain η1–3. These physical properties
scale with the device size and are strongly frequency-
dependent4–6. From an application standpoint, there
is a growing interest in using ferroelectrics monolithi-
cally integrated on silicon since this is the CMOS-based
technology platform. In the past 15 years, many ef-
forts have been devoted to the epitaxial growth of vari-
ous perovskite ferroelectrics such as BaTiO3, PbTiO3 or
Pb(Zr1−xTix)O3 on silicon or GaAs7–12. The ferroelec-
tric lead-based solid solution Pb(Zr1−xTix)O3 is of par-
ticular interest due to its large piezoelectric coefficients13.
Enhanced piezoelectric properties are observed at the
morphotropic phase boundary in the composition range
0.47 < x ≤ 0.52 that separates a Ti-rich tetragonal
from a Zr-rich rhombohedral phase by a monoclinic in-
termediate phase14–18. Few groups have reported the
integration of epitaxial lead titanate films into capaci-
tors on silicon substrates10,18–21. Advantages of epitax-
ial films over polycrystalline ones include a well-defined
polar axis and a smaller thickness (for achieving the
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same remanent polarization) and thus requiring a lower
voltage for polarization switching. For device applica-
tions, a key feature is the dynamics of the polariza-
tion switching and of the coupled electromechanical re-
sponse. In FE devices, the dynamical response spans
the wide time range from sub-ps time scales22,23 over
ns for domain dynamics24–29. The switching dynamics
in epitaxial films has been widely studied in micrometer
scale capacitors and is well described by the Kolmogorov-
Avrami-Ishibashi (KAI) model30–33. In this model, the
switching kinetics is governed by the dynamics of do-
main nucleation, growth, and coalescence assuming nu-
cleation of domains at independent nucleation centers.
For FE thin films, in-situ synchrotron X-ray diffraction
has become available to quantify the electromechanical
response and fatigue34–36. Few experiments are reported
on single-crystalline films with the c-axis oriented per-
pendicular to the substrate surface14,24,37,38. The simul-
taneous characterization of strain and polarization re-
ported for ceramics39 was extended to thin films27,28,40.
However, to the best of our knowledge, time-resolved
studies of the coupled dynamics of polarization and strain
in ferroelectrics integrated on silicon and systematic ex-
perimental studies on the frequency-dependence struc-
tural response have not yet been reported.
In this paper we report an operando study of the

electro-mechanical coupling and its dynamics deter-
mined by simultaneous synchrotron X-ray diffraction and
hysteresis-loop measurements at various frequencies of a
thin epitaxial ferroelectric Pb(Zr0.48Ti0.52)O3 (PZT) film
deposited on (001) Si and sandwiched between two metal-



2

lic electrodes. The PZT film composition was chosen
within the morphotropic phase boundary. We measure
the time-dependence of the ferroelectric polarization P (t)
and of the lattice strain η(t) of the PZT film for frequen-
cies varying from 2 up to 200 kHz. We discuss the com-
plex phenomenon of the periodically driven modulation
of the ferroelectric polarization coupled to the structural
deformation in terms of a oscillator equations, which de-
scribe the dielectric displacement and the motion of the
atoms within the unit cell along the FE soft mode41. We
find that the piezoelectric driving stress σ(t) ∝ U(t)P (t)
oscillates at twice the frequency of the driving voltage
U(t). We show that the phase delay ϕσ−η between the
stress and the strain increases with the driving frequency
and we demonstrate that this phase lag contributes to
the rounding of the structural η−U and electrical P −U
hysteresis loops of the FE at high frequencies.

A 200 nm thick epitaxial (001) oriented
Pb(Zr0.48Ti0.52)O3 (PZT) film with a chemical composi-
tion reflecting that of the MPB of the Pb-Zr-Ti-O phase
diagram was deposited by RF magnetron sputtering
onto a sputtered 30 nm thick epitaxial SrRuO3 (SRO)
bottom electrode on a SrTiO3 epitaxial seed layer grown
by molecular beam epitaxy on a (001) Si substrate.
The details of all deposition processes can be found
in42–45. After the PZT deposition, in order to crystallize
the FE film, the sample was flash-annealed at 650◦C
for one minute under oxygen atmosphere. Circular Pt
top electrodes with radii between 50 and 300 µm were
then deposited by sputtering and structured using a UV
photolithography lift-off process46.

The time-resolved ultrafast X-ray diffraction measure-
ments under applied electrical field were performed at the
KMC-3 XPP47 endstation of the storage ring BESSY II,
Berlin, Germany, operated in hybrid mode48. The re-
sults presented in this paper were obtained on the elec-
trodes with diameter 300 µm, which corresponds to an
area of ∼ 7 · 10−4 cm2. The size of the electrodes was
chosen such that only one capacitor at a time was illu-
minated by the X-ray focus. We reproducibly reached
life times of more than 107 switching cycles on different
electrodes. We applied a triangular voltage U(t) with
different frequencies ν (2-200 kHz), and a peak voltage
of Umax = ±7V, which corresponds to an electric field
strength of E = 350 kV/cm, well beyond the coercive
field Uc. The triangular voltage was generated using a
Keithley 3390 Arbitrary Function Generator. We con-
tacted a single electrode with a tungsten needle with tip
diameter 5 µm and used silver paint to contact the bot-
tom electrode in order to apply the field across the PZT
layer as described in27,28,47. An Agilent DSO9404A os-
cilloscope with an input impedance of 50Ω was used to
record the switching current, I(t), and the applied volt-
age, U(t), across the PZT film during the x-ray diffrac-
tion measurement. The polarization was obtained by
numerically integrating the measured current I(t) over
time. A schematic electrical connection scheme is shown
in Figure 1a). Monochromatic X-ray photons with an
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Figure 1. a) Schematic electrical circuit of the connected
sample (FE) during the measurement and that later is used
for the modelling of the response. “FG” denotes the function
generator that generates the driving sawtooth voltage, and
“osci” represents the two used input channels of the oscillo-
scope. The voltage amplifier is optional and was only used for
low-frequency measurements. b) Reciprocal space map of the
0 0 2 reflections of PZT and SRO respectively in the pristine
state without applied field. The solid symbols are obtained
by the integration along the qx and qz directions, respectively.

energy of 9 keV were detected by a fast scintillator with
a decay time of ∼ 5 ns combined with a photo multiplier
(Hamamatsu H7844). The photo multiplier was read out
in single photon counting mode using a time-correlated
single photon counter (PicoHarp300, PicoQuant) with an
acquisition time window of up to 33µs47. Asymmetri-
cally scattered X-rays were blocked by a vertical slit of
approximately 1mm width in front of the detector open-
ing. We performed symmetric ω/2θ scans with ω = θ
around the 002 out-of-plane Bragg reflection of PZT. The
very good crystalline quality of the PZT and SRO film
on Si was characterized by static X-ray diffraction with
a Pilatus 100k area detector (Dectris) at the same pho-
ton energy. The reconstructed reciprocal space map in
Figure 1b) shows the 002 reflections of PZT and SRO,
respectively. The ferroelectric film is oriented with its
c-axis out of plane, with negligible x-ray scattering from
potential 90◦ domains. The time-dependent strain η(t)
was calculated from the shift of the 002 reflection of PZT
along the PZT c-axis as η(t) = (c(t)− c(t = 0))/c(t = 0).
All experiments were performed at room temperature.
We first present the frequency-dependent electrical and

structural data as P−U and η−U hysteresis loops in Fig-
ure 2. In Figure 2a) we show the P−U hysteresis loops for
frequencies ν ≤ 20 kHz, which are open saturated loops
as expected for a ferroelectric material49. The remanent
polarization is rather low, which indicates considerable
back switching of domains after saturation. A PUND
analysis (not shown) reveals a very small dielectric charg-
ing and discharging current with an RC time constant of
about 0.1 µs. In addition large switching currents flow
for about 25 µs even for each second saturation pulse in
the same direction of the PUND sequence. Such slowly
responding currents naturally lead to a phase delay of the
polarization response whicht then rounds the hysteresis
loop. As ν is increased from 10 up to ∼ 40 kHz, (Fig-
ures 2a) and b) the coercive field Uc increases by almost
a factor of 2, consistent with literature results50,51. The
double logarithmic plot of Uc versus ν in Figure 2e) repre-
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sents a power law Uc ∝ νβ with β = 0.33 = D/6 over the
whole range of ν, which is consistent with a dimension-
ality D = 2 of the domain growth in thin epitaxial films
as given by the KAI model33,50–54. The P − U loops at
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Figure 2. a-d) Simultaneously measured P − U and η − U
loops at different frequencies ν of the applied sawtooth pulse
sequence. The panels a) and b) show the P − U loops for
ν < 40 kHz and ν > 40 kHz, respectively. In the panels c)
and d) we show the corresponding η − U loops. In e) we
plot UC (filled circles) from the P − U loops shown in a)
and b) on a double logarithmic scale as function of ν and
the solid line is a fit to the data using νβ with β = 0.33.
f) Plot of the saturation polarization Psat (filled circles) on
a semilogarithmic scale as function of ν and the dashed line
indicates a fit to the data assuming −ν whereas the solid line
indicates a fit using ν−1.

frequencies ν ≥ 20 kHz show in contrast rounded shapes
and the absence of saturation, which can originate from
leakage due to mobile defects like oxygen vacancies in
FEs51,53,55. However, such leakage should occur preferen-
tially at low frequency, where the leakage current flows in
one direction for a long time and may decrease at high fre-
quency, where also the remanent polarization is smaller
because some domains are not switched fast enough56.
Figures 2c) and d) show that the butterfly loops η − U
are also simultaneously rounded as the P (E) loops and fi-
nally adopt a dumbbell shape where the maximum strain
occurs when the driving voltage is already ramped down.
This implies that the FE layer is still expanding while
the applied voltage is already reduced and that the FE
reaches its maximum expansive strain considerably af-
ter the driving voltage U(t) has reached its maximum
value. Simultaneously the saturation polarization Psat is
reduced. In Figure 2f), clearly two regimes can be dis-
tinguished: For ν ≤ 20 kHz, the frequency dependence
of Psat follows a −ν dependence whereas at ν ≥ 20 kHz,
a polarization is inversely proportional to the frequency
ν−1. The frequency at which the cross-over occurs, coin-
cides with the frequency at which the pronounced round-
ing of the hysteresis loops in Figures 2a-d) is observed.

In the time-domain perspective displayed in Figure 3,
the measured polarization P (t) (panel b), which is de-
rived from the current, oscillates in-phase with U(t)
(panel a) at low-frequencies. At frequencies ν > 40 kHz,
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Figure 3. a) Applied sawtooth voltage U(t/T ) normalized
to by the period T of the frequency. b) Measured polariza-
tion P (t/T ) of the FE as obtained by the integraton of the
switching current over time. c) Product U(t/T )×P (t/T ) that
closely resembles the time-response of the measured transient
strain η(t/T ) of the FE shown in panel d). e) Peak width
change w(t/T ) of the PZT Bragg reflection.

P (t) is phase-shifted with a value of ϕP−U = −π/2.
This explains the rounded hysteresis loop, because the
highest polarization occurs later than the highest volt-
age. In Figure 3d) we quantify the strain η assuming
via time resolved x-ray diffraction which measures the
absolute values of the c-axis lattice parameter (right ver-
tical axis). We note that at high frequencies the lattice
constant reaches smaller values than at any time for low
frequency actuation. The lattice is compressed because
the polarization and applied voltage are out of phase and
hence there are times (e.g. t/T = 0.25 to 0.5) where po-
larization and voltage have opposite sign. This rational-
izes the overall negative strain values at high frequency
in Figures 2d).

Next we show that the time-dependent piezoelectric
stress σFE ∝ P (t)U(t) in Figure 3c) is proportional to the
transient polarization P (t) and the applied voltage U(t).
The macroscopic polarization P (t) is proportional to the
difference in the volume fractions Vup−Vdown of the pos-
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itively and negatively poled domains, which exhibit the
opposite piezoelectric effect. Hence, the piezoelectric co-
efficient can be approximated by using a time-dependent
effective piezoelectric stress coefficient57 which we model
as e33(t) = e033(2Vup(t)/V − 1) = e033(2Pup(t)/Psat − 1),
assuming - as a first order approximation neglecting any
domain wall contributions - that it is proportional to the
volume fractions with up and down polarization, which
are in turn described by the averaged polarization. If the
entire film of thickness d is poled up we find e33 = e033
in this model and if the entire film is poled down it is
e33(t) = −e033. Thus, the piezoelectric stress

σFE =
e33(t)

d
U(t) =

e033
d

(
2Pup(t)

Psat
− 1

)
U(t) (1)

acting on the ferroelectric crystal oscillates at twice the
frequency of the driving voltage U(t) because the effec-
tive piezoelectric coefficient e33(t) changes its sign to-
gether with the voltage, albeit with a phase delay ϕP−U

between U(t) and P (t). We observe that ϕP−U ≤ π/2 for
the frequencies investigated in this work. The transient
strain η(t) (see Figure 3d)) essentially follows the driving
stress with the doubled frequency, and exhibits an addi-
tional phase shift ϕσ−η that increases with frequency.

In Figure 3e) we show how the relative peak width w(t)
of the PZT 002 Bragg reflection changes for the different
applied frequencies. The peak width at high frequencies
has a large average value with only small modulation,
indicative of a domain pattern with many small domains
of up and down polarizations that slightly switch back
and forth. At lower frequencies the peak width strongly
depends on the currently applied voltage since inhomo-
geneities of the capacitor dominate the variations of the
local expansion.24

In the following we relate the rounding of the hystere-
sis to the delayed maxima of the P − U loops described
by the phase shift ϕP−U and the characteristic modifi-
cation of the η − U loops to the concomitant stress σ(t)
to which the strain η responds with an additional phase
shift ϕσ−η. To resolve this complex phenomenon of a pe-
riodically driven modulation of the FE polarization cou-
pled to the structural deformation we adopt the model
describing FE polarization using an oscillator model41.
We set up a system of differential equations for P and
η: The voltages at each component in the circuit (see
Figure 1a)) add up to the external voltage supplied by
the function generator: U = UL + UFE + UR. Using the
inductance L and resistance R of the circuit including
the wiring, the thickness d and dielectric function εFE of
the FE capacitor, we can recast this equation in terms of
the dielectric displacement D = ε0E +P starting from a
classical damped harmonic oscillator:

L
d2D

dt2
+R

dD

dt
+

d

εFE
D = U(t) . (2)

The strain η within the FE is driven by the same U(t),
however, the stress σFE = e33(t)U(t)/d ∝ P (t)U(t)57

couples the differential equation for the strain to Equa-
tion 2:

d2η

dt2
+ γ

dη

dt
+ ω2

0η =
e33(t)

d
U(t) , (3)

where γ is an empirical damping constant and ω0 = 2πν0
is the mechanical angular eigenfrequency of the system.
This system of equations challenges theoretical model-
ing because in the time-dependent perspective, the FE
properties are not constant anymore41. For a full solu-
tion the hysteretic behavior of εFE(t) must be included,
which necessarily adds a memory of the history of the
sample. In the following, we use the measured polariza-
tion P (t) to rationalize the solution of Equation 3. The
time-dependent strain η(t) represented in Equation 3 as
a damped harmonic oscillator essentially follows the driv-
ing stress σ(t) at the second harmonic of the driving volt-
age U(t). The increasing phase delay that η acquires with
respect to σFE allows us to extract a mechanical damping
constant that is connected with the viscous properties of
the FE domain walls. The lowest mechanical resonance
frequency ν0 = 1/T ∼ 10MHz of the capacitor can be
roughly estimated by the time T it takes sound at veloc-
ity vs ≈ 3.5 nm/ps58 to propagate through the diameter
2r = 300 µm of the electrode T = 2r/vs ≈ 0.1 ns. The
driving frequency ν = 1/TU ≤ 200 kHz is much lower,
as the sawtooth period TU ranges between 5 and 500 µs.
Therefore, we take the textbook result for the phase shift
ϕ between η(t) and U(t) of the solution to eq. 3 and ap-
proximate by

ϕη−U = arctan

(
γν

ν20 − ν2

)
≈ arctan

(
γν

ν20

)
. (4)

Figure 4 shows the excellent agreement of the phase
lag determined from the experimental data shown in Fig-
ure 3 and the result of Equation 4 with the damping
γ = 0.5GHz as only fitting parameter. The result is
shown by the filled circles in Figure 4 together with the
fit to these points using Equation 4 shown as solid line.
In conclusion, this time-domain perspective directly

explains how the ferroelectric hysteresis loops in our sam-
ples are affected by different driving frequencies: (i) The
rounding of the P − U hysteresis is caused by the phase
lag between P (t) and U(t), which we relate mainly to
the slow domain wall velocity24,28. (ii) For lower fre-
quencies, the polarization can follow the driving voltage,
which results in the observed large average stress. (iii)
The reduced maximum polarization at high frequencies
originates from the fact that at higher frequencies not
yet all domains are oriented along the applied field direc-
tion when the maximum voltage is reached. This means
that at high frequency the coercive field is close to the
applied field, however, switching in the same direction
continues when the voltage ramps down, as long as a
field in the same direction is applied. (iv) The negative
average strain of the hysteresis at ν = 200 kHz is a con-
sequence of the phase shifts that let U(t) and P (t), and
hence the time-dependent piezoelectric coefficient d33(t)
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Figure 4. Phase angle ϕη−U between the driving voltage U(t)
and the strain η(t) as function of frequency ν. The filled
symbols are extracted from the experimental data and the
solid line is the result from the fit using Equation 4 with
γ = 0.5GHz to the experimental data.

have opposite sign. (v) In part, the increasing coercive
field Uc with increasing frequency is a result of the phase
lag of the polarization, which implies that the domain
wall motion is so slow that the zero crossing of the po-
larization is only reached later at higher voltage.

We believe that this study is an important contribu-
tion to the interpretation of hysteresis loops in the regime
of high driving frequencies and hope to stimulate further
theoretical and experimental work, that accounts for the
complex interplay of polarization and strain via domain-
wall motion and viscoelasticity. In the context of appli-
cation, our study pioneers strain analysis of ferroelectrics
integrated on Si with time-resolved x-ray diffraction.
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