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Abstract

Introduced by Beck and Teboulle in [10], FISTA (for Fast Iterative Shrinkage-Thresholding
Algorithm) is a first-order method widely used in convex optimization. Adapted from Nes-
terov’s accelerated gradient method for convex functions [29], the generated sequence guar-
antees a decay of the function values of O

(
n−2

)
in the convex setting. We show that for

coercive functions satisfying some local growth condition (namely a Hölderian or quadratic
growth condition), this sequence strongly converges to a minimizer. This property, which
has never been proved without assuming the uniqueness of the minimizer, is associated with
improved convergence rates for the function values. The proposed analysis is based on a
preliminary study of the Asymptotic Vanishing Damping system introduced by Su et al. in
[33] to model Nesterov’s accelerated gradient method in a continuous setting. Novel improved
convergence results are also shown for the solutions of this dynamical system, including the
finite length of the trajectory under the aforementioned geometry conditions.

1 Introduction

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) is a well-known scheme introduced by
Beck and Teboulle in [10] for the minimization of convex composite functions. Considering a
convex function F : H → R where H is a Hilbert space, F is called composite if it can be written
F = f + h where f is a convex differentiable function having a L-Lipchitz gradient and h is is a
proper lower semicontinuous (l.s.c.) convex function.

This method uses inertia to achieve acceleration, based on the ideas proposed by Nesterov
in the convex setting [29]. While the classical proximal gradient method (also called Forward-
Backward [16]) guarantees a decrease of the error of order O

(
n−1

)
, FISTA builds a sequence

(xn)n∈N which ensures that if F is a convex composite function, then

F (xn)− F ∗ 6 2L‖x0 − x∗‖2

(n+ 1)2
, (1)

for any minimizer x∗ of X∗ where F ∗ = minx∈H F (x). The question of the convergence of FISTA
iterates remained unanswered for a few years before Chambolle and D. show in [15] that for a
slightly modified inertial term depending on a non negative real number α > 3, the sequence
(xn)n∈N weakly converges to a minimizer of F . This O

(
n−2

)
rate can be improved to a o

(
n−2

)
rate for this variation of FISTA proposed by Chambolle and D. as demonstrated by Attouch and
Peypouquet in [5] but no first order method can guarantee a decrease of the error faster than this
rate for this class of functions as shown in [27].
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Better convergence guarantees can be proven by making stronger assumptions on the function
F and by conveniently adjusting the inertial parameter. Su et al. [33] show that FISTA iterates
can achieve a rate of F (xn)−F ∗ = O

(
n−3

)
for strongly convex functions. Attouch and Cabot [4]

improve this result as they prove that the error decreases as O
(
n−

2α
3

)
for any α > 0 as long as

F has a strong minimum, i.e. F has a unique minimizer x∗ and a global quadratic growth:

∃µ > 0, ∀x ∈ H, µ
2
‖x− x∗‖2 6 F (x)− F ∗. (2)

An additional flatness condition which requires the differentiability of F allows to strengthen this
convergence guarantee as shown in [1, 8]. In [1], Apidopoulos et al. give an improved convergence
rate of the error under the aforementioned flatness condition, a uniqueness assumption on the
minimizer x∗ of F and a Hölderian error bound hypothesis:

∃γ > 2, ∃K > 0, ∀x ∈ B(x∗, ε), K‖x− x∗‖γ 6 F (x)− F ∗. (3)

The works mentioned above mainly focus on finding the fastest convergence rate and since
every improved result relies on the hypothesis that F has a unique minimizer x∗, the strong
convergence of FISTA iterates is actually trivial (under these hypotheses, F (xn)−F ∗ → 0 implies
that ‖xn − x∗‖ → 0).

This observation is also true when considering the study of the corresponding ordinary differ-
ential equation (ODE) i.e. Asymptotic Vanishing Damping system (AVD) defined by

ẍ(t) +
α

t
ẋ(t) +∇F (x(t)) = 0. (AVD)

Introduced by Su et al. in [33] as a system which can be discretized to recover Nesterov’s accel-
erated gradient method, this ODE shares most of its convergence properties with FISTA iterates.
Several papers (see [3, 7, 8, 26]) are devoted to its analysis under geometry assumptions and
most of the fast convergence results require F to have a unique minimizer x∗ which automatically
guarantees that ‖x(t)− x∗‖ → 0.

In this paper, we analyse theoretically the behavior of FISTA iterates and its corresponding
ODE under Hölderian and quadratic growth assumptions without any hypothesis on the unique-
ness of the minimizer. Indeed in this geometrical setting, the strong convergence of the iterates
(xn)n∈N (resp the trajectory x(·)) is no longer a consequence of the decay of (F (xn))n∈N (resp
F (x(·))) but a consequence of the bounds of (‖xn − xn−1‖)n∈N (resp ‖ẋ(·)‖). The main contribu-
tions are the following :

1. Strong convergence of FISTA iterates for functions having a local Hölderian growth (3) with
parameter γ > 2 (for a well-chosen inertial parameter). In addition, we prove that the error

F (xn)− F ∗ decreases as O
(
n−

2γ
γ−2

)
.

2. Strong convergence of FISTA iterates for functions having a quadratic growth (2) (for a
well-chosen inertial parameter) and non-asymptotic bound on the error if this assumption is
global. We recover the convergence rate proved if F has a unique minimizer i.e.

F (xn)− F ∗ = O
(
n−

2α
3

)
,

for α sufficiently large.

3. Finite trajectory of the solution of (AVD) under Hölderian or quadratic growth without a
uniqueness assumption on the minimizers of F . We show that if the set of minimizers X∗ is

sufficiently regular, the error along the trajectories decreases respectively as O
(
t−

2γ
γ−2

)
or

O
(
t−

2α
3

)
for the aforementioned assumptions if α is sufficiently large.
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The paper is organized as follows. Section 2 presents key geometry concepts used in the paper
before giving an overview of the literature on FISTA and the Asymptotic Vanishing Damping sys-
tem. The main results on the strong convergence of FISTA iterates are then stated and discussed
in Section 3. Section 4 contains the analogous convergence results obtained for the trajectories of
the Asymptotic Vanishing Damping system. The proofs of the main theorems are given in Section
5 while the other demonstrations are postponed to Appendix A and Appendix B.

2 Preliminaries and State of the Art

Let H be a Hilbert space. This work focuses on the class C of composite functions defined by:

Definition 1. Let C be the class of convex functions F defined from H to R ∪ {+∞} such that
F = f + h, where f is a convex differentiable function having a L-Lipschitz gradient, and h is a
convex function whose proximal operator is known. The set of minimizers X∗ of F is non-empty
but not necessarily reduced to one point.

This set C depends on the non negative real number L, but to lighten the notation and because
there is no ambiguity, we choose the simple notation C.

2.1 Geometry of convex functions

In this paper we consider the general class of convex composite functions satisfying some growth
condition in the neighborhood of their sets of minimizers:

Definition 2 (Local growth conditions). Let F : H → R∪{+∞} be a proper lower semicontinuous
convex function with a non-empty set of minimizers X∗. Let F ∗ = minx∈H F (x). The function F
is said to satisfy a Hölderian growth condition Gγloc for some γ > 2 if there exist K > 0 and ε > 0
such that for all x ∈ H satisfying d(x,X∗) 6 ε, we have:

Kd(x,X∗)γ 6 F (x)− F ∗. (4)

Moreover, the function F satisfies a local quadratic growth condition G2
µ,loc for some µ > 0 if there

exists ε > 0 such that for all x ∈ H satisfying: d(x,X∗) 6 ε, we have:

µ

2
d(x,X∗)2 6 F (x)− F ∗. (5)

In the context of finite-time analysis, we also introduce the global version of these growth
conditions:

Definition 3 (Global growth conditions). Let F : H → R∪{+∞} be a proper lower semicontinuous
convex function with a non-empty set of minimizers X∗. Let F ∗ = minx∈H F (x). The function F
satisfies the growth condition Gγ for some γ > 2 if there exists K > 0 such that:

∀x ∈ H, Kd(x,X∗)γ 6 F (x)− F ∗. (6)

Moreover, the function F satisfies a quadratic growth condition G2
µ for some µ > 0 if:

∀x ∈ H, µ

2
d(x,X∗)2 6 F (x)− F ∗. (7)

The growth conditions Gγloc (γ > 2) can be seen as sharpness assumptions on the function F
characterizing functions behaving at least as ‖ · ‖γ in the neighborhood of their minimizers. In the
convex setting, the class of functions satisfying some growth condition is a subclass of the functions
having a  Lojasiewicz property [24, 25], a key tool for the mathematical analysis of continuous and
discrete dynamical systems. Initially introduced to prove the convergence of the trajectories for
the gradient flow of analytic functions, an extension to nonsmooth functions has been proposed
by Bolte et al. in [11, 12]:
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Definition 4 (The  Lojasiewicz property). Let F : H → R ∪ {+∞} be a proper lower semicon-
tinuous convex function with a non-empty set of minimizers X∗. Let F ∗ = minx∈H F (x). The
function F has a  Lojasiewicz property if for any minimizer x∗, there exist θ ∈ [0, 1), c > 0, ε > 0
such that:

∀x ∈ B(x∗, ε), c (F (x)− F ∗)θ 6 d(0, ∂F (x)). (8)

Let us finally introduce the notion of flatness characterizing differentiable functions that are
at least as flat as ‖ · ‖γ with γ > 1:

∀x∗ ∈ X∗, ∀x ∈ H, F (x)− F ∗ 6 1

γ
〈∇F (x), x− x∗〉 , (Fγ)

where F ∗ = minx∈H F (x). Note that if F is convex, then it satisfies (Fγ) for γ = 1. This notion
is recalled here to enable latter comparisons, particularly with the convergence results presented
in [1].

To conclude this section, observe that in the context of local growth assumptions, the con-
vergence of the sequence of (F (xn) − F ∗)n∈N to 0 does not trivially imply the convergence of a
given sequence of iterates (xn)n∈N to the set of minimizers X∗. The coercivity of F is needed to
conclude:

Lemma 1. Let F ∈ C be a coercive function satisfying a local growth condition Gγloc for some real
parameters γ > 2 and K > 0. Let (xn)n∈N be a sequence of iterates generated by a given algorithm
A.

If the sequence (F (xn)− F ∗)n∈N converge to 0, then (d(xn, X
∗))n∈N converges to 0 and:

∃N ∈ N, ∀n > N, F (xn)− F ∗ > Kd(xn, X
∗)γ .

Proof. Assume that the sequence (d(xn, X
∗))n∈N does not converge to 0. Thus, there exists ε > 0

and a non-decreasing function φ : N→ N such that the sub-sequence (xφ(n))n∈N satisfies:

∀n ∈ N, d(xφ(n), X
∗) > ε.

Since the sequence (F (xn)− F ∗)n∈N is assumed to converge to 0 , it is also bounded. Combined
with the coercivity of F , this implies that the sequence (xn)n∈N is bounded too. Therefore, there
exists a closed bounded set C containing X∗ such that

{xn, n ∈ N} ⊂ C. (9)

Let Kε = C ∩ {x ∈ H, d(x,X∗) > ε}. By construction, Kε is a weakly compact subset of H and
Kε ∩ X∗ = ∅. Moreover, for all n ∈ N, we have xφ(n) ∈ Kε so there exists a weakly convergent

sub-sequence
(
xψ◦φ(n)

)
n∈N whose weak limit denoted by x̃ belongs to Kε and thus x̃ /∈ X∗.

Consequently, since F is convex and lower semi-continuous (we remind the reader that when
F is convex, then F is weak lsc if and only if F is strong lsc, see e.g. [14]),we have

lim inf F
(
xψ◦φ(n)

)
− F ∗ > F (x̃)− F ∗. (10)

Since the whole sequence (F (xn)− F ∗)n∈N tends to 0 when n → +∞, and since F (x̃) > F ∗, it
implies that F (x̃)− F ∗ = 0 which is impossible since x̃ /∈ X∗. Thus, the sequence (d(xn, X

∗))n∈N
converges to 0 as n→ +∞.

This technical lemma will be useful throughout the paper to establish new convergence rates
for the class of composite functions satisfying certain growth conditions, without assuming the
uniqueness of the minimizer.
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2.2 FISTA and its variants

To solve the minimization problem
min
x∈H

F (x), (11)

where F is a convex composite function in the class C (see Definition 1), a classical algorithm is
the Proximal Gradient method also called Forward-Backward [16]. Before defining properly
this scheme, it is necessary to introduce the notion of proximal operator. Considering h : H →
R∪{+∞} a proper lower semicontinuous convex function, its proximal operator denoted proxh is
defined for all x ∈ H as

proxh(x) = arg min
y∈H

h(y) +
1

2
‖x− y‖2. (12)

Given an initialization x0 ∈ H, the iterates of the Proximal Gradient method are defined as

∀n ∈ N, xn+1 = proxsh (xn − s∇f(xn)) , (13)

where the step size s > 0 should be chosen smaller than 1
L to ensure that F (xn)−F ∗ = O

(
n−1

)
.

In 2009 Beck and Teboulle introduce in [10] the Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) for the same class of functions. While the Proximal Gradient method is the composite
extension of the Gradient Descent method in the differentiable setting, FISTA is a generalization
of Nesterov’s accelerated gradient method for convex functions [29]. Indeed, the iterates of FISTA
are defined in the following way:

x0 ∈ H, ∀n ∈ N,

{
yn = xn + αn (xn − xn−1)

xn+1 = proxsh (yn − s∇f(yn)) ,
(14)

where x−1 = x0 and the sequence (αn)n∈N is that defined by Nesterov in [29] as:

α0 = 0, ∀n ∈ N,


tn+1 =

1 +
√

1 + 4t2n
2

αn+1 =
tn − 1

tn+1
,

(15)

where t0 = 1. The authors prove that F (xn) − F ∗ = O
(
n−2

)
for s ∈

(
0, 1

L

)
(and in particular

(1) for s = 1
L ). Although this convergence rate reveals a significant improvement over Proximal

Gradient method, the authors do not show the weak convergence of the iterates.
This property of the sequence (xn)n∈N is proved by Chambolle and Dossal in [15] for a slightly

different version of FISTA, choosing (αn)n∈N as αn = n
n+α with α > 3. Attouch and Peypouquet

show in [5] that this choice for α ensures that F (xn)− F ∗ = o
(
n−2

)
.

Remark 1. The sequence (αn)n∈N introduced by Chambolle and Dossal (defined as αn = n
n+α

with α > 3) and that given by Nesterov (i.e. (15)) have a similar behavior when α = 3. In prac-
tice, the Chambolle-Dossal formulation is more convenient to draw a parallel with the continuous
setting (see Section 4) and to obtain improved convergence properties under additional geometry
assumptions, while the Nesterov formulation facilitates the implementation of linesearch strategies.

Note that Kim and Fessler introduce Optimized Gradient Method in [20] (and a proximal
version in [21]) which also ensures a decrease of the error of order O

(
n−2

)
but with a tightest and

optimal bound in the differentiable case.

Remark 2 (Why so many names ?). When introduced by Beck and Teboulle, FISTA is presented
as an accelerated version of Iterative Shrinkage-Thresholding algorithms [17] (ISTA) which are
methods solving problems of the form:

min
x∈H

F (x) := ‖Ax− b‖2 + λ‖x‖1.
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The appellation ISTA (and consequently FISTA) comes from the fact that the proximal operator
of ‖ ·‖1 is the soft-thresholding operator. However, the function F defined in that way only belongs
to a subclass of composite convex functions that FISTA can actually minimize.

This confusion may explain the numerous names given to FISTA such as Nesterov’s Accelerated
Forward-Backward [5], Accelerated Proximal Gradient Descent [23] or Inertial Forward-Backward
[5]. It also occurs that FISTA refers to (14) where the sequence (αn)n∈N is set constant in time
equal to α ∈ (0, 1) (see [22]), a method also called V-FISTA by Beck in [9].

2.3 Convergence under additional geometry assumptions

In this section, we give an overview of the known convergence properties of the Proximal Gradi-
ent Methods and of the Chambolle-Dossal formulation of FISTA for convex composite functions
satisfying an additional growth assumption.

Proximal Gradient Method under geometry assumptions The convergence of Proximal
Gradient Method has been studied under several growth conditions in particular by Garrigos et
al. in [18]. In this paper, the authors prove that the iterates of the Proximal Gradient Method
converge strongly to a minimizer of F if the function is p- Lojasiewicz with p > 1 without any
uniqueness assumption on the set of minimizers. The  Lojasiewicz property can be linked to the
growth assumptions stated in Section 2.1 and the strong convergence result holds if F satisfies G2

µ

or Gγ . Moreover, if F satisfies G2
µ, then

F (xn)− F ∗ = O
(
e−

µ
4Ln
)

and if F has an Hölderian growth i.e. Gγ with γ > 2 then

F (xn)− F ∗ = O
(
n−

γ
γ−2

)
.

FISTA under geometry assumptions As stated previously, it is well known (see [15, 33])
that in a convex setting the iterates of the Chambolle-Dossal formulation of FISTA i.e. αn = n

n+α ,
satisfy:

F (xn)− F ∗ 6 (α− 1)2‖x0 − x∗‖2

2s(n+ α− 2)2
, (16)

for any x∗ ∈ X∗ as long as s 6 1
L and α > 3. The following works show that additional assumptions

on F allow to guarantee better convergence properties. The paragraph is summarized in Table 1.
First, Su, Boyd and Candès show in [33] that this rate can be improved to O

(
n−3

)
for strongly

convex functions if α > 9
2 . Attouch and Cabot strengthen this result in [3] by proving that

F (xn)−F ∗ = O
(
n−

2α
3

)
for α > 0 when F has a strong minimizer, i.e. F has a quadratic growth

G2
µ and a unique minimizer. The understanding of FISTA in this setting is then enhanced by Aujol

et al. in [8] as the authors provide non-asymptotical results enlightening the dependency in α.
Apidopoulos et al. also give improved guarantees for functions having a Hölderian and quadratic
growth in [1].
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Reference Assumption on F Parameter range Convergence rate
of F (xn)− F ∗

Su et al. [33] Strong convexity α > 9
2 O

(
n−3

)
Attouch, Cabot [3] G2

µ and uniqueness of
the minimizer

α > 0 O
(
n−

2α
3

)
Apidopoulos et al.

[1]
Aujol et al. [8]

Fγ and G2
µ, γ > 1

Uniqueness of the
minimizer

α > 1 + 2
γ O

(
n−

2αγ
γ+2

)

Apidopoulos et al.
[1]

Fγ1 and Gγ2 where
γ2 > γ1 > 2

Uniqueness of the
minimizer

α > γ1+2
γ1−2 O

(
n−

2γ2
γ2−2

)

Table 1: Convergence rate of F (xn)− F ∗ for FISTA under geometry assumptions on F .

The convergence results stated above give strong guarantees but they all rely on the hypothesis
that F has a unique minimizer. Similarly, this assumption appears in [34] when proving the linear
convergence of FISTA iterates for a LASSO problem. We can observe that in each aforementioned
case, this condition allows to prove trivially the strong convergence of FISTA iterates towards the
unique minimizer x∗ of F : we know that lim

n→+∞
F (xn)− F ∗ = 0 and K‖xn − x∗‖γ 6 F (xn)− F ∗

for some γ > 2 due to the considered growth assumption. Hence, ‖xn − x∗‖ → 0 when n→ +∞.

2.4 The Asymptotic Vanishing Damping (AVD) system

In the seminal work by Su et al. [33], the authors demonstrate that the Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA), within a differentiable framework, can be interpreted as the
discretization of the following ordinary differential equation (ODE) called Asymptotic Vanishing
Damping (AVD) system [29, 33]

ẍ(t) +
α

t
ẋ(t) +∇F (x(t)) = 0, (AVD)

where α = 3.
The connection between inertial algorithms and ODEs dates back to the pioneering work of

Polyak [30] on Heavy Ball schemes. In Polyak’s observations, the following equation describes the
evolution of a particle subject to a force field described by ∇F and a potentially time-dependent
friction term α(t):

ẍ(t) + α(t)ẋ(t) +∇F (x(t)) = 0. (17)

If F is µ-strongly convex, Polyak demonstrates that the optimal friction is constant, depending
on µ, ensuring an exponential decay of F (x(t))− F ∗.

Attouch et al. [2, 4] provide a comprehensive study of the solution to the ODE (17) based
on the properties of F and the friction α(t), in particular analyzing the ODE (AVD). In both
papers, the authors provide convergence rates for F (x(t)) − F ∗ in the strongly convex case and
for functions growing quadratically with a unique minimizer. Specifically, they show that:

F (x(t))− F ∗ = O
(
t−

2α
3

)
. (18)

Aujol et al. [7] demonstrate that these convergence rates can be improved by introducing
an assumption of flatness, also known as quasar convexity. Under weaker growth conditions and
quasar convexity, Aujol et al. [7] and later Luo et al. [26] provide new convergence rates for the
solution of (AVD).
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All these results assume that the function F to be minimized admits a unique minimizer. These
findings are summarized in Table 2.

Weak convergence of x(·) towards a minimizer of F has been demonstrated by Attouch et
al. [4] by adapting the convergence strategy proposed for the iterates of FISTA by Chambolle et
al. [15]. Under the assumption of convexity of F , strong convergence is straightforward if F is
strongly convex or if F grows quadratically with a unique minimizer, but less clear without these
assumptions. In their work, the authors propose several sets of assumptions, such as the parity of
F or the non-emptiness of the interior of the set of minimizers of F , to ensure strong convergence
of x(·) towards a minimizer x∗ of F .

In Section 4, we present new results on convergence rates under growth assumptions with-
out assuming uniqueness of the minimizer. The strong convergence of the trajectory towards a
minimizer of F is also proved by showing its finite length.

Reference Assumption on F Parameter range Convergence rate
of F (x(t))− F ∗

Su et al. [33] Sµ α > 9
2 O

(
t−3
)

Attouch et al. [4] Sµ α > 3 O
(
t−

2α
3

)
Aujol et al. [7, 8] Fγ and G2

µ

Uniqueness of the
minimizer

α > 1 + 2
γ O

(
t−

2αγ
γ+2

)

Aujol et al. [7] Fγ1 and Gγ2 where
γ2 > γ1 > 2
F coercive

α > γ1+2
γ1−2 O

(
t−

2γ2
γ2−2

)

Luo, Xiao [26] Fγ1 and Gγ2 where
γ2 > γ1 > 2

Uniqueness of the
minimizer

α ∈(
γ1+2
γ1

, γ1+2
γ1
· γ2
γ2−2

) O
(
t−

2αγ1
γ1+2

)

Table 2: Convergence rate of F (x(t))−F ∗ where x is solution of (AVD) under geometry assump-
tions on F .

3 Strong convergence of FISTA iterates

In this section, we establish the strong convergence of FISTA iterates to a minimizer of a
composite function F ∈ C (see Definition 1) if this function has a Hölderian or quadratic growth.
Recall that iterates of FISTA are defined as:

x0 ∈ H, ∀n ∈ N,

{
yn = xn + αn (xn − xn−1)

xn+1 = proxsh (yn − s∇f(yn)) ,
(19)

where x−1 = x0 and we choose the Chambolle-Dossal definition of (αn)n∈N i.e. αn = n
n+α with

α > 3.
This property stated in Theorem 1, Corollary 1 and Theorem 3 relies on asymptotic controls

of the sequence (‖xn − xn−1‖)n∈N ensuring that the trajectory described by FISTA iterates has
a finite length. Worst-case convergence rates for the error are given based on Lyapunov analyses
and using the links between FISTA and (AVD). We also provide convergence guarantees in the
continuous setting under similar assumptions in Section 4.
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3.1 Hölderian growth condition

We first consider functions satisfying the local Hölderian growth condition Gγloc for γ > 2 and give
convergence rates for FISTA iterates.

Theorem 1. Let F ∈ C be a coercive composite function having a Hölderian growth i.e. satisfying
Gγloc for some γ > 2. Then for α > 5 + 8

γ−2 , the sequence (xn)n∈N provided by (19) with s = 1
L

satisfies:

F (xn)− F ∗ = O
(
n−

2γ
γ−2

)
, ‖xn − xn−1‖ = O

(
n−

γ
γ−2

)
. (20)

Moreover the trajectory (xn)n has a finite length and strongly converges to a minimizer x∗ of F .

The proof of Theorem 1 is detailed in Section 5.1. Note that this theorem can be seen as a
discrete version of Theorem 4 giving properties of the solution of the ODE associated to Nesterov
and presented in Section 4.

Several comments can be made about Theorem 1. First note that the strong convergence of
the sequence (xn)n∈N is a consequence of the summability of (‖xn − xn−1‖)n∈N. Also observe
that the convergence rate (20) is faster than the one achieved by the Proximal Gradient descend,
see Section 2.3 for more details. Hence, FISTA provides an improvement for the class of convex
functions satisfying a local Hölderian growth condition. Similar bounds have been established by
Apidopoulos et al. [1] but the assumptions of Theorem 1 are weaker: no flatness hypothesis and
no uniqueness of the minimizer are required.

Lastly, the conclusions of Theorem 1 hold if the composite function F satisfies Gγloc for γ > 2

and for α > 5 + 8
γ−2 . Remarking that F satisfies Gγ

′

loc for any γ′ > γ and that Theorem 1 thus

holds for any γ′ > max(γ, 8
α−5 + 2), we deduce the following Corollary :

Corollary 1. Let F ∈ C be a coercive composite function having a Hölderian growth i.e. satisfying
Gγloc for γ > 2. Then, for any α > 5, the sequence (xn)n∈N provided by (19) converges strongly to
a minimizer of F .

Finally, observe that the growth properties required in Theorem 1 are only local and thus, the
decays are asymptotic. Even if the proof of Theorem 1 relies on a Lyapunov analysis, it seems
technically difficult in this Hölderian setting to exhibit explicit bounds for a given number of
iteration n.

3.2 Quadratic growth condition

In this section, we consider that F has a quadratic growth (denoted by G2
µ for the global growth

condition and G2
µ,loc for the local one) with parameter µ > 0. This assumption is more restric-

tive than the Hölderian growth condition considered in Section 3, and allows to derive stronger
convergence results.

Theorem 2. Let F ∈ C be a composite coercive function satisfying a quadratic growth condition
G2
µ for some real parameter µ > 0. Let α > 3 + 3√

2
and κ = µ

L . Then there exist κ0 > 0 such that

for any 0 < κ 6 κ0, the sequence (xn)n∈N generated by FISTA with s = 1
L satisfies:

∀n >
3α√
κ
, F (xn)− F ∗ 6 9

4
e−2M0

(
8e

3
√
κ
α

) 2α
3

n−
2α
3 , (21)

where M0 = F (x0)− F ∗ denotes the potential energy of the system at initial time.

Theorem 2, whose proof is detailed in Section 5.2, is an extension of [8, Theorem 6] to the class
of composite functions with a set of minimizers not reduced to a single point. Similar results can
be demonstrated by assuming that F is coercive and only satisfies some local quadratic growth
condition. Indeed, the worst-case convergence rate of FISTA (16) is well known (see [33, 15]) and
in particular, we know that the sequence (F (xn) − F ∗)n∈N converges to 0. Then, according to

9



Lemma 1, so does the distance (d(xn, X
∗))n∈N of the iterates to the set of minimizers. Thus, all

the inequalities used and demonstrated in the proof of Theorem 2 remain valid for n large enough
and the obtained convergence rates thus hold asymptotically. Our main contribution is to show
that under local quadratic growth assumption and without minimizer uniqueness assumption, the
trajectory of FISTA iterates is of finite length and strongly converges to a minimizer of F :

Theorem 3. Let F ∈ C be a composite coercive function satisfying a local quadratic growth
condition G2

µ,loc for some real parameter µ > 0. Then for any α > 3 + 3√
2

, the sequence (xn)n∈N

of iterates provided by (19) with s = 1
L , satisfies:

F (xn)− F ∗ = O
(
n−

2α
3

)
, ‖xn − xn−1‖ = O

(
n−

α
3

)
. (22)

Moreover the trajectory (xn)n has a finite length and strongly converges to a minimizer x∗ of F .

Thus, under the quadratic growth property, we find the rate of convergence in O
(
n−

2α
3

)
known until now only for FISTA under uniqueness of the minimizer. Moreover, observe that if the
quadratic growth hypothesis is assumed to be global, Theorem 2 provides explicit non-asymptotic
bounds that can be used to parameterize FISTA as it was done in [8].

More precisely, let ε > 0. The minimizers of the composite function F can be characterized by
the optimality condition 0 ∈ ∂F (x), or equivalently g(x) = 0 where:

g(x) = L(x− x+) := L

(
x− prox 1

Lh
(x− 1

L
∇f(x))

)
, x ∈ H, (23)

denotes the composite gradient mapping and x+ := prox 1
Lh

(x − 1
L∇f(x)). This last formulation

is convenient for defining an approximate solution to the composite problem, and thus to deduce
a tractable stopping criterion:

Definition 5 (ε-solution). Let ε be the expected accuracy. The iterate xn is said to be an ε-solution
of the problem minx∈H F (x) if:

‖g(xn)‖ 6 ε. (24)

Observe that in the differentiable case (i.e. when h = 0), we have: g(x) = ∇f(x) so that an
ε-solution is nothing more than an iterate xn satisfying:

‖g(xn)‖ = ‖∇F (xn)‖ 6 ε. (25)

The notion of ε-solution can be seen as a good stopping criterion for an algorithm solving the
composite optimization problem for the following reasons. It is numerically quantifiable and in
addition, controlling the norm of the composite gradient mapping is roughly equivalent to having
a control on the values of the objective function. Indeed using [28, Theorem 1] and [8, Lemma
3.1], we can prove that the composite gradient mapping is controlled by the values of the objective
function:

∀x ∈ RN ,
1

2L
‖g(x)‖2 6 F (x)− F ∗. (26)

Hence, from Theorem 2, a sufficient condition to reach an ε-solution is:

9L

2
e−2M0

(
8e

3
√
κ
α

) 2α
3

n−
2α
3 6 ε2, (27)

which amounts to

n >

(√
LM0

2

3

e ε

) 3
α

8e

3
√
κ
α. (28)

10



Minimizing the number of iterations to reach an ε-solution with respect to the friction parameter
α, we thus deduce that choosing

α = αε := 3 log

(
3

e ε

√
LM0

2

)
, (29)

will ensure to reach an ε-solution in at most:

nε :=
8e2

√
κ

log

(
3

e ε

√
LM0

2

)
(30)

iterations. In other words, for a fixed precision ε > 0, it is possible to parameterize FISTA such
that the number of iterations to reach an ε-solution is comparable to the number of iterations
required by an algorithm with an exponential decay.

Notice that in the case of FISTA with the assumption of a unique minimizer [8], for the exact
same choice of α = αε (which is not the optimized choice stated in [8, Theorem 3]), the number
of iterations (denoted by nFISTA,uniqε ) to reach an ε-solution is then:

nFISTA,uniqε =
8e2

3
√
κ
αε =

8e2

√
κ

log

(
5
√
LM0

e
√

2ε

)
, (31)

which is better than that given by (30) for FISTA without the minimizer uniqueness assumption:

nε = nFISTA,uniqε +
8e2

√
κ

log

(
3
√

2

5

)
> nFISTA,uniqε . (32)

Remark 3. The convergence rate stated in Theorem 2 can be strengthened if there exists γ > 1
such that some flatness condition is satisfied:

∀x ∈ H, F (x)− F ∗ 6 1

γ
〈∇F (x), x− x∗〉, (33)

for any minimizer x∗ ∈ X∗, as it was done in [8, Theorem 4].

4 Asymptotic Vanishing Damping system under geometry
conditions

Let us now consider the AVD system

ẍ(t) +
α

t
ẋ(t) +∇F (x(t)) = 0, (AVD)

which has been widely studied in the literature, in particular using Lyapunov-type approaches
(see e.g. Table 2 for a short overview). Let us mention the references [33, 4, 7, 8] that introduce
the following energy:

E(t) = t2 (F (x(t))− F ∗) +
1

2
‖λ(x(t)− x∗) + tẋ(t)‖2 (34)

with different values of λ > 0, depending on a given minimizer x∗ which is supposed to be constant
in time. The uniqueness assumption of the minimizer is not necessary to obtain the results proved
by Su, Boyd and Candès [33] and Attouch, Chbani, Peypouquet and Redont [4] in the convex case.
On the other hand, when assuming an additional growth property, the fact that these energies
depend on a fixed x∗ ∈ X∗ is limiting for determining improved convergence rates. Our approach
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to extend classical analysis without the uniqueness assumption (similar to that in [6]) consists in
slightly modifying the Lyapunov energy (34) as follows:

E(t) = t2 (F (x(t))− F ∗) +
1

2
‖λ(x(t)− x∗(t)) + tẋ(t)‖2 +

ξ

2
‖x(t)− x∗(t)‖2 (35)

where x∗(t) denotes the projection of the trajectory x(t) onto the set of minimizers X∗:

x∗(t) = PX∗(x(t)) := arg min
x∗∈X∗

‖x(t)− x∗‖2.

Note that since F is assumed to be continuous and convex, the set X∗ is actually a closed convex
set and the projection onto X∗ is thus well defined. This modification of the energy E leads to a
question when attempting to conduct the Lyapunov analysis: is t 7→ x∗(t) differentiable?

The smoothness of t 7→ x∗(t) is related to the smoothness of PX∗ . In fact, if PX∗ is directionally
differentiable then t 7→ x∗(t) is right-differentiable (and left-differentiable) and its right-hand
derivative is equal to P ′X∗(x(t), ẋ(t)). We refer the reader to Appendix A.1 for more insightful
explanations.

In [13, Theorem 7.2], Bonnans et al. prove that if a closed convex set S ⊂ X is second order
regular at PS(x) for some x ∈ X , then PS is directionally differentiable at x.

Definition 6. [32, Definition 2.1] A set S is said second order regular at a point x̄ ∈ S if for
any sequence (xn)n∈N in S of the form: xn = x̄ + tnh + 1

2 t
2
nrn, where (tn)n∈N is monotonically

non-increasing to 0, tnrn → 0 and h ∈ H, it follows that:

lim
n→+∞

d(rn, T
2
S(x̄, h)) = 0,

where T 2
S(x̄, h) denotes the inner second order tangent set to S in the direction h:

T 2
S(x̄, h) :=

{
w ∈ H : d(x̄+ th+

1

2
t2w, S) = o

(
t2
)}

.

The set S is said second order regular if it is second order regular at every point.

We refer the reader to [13, 32] to have a complete understanding of the complex notion of
second order regularity. Keep in mind that sets having a C2 boundary [19] (in the sense that their
boundary is locally a C2 sub-manifold of H) and polyhedral sets [32] are second-order regular, so
that the projection onto these sets is actually directionally differentiable.

Assuming that the set of minimizers X∗ is second order regular instead of the classical unique-
ness assumption, Theorem 4 provides new bounds on F (x(t))−F (x∗) and on ‖ẋ(t)‖ under Hölde-
rian growth conditions. The proof is detailed in Appendix A.2.

Theorem 4. Let F be a convex differentiable function with a non-empty second order regular set
of minimizers X∗. If F is coercive and satisfies a Hölderian growth condition Gγloc for some γ > 2.
Then, for any α > 9

2 + 6
γ−2 , the trajectories provided by (AVD) satisfy

F (x(t))− F ∗ = O
(
t−

2γ
γ−2

)
, ‖ẋ(t)‖ = O

(
t−

γ
γ−2

)
, (36)

and strongly converge to a minimizer of F .

Unlike Aujol et al. [7] and Luo et al. [26], no flatness condition on F or uniqueness of the
minimizer is needed here. The only added hypothesis is the regularity of the set of minimizers.
This hypothesis may be technical, but seems difficult to remove. Note that the bound on ‖ẋ(·)‖
implies that the trajectory x(·) has a finite length and strongly converges to a minimizer of F .

Finally, we consider the class of convex differentiable functions having a quadratic growth.
Applying the strategy described at the beginning of this section and in Appendix A.1, we propose
an extension of [8, Theorem 5] to functions having a set of minimizers not reduced to a single
point, and complement this theorem with a result on ‖ẋ(·)‖ ensuring that the trajectory x(·) has
finite length and thus strongly converges to a minimizer x∗ of F .

12



Theorem 5. Let F be a convex differentiable function with a non-empty second order regular set
of minimizers X∗. Assume that F is coercive and satisfies a local quadratic growth condition G2

µ,loc

for some µ > 0. Let x be a solution of (AVD) for some t0 > 0 and α > 0. If α > 3 and µ is small
enough then we have:

F (x(t))− F ∗ = O
(
t−

2α
3

)
, ‖ẋ(t)‖ = O

(
t−

α
3

)
. (37)

and the trajectory x(·) strongly converges to a minimizer of F .

Note that this rate in O
(
t−

2α
3

)
was already known but for classes of functions satisfying

stronger geometric assumptions, in particular for strongly convex functions in [33, Theorem 8]
and for convex functions having a strong minimizer in [2, Theorem 3.12].

Assuming now that F satisfies a global quadratic growth hypothesis, explicit bounds on the
decay of the functional can be calculated. This will subsequently allow for an optimized choice of
friction parameter values α:

Proposition 1. Let F be a convex differentiable function with a non-empty second order regular
set of minimizers X∗. Assume that F satisfies a global quadratic growth condition G2

µ for some
µ > 0. Let x be a solution of (AVD) for some t0 > 0 and α > 0. If α > 3 and µ is small enough
then we have:

∀t > αr∗

3
√
µ

> t0, F (x(t))− F ∗ 6 C1e
2
3C2(α−3)M0

(
αr∗

3t
√
µ

) 2α
3

, (38)

where M0 = F (x(t0))− F ∗ + 1
2‖ẋ(t0)‖2, r∗ ' 3 is the unique positive real root of the polynomial:

r 7→ r3 − r2 − 2(1 +
√

2)r − 4 and

C1 = 1 +
2

r∗
+

4

r∗2
, C2 =

1

r∗
+

1 +
√

2

r∗2
+

4

3r∗3
.

We give a simplified analysis of this bound by removing some of the constants in the bound
(38) for more readability. Let ε > 0 be the desired precision on the functional decay F (x(t))−F ∗.
For any α > 3, the minimum time t to reach the precision ε is at least in:(

α

t
√
µ

) 2α
3

6 ε ⇐⇒ t >
α
√
µ

(
1

ε

) 3
2α

which corresponds to the polynomial rate stated in Theorem 5. Choosing now α = C log
(

1
ε

)
for

a well-chosen real constant C > 0, the minimum time t to reach an ε-solution is at least in:(
α

t
√
µ

) 2α
3

6 ε ⇐⇒ t >
Ce

3
2C

√
µ

log

(
1

ε

)
which is comparable to a fast exponential decay of the trajectory.

5 Proofs of Theorem 1 and Theorem 2

The proofs of Theorems 1, 2 and 3 are based on a Lyapunov analysis involving similar terms. In
particular, the convergence proofs of Theorems 2 and 3 are built around

En =
2n2

L
(F (xn)− F ∗) +

∥∥λ(xn−1 − x∗n−1) + n(xn − xn−1)
∥∥2
, (39)

where λ > 0, while we consider the following discrete Lyapunov energy for Theorem 1:

En =
2n2

L
(F (xn)−F ∗)+‖λ(xn − x∗n) + nαn(xn − xn−1)‖2+ξ‖xn−x∗n‖2+λnα2

n‖xn−xn−1‖2, (40)
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where λ > 0, ξ < 0 and x∗n, n ∈ N, denotes the projection of xn onto the set of minimizers X∗.
For the sake of clarity, we introduce the following notations:

wn =
2

L
(F (xn)− F ∗), hn = ‖xn − x∗n‖2, δn = ‖xn − xn−1‖2,

γ∗n = ‖x∗n − x∗n−1‖2, αn =
n

n+ α
.

(41)

Both convergence proofs rely on two technical lemma. The first one, whose proof is given in
Section B.1, is crucial for handling the non-uniqueness of the minimizer:

Lemma 2. For all n ∈ N∗, the following equalities hold:

1. 〈xn − x∗n, xn − xn−1〉 = 1
2 (hn − hn−1 + δn − γ∗n) + 〈xn−1 − x∗n−1, x

∗
n − x∗n−1〉.

2. 〈xn−1 − x∗n−1, xn − xn−1〉 = 1
2 (hn − hn−1 − δn + γ∗n) + 〈xn − x∗n, x∗n − x∗n−1〉,

The second one encodes the fact that the sequence (xn)n∈N is provided by (19). Its proof is
based on a descent lemma proved in [15] and is detailed in Section B.2.

Lemma 3. Let (xn)n∈N be the sequence provided by (19) with s = 1
L . Then, for any n ∈ N∗,

wn+1 − wn 6 α2
nδn − δn+1, (42)

and
wn+1 6 (1 + αn)hn + (α2

n + αn)δn − αnhn−1 − hn+1 − γ∗n+1 − αnγ∗n
+ 2αn〈xn−1 − x∗n−1, x

∗
n − x∗n−1〉 − 2〈xn+1 − x∗n+1, x

∗
n+1 − x∗n〉,

(43)

where αn = n
n+α .

We would like to point out that several controls can be deduced from the properties of the
projection onto a convex. Indeed, if C is a closed convex set such that C ⊂ E, then for any x ∈ E
and y ∈ C,

〈x− p, y − p〉 6 0,

where p denotes the projection of x onto C. This property directly guarantees inequalities such as

〈xn − x∗n, x∗n − x∗n−1〉 > 0 and 〈xn−1 − x∗n−1, x
∗
n − x∗n−1〉 6 0.

5.1 Proof of Theorem 1

5.1.1 Sketch of the proof

Recall that our analysis relies on the following discrete Lyapunov energy:

En =
2n2

L
(F (xn)−F ∗)+‖λ(xn − x∗n) + nαn(xn − xn−1)‖2+ξ‖xn−x∗n‖2+λnα2

n‖xn−xn−1‖2, (44)

where λ > 0 and ξ < 0. Given the notations introduced in (41), it can be rewritten:

En = n2wn + bn + ξhn + λnα2
nδn, (45)

where:

wn =
2

L
(F (xn)− F ∗), hn = ‖xn − x∗n‖2, δn = ‖xn − xn−1‖2,

γ∗n = ‖x∗n − x∗n−1‖2, αn =
n

n+ α
, bn = ‖λ(xn − x∗n) + nαn(xn − xn−1)‖2 .

(46)

The strategy underlying this proof is to show that this Lyapunov energy behaves asymptotically

as n−
4

γ−2 . Note that this does not directly guarantee the desired convergence results since ξ < 0.
The local growth condition Gγ satisfied by F is necessary to reach the conclusion.

In order to study the asymptotic behavior of En, we define Jn = npEn where p = 1 + 4
γ−2 . The

proof then follows several steps:
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• Using the properties of FISTA and the convexity of F , we show that for a well-chosen set of
parameters (α, λ, ξ) and n sufficiently large:

Jn+1 − Jn 6 A(n+ 1)p+1wn+1 +B(n+ 1)p−1hn+1, (47)

for some constants A < 0 and B > 0.

• Given the previous inequality and the growth condition satisfied by F , we prove that for n
sufficiently large:

Jn 6 Cn, (48)

for some constant C > 0. This inequality ensures that En decreases asymptotically as n−
4

γ−2 .

• By coming back to the definition of Jn and En and using the assumption Gγ satisfied by F ,
we show that np+1wn and α2

nn
p+1δn are bounded which leads to the desired results.

5.1.2 A technical Lemma before the proof of Theorem 1

In the proof of Theorem 1, the geometry of the function F will be useful to control the distance
of the FISTA iterates to the set of minimizers by the decay of F along the trajectory of iterates.

Lemma 4. Let F satisfy Gγloc for some γ > 2 and real constant K > 0. If p = 1 + 4
γ−2 , then for

n sufficiently large,

np−1hn 6

(
L

2K

) 2
γ (
np+1wn

) 2
γ , (49)

where: wn =
2

L
(F (xn)− F ∗) and hn = d(xn, X

∗)2.

Proof. Assume that F satisfies some local Hölderian growth condition Gγloc for some γ > 0. It is
well known (see [33, 15]) that the iterates of FISTA with s = 1

L and α > 3 satisfy the following
inequality

∀n ∈ N, F (xn)− F ∗ 6 (α− 1)2L

2(n+ α− 2)2
‖x0 − x∗‖2,

which implies that the sequence (F (xn)− F ∗)n∈N converges to 0. Applying Lemma 1, we thus
deduce that the sequence (d(xn, X

∗))n∈N converges to 0 as n → +∞ and that there exist K > 0
and N ∈ N such that:

∀n > N, Kd(xn, X
∗)γ 6 F (xn)− F ∗. (50)

or, equivalently:

∀n > N, hn 6

(
L

2K

) 2
γ

w
2
γ
n .

Choosing p = 1 + 4
γ−2 , the expected inequality (49) holds for any n > N .

5.1.3 Proof of Theorem 1

Let (xn)n∈N be the sequence provided by (19) and (En)n∈N be the Lyapunov energy defined in
(44). The first step of the proof is to get an upper bound on En+1 − En. We provide such an
inequality in the following lemma which is proved in Section B.3.

Lemma 5. Let ξ = λ(λ+ 1− α). For any n ∈ N∗,

En+1 − En 6 ((2− λ)n+ 1)wn+1 +B1(n)bn+1 +B2(n)hn+1 +B3(n)δn+1

−B4(n)
(
γ∗n+1 − 2〈xn − x∗n, x∗n+1 − x∗n〉

)
,

(51)

where :
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• B1(n) = 2(λ+1−α)
n+1 + α(2λ+2−α)

(n+1)2 ,

• B2(n) = − 2λ2(λ+1−α)
n+1 + αλ2(α−2λ−2)

(n+1)2 ,

• B3(n) = α(λ+ 2)− (2λ2 + 2λ+ 1) + α2 n(λ−2)+λ−2−2α
(n+1−α)2 ,

• B4(n) = −2λ(λ+ 1− α)− α2λ
n+1+α .

We introduce Jn = npEn with p = 1 + 4
γ−2 . The next step is to show the following inequality.

Lemma 6. Let ξ = λ(λ+ 1− α). If λ 6 α− 1, then for any n ∈ N∗,

Jn+1 − Jn 6
(
(2− λ+ p)(n+ 1)p+1 +R1(n)

)
wn+1

+
(
(2(λ+ 1− α) + p)(n+ 1)p−1 +R2(n)

)
bn+1

+
(
λ(λ+ 1− α)(p− 2λ)(n+ 1)p−1 +R3(n)

)
hn+1

− npB4(n)
(
γ∗n+1 − 2〈xn − x∗n, x∗n+1 − x∗n〉

)
,

(52)

where:

R1(n) = (λ− 1 + p(λ− 2))np + p(λ− 2)np−1

R2(n) = ((4λ+ 6 + 2p− α)α+ 2λp) (n+ 1)p−2 + α2(6λ+ 8 + p)(n+ 1)p−3

+2α3(λ+ 2)(n+ 1)p−4

R3(n) =
(
λ2(α2 + 2α+ 4λp+ p+ 1) + λ(α− 1)(p− 1)

)
(n+ 1)p−2

+λ2α (2pλ+ 2p+ 6λα+ 2α) (n+ 1)p−3 + 2α3λ2(λ+ 2)(n+ 1)p−4.

The proof is detailed in Section B.4. By setting λ = α− 1− p, we get that λ 6 α− 1 and:

C1 := 2− λ+ p = 3 + 2p− α,
C2 := 2(λ+ 1− α) + p = −p,
C3 := λ(λ+ 1− α)(p− 2λ) = p(α− 1− p)(2α− 2− 3p),

(53)

which implies that for α > 3 + 2p = 5 + 8
γ−2 ,

C1 < 0, C2 < 0, C3 > 0. (54)

Considering the order of R1(n), R2(n) and R3(n), this guarantees that for n sufficiently large:
C1(n+ 1)p+1 +R1(n) <

C1

2
(n+ 1)p+1,

C2(n+ 1)p−1 +R2(n) < 0,

C3(n+ 1)p−1 +R3(n) < 2C3(n+ 1)p−1.

(55)

In addition, for the choice λ = α− 1− p we have that B4(n) = 2p(α− 1− p)− α2 α−1−p
n+1+α which is

positive for α > 5 + 8
γ−2 and n sufficiently large. As γ∗n+1 > 0 and 〈xn − x∗n, x∗n+1 − x∗n〉 6 0, this

ensures that
npB4(n)

(
γ∗n+1 − 2〈xn − x∗n, x∗n+1 − x∗n〉

)
> 0. (56)

Hence, if α > 5 + 8
γ−2 , then for n sufficiently large:

Jn+1 − Jn 6
C1

2
(n+ 1)p+1wn+1 + 2C3(n+ 1)p−1hn+1. (57)
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1st step: Proving that F (xn) − F ∗ = O
(
n−

2γ
γ−2

)
. To obtain bounds on the decay of F along

the FISTA iterates, we take advantage of the geometry of the function F to minimize. Assuming
that F satisfies a local Hölderian growth condition, Lemma 4 combined with (57) ensure that for
n sufficiently large:

Jn+1 − Jn 6
C1

2
(n+ 1)p+1wn+1 + 2C3

(
L

2K

) 2
γ (

(n+ 1)p+1wn+1

) 2
γ , (58)

which ensures that there exists M0 ∈ R such that Jn+1 − Jn 6M0.
Thus, there exists n0 ∈ N such that for all n > n0, Jn 6 nM0 +M1 where M1 = Jn0 − n0M0.

Consequently, we get that for n sufficiently large, Jn 6 2nM0. Coming back to the definition of
J , this implies that:

np−1
(
n2wn + bn + ξhn + λnα2

nδn
)
6 2M0. (59)

Noticing that ξ = λ(λ+ 1− α) < 0, this ensures that for n sufficiently large:

np+1wn − |ξ|np−1hn 6 2M0, (60)

and according to Lemma 4:

np+1wn − |ξ|
(
L

2K

) 2
γ (
np+1wn

) 2
γ 6 2M0. (61)

The following lemma guarantees that for n sufficiently large, np+1wn is bounded.

Lemma 7. Let x ∈ R+, δ ∈ (0, 1), K1 > 0 and K2 > 0. Then,

xδ(x1−δ −K1) 6 K2 =⇒ x 6
(
K1−δ

2 +K1

) 1
1−δ .

As a consequence, there exists M2 > 0 such that for n sufficiently large, np+1wn 6 M2 and
considering the value of p we have that:

F (xn)− F ∗ 6 LM2

2n
2γ
γ−2

. (62)

This proves our first claim: F (xn)− F ∗ = O
(
n−

2γ
γ−2

)
.

2nd step: Proving that the trajectory of FISTA iterates has a finite length Let us come back to
the inequality (59) which implies that for n sufficiently large:

np−1
(
n2wn + bn − |ξ|hn

)
6 2M0. (63)

By applying the inequality ‖u‖2 6 2‖u+ v‖2 + 2‖v‖2 to u = αn(xn − xn−1) and v = λ(xn − x∗n),
we get:

bn >
n2α2

n

2
δn − λ2hn. (64)

Combining this inequality with (63) leads to:

(
np+1wn − (λ2 + |ξ|)np−1hn

)
+
α2
n

2
np+1δn 6 2M0. (65)

Then, Lemma 4 gives us that

np+1wn − (λ2 + |ξ|)np−1hn > np+1wn −
(
L

2K

) 2
γ (
np+1wn

) 2
γ . (66)
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The study of the variations of ϕ : x 7→ x−
(
L

2K

) 2
γ x

2
γ shows that there exists a real constant M3 ∈ R

such that ϕ is bounded from below by M3. Hence for n large enough: np+1wn−(λ2 + |ξ|)np−1hn >
M3, and:

δn 6
4M0 − 2M3

α2
nn

p+1
, (67)

and therefore: ‖xn − xn−1‖ = O
(
n−

γ
γ−2

)
.

3rd step: Proving that the FISTA iterates strongly converge to a minimizer of F . The strong
convergence of FISTA iterates can be deduced from the summability of ‖xn−xn−1‖ since γ

γ−2 > 1
for any γ > 2.

5.2 Proof of Theorem 2

The proof of Theorem 2 is an adaptation of the proof of [8, Theorem 6] without the assumption
that F has a unique minimizer. Its structure is similar despite the involvement of additional terms
linked to the relaxed setting. The tricky technical aspect is to control these additional terms in
order to recover inequalities obtained in the case of uniqueness of the minimizer.

Recall that we consider the discrete Lyapunov energy defined in (39) with the notations (41):

En = n2wn + λ2hn−1 + n2δn + 2λn〈xn−1 − x∗n−1, xn − xn−1〉, (68)

where α > 3, λ = 2α
3 and:

wn =
2

L
(F (xn)− F ∗), hn = ‖xn − x∗n‖2, δn = ‖xn − xn−1‖2, αn =

n

n+ α
. (69)

Applying the second claim of Lemma 2, the Lyapunov energy (68) can be rewritten as:

En = n2wn + λnhn + (λ2 − λn)hn−1 + (n2 − λn)δn + λnγ∗n + 2λn〈xn − x∗n, x∗n − x∗n−1〉.

For any n ∈ N∗, we have:

En+1 −
(

1− λ− 2

n

)
En = (n+ 1)2wn+1 −

(
1− λ− 2

n

)
n2wn

+
(
(n+ 1)2 − λ(n+ 1)

)
δn+1 −

(
1− λ− 2

n

)
(n2 − λn)δn

+

(
λ2 − λ(n+ 1)− λn

(
1− λ− 2

n

))
hn + λ(n+ 1)hn+1

− (λ2 − λn)

(
1− λ− 2

n

)
hn−1

+ λ(n+ 1)γ∗
n+1 + 2λ(n+ 1)〈xn+1 − x∗n+1, x

∗
n+1 − x∗n〉

− λ(n− λ+ 2)γ∗
n − 2λ(n− λ+ 2)〈xn − x∗n, x∗n − x∗n−1〉.

Elementary computations give that:

(n+ 1)2wn+1 −
(

1− λ− 2

n

)
n2wn = n (n− λ+ 2) (wn+1 − wn) + (λn+ 1)wn+1.

Consequently, Lemma 3 ensures that for all n ∈ N∗:

(n+ 1)2wn+1 −
(

1− λ− 2

n

)
n2wn

6 n (n− λ+ 2)
(
α2
nδn − δn+1

)
+ (λn+ 1)

(
(1 + αn)hn + (α2

n + αn)δn − αnhn−1 − hn+1 − γ∗
n+1 − αnγ∗

n

)
+ 2(λn+ 1) (αn〈xn−1 − x∗n−1, x

∗
n − x∗n−1〉 − 〈xn+1 − x∗n+1, x

∗
n+1 − x∗n〉) .
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It follows that:

En+1 −
(

1− λ− 2

n

)
En 6 A1(n, α)δn +A2(n, α)δn+1 +B1(n, α)hn−1

+B2(n, α)hn +B3(n, α)hn+1 +D1(n, α)γ∗
n+1

+D2(n, α)γ∗
n +D3(n, α)〈xn+1 − x∗n+1, x

∗
n+1 − x∗n〉

+D4(n, α)〈xn − x∗n, x∗n − x∗n−1〉
+D5(n, α)〈xn−1 − x∗n−1, x

∗
n − x∗n−1〉,

(70)

where:

• A1(n, α) = 17α2

9
− 8α

3
+ 2− α (10α2−18α+9)n+7α3−12α2+6α

3(n+α)2
,

• A2(n, α) = 1− 2α
3

,

• B1(n, α) = − 2α2

9
+ 4α

3
− 1 + 3α−2α3

3(n+α)
+ 8α3−24α2

27n
,

• B2(n, α) = 2α2

9
− 2α+ 2− 3α−2α3

3(n+α)
,

• B3(n, α) = 2α
3
− 1,

• D1(n, α) = 2α
3
− 1,

• D2(n, α) = − 4α
3
n− 1− 4α

3
+ 10α2

9
+ 3α−2α3

3(n+α)
,

• D3(n, α) = 4α
3
− 2,

• D4(n, α) = − 4α
3
n− 8α

3
+ 8α2

9
,

• D5(n, α) = 4α
3
n+ 2− 4α2

3
+ α(4α2−6)

3(n+α)
.

Noticing that B3(n, α) = −A2(n, α) = D1(n, α) = 1
2D3(n, α) and:

B1(n, α) +B2(n, α) +B3(n, α) =
8α2

27

α− 3

n
=

4αK(α)

3n
,

where K(α) = 2α(α−3)
9 , we get that

En+1 −
(

1− λ− 2

n

)
En 6

4αK(α)

3n
hn +A1(n, α)δn +B1(n, α)(hn−1 − hn)

+B3(n, α)(hn+1 − hn − δn+1) +B3(n, α)γ∗n+1

+D2(n, α)γ∗n + 2B3(n, α)〈xn+1 − x∗n+1, x
∗
n+1 − x∗n〉

+D4(n, α)〈xn − x∗n, x∗n − x∗n−1〉
+D5(n, α)〈xn−1 − x∗n−1, x

∗
n − x∗n−1〉.

(71)

We apply the following technical lemma that is an extension of [8, Lemma 4]. The proof can
be found in Section B.5.

Lemma 8. Let n > λ and (A,B) ∈ R2. The following two claims hold:

1.

δn 6
2

(n− λ)2
bn +

8α2

9(n− λ)2
hn, (72)

where bn = ‖λ(xn−1 − x∗n−1) + n(xn − xn−1)‖2 for any n ∈ N∗.
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2.

Aδn +B(hn−1 − hn) 6

(
2|A+B|+

√
2|B|√
κ

)(
1 +

4α2

9κn2

)
En

(n− λ)2

−Bγ∗n + 2B〈xn−1 − x∗n−1, x
∗
n − x∗n−1〉.

(73)

Inequality (73) ensures that for any n > λ:

4αK(α)

3

hn
n

+A1(n, α)δn +B1(n, α)(hn−1 − hn) 6
Ĉ1(n, α, κ)En

(n− λ)2

−B1(n, α)γ∗n + 2B1(n, α)〈xn−1 − x∗n−1, x
∗
n − x∗n−1〉,

and

B3(n, α)(hn+1 − hn − δn+1) 6
Ĉ2(n, α, κ)En+1

(n+ 1− λ)2
− 2B3(n, α)〈xn − x∗n, x∗n+1 − x∗n〉

+B3(n, α)γ∗n+1,

where

Ĉ1(n, α, κ) = 2|5
3
α2−4α

3
+1+R(n, α)|+

√
2

(
| − 2α2

9 + 4α
3 − 1 +Q(n, α)|
√
κ

)(
1 +

4α2

9κn2

)
+

4αK(α)

3κn

with:

|R(α, n)| =
∣∣∣∣A1(n, α) +B1(n, α)− (

5

3
α2 − 4α

3
+ 1)

∣∣∣∣ 6 8α3

n

|Q(α, n)| = α3

3n

∣∣∣∣n 3− 2α2

α2(n+ α)
+ 8

α− 3

9α

∣∣∣∣ 6 α3

n
,

and Ĉ2(n, α, κ) =
(

2α
3 − 1

) (
4 +

√
2√
κ

)(
1 + 4α2

9κ(n+1)2

)
. Coming back to (71), we get that:

En+1 −
(

1− λ− 2

n

)
En 6

Ĉ1(n, α, κ)En
(n− λ)2

+
Ĉ2(n, α, κ)En+1

(n+ 1− λ)2

+ 2B3(n, α)γ∗n+1 + 2B3(n, α)〈xn+1 − x∗n+1, x
∗
n+1 − x∗n〉

− 2B3(n, α)〈xn − x∗n, x∗n+1 − x∗n〉+ (D2(n, α)−B1(n, α))γ∗n

+D4(n, α)〈xn − x∗n, x∗n − x∗n−1〉
+ (D5(n, α) + 2B1(n, α))〈xn−1 − x∗n−1, x

∗
n − x∗n−1〉.

(74)

Note that for all n ∈ N∗,

γ∗n + 〈xn − x∗n, x∗n − x∗n−1〉 − 〈xn−1 − x∗n−1, x
∗
n − x∗n−1〉 = 〈xn − xn−1, x

∗
n − x∗n−1〉,

and thus,

2B3(n, α)
(
γ∗n+1 + 〈xn+1 − x∗n+1, x

∗
n+1 − x∗n〉 − 〈xn − x∗n, x∗n+1 − x∗n〉

)
= 2(λ−1)〈xn+1−xn, x∗n+1−x∗n〉.

Moreover, we can show that for any n > λ− 2,

D4(n, α) 6 D2(n, α)−B1(n, α) 6 −(D5(n, α) + 2B1(n, α)) 6 −2λ (n− 2 (λ− 1)) . (75)

Since
γ∗n > 0, 〈xn − x∗n, x∗n − x∗n−1〉 > 0, 〈xn−1 − x∗n−1, x

∗
n − x∗n−1〉 6 0,

we get that

(D2(n, α)−B1(n, α))γ∗n +D4(n, α)〈xn − x∗n, x∗n − x∗n−1〉+ (D5(n, α) + 2B1(n, α))〈xn−1 − x∗n−1, x
∗
n − x∗n−1〉

6 −2λ (n− 2 (λ− 1)) 〈xn − xn−1, x
∗
n − x∗n−1〉,
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which is negative if n > 2λ−2. By taking n > max {λ, 2λ− 2} = 2λ−2 (since λ = 2α
3 and α > 3),

we can combine the above inequality with (74)

En+1 −
(

1− λ− 2

n

)
En 6

Ĉ1(n, α, κ)En
(n− λ)2

+
Ĉ2(n, α, κ)En+1

(n+ 1− λ)2

+ 2(λ− 1)〈xn+1 − xn, x∗n+1 − x∗n〉.
(76)

As 〈xn+1 − xn, x∗n+1 − x∗n〉 6 δn+1, for any n > 2λ− 2,

En+1 −
(

1− λ− 2

n

)
En 6

Ĉ1(n, α, κ)En
(n− λ)2

+
Ĉ2(n, α, κ)En+1

(n+ 1− λ)2
+ 2(λ− 1)δn+1.

Then, according to the first claim of Lemma 8 and the quadratic growth condition that can be
rewritten with our notation as hn 6 En

κn2 for any n ∈ N, we get the following:

δn+1 6
2

(n+ 1− λ)2
bn+1 +

8α2

9(n+ 1− λ)2
hn+1 6

2

(n+ 1− λ)2

(
1 +

4α2

9κ(n+ 1)2

)
En+1.

Hence,

En+1 −
(

1− λ− 2

n

)
En 6

C̃1(n, α, κ)En
(n− λ)2

+
C̃2(n, α, κ)En+1

(n+ 1− λ)2
, (77)

where C̃1(n, α, κ) = Ĉ1(n, α, κ) and

C̃2(n, α, κ) = Ĉ2(n, α, κ) + 4(λ− 1)

(
1 +

4α2

9κ(n+ 1)2

)
=

(
2α

3
− 1

)(
8 +

√
2√
κ

)(
1 +

4α2

9κ(n+ 1)2

)
.

As κ ∈ (0, 1], for any n > 4α
3
√
κ

, we have that
1

n− λ
=

1

n− 2α
3

6
1

n

(
1 +
√
κ
)

and thus, for any

n > 4α
3
√
κ

,

En+1 −
(

1−
2α
3 − 2

n

)
En 6 (1 +

√
κ)2

(
C̃1(n, α, κ)

En
n2

+ C̃2(n, α, κ)
En+1

(n+ 1)2

)
. (78)

Observe that this inequality is identical to the one obtained in [8, Proof of Lemma 1] under
the assumption that F has a unique minimizer. The value of C̃1(n, α, κ) does not change while
C̃2(n, α, κ) is slightly larger (in the case of uniqueness of the minimizer, C̃2(n, α, κ) is equal to
Ĉ2(n, α, κ)). As a consequence, the bounds computed for C̃1(n, α, κ) in [8] are still valid and in
particular, there exist some real constants c̃1 and c̃2 such that for any α > 3+ 3√

2
and any n > 4α

3
√
κ

,

C̃1(n, α, κ) 6
5

4

√
2

κ
P (α)

(
1 + c̃1

√
κ+c̃2κ

)
, (79)

where P : α 7→ 2
9 (α− 3)( 8

5α− 3)− 1. Moreover, note that for any n > 4α
3
√
κ

and α > 3,

C̃2(n, α, κ) =

(
2α

3
− 1

)(
8 +

√
2√
κ

)(
1 +

4α2

9κ(n+ 1)2

)

6
5

4

√
2

κ

(
2α

3
− 1

)(
1 + 4

√
2κ
)
.

Hence, for any α > 3 + 3√
2
:

∀n >
4α

3
√
κ
, En+1 −

(
1−

2α
3 − 2

n

)
En 6

C1(α, κ)En
n2

+
C2(α, κ)En+1

(n+ 1)2
, (80)

where:
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• C1(α, κ) = 5
4

√
2
κ

[
2
9 (α− 3)

(
8
5α− 3

)
− 1
]

(1 +
√
κ)2 (1 + c̃1

√
κ+c̃2κ),

• C2(α, κ) = 5
4

√
2
κ

(
2α
3 − 1

)
(1 +

√
κ)2(1 + 4

√
2κ).

From there, we refer the reader to [8] since the last steps of this proof are detailed in the proof
of [8, Theorem 6]. We first integrate inequality (80) with the following lemma which is a slightly
modified version of [8, Lemma 2].

Lemma 9. Let α > 3 and n0 > 4α
3
√
κ

. If the energy En satisfies (80) then:

∀n > n0, En 6 En0

(
n

n0

)−( 2α
3 −2)

eφ(n0), (81)

where φ(n0) = 5
6n0

√
2
κ (α− 3)

(
16
15α− 1

) (
1 + cκ

1
4

)
and c > 0 is independent to α.

The proof of this lemma is identical to the proof of [8, Lemma 2] despite C2(α, κ) being larger
than C2(α, κ) in the other version. This difference is absorbed in the constant c > 0.

Since F (xn)− F ∗ 6 L
2n2En, we get that for any n > 4α

3
√
κ

,

F (xn)− F ∗ 6 L

2

(
n

2α
3 −2

0 eφ(n0)
)
En0

n−
2α
3 .

It is then essential to choose a relevant value for n0 to get a control as tight as possible on
F (xn)− F ∗. This discussion is already detailed in [8] leading to the choice

n0 =
5

4

√
2

κ

(
16

15
α− 1

)(
1 + cκ

1
4

)
,

which ensures that if κ is sufficiently small, then

∀n >
3α√
κ
, F (xn)− F ∗ 6 9

4
e−2M0

(
8e

3
√
κ
α

) 2α
3

n−
2α
3 , (82)

where M0 = F (x0)− F ∗.
We now prove the second claim of Theorem 2. According to (72), for any n > λ,

δn 6
2

(n− λ)2
bn +

8α2

9(n− λ)2
hn, (83)

where bn = ‖λ(xn−1−x∗n−1)+n(xn−xn−1)‖2. Considering the definition of the Lyapunov energy
En, we have for any n > λ, bn 6 En, hence:

δn 6
2

(n− λ)2
En +

8α2

9(n− λ)2
hn, (84)

Since F is assumed to satisfy a global quadratic growth condition G2
µ which implies that hn 6 En

κn2

for any n ∈ N, we get:

∀n > λ, δn 6
2

(n− λ)2

(
1 +

4α2

9κn2

)
En. (85)

Hence, for any n > 4α
3
√
κ

, δn 6 5
2(n−λ)2En. By applying Lemma 9, we get that there exists some

real constant K > 0 such that δn 6 K

n
2α
3

, which ensures that

‖xn − xn−1‖ = O
(
n−

α
3

)
. (86)

Finally, the strong convergence of FISTA iterates in the case when F satisfies some global
quadratic growth condition, follows from the summability of ‖xn − xn−1‖ since α > 3 + 3√

2
> 3.
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A Appendix

A.1 Handling non-uniqueness of the minimizers in the continuous set-
ting

In this section we assume that F is a convex differentiable function having a L-Lipschitz gradient
and a non-empty set of minimizers X∗. We introduce the following Lyapunov energy:

E(t) = t2 (F (x(t))− F ∗) +
1

2
‖λ(x(t)− x∗(t)) + tẋ(t)‖2 +

ξ

2
‖x(t)− x∗(t)‖2, (87)

where for all t > t0, x∗(t) denotes the projection of x(t) onto X∗, i.e

x∗(t) = arg inf
x∗∈X∗

‖x(t)− x∗‖2.

Assume additionally that X∗ is second-order regular in the sense of Definition 6 to that the
projection t 7→ x∗(t) onto X∗ is right differentiable, as well as E , and the right-hand derivative of
x∗ is equal to P ′X∗(x(t), ẋ(t)). For the sake of simplicity, let ẋ∗ and Ė denote the corresponding
right-hand derivatives. We can then write that:

Ė(t) = D(t)− (λ2 + ξ)〈x(t)− x∗(t), ẋ∗(t)〉 − λt〈ẋ(t), ẋ∗(t)〉, (88)

where

D(t) =2t (F (x(t))− F ∗) + t2〈∇F (x(t)), ẋ(t)〉+ 〈λ(x(t)− x∗(t)) + tẋ(t), (λ+ 1)ẋ(t) + tẍ(t)〉
+ ξ〈x(t)− x∗(t), ẋ(t)〉.

Observe that D is exactly equal to Ė if F has a unique minimizer x∗. The objective is then to
control the additional terms 〈x(t)− x∗(t), ẋ∗(t)〉 and 〈ẋ(t), ẋ∗(t)〉. We introduce Figure 1 to give
an intuition of the behavior of these terms.

X∗

x(t)•

x∗(t)
•

ẋ(t)

ẋ∗(t)
x(t)− x∗(t)

X∗

x(t)
•

x∗(t)•

ẋ(t)

ẋ∗(t) = 0

x(t)− x∗(t)

Figure 1: Behavior of ẋ∗ for a set of minimizers having a C2 bound (on the left) and a polyhedral
set of minimizers (on the right).

We can first prove that 〈ẋ(t), ẋ∗(t)〉 is positive by using the expression ẋ∗(t) = lim
h→0

x∗(t+h)−x∗(t)
h

and the property of the projection onto a convex set. Indeed, as X∗ is a closed convex set, for any
x ∈ H and u ∈ X∗:

〈x− PX∗(x), u− PX∗(x)〉 6 0.

Thus, for any h > 0 we have:

〈x(t+ h)− x(t), x∗(t+ h)− x∗(t)〉 = 〈x(t+ h)− x∗(t+ h), x∗(t+ h)− x∗(t)〉

+ ‖x∗(t+ h)− x∗(t)‖2

+ 〈x(t)− x∗(t), x∗(t)− x∗(t+ h)〉
> 0.
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By considering h tending towards 0 we can deduce that 〈ẋ(t), ẋ∗(t)〉 > 0.
In [13, Theorem 7.2] the authors give an expression of the directional derivative P ′S(x, d) for a

closed convex set S ⊂ X being second order regular at PS(x) for some x ∈ X . This directional
derivative satisfies:

〈x− PS(x), P ′S(x, d)〉 = 0.

Considering the assumptions made on X∗ we can deduce that 〈x(t) − x∗(t), ẋ∗(t)〉 = 0 for all
t > t0.

These results ensure that for any choices of parameters λ > 0 and ξ ∈ R, we have that
Ė∗(t) 6 D(t). From this point, it is sufficient to apply the following lemma to extend the desired
convergence results to the non-unique case. A proof is given in Section B.6.

Lemma 10. Let φ : R→ R be a continuous function which is right-differentiable. Assume that

∀t > t0, φ+(t) 6 ψ(t), (89)

where φ+(t) = lim
h→0, h>0

φ(t+ h)− φ(t)

h
denotes the right derivative of φ at t. Then,

∀t > t0, φ(t) 6 φ(t0) +

∫ t

t0

ψ(u)du. (90)

A.2 Proof of Theorem 4 under Hölderian growth condition

We focus our analysis on the following Lyapunov energy introduced in [31]:

J (t) = tp
(
t2(F (x(t))− F ∗) +

1

2
‖λ(x(t)− x∗(t)) + tẋ(t)‖2 +

ξ

2
‖x(t)− x∗(t)‖2

)
, (91)

where p = 1 + 4
γ−2 and λ > 0. We use the following notations:

a(t) = t (F (x(t))− F ∗) , b(t) =
1

2t
‖λ(x(t)− x∗(t)) + tẋ(t)‖2

c(t) =
1

2t
‖x(t)− x∗(t)‖2.

The Lyapunov function can be rewritten as follows:

J (t) = tp+1 (a(t) + b(t) + ξc(t)) .

Following the discussion on the derivability of E∗ defined in (87) in Section A.1, we can say that
under the assumption made on X∗, E∗ is right differentiable. Noticing that J (t) = tpE∗(t), this
is also true for J . For the sake of simplicity, the right derivative of J is denoted J ′. By adapting
[31, Lemma 4.4] to our case, we get that if ξ = λ(λ+ 1− α), then

J ′(t) 6 tp ((2 + p− λ)a(t) + (2(λ+ 1− α) + p)b(t) + λ(λ+ 1− α)(p− 2λ)c(t)) .

Let λ = α− 1− p
2 . Under the condition α > 9

2 + 6
γ−2 , we have that

2 + p− λ < 0,

2(λ+ 1− α) + p = 0,

λ(λ+ 1− α)(p− 2λ) > 0.

As a consequence, we can write that:

J ′(t) 6 tp (Aa(t) + Cc(t)) ,

where A = 3 − α + 3p
2 < 0 and C = p

(
α− 1− p

2

)
(α − 1) > 0. We can apply [31, Lemma 4.5]

which we recall below.
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Lemma 11. If F satisfies the inequality (4) for some γ > 2 and K > 0, i.e. F satisfies Gγloc, then
there exists t1 > t0 such that for all t > t1,

tp2+1c(t) 6
K−

2
γ

2

(
tp2+1a(t)

) 2
γ ,

where p2 = 4
γ−2 .

It follows that for any m ∈ R, there exists M ∈ R such that for any t > t1,

tp2+1(mc(t)− a(t)) 6M.

As p = p2 +1, this lemma ensures that there exists M1 ∈ R such that for all t > t0, J ′(t) 6M1.
Then, Lemma 10 gives us that that there exists M2 ∈ R such that J (t) 6 M1t + M2 and
consequently

tp+1(a(t) + ξc(t)) 6M1t+M2.

Therefore, for t sufficiently large,

tpa(t) 6 2M1 + |ξ|tpc(t).

The first claim of Lemma 11 gives us that there exists M3 > 0 such that:

tpa(t) 6 2M1 +M3 (tpa(t))
2
γ . (92)

Lemma 7 guarantees that there exists M4 > 0 such that for t sufficiently large,

tpa(t) 6M4,

and thus,

F (x(t))− F ∗ 6 M4

tp+1
. (93)

As p+ 1 = 2γ
γ−2 , the first claim is proved.

We prove the second claim by coming back to the inequality J (t) 6 M1t+M2. By applying the
inequality ‖u‖2 6 2‖u+ v‖2 + 2‖v‖2 to u = tẋ(t) and v = λ(x(t)− x∗(t)), we get that

b(t) >
t

2
‖ẋ(t)‖2 − λ2c(t).

Consequently, for sufficiently large t we have that:

tp
(
a(t)−

(
|ξ|+ λ2

)
c(t) +

t

2
‖ẋ(t)‖2

)
6 2M1.

Lemma 11 gives us that there exists M5 > 0 such that:

tp
(
a(t)−

(
|ξ|+ λ2

)
c(t)
)
> tpa(t)−M5 (tpa(t))

2
γ .

Lemma 12. Let g : x 7→ x−Kxδ for some K > 0 and δ ∈ (0, 1). Then for all x > 0,

g(x) > K(δ − 1)(δK)
δ

1−δ .

Lemma 12 ensures that there exists M6 ∈ R such that tp
(
a(t)−

(
|ξ|+ λ2

)
c(t)
)
>M6. Hence,

for t sufficiently large,
tp+1

2
‖ẋ(t)‖2 6 2M1 +M6,

and thus:

‖ẋ(t)‖ 6 M7

t
p+1
2

, (94)

where M7 = 4M1 + 2M6 > 0 and p+1
2 = γ

γ−2 . Thus the trajectory t 7→ (x(t), ẋ(t)) has a finite

length and t 7→ x(t) strongly converges to a minimizer of F .
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A.3 Proof of Theorem 5 and Proposition 1 under a quadratic growth
condition

The proof of Theorem 5 is very similar to the one of [8, Theorem 5] and is not reproduced entirely
here, but we recall the essential steps of this proof. We first introduce the following Lyapunov
energy:

E(t) = t2(F (x(t))− F ∗) +
1

2
‖λ(x(t)− x∗(t)) + tẋ(t)‖2, λ =

2α

3
(95)

where x∗(t) denotes the projection of the trajectory x(t) solution of (AVD) onto the set of mini-
mizers. According to the discussion in Section A.1, the energy E is (right-)differentiable, allowing
to carry out the proof of [8, Theorem 5] without any particular difficulty. The only additional
challenge is to deal with the terms involving ẋ∗(t), which is described in Section A.1).

First case: F satisfies a global quadratic growth condition (Proposition 1) Following the proof of
[8, Theorem 5], we can show that the right derivative of E denoted E ′ satisfies:

∀t > t0, E ′(t) +
λ− 2

t
E(t) 6 φ(t)E(t),

where:

φ : t 7→ 2α (α− 3)

9µt2

(
√
µ+

2α

3t
(1 +

√
2) +

4α2

9
√
µt2

)
.

This inequality combined with Lemma 10 ensures that t 7→ E(t)tλ−2eΦ(t), where Φ : t 7→∫ +∞
t

φ(s)ds, is decreasing on [t0,+∞). As a consequence, for any t1 > t0:

∀t > t1, E(t) 6 E(t1)

(
t1
t

)λ−2

eΦ(t1)−Φ(t).

The next steps of the demonstration rely on showing that Φ is positive, choosing a relevant value
for t1 and bounding each term of the inequality.

Second case: F satisfies a local quadratic growth condition (Theorem 5) Similar to Lemma 1, we
can use the coercivity of F and the convergence of t 7→ F (x(t))− F ∗ to 0 (since it is well known
that for any α > 3, F (x(t))− F ∗ = O

(
t−2
)
, see [33]) to prove the existence of tε > t0 such that:

∀t > tε,
µ

2
d(x(t), X∗) 6 F (x(t))− F ∗).

By following the proof in the global case and replacing t0 by tε, we can easily find the desired
asymptotic result:

F (x(t))− F ∗ = O
(
t−

2α
3

)
.

Showing that the trajectory has a finite length We consider that F satisfies G2
µ,loc. It is shown

that there exist some t1 > tε and K > 0 such that

∀t > t1, E(t) 6 Kt−
2α
3 +2. (96)

Moreover, by applying inequality ‖u‖2 6 2‖u+ v‖2 + 2‖v‖2, we obtain that:

‖ẋ(t)‖2 6
2

t2
‖λ(x(t)− x∗(t)) + tẋ(t)‖2 +

2λ2

t2
‖x(t)− x∗(t)‖2. (97)

Hence, the assumption G2
µ,loc guarantees that

∀t > t1, ‖ẋ(t)‖2 6
4

t2

(
1 +

λ2

µt2

)
E(t). (98)
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Inequality (96) gets us to the conclusion:

‖ẋ(t)‖ = O
(
t−

α
3

)
. (99)

Since α > 3, we obtain that
∫ +∞
t1
‖ẋ(t)‖dt < +∞ which implies that the trajectory x(·) has a

finite length. Combined with the convergence rate on function values, this guarantees that x(·)
converges to some minimizer of F .

B Proofs of technical Lemmas 2, 3, 5, 8 and 10

B.1 Proof of Lemma 2

Let n ∈ N∗. By rewriting

xn − x∗n =
1

2

(
(xn − xn−1) + (xn−1 − x∗n−1) + (x∗n−1 − x∗n) + (xn − x∗n)

)
,

we get that:

〈xn − x∗n, xn − xn−1〉 =
1

2
δn +

1

2
〈(xn−1 − x∗n−1) + (x∗n−1 − x∗n) + (xn − x∗n), xn − xn−1〉.

Noticing that xn − xn−1 = (xn − x∗n) + (x∗n − x∗n−1) + (x∗n−1 − xn−1) leads to:

2〈xn − x∗n, xn − xn−1〉 = δn + 〈xn−1 − x∗n−1, xn − x∗n〉+ 〈xn−1 − x∗n−1, x
∗
n − x∗n−1〉

− hn−1 − 〈x∗n − x∗n−1, xn − x∗n〉+ 〈xn−1 − x∗n−1, x
∗
n − x∗n−1〉

− γ∗n + 〈xn−1 − x∗n−1, x
∗
n − x∗n−1〉 − 〈xn−1 − x∗n−1, xn − x∗n〉+ hn

= hn − hn−1 + δn − γ∗n + 2〈xn−1 − x∗n−1, x
∗
n − x∗n−1〉.

The second claim is proved using the same approach. We rewrite

xn−1 − x∗n−1 =
1

2

(
(xn−1 − xn) + (xn − x∗n) + (x∗n − x∗n−1) + (x∗n−1 − xn−1)

)
,

and consequently:

2〈xn−1 − x∗n−1, xn − xn−1〉 = −δn + 〈(xn − x∗n) + (x∗n − x∗n−1) + (x∗n−1 − xn−1), xn − xn−1〉.

By applying the same rewriting of xn − xn−1, simple calculations give that:

〈xn−1 − x∗n−1, xn − xn−1〉 =
1

2
(hn − hn−1 − δn + γ∗n) + 〈xn − x∗n, x∗n − x∗n−1〉.

B.2 Proof of Lemma 3

The first claim is straightforward as Lemma 3.1 of [15] ensures that:

F (xn+1)− F (xn) 6
L

2

(
‖yn − xn‖2 − ‖xn+1 − xn‖2

)
.

By writing yn = xn + αn(xn − xn−1) and 2
L (F (xn+1)− F (xn)) = wn+1 − wn, we can conclude.

By applying Lemma 3.1 of [15] to an other couple of points, we get that:

F (xn+1)− F ∗ 6 L

2

(
‖yn − x∗n‖2 − ‖xn+1 − x∗n‖2

)
.
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It follows that:

wn+1 6 ‖xn + αn(xn − xn−1)− x∗n‖2 − ‖(xn+1 − x∗n+1) + (x∗n+1 − x∗n)‖2

6 hn + α2
nδn − hn+1 − γ∗n+1 + 2αn〈xn − x∗n, xn − xn−1〉

− 2〈xn+1 − x∗n+1, x
∗
n+1 − x∗n〉.

Recall that the first claim of Lemma 2 ensures that:

〈xn − x∗n, xn − xn−1〉 =
1

2
(hn − hn−1 + δn − γ∗n) + 〈xn−1 − x∗n−1, x

∗
n − x∗n−1〉,

we can deduce that:

wn+1 6 (1 + αn)hn + (α2
n + αn)δn − αnhn−1 − hn+1 − γ∗n+1 − αnγ∗n

+ 2αn〈xn−1 − x∗n−1, x
∗
n − x∗n−1〉 − 2〈xn+1 − x∗n+1, x

∗
n+1 − x∗n〉.

B.3 Proof of Lemma 5

Recall the definition of the discrete Lyapunov energy E :

En = n2wn + bn + ξhn + λnα2
nδn. (100)

Observe that for any n ∈ N,

bn = λ2hn + n2α2
nδn + 2λnαn〈xn − x∗n, xn − xn−1〉, (101)

and by applying the first claim of Lemma 2 we get that:

bn =λ2hn + λnαn(hn − hn−1) + nαn(nαn + λ)δn

− λnαnγ∗n + 2λnαn〈xn−1 − x∗n−1, x
∗
n − x∗n−1〉.

(102)

As a consequence,

bn+1 − bn =λ(λ+ (n+ 1)αn+1)(hn+1 − hn) + (n+ 1)αn+1 ((n+ 1)αn+1 + λ) δn+1

− λnαn(hn − hn−1)− nαn(nαn + λ)δn − λ(n+ 1)αn+1γ
∗
n+1 + λnαnγ

∗
n

+ 2λ(n+ 1)αn+1〈xn − x∗n, x∗n+1 − x∗n〉 − 2λnαn〈xn−1 − x∗n−1, x
∗
n − x∗n−1〉.

(103)

On the other hand, we have that:

(n+ 1)2wn+1 − n2wn = n2(wn+1 − wn) + (2n+ 1)wn+1, (104)

and by applying the first claim of Lemma 3:

(n+ 1)2wn+1 − n2wn 6 n2(α2
nδn − δn+1) + (2n+ 1)wn+1, (105)

By combining (103) and (105), we get that:

En+1 − En 6(2n+ 1)wn+1 − λn(αn + α2
n)δn

+ ((n+ 1)αn+1((n+ 1)αn+1 + λ) + λ(n+ 1)α2
n+1 − n2)δn+1

+ λnαn(hn−1 − hn)− λ
(
λ+ (n+ 1)αn+1 +

ξ

λ

)
(hn − hn+1)

− λ(n+ 1)αn+1γ
∗
n+1 + 2λ(n+ 1)αn+1〈xn − x∗n, x∗n+1 − x∗n〉

+ λnαnγ
∗
n − 2λnαn〈xn−1 − x∗n−1, x

∗
n − x∗n−1〉.

(106)
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Observe that the second claim of Lemma 3 guarantees that:

−λnwn+1 + λn(hn − hn+1) + λnαn(hn − hn−1) + λn(αn + α2
n)δn − λnγ∗n+1 − λnαnγ∗n

+2λnαn〈xn−1 − x∗n−1, x
∗
n − x∗n−1〉 − 2λn〈xn+1 − x∗n+1, x

∗
n+1 − x∗n〉 6 0.

(107)

Adding inequality (107) to (106) leads to

En+1 − En 6((2− λ)n+ 1)wn+1 + ((n+ 1)αn+1((n+ 1)αn+1 + λ) + λ(n+ 1)α2
n+1 − n2)δn+1

− λ
(
λ+ (n+ 1)αn+1 +

ξ

λ
− n

)
(hn − hn+1) + X ∗n ,

(108)
where

X ∗n = (−λ(n+ 1)αn+1 − λn)γ∗n+1 + 2λ(n+ 1)αn+1〈xn − x∗n, x∗n+1 − x∗n〉
−2λn〈xn+1 − x∗n+1, x

∗
n+1 − x∗n〉.

Observe that since X∗ is a closed convex set, 〈xn − x∗n, x∗n+1 − x∗n〉 6 0 and 〈xn+1 − x∗n+1, x
∗
n+1 −

x∗n〉 > 0. Hence, for any n ∈ N, X ∗n 6 0. By choosing ξ = λ(λ+ 1− α), we then obtain that:

En+1 − En 6 ((2− λ)n+ 1)wn+1 +A1(n)δn+1 +A2(n)(hn − hn+1), (109)

where:

• A1(n) = 2(λ+ 1− α)n+ n2(3α2−3αλ−2α+2λ+1)+n(2α3−2α2λ+2α2−2αλ−2α+4λ+2)+1+2λ+αλ
(n+1+α)2 ,

• A2(n) = −2λ(λ+ 1− α)− α2λ
n+1+α .

Note that by rewriting (102) we get that:

hn−1 − hn = − 1

λnαn
bn +

λ

nαn
hn +

nαn + λ

λ
δn − γ∗n + 2〈xn−1 − x∗n−1, x

∗
n − x∗n−1〉. (110)

This ensures that:

En+1 − En 6((2− λ)n+ 1)wn+1 −
A2(n)

λ(n+ 1)αn+1
bn+1 +

λA2(n)

(n+ 1)αn+1
hn+1

+

(
A1(n) +

(n+ 1)αn+1 + λ

λ
A2(n)

)
δn+1

−A2(n) (γ∗
n+1 − 2〈xn − x∗n, x∗n+1 − x∗n〉) ,

(111)

which is the desired inequality.

B.4 Proof of Lemma 6

Let ξ = λ(λ+ 1− α). Let Jn = npEn with p = 1 + 4
γ−2 . Elementary computations show that:

Jn+1 − Jn = np (En+1 − En) + ((n+ 1)p − np) En+1. (112)

Observe that for any n ∈ N, (n + 1)p − np ∈
[
pnp−1, p(n+ 1)p−1

]
. Therefore, if we make the

assumption that λ 6 α− 1, we obtain that ξ 6 0 and:

((n+ 1)p − np) En+1 6 p(n+ 1)p+1wn+1 + p(n+ 1)p−1bn+1 + pξnp−1hn+1

+ pλ(n+ 1)pα2
n+1δn+1.

(113)

By applying Lemma 5 and the above inequality we get that:

Jn+1 − Jn 6
(
np ((2− λ)n+ 1) + p(n+ 1)p+1

)
wn+1

+
(
npB1(n) + p(n+ 1)p−1

)
bn+1

+
(
npB2(n) + pξnp−1

)
hn+1

+
(
npB3(n) + pλ(n+ 1)pα2

n+1

)
δn+1

− npB4(n)
(
γ∗n+1 − 2〈xn − x∗n, x∗n+1 − x∗n〉

)
.

(114)
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The inequality ‖u‖2 6 2‖u+v‖2 +2‖v‖2 applied at u = αn(xn−xn−1) and v = λ(xn−x∗n) ensures
that:

δn 6
2

n2α2
n

bn +
2λ2

n2α2
n

hn. (115)

Thus,

Jn+1 − Jn 6
(
np ((2− λ)n+ 1) + p(n+ 1)p+1

)
wn+1

+

(
npB1(n) + p(n+ 1)p−1 + 2

np|B3(n)|+ pλ(n+ 1)pα2
n+1

(n+ 1)2α2
n+1

)
bn+1

+

(
npB2(n) + pξnp−1 + 2λ2n

p|B3(n)|+ pλ(n+ 1)pα2
n+1

(n+ 1)2α2
n+1

)
hn+1

− npB4(n)
(
γ∗n+1 − 2〈xn − x∗n, x∗n+1 − x∗n〉

)
.

(116)

By replacing ξ by its value and reorganizing each term, we get to the conclusion.

B.5 Proof of Lemma 8

Let (A,B) ∈ R2. Elementary computations show that for any n ∈ N∗,

hn−1 − hn − δn = −2〈xn − xn−1, xn − x∗n〉+ 2〈xn−1 − x∗n−1, x
∗
n − x∗n−1〉 − γ∗n.

Consequently, for any n ∈ N∗,

Aδn +B(hn−1 − hn) = (A+B)δn +B(hn−1 − hn − δn)

= (A+B)δn − 2B〈xn − xn−1, xn − x∗n〉
+ 2B〈xn−1 − x∗n−1, x

∗
n − x∗n−1〉 −Bγ∗n

6 (A+B)δn + 2|B| |〈xn − xn−1, xn − x∗n〉|
+ 2B〈xn−1 − x∗n−1, x

∗
n − x∗n−1〉 −Bγ∗n.

Moreover, note that for any n ∈ N∗ and θ > 0:

2|〈xn − xn−1, xn − x∗n〉| 6
hn
θ

+ θδn. (117)

Hence,

Aδn +B(hn−1 − hn) 6 (A+B + θ|B|)δn +
|B|
θ
hn + 2B〈xn−1 − x∗n−1, x

∗
n − x∗n−1〉 −Bγ∗n.‘

We define bn := ‖λ(xn−1 − x∗n−1) + n(xn − xn−1)‖2. By developing the expression of bn we get
that:

bn = ‖λ(xn − x∗n) + (n− λ)(xn − xn−1) + λ(x∗n − x∗n−1)‖2

= ‖λ(xn − x∗n) + (n− λ)(xn − xn−1)‖2 + λ2γ∗n

+ 2λ2〈xn − x∗n, x∗n − x∗n−1〉+ 2λ(n− λ)〈xn − xn−1, x
∗
n − x∗n−1〉.

By applying the following inequality to u = (n− λ)(xn − xn−1) and v = λ(xn − x∗n):

‖u‖2 6 2‖u+ v‖2 + 2‖v‖2,

it comes that:
(n− λ)2δn 6 2‖λ(xn − x∗n) + (n− λ)(xn − xn−1)‖2 + 2λ2hn

6 2bn +
8α2

9
hn −∆∗n,
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where ∆∗n = 2
(
λ2γ∗n + 2λ2〈xn − x∗n, x∗n − x∗n−1〉+ 2λ(n− λ)〈xn − xn−1, x

∗
n − x∗n−1〉

)
. As ∆∗n > 0

we get the first claim of the lemma i.e.

∀n > λ, δn 6
2

(n− λ)2
bn +

8α2

9(n− λ)2
hn. (118)

This inequality implies that for any n > λ,

Aδn +B(hn−1 − hn) 6 (|A+B|+ θ|B|)
2

(n− λ)2
bn +

(
(|A+B|+ θ|B|)

8α2

9(n− λ)2
+
|B|
θ

)
hn

+ 2B〈xn−1 − x∗n−1, x
∗
n − x∗n−1〉 −Bγ∗n.

As F satisfies G2
µ, we can write that hn 6 wn

sµ and thus,

Aδn +B(hn−1 − hn) 6 (|A+B|+ θ|B|)
2

(n− λ)2
bn +

(
(|A+B|+ θ|B|)

8α2

9sµ(n− λ)2
+
|B|
sµθ

)
wn

+ 2B〈xn−1 − x∗n−1, x
∗
n − x∗n−1〉 −Bγ∗n.

By choosing θ = 1√
2sµ

we can conclude that:

Aδn +B(hn−1 − hn) 6

(
2|A+B|+

√
2|B|
√
sµ

)
1

(n− λ)2
bn +

((
2|A+B|+

√
2|B|
√
sµ

)
4α2

9sµ(n− λ)2
+

√
2|B|
√
sµ

)
wn

+ 2B〈xn−1 − x∗n−1, x
∗
n − x∗n−1〉 −Bγ∗n,

and hence,

Aδn +B(hn−1 − hn) 6

(
2|A+B|+

√
2|B|
√
sµ

)(
1 +

4α2

9sµn2

)
En

(n− λ)2

−Bγ∗n + 2B〈xn−1 − x∗n−1, x
∗
n − x∗n−1〉.

B.6 Proof of Lemma 10

Let φ′ denote the derivative of φ when it is well defined. According to [35], the function φ is
differentiable except at a countable set of points. This implies that there exists (ti)i∈J1,NK and
N ∈ N∗ ∪ {+∞} such that for any i ∈ J0, N − 1K and t ∈ (ti, ti+1), φ′(t) is well defined and equal
to φ+(t). We suppose that the sequence is ordered such that t0 < ti < ti+1 for any i and that
tN = +∞ when N 6= +∞.
Suppose that t ∈ (t0, t1).

• If φ is differentiable at t0, then φ is differentiable on the interval [t0, t1) and φ′ = φ+ in this
interval. Consequently inequality (89) ensures that,

φ(t) 6 φ(t0) +

∫ t

t0

ψ(u)du.

• If φ is not differentiable at t0, then inequality (89) guarantees that for h > 0 sufficiently
small,

φ(t0 + h) 6 φ(t0) + hψ(t0).

Then, the previous discussion allows us to say that φ is differentiable on [t0 + h, t1). As a
consequence, we can say that there exists H ∈ (0, t− t0) such that for any h ∈ (0, H):

φ(t) 6 φ(t0 + h) +

∫ t

t0+h

ψ(u)du 6 φ(t0) +

∫ t

t0

ψ(u)du+

∫ t0+h

t0

(ψ(t0)− ψ(u)) du.

As this inequality is valid for any h ∈ (0, H), we finally get the wanted inequality (90).
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We now suppose that t = t1. We just proved that (90) is true for all t ∈ (t0, t1). Therefore, for all
t ∈ (t0, t1),

φ(t) 6 φ(t0) +

∫ t1

t0

ψ(u)du,

and as φ is continuous we get the same inequality at t = t1.
By using the same arguments, we can prove that (90) is valid for any t > t1. Indeed, if t > t1, then
it means that t ∈ (ti, ti+1) or that t = ti for some i ∈ J1, NK. In both cases, we get the wanted
inequality by applying the above reasonings to the consecutive intervals (tj , tj+1) for 0 6 j 6 i.
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