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Abstract
High-dimensional dynamical systems often require computationally intensive physics-
based simulations, making full physical space data assimilation impractical. Latent data
assimilation methods perform assimilation in reduced-order latent space for efficiency but
struggle with complex, nonlinear state-observation mappings. Recent solutions like Gen-
eralised Latent Data Assimilation (GLA) and Latent Space Data Assimilation (LSDA)
address heterogeneous latent spaces by incorporating surrogate mapping functions but
introduce computational costs and uncertainties. Furthermore, current algorithms that
integrate data assimilation and deep learning still face limitations when it comes to han-
dling non-explicit mapping functions. To address these challenges, this paper introduces
a novel deep-learning-based data assimilation scheme, named Multi-domain Encoder-
Decoder Latent Data Assimilation (MEDLA), capable of handling diverse data sources
by sharing a common latent space. The proposed approach significantly reduces the
computational burden since the complex mapping functions are mimicked by the multi-
domain encoder-decoder neural network. It also enhances assimilation accuracy by min-
imizing interpolation and approximation errors. Extensive numerical experiments from
three different test cases assess MEDLA’s performance in high dimensional dynamical
systems, benchmarking it against state-of-the-art latent data assimilation methods. The
numerical results consistently underscore MEDLA’s superiority in managing multi-scale
observational data and tackling intricate, non-explicit mapping functions.
Keywords: Data assimilation; Deep learning; Data fusion; Dynamical systems
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Main Notations1

Latent data assimilation methodology

x, x̃ state vector in the full and the reduced space
y, ỹ observation vector in the full and the reduced space
X, X̃ a set of state vectors in the full and the reduced space
Y, Ỹ a set of observation vectors in the full and the reduced space
Ty a set of time steps where observations are available for assimilation
E ,D encoder and decoder neural networks
Ex,Dx state and observation encoders
x̃x, x̃y latent state vector encoded using state and observation encoders
JAE loss function of encoder-decoders
Jt loss function of data assimilation at time t
LX,q POD projection operator with truncation parameter q
min, mout input and output sequence of the predictive model
tF number of total time steps
x̃b,t, x̃a,t background and analysis state vectors in the latent space at time t
ỹt observation vector in the latent space at time t
H̃t, H̃t state-observation mapping function and its linearization
B̃t, R̃t background and observation error covariance matrices in the latent spaces

2D Burgers’ equation test case

u, v velocity field
Re Reynolds number
Sy,t, Ce

y observation error covariance and correlation matrices
σ

(i)
y,t observation error deviations at vector coordinate i

∆t time lag between background and true states

Multiphase flow test case

αk, ρk, Uk concentration, density and velocity fields for oil/water phase
Mk rate of momentum transfer per unit volume
Um initial mixture velocity
fH(.) marginal mapping function

Microfluidic drop test case

u, F velocity and pressure fields
ρ density
F local surface tension force at the interface of drops
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1. Introduction2

For high-dimensional dynamical systems, running high-fidelity physics-based sim-3

ulations can be time-consuming. To circumvent the computational burden, Machine4

Learning (ML)-based low-dimensional surrogate models have been widely applied in5

engineering problems, including climate forecasting [43], air pollution modelling [8],6

computational fluid dynamics (CFD) [30, 54], nuclear reactor physics [23, 22] and ocean7

engineering [28]. To adjust the surrogate model prediction, real-time information, for in-8

stance, from local sensors or satellites, can be employed through Data Assimilation (DA)9

algorithms [7]. However, due to the high-dimensionality and the complexity of the10

transformation function, implementing DA in the full physical space can be compu-11

tationally difficult, if not infeasible. Some recent works also use generative models such12

as Generative Adversarial Networks (GANs) [20] or diffusion models [17] to link the13

state space to the observation space. However, the combination of generative models14

and data assimilation techniques is still under exploration. Many recent research ef-15

forts [49, 8, 24, 56, 15, 39, 37, 12, 33, 34, 38, 2, 11] have been given to reduce the16

computational burden by developing reduced order surrogate models and performing17

DA in low-dimensional spaces, issued from Proper Orthogonal Decomposition (POD),18

dynamic mode decomposition or ML-based auto-encoders. Such algorithms, known as19

Latent data Assimilation (LA), can benefit from the efficiency of reduced-order surrogate20

modelling and the accuracy of DA. In [8], the authors suggest using Recurrent Neural21

Network (RNN) within a reduced space to improve future predictions by learning assimi-22

lated results. A related concept is presented in [5], which introduces an iterative DA-ML23

scheme. However, it is worth noting that when implementing this algorithm, retraining24

the Neural Network (NN) is necessary whenever new observations are obtained.25

In recent two years, online LA has raised much research attention. The methods26

proposed can be broadly categorised into two groups [13]: LA [39, 34, 36] where the full27

observations are used to correct the reduced-order models; LA+ [1, 12, 33] where the state28

variables and observations are encoded into a common latent space. The former meth-29

ods are more suitable for chaotic dynamical systems with limited observation data where30

it is difficult to construct a low-dimensional latent space for the system’s observations.31

The LA+ approaches enable more efficient assimilation, especially for dense observation32

mappings. However, it requires the states and observations to share the same encoding33

(compression) function, necessitating them to be defined in the same physical space. This34

becomes challenging with highly non-linear state-observation transformation mappings,35

which are common in real-world DA problems [7]. As a result, different autoencoders36

are needed for the states and observations, leading to heterogeneous latent spaces. To37

address this challenge, recent approaches [11, 37] utilize local surrogate functions, such as38

polynomial functions [11] and Multi layer percepton (MLP) [37], to bridge the two latent39

spaces. These methods are known as Generalised Latent Assimilation (GLA) and Latent40

Space Data Assimilation (LSDA), respectively. By employing surrogate functions, vari-41

ational DA becomes feasible by solving a local optimization problem. These approaches42

significantly enhance the accuracy of the surrogate models in practical applications.43

It is important to note, however, that the computation of local surrogate functions44

around the predicted latent variables must be performed online, which can result in45

relatively high computational costs. More importantly, considerable uncertainties can46

be introduced when mapping the two latent spaces [11] especially when the choice of47

the approximation range for the surrogate function is inappropriate. The latter can be48

difficult since the prediction error of the surrogate model is often out of reach. Recent49
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research [53] addresses the difficulty of complex state-observation mapping by proposing50

a new DA scheme, named Deep Data Assimilation (DDA), which employs an observation-51

domain encoder and a state-domain decoder. Using this method allows for direct transfer52

of observation data to the state space. However, it is important to note that DA is still53

necessary in the full physical space. In conclusion, conducting reduced-order assimilation54

with multi-domain or multi-scale data sources remains a major challenge in current DA55

schemes.56

In this paper, we propose a novel LA scheme with a multi-domain encoder-decoder57

which can perform both state-in-state-out and observation-in-state-out encoding-decodings.58

More precisely, it consists of training two encoders which share the same decoder on an59

alternating basis with separate loss functions. To ensure alignment in the latent space,60

fine-tuning can be performed on the observation-domain encoder using encoded state61

variables as output. The idea of multi-domain or multi-modal encoding-decoding has62

been introduced for computer vision [52], nature language processing [42] and transfer63

learning [59]. To the best of the authors’ knowledge, using multi-domain encoders to64

adjust the prediction of dynamical systems has not been presented in the literature be-65

fore. A surrogate predictive model can then be trained in the common latent space. As66

for the DA step, similar to LA+ [1, 33], only linear LA is required since the observation67

and the state can be encoded to the same latent space. The novel approach, named68

Multi-domain Encoder-Decoder Latent data Assimilation (MEDLA), can combine the69

efficiency of LA+ and the generalizability of GLA/LSDA. Furthermore, MEDLA also70

aims to improve the LA accuracy by avoiding/reducing interpolation (e.g., in LA+) or71

approximation (e.g., in GLA/LSDA) errors. Different data compression/transformation72

strategies employed in LA+, GLA/LSDA, DDA and MEDLA are illustrated in Figure 1.73

A qualitative comparison of different approaches, regarding the novel MEDLA method,74

is depicted in Table 1.75

Figure 1: Workflows of different latent spaces in LA approaches. The dashed red rectangles indicate
the space where DA takes place

To test the performance of MEDLA in comparison with the state-of-the-art LA ap-76

proaches, three numerical experiments are designed in this work. The first one involves77
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solving the two-dimensional Burgers’ equation [6] on squared meshes, where both states78

and observations are the velocity field on a different scale. MEDLA is compared against79

LA+ [1] in terms of assimilation accuracy with different levels of observation errors. The80

second test involves CFD simulations of a multiphase flow systems in a pipe with two81

non-linear state-observation transformation functions, and the performance of MEDLA82

is compared to GLA [11]. The last test case involves drop interactions in a microfluidics83

device with multi-modal data comprising CFD and camera observations, for which no84

explicit transformation function could be identified. Existing LA approaches that rely85

on explicit transformation functions are unable to handle this scenario. However, thanks86

to the multi-domain encoder-decoder, the proposed MEDLA can successfully assimilate87

the reduced-order state variables using non-explicit observations.88

In summary, in this paper, we make the following main contributions:89

• We introduce a novel latent data assimilation scheme, called MEDLA, that lever-90

ages multi-domain encoding-decoding to enhance the efficiency and accuracy of91

DA for high-dimensional dynamical systems, addressing key challenges in current92

DA schemes.93

• We demonstrate that MEDLA is capable of handling complex and non-explicit94

mapping functions efficiently.95

• We perform extensive numerical experiments with both synthetic and physical96

assimilation problems to highlight the advantage of MEDLA in terms of accuracy97

and efficiency compared to the state-of-the-art latent data assimilation algorithms.98

The rest of this paper is organized as follows. Section 2 presents the state-of-the-99

art LA approaches. The novel method MEDLA is introduced in Section 3, followed by100

the numerical experiments of three test cases in Section 4. We end the paper with a101

conclusion and a future work discussion in Section 5.102

Table 1: Comparison of existing deep learning-assisted assimilation approaches in relation to the exper-
iments in this paper

Methods Reduced
state

Reduced
observation

Non-linear
mapping

Non-explicit
mapping

RODDA [8] ✓ ✗ ✓ ✗

LA [39, 34] ✓ ✗ ✗ ✗

LA+ [1, 12, 33] ✓ ✓ ✗ ✗

GLA [11] ✓ ✓ ✓ ✗

LSDA [37] ✓ ✓ ✓ ✗

DDA [53] ✗ ✗ ✓ ✓
MEDLA ✓ ✓ ✓ ✓

Experiments
Burgers equation

Multiphase flow
Microfluidic drops
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2. Latent data assimilation for high-dimensional systems103

In this section, we introduce the technical background of LA algorithms, including104

reduced-order modelling, RNN-based surrogate models, and data assimilation in low-105

dimensional latent spaces.106

2.1. Reduced-order modelling107

Here, we introduce two types of Deep Learning (DL)-based reduced-order mod-108

ellings (ROMs), namely the Convolutional Autoencoder (CAE) and the Singular Value109

Decomposition (SVD) Autoencoder (AE).110

2.1.1. Convolutional autoencoder111

Autoencoding as an unsupervised ML approach and has been widely applied for data
compression, especially in high-dimensional systems. A DL-based autoencoder consists
of two neural networks: an encoder E which maps the input variables x = [x1, x2, ..., xn] ∈
Rn to a low-dimensional vector x̃, and a decoder D for reconstructing variables x′ in the
full physical space. More precisely,

x̃ = E(x) and x′ = D(x̃). (1)

The encoder E and decoder D must be trained jointly. Since the objective here is to
minimize the mismatch between the original and the reconstructed state variables in the
full physical space, the training loss function could be defined as, for instance, the mean
square error (MSE),

JAE(E ,D) = 1
Ntrain

Ntrain∑
j=1
||xj −D ◦ E(xj)||2. (2)

where {x1, x2, ..., xNtrain} is the training dataset. Fully-connected MLP can be employed112

to construct E and D. However, the large number of parameters of MLP can be cum-113

bersome for high-dimensional systems. Furthermore, local patterns are ignored since114

MLP treats each input pixel/mesh in a parallel way. By using CAE, we can overcome115

these drawbacks thanks to the convolutional layers, which capture spatial patterns in116

the original system with a much smaller number of parameters. More precisely, multi-117

dimensional filters are employed in convolutional layers to recognize local patterns by118

sliding the layer inputs. Many research works have demonstrated that CAE outperforms119

classical linear compression methods in terms of reconstruction accuracy on a variety of120

applications [48].121

2.1.2. SVD autoencoder122

Despite the efficiency of CAE, difficulties can be found when facing unstructured/un-123

squared data since the convolutional filter can only capture structured (in most cases124

squared) pixels/nodes. Much effort has been devoted to tackling this bottleneck. Pro-125

posed solutions include, for example, space-filling curves [26], spatially varying ker-126

nels [60] or graph-based networks [57]. In this work, one of the test cases involves non-127

squared cylinder meshes. Thus, we make use of a recently developed training-efficient128

ROM, named SVD AE [40, 41]. As the first step of dimension reduction, we apply SVD129

to obtain the full set of principal components (PCs) Lx of the training dataset X, i.e.,130
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X =
[
x1|x2, ..., |xNtrain

]
,

Cx = E(XXT ) = LXDXLX
T , (3)

where Cx represents the covariance matrix of X and DX is a diagonal matrix, containing
the eigenvalues of Cx. By keeping the first q eigenvectors (which correspond to the q
largest eigenvalues), we obtain the SVD-compressed vector LT

X,qX. Here q is also known
as the truncation parameter in POD or truncated SVD. To further reduce the system
dimension, a dense autoencoder (E ′,D′) with fully connected layers is involved,

x̃ = E ′
(
LX,q

T x
)
, while x′ = LX,qD′(x̃). (4)

Since the SVD AE first maps the physical fields to their principal components, it can131

handle both structured and unstructured meshes. Recent research [11] has also numer-132

ically demonstrated the advantage of SVD AE compared to standard POD, especially133

when the latent space is of extremely small dimension. A more advanced approach that134

combines POD and deep learning for reduced order modelling has been introduced in [18]135

where the principle components are also engaged in the training process.136

2.2. Low-dimensional surrogate model137

Once the ROM is performed, it is crucial to understand the dynamics in the low-
dimensional latent space. Much effort has been given to predict latent variables via
machine learning approaches, such as Random Forest (RF) [23], RNN[1, 12] or Trans-
formers [21]. LA techniques can be implemented in combination with all these men-
tioned predictive models to enhance forecasting. Since we are aiming for long-term
predictions of physical systems, long short-term memory (LSTM) neural netowk [27],
a variant of RNN is chosen in this paper to build the surrogate model. Capable of
dealing with long-term time dependencies, LSTM can address the vanishing gradient
problem [27] which can be crumblesome for other variants of RNNs. LSTM can also de-
liver sequence-to-sequence predictions (i.e., min time steps as input and mout time steps
as output), which can decrease the online computational time, and more importantly,
reduce the accumulated prediction error. For a time series of encoded latent variables
X̃train = [x̃train

1 , x̃train
2 , ..., x̃train

Ttrain ], the training of LSTM can be carried out by shifting the
starting time step:

[x̃train
1 , x̃train

2 , ..., x̃train
min

] LSTM train−−−−−−−−−→[x̃train
min+1, x̃train

min+2, ..., x̃train
min+mout

],

[x̃train
2 , x̃train

3 , ..., x̃train
min+1]

LSTM train−−−−−−−−−→[x̃train
min+2, x̃train

min+3, ..., x̃train
min+mout+1]

...

[x̃train
train−min−mout+1, ..., x̃train

train−mout
] LSTM train−−−−−−−−−→[x̃train

train−mout+1, ..., x̃train
Ttrain ]. (5)

Different loss functions, such as MSE or mean absolute error (MAE), can be employed
in the training phase by measuring the mismatch between predicted and true latent
variables. As for the online prediction of X̃test = [x̃test

1 , x̃test
2 , ..., x̃test

Ttest ], an iterative process
can be involved for long-term forecasting,

[x̃test
1 , x̃test

2 , ..., x̃test
min

] LSTM predict−−−−−−−−−→[x̃test
min+1, x̃test

min+2, ..., x̃test
min+mout

],

[x̃test
min+1, x̃test

min+2, ..., x̃test
min+mout

] LSTM predict−−−−−−−−−→[x̃test
min+mout+1, ..., x̃test

min+2mout
]

... (6)
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When applying such an iterative model, minimising accumulated prediction error is138

of the most importance.139

2.3. Latent data assimilation140

LA techniques are developed to perform efficient DA in a low-dimensional latent
space. It can thus be used for real-time forecasting corrections for dynamical systems [13].
At a given time step t, the prediction result (also known as the background state) in
the latent space is denoted as x̃b,t. The available observations, either in the full or the
reduced space, and the state-observation mapping (also known as the transformation
function) are denoted as ỹt and H̃t, respectively. The objective function of latent data
assimilation reads

Jt(x̃) = 1
2(x̃− x̃b,t)T B̃t

−1(x̃− x̃b,t) + 1
2(ỹt − H̃t(x̃))T R̃t

−1(ỹt − H̃t(x̃)), (7)

where B̃t and R̃t represent the error covariance related to x̃b,t and ỹt, respectively.
The assimilated latent state x̃a,t can be obtained via the minimization of the objective
function,

x̃a,t = argmin
x̃

(
Jt(x̃)

)
. (8)

In the works of [1, 12, 33], the latent transformation function is supposed to be linear.
In other words, a linear operator H̃t is used to replace the transformation function H̃t

in Equation (8). Therefore, the minimization of Equation (7) can be performed via the
Best Linear Unbiased Estimator (BLUE), and the analysed state x̃a,t can be calculated
explicitly as:

x̃a,t = x̃b,t + K̃t(ỹt − H̃tx̃b,t) (9)
where the latent Kalman gain matrix K̃t is defined as:

K̃t = B̃tH̃
T

t (H̃tB̃tH̃
T

t + R̃t)−1. (10)
However, in a wide range of DA applications, it is almost infeasible to compress state

variables and observations into the same latent space. To perform LA with complex
transformation function, recent works [11, 37] proposed novel algorithms, named GLA
and LSDA, to build simplified surrogate functions H̃s

t linking the state and the obser-
vation latent spaces. More precisely, in GLA local polynomial regressions are used to
build H̃s

t in a neighbourhood of x̃b,t. Thanks to the smoothness of polynomial func-
tions, quasi-Newton methods can be employed to minimize the approximated objective
function,

Js
t (x̃) = 1

2(x̃− x̃b,t)T B̃t
−1(x̃− x̃b,t) + 1

2(ỹt − H̃s
t (x̃))T R̃t

−1(ỹt − H̃s
t (x̃)). (11)

In LSDA, multi-layer perceptron (MLP) neural networks are used to build H̃s
t instead141

of polynomial functions. Ensemble DA techniques [14] are then applied to overcome the142

difficulties of inverting deep learning functions. The DA accuracy of these approaches143

has been demonstrated in high-dimensional systems. However, the construction of H̃s
t ,144

as well as the minimization or the ensemble approximations, must be performed online,145

leading to considerable computational time. The complexity of such algorithms can146

be increased when observations of various resources/scales exist since different local147

surrogate functions need to be established online. More importantly, the choice of the148

sampling range and the polynomial degree in GLA is crucial and might require careful149

tuning. As discussed in [11], a too small sampling range will decrease the generalizability150

while an excessively large one may lead to inaccurate approximations.151
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3. Multi-domain encoder-decoder for latent data assimilation (MEDLA)152

3.1. Joint encoder-decoder153

The general workflow of MEDLA is presented in Figure 2, which can include different
types of encoders/decoders and predictive models. The essential idea of MEDLA is to
encode both the state and the observations into the same latent space, as shown in
Figure 2, thus no surrogate functions are required to link them, as performed in GLA
and LSDA. Therefore, the encoder of observations needs to be trained jointly with the
decoder of state variables, that is,

x̃x = Ex(x), x̃y = Ey(y), x′
x = D(x̃x), and x′

y = D(x̃y), (12)

where Ex, Ey are state and observation encoders, respectively, sharing the same state
decoderD. The concept is to create latent vectors capable of capturing the characteristics
of both state variables and observations. Therefore, we attempt to reduce the mismatch
||x−x′

x||, ||x−x′
y||, and ||x̃x− x̃y|| where ||.|| represents a vector distance measure. The

minimization of the former two residual terms can be performed using available/historical
data via the following loss functions,

Jx(Ex,D) = 1
Nx

train

Nx
train∑

j=1
||xj −D ◦ Ex(xj)||2,

Jy(Ey,D) = 1
Ny

train

Ny
train∑

j=1
||xj −D ◦ Ey(yj)||2, (13)

where Nx
train, Ny

train denotes the size of the training dataset for (Ex,D) and (Ey,D) re-154

spectively. The two encoder-decoders must be trained separately because the encoder155

cannot read the state and observation simultaneously. In this work, we propose to train156

(Ex,D) and (Ey,D) on an alternating basis as summarised in Algorithm 1. In particular,157

since the parameters in the decoder D are trained jointly both with Ex and Ey, decreas-158

ing learning rates rx, ry (for (Ex,D) and (Ey,D) respectively) as defined in Algorithm 1,159

could assist the convergence of D.160

Fine tunings could be required to ensure the latent domain alignment (i.e., x̃x ≈ x̃y)
since the decoder function D : Rdim(x̃) → Rn is not necessarily bijective, thus

D(x̃x) = D(x̃y) ̸−→ x̃x = x̃y. (14)

In the field of domain adaption and transfer learning, much effort has been devoted
to improving the latent domain alignment for information from different resources. The
state-of-the-art approaches, involving, for instance, discriminative neural network [51],
contrastive learning [58] or meta-learning [55], attempting to build a common latent space
which can represent the information in different input spaces. Compared to classical
domain alignment tasks, the temporal pattern is extremely important for dynamical
systems. In other words, the correspondence between encoded states x̃x and encoded
observations x̃y at the same time step needs to be established. To ensure this temporal
synchronisation, we propose to perform fine-tunings for Ey via the loss function,

JFT
y (Ey) = 1

Nx,y
train

Nx,y
train∑
j

||x̃x,j − x̃y,j||2,

= 1
Nx,y

train

Nx,y
train∑
j

||Ex(x)− Ey(y)||2, (15)

9



Algorithm 1: Training of multi-domain encoder-decoder
Parameters:
Epoch size: Nepoch, NF T

epoch
Batch size: Lx

batch, Ly
batch, Lx,y

batch

Inputs:
Train/Validation state dataset:
Xtrain =

[
x1|x2, ..., |xNx

train

]
, Xval =

[
x1|x2, ..., |xNx

val

]
Train/Validation observation dataset:
Ytrain =

[
y1|y2, ..., |yNy

train

]
, Yval =

[
y1|y2, ..., |yNy

val

]
Initial learning rate: rx, ry, rx,y

Initial weight parameters for encoder-decoders: WEx , WEy , WD

Algorithm:
while nepoch ≤ Nepoch do

for Lx
batch in 1 to Nx

train/Lx
batch do

for iter in 1 to Lx
batch do

train lossx = Jx(Ex, D)
WEx , WD ← Adam(train lossx, rx)

end
end
for Ly

batch in 1 to Ny
train/Ly

batch do
for iter in 1 to Ly

batch do
train lossy = Jy(Ey, D)
WEy , WD ← Adam(train lossy, ry)

end
end
compute val lossx, val lossy

if val lossx < min val lossx (resp. val lossy < min val lossy) then
min val lossx = val lossx (resp. min val lossy = val lossy)
n patiencex = n patiencey = 0

end
else

n patiencex+ = 1 (resp. n patiencey+ = 1)
if n patiencex == Npatience (resp. n patiencey == Npatience) then

Reduce rx (resp. ry)
end

end
nepoch+ = 1

end
while nF T

epoch ≤ NF T
epoch do

for iter in 1 to Lx,y
batch do

train lossx,y = JF T
y (Ey)

WEy ← Adam(train lossx,y, rx,y)
end
nF T

epoch+ = 1
end
outputs: WEx , WEy , WD

10



Figure 2: Flowchart of the proposed MEDLA approach

where Nx,y
train denotes the size of the joint training set, and the state encoder Ex is frozen161

during the fine tuning as shown in Algorithm 1. It is important to note that a joint162

training using a combination of Equations (13) and (15) would also be an alternative163

solution to train the multi-domain encoder-decoder. However, one will then only be able164

to use the snapshots where observations are available for training. Given the sparse165

nature of the observation data, this will lead to a significant reduction in the amount of166

available training data.167

3.2. Assimilation for dynamical systems168

After completing the joint encoding-decoding process, the predictive model can be169

trained using encoded state vectors, as described in Equation (5). When real-time obser-170

vations become available during prediction, LA techniques can be applied to adjust the171

system’s prediction directly in the latent space by encoding the observations. In fact,172

by applying Ey, the observations can be easily compressed into the same latent space173

of state variables. The transformation operator, which maps the full state space to the174

full observation space is thus included in the encoder-decoder functions. Therefore only175

linear DA is required in MEDLA as described in Algorithm 2. The assimilated latent176

state x̃a,t can be used as the starting point for the next-level prediction on an iterative177

basis as depicted in Figure 2. Compared to GLA or LSDA approaches, MEDLA can178

considerably reduce the computational cost for online LA mainly because i) the DA is179

linear; ii) no online computation of local surrogate functions is required.180

4. Numerical experiments181

In this section, we present three numerical experiments as shown in Table 1 aimed at182

assessing the effectiveness of the novel method MEDLA in comparison to state-of-the-art183

LA methods. We provide two implementations of MEDLA in Python using the two most184
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Algorithm 2: MEDLA with trained encoder-decoders
Parameters:
Number of time-steps: tF
Predictive model input/ouput length: min, mout

Inputs:
Initial states: xt, for t ∈ {0..tx}
Observation data: yt, for t ∈ Ty

Estimated latent covariance matrices: {B̂t}, {R̂t}
Predictive function: fp

Algorithm:
Encoding x̃x,t = Ex(xt), t ∈ {0..tx}
Initialization: t = tx

while t < tF do
{x̃x,t+1, x̃x,t+2, ..., ˜x, xx,t+mout} = fp

(
x̃x,t−min , x̃x,t−min+1, ..., x̃x,t

)
for j from t + 1 to t + mout do

if j ∈ Ty then
x̃y,j = Ey(yj)
Jj(x̃) = 1

2(x̃− x̃x,j)T B̃j
−1(x̃− x̃x,j) + 1

2(x̃y,j − x̃)T R̃j
−1(x̃y,j − x̃)

x̃a,j = argmin
x̃

(
Jj(x̃)

)
.

x̃x,j ←− x̃a,j

end
end
t←− t + min

end
outputs: {x̃t,D(x̃t), t ∈ {0..tF}}

widely adopted deep learning libraries, namely TensorFlow and PyTorch. The numerical185

experiments of the 2D Burgers’ equation and the shallow water models are performed186

using Tensorflow while the experiments of microfluidic drop interactions are done with187

Pytorch.188

4.1. 2D Burger’s equation189

4.1.1. Experiment setup190

The first test case consists of a 2D viscous Burgers’ equation problem where the
governing equation (in a 2D space with (x, y) as coordinate) reads

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= 1

Re

(
∂2u

∂x2 + ∂2u

∂y2

)
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= 1

Re

(
∂2v

∂x2 + ∂2v

∂y2

)
,

(16)

where Re is a parameter called the Reynolds number, a measure of the flow inertia; u, v in
Equation (16) denote the velocity components, and t represents the time of the dynamical
system. These physical quantities are all nondimensionalised. Introduced by [3], Burgers’
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equation can be considered as a simplification of the Navier-Stokes equations without
pressure gradients. It has been widely applied in modelling fluid dynamics, traffic flows,
and mass transport [31]. As shown in Figure 3 (a), the initial condition of this numerical
test is chosen to be in the form of a square column of liquid of a certain radius that is
released at t = 0. The initial and boundary conditions of the velocity field are set as

ut=0 = vt=0 = uboundary = vboundary = 1. (17)

Equation (16) is solved numerically using a first-order finite difference method with a191

backward difference scheme. Two simulation scales (128 × 128) and (32 × 32) are used192

to form the state variables and observations, respectively. For the sake of consistency,193

the time interval between two consecutive steps of the state simulations is also four times194

finer than the one of the observation simulations. In this test case, we attempt to correct195

the model prediction by assimilating coarse grid simulations in the same velocity field.196

Since the simulations are carried out using square meshes, CAE is chosen to perform197

the reduced-order modelling. The training and test datasets for the encoder-decoders198

are generated by simulations using different Reynolds numbers. All the snapshots in the199

simulations of the training dataset are used to train the multi-domain encoder-decoder.200

We compare numerically the assimilated results of LA+ [1] and MEDLA with different201

interpolation methods. The former uses the state auto-encoder to encode the observa-202

tion data after interpolation while the latter compresses both states and interpolated203

observations into the same latent space thanks to a joint encoder-decoder.204

To further inspect the robustness of the proposed approach, Gaussian noises have
been added to the observations, i.e.,

ynoisy
t = yt + ϵy,t and ϵy,t ∼ N (0, Sy,t), (18)

where Sy,t denotes the observation error covariance matrix in the full velocity field

Sy,t = (Σy,t)Ce
y(Σy,t), (19)

Σy,t represents the marginal error standard deviation of each observation point in the
2D space,

Σy,t = diag(σ(1)
y,t , σ

(2)
y,t , ..., σ

dim(y)
y,t ) (20)

and Ce
y is the error correlation matrix in the observation space i.e., (32 × 32). In this

experiment, both spatially-independent and correlated errors have been tested. The
former makes use of an identity correlation matrix, i.e., Ce

y = Idim(y) while correlated
observation errors are generated using second-order auto-regressive functions,

Ce
y(i, j) = (1 + r(i, j)

L
) exp(−r(i, j)

L
), ∀{i, j} ∈ {1, 2, ..., dim(y)} (21)

where r(.) represents the spatial distance of two nodes in the 2D space; L is known as205

the correlation scale length, set to L = 4 in this example. Such a correlation matrix is206

presented in Figure 3(b). The error deviations {σ(i)
y,t}, i ∈ {1, 2, ..., dim(y)} are set to be207

proportional to the exact observation values.208
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(a) Initial (b) loss

Figure 3: (a): The velocity field u at t = 0; (b): Error correlation matrix (322 × 322) with second-order
autoregressive function
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Figure 4: Training loss (MSE) for the multi-domain encoder-decoder from the 5th Epoch

4.1.2. Results209

In this twin experiment, both the sate-in-state-out and observation-in-state-out encoder-
decoders are trained over 100 epochs, as shown in Figure. 4 where the loss functions of
training and validation datasets are displayed. The validation dataset consists of 10%
snapshots randomly chosen among the training data. Both encoder-decoders achieve sta-
ble loss values after 100 epochs despite the fact that some oscillations can be observed.
To test the performance of MEDLA, the objective of this twin experiment is to recon-
struct the velocity field ut=800. Simulations at different time steps, namely t = 400, 600,
and 1000 are viewed as background states (i.e., model predictions). In other words, a
time lag of ∆t = −400,−200 or +200 is imposed between predictions and the ground
truth. Numerical results of MEDLA are compared against those of LA+ [1] using either
linear or spline cubic interpolations [35] in the full observation space. We illustrate in
Figure 5, the averaged assimilation error ϵ̄∆t against the setted relative observation er-
ror deviation, varying from 0% to 45%. For a fair comparison, Monte Carlo tests are
employed with an ensemble size of Nens = 50. The assimilation error ϵ̄∆t can then be
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estimated,

ynoisy
t,(j) = yt + ϵy,t,(j) with ϵy,t,(j) ∼ N (0, Sy,t), ∀j ∈ 1, ..., Nens (22)

x̃b,∆t = Ex(ut=800+∆t), ỹt,(j) = Ey(ynoisy
t,(j) ) (23)

x̃a,∆t,(j) = DA(x̃b,∆t , ỹt,(j)), where DA ∈ {LA+, MEDLA} (24)

ϵ̄∆t = 1
Nens

Nens∑
j

||ut=800 −D
(
x̃a,∆t,(j)

)
||2
/
||ut=800||2. (25)
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Figure 5: Assimilation error against observation error level estimated using Monte Carlo methods with
50 experiments for each error deviation

As shown by Figure 5, the reconstruction error of MEDLA is considerably lower210

compared to LA+ methods with both independent or correlated observation noises. The211

advantage of MEDLA is more substantial when observation error deviation increases,212

showing the strong robustness of the proposed approach. Compared to existing LA ap-213

proaches, MEDLA avoids performing interpolation on noisy data, which might introduce214

extra uncertainties. On the other hand, MEDLA performs slightly better with indepen-215

dent observation errors in comparison to correlated errors since denoising independent216

errors is easier for the convolutional layer by capturing local patterns.217

(a) True (b) Background (c) LA (d) MEDLA

(e) Observation (f) Error back (g) Error LA (h) Error MEDLA

Figure 6: Results of different latent data assimilation approaches without observation errors

To further inspect the assimilation performance, we display in Figures 6 and 7, the as-218

similated velocity fields either without or with correlated observation noises, respectively.219
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Two assimilation methods are compared: MEDLA and LA+ with linear interpolation.220

In both cases, the background time lag is fixed as ∆t = −200. What can be clearly221

observed in Figures 6 and 7 is that the MEDLA approach can significantly better adjust222

this time lag, regardless of the level of observation noise.223

(a) True (b) Background (c) LA (d) MEDLA

(e) Observation (f) Error back (g) Error LA (h) Error MEDLA

Figure 7: Results of different latent data assimilation approaches with correlated observation errors.
The relative error deviation is set to be 20%

4.2. Multiphase flow modelling224

4.2.1. Flow system setup225

To evaluate the performance of MEDLA with highly non-linear observations, a high-226

dimensional multiflow CFD model is implemented in this study. Current LA methods227

face challenges in handling such complex scenarios [11, 13]. The CFD modelling consists228

of the two-phase flow of silicone oil and water in a pipe with a length of 4 m and a229

diameter 26 mm, as shown in Figure 8. The experimental flow rig [50] was simulated by230

using a cylindrical mesh of dim(x) = 180, 000 cells, as also shown in Figure 8. Eulerian-231

Eulerian simulations are performed through the open-source CFD platform OpenFOAM232

(version 8.0), and population balance models [32] are used to model the droplet size and233

coalescence behaviour.234

The governing equations of the Eulerian framework are given as below:

∂

∂t
(αkρk) +∇ · (αkρkU k) = 0, (26)

∂

∂t
(αkρkUk) +∇ · (αkρkUkUk) = −αk∇p +∇ · (αkτk) + αkρkg + Mk, (27)

where the subscript k represents the phases of water and oil, respectively, and τ is the
stress tensor expressed as

τk = µeff

[
∇Uk + (∇Uk)T − 2

3 (∇ ·Uk) I
]

. (28)

In Equation (27), αk, ρk and Uk represents the concentration, density, and velocity of235

each phase, respectively; Mk denotes the rate of momentum transfer per unit volume.236

More details of the CFD models can be found in our recent work [9]. As shown in237
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Figure 8: Dimension and parameters of the pipe and the two-phase flow

Table 2, the two test cases explored in this work have an initial mixture velocity of Um238

= 1.04m/s. Each CFD simulation is performed with a uniform time step of 0.005s and239

the flow time is set to 10s, ensuring convergence at the current mesh resolution.240

The objective here is to predict the oil concentration αoil,t via a low-dimensional241

surrogate model, which can be updated using LA techniques. Since unsquared meshes242

are used in the CFD modelling, the ROM is performed using SVD AE in this test case.243

Once encoded latent vectors are computed, a LSTM neural network is trained on a244

training dataset (as described in Equation (5)) to build the surrogate model.245

In terms of real-time observations {yt = [y1,t, ..., ym,t]}, synthetic data is used. Fol-
lowing the set up of [11], the transformation operator H in the full space consists of a
selection operator H and a marginal non-linear function fH:

yt =


y1,t

y2,t
...

ydim(y),t

 = H(xt) = HfH(xt) =


H1,1, . . . H1,dim(x)

...
Hdim(y),0, . . . Hdim(y),dim(x)




fH(x1,t)
fH(x2,t)

...
fH(xdim(x),t)


(29)

with Hi,j =
{

0 with probability 1− P
1 with probability P

,

where {i, j} ∈ {1, ..., dim(y)} × {1, ..., dim(x)}.

The dimension of the observation vectors are fixed as dim(y) = 30000 in this example.246

A randomly-generated selection operator is commonly used for testing the performance247

of DA algorithms (e.g., [10, 16]). In this work, we choose a sparse representation with248

P = 0.1%. As in [11], two marginal non-linear functions fH are employed,249

• quadratic function: fH(x) = x2
250

• reciprocal function: fH(x) = 1/(x + 0.5).251

Both transformation functions are tested to evaluate the performance of MEDLA.252

The training of encoder-decoders is implemented using both CFD simulations, in-253

cluding 1600 snapshots, with different initial conditions, as presented in Table 2. The254

dataset is homogeneously split into a training dataset (including 10% of validation data)255

and a test dataset with 800 snapshots each. After ROM, a LSTM surrogate model with256

min = mout = 10 (see Equation (5)) is built to predict the evolution of latent vari-257

ables. Following Equation (5), the sequence-to-sequence LSTM uses the same training258
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dataset as the encoder-decoders. To further examine the performance of MEDLA under259

varying levels of prediction errors, DA with two LSTM models, namely LSTM100 and260

LSTM1000, are evaluated. LSTM100 is trained for 100 epochs, representing a prediction261

model with some level of noise, while LSTM1000 is trained for 1000 epochs, representing262

a more accurate prediction model.263

Table 2: Operating parameters of CFD simulations

Um (m s−1) ϵo h+
C0 = hC0/D hO0

+ = hO0/D hP0
+ = hP0/D d320 (mm)

1.04 0.15 0.405 0.997 0.92 1.14
1.04 0.3 0.189 0.997 0.92 1.27

Figure 9: Workflow of multi-domain encoder-decoder with SVD AE and two observation resources for
the multiphase flow modelling

4.2.2. Results264

Since assimilation algorithms need to incorporate both observations (see Section 4.2.1),265

three different encoders are required in this test case, as shown in Figure 9 (step 1). In266

other words, the state-decoder should manage to reconstruct the full physical field by267

reading one of the observation quantities as input. During the training procedure, an268

alternate among these three encoders is necessary. The loss functions of this alternat-269

ing training (300 epochs for each encoder-decoder) with an adaptive decreasing learning270

rate rx, ry ∈ [10−2, 10−3, 10−4] are shown in Figure 10(a). Both training and validation271

losses decrease significantly against the number of epochs, despite the fact that more272

oscillations can be found compared to Figure 4. This is mainly due to the complexity273

of the transformation function (Equation (29)) with two different observation mappings.274

Therefore, following Equation (15), fine tuning is implemented here to ensure the latent275

space alignment as shown in Figure 9 (step 2).276

We evaluate the L2 reconstruction error on both the training and the test datasets277

as illustrated in Table 3. For all different encoder-decoders, the error on the test dataset278

is very close to the one on the training dataset, showing the robustness of the joint279

encoder-decoders with a low level of overfitting.280
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Table 3: Relative reconstruction error of encoder-decoders

PC space Full space
train test train test

state 3.15% 3.22% 3.21% 3.28%
square 3.16% 3.21% 3.22% 3.26%
Recip 5.22% 5.31% 5.26% 5.34%

The MSE loss of LSTM training is shown in Figure 10 (b) and the vertical line cor-
responds to the 100th epoch where the training of LSTM100 terminates. We apply both
LSTM models on the CFD simulation of ϵo = 0.3 (i.e., the second row of Table 2). The
forecasting starts at the 100th time step (i.e., t = 1s). The predicted evolution of latent
variables against encoded CFD (considered as ground truth in the latent space) is shown
in Figure 11 (a-d) and 12 (a-d), respectively. As expected, LSTM1000 considerably out-
performs LSTM100 for all four latent variables (LV1 - LV4) presented. MEDLA is then
performed with both LSTM100 and LSTM1000 using either square or reciprocal trans-
formation mapping. The assimilations take place every 100 time steps for 10 consecutive
snapshots. In other words,

Ty = {150, ..., 159, 250, ..., 259, ......, 950, ..., 959} (30)

in Algorithm 2. Assimilated latent features are shown in Figure 11 (e-l) and 12 (e-l).281

Thanks to MEDLA, the mismatch between encoded CFD and predicted latent variables282

can be significantly reduced in all cases. This fact highlights the robustness of MEDLA283

regarding different levels of prior noises. It enhances not only the assimilated steps (where284

observations are available) but also next-level predictions regardless of the observation285

operator and prediction error level. These results are consistent with the observation286

from the decoded full physical space as shown in Figure 13.287

We compare the performance of MEDLA against the GLA algorithm, which has been288

previously implemented in this multiphase flow test case [11], in Table 3. For the hyper-289

parameters of GLA, we have chosen dp = 4 for the degree of the surrogate polynomial290

function and rs = 0.3 for the relative sampling range. These parameters have shown the291

best performance of GLA on the same application in the previous work of [11]. When292

incorporating with the ’noisy’ predictive model LSTM100, both MEDLA and GLA ef-293

fectively reduce prediction errors. Nevertheless, MEDLA consistently outperforms GLA,294

achieving a relative MSE reduction of over 5%. When employed alongside the ’accurate’295

predictive model LSTM100, GLA struggles to further reduce prediction errors signifi-296

cantly. This limitation arises from the approximation function (detailed in Section 2),297

which connects the two latent spaces and introduces an additional layer of error, as298

previously observed in [11]. On the other hand, MEDLA succeeds in further enhancing299

the prediction accuracy with both observation functions thanks to its great robustness.300

The readers are referred to [11] for the implementation details of GLA. The averaged in-301

ference time, including prediction, assimilation and decoding, is also presented in Table302

4. Due to its well-designed encoder-decoder structure, MEDLA seamlessly integrates303

multi-domain physics data, resulting in exceptionally rapid inference time that closely304

aligns with the original LSTM predictions. This test case vividly illustrates MEDLA’s305

proficiency in effectively assimilating multi-domain data characterized by complex and306

nonlinear mapping functions.307
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Figure 10: Training loss (MSE) for (a) the multi-domain encoder-decoder from the 5th Epoch; (b) the
two forward model LSTM100 (until the verticle line) and LSTM1000
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(a) LSTM100 (LV 1)
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(b) LSTM100 (LV 2)
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(f) Square (LV 2)
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(i) Recip (LV 1)
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(j) Recip (LV 2)
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Figure 11: Effects of MEDLA on latent variables (LV) of a ’noisy’ predictive model LSTM100
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(a) LSTM1000 (LV 1)
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(b) LSTM1000 (LV 2)
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(c) LSTM1000 (LV 3)
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(d) LSTM1000 (LV 4)
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0 100 200 300 400 500 600 700 800
time steps

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5 prediction
latent truth

(f) Square (LV 2)
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(i) Recip (LV 1)
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(j) Recip (LV 2)
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Figure 12: Effects of MEDLA on latent variables (LV) of an ’accurate’ predictive model LSTM1000

(a) LSTM 1000 (b) Square 1000 (c) Recip 1000 (d) CFD

(e) LSTM 100 (f) Square 100 (g) Recip 100

Figure 13: Results of different latent data assimilation approaches with correlated observation errors

4.3. Microfluidic drop interactions308

4.3.1. Simulation and observation system setup309

In order to assess MEDLA’s performance in handling observations without explicit310

state-observation mapping function, we conduct numerical experiments within a case311

study involving microfluidic drop interactions. The state variables are derived from ex-312

perimental recordings, while real-time corrections are made using simulated CFD data313

in this study. We note that this example problem involves so-called interfacial ‘singu-314

larities’, which are associated with an interfacial value going to zero; this occurs in this315

case when the thin film between the two interacting drops drains completely, allowing316
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Table 4: Averaged relative prediction error and computational time (inference time/step) for GLA and
MEDLA in the test dataset consisting of 3 trajectories

LSTM100 LSTM1000
relative error inference time relative error inference time

Original 36.70% 2.34s 9.18% 2.32s
GLA square 22.52% 78.30s 8.02% 74.52s
GLA Recip 20.63% 79.48s 10.63% 76.17s

MEDLA square 15.21% 2.51s 3.20% 2.44s
MEDLA Recip 15.62% 2.40s 4.98% 2.45s

them to coalesce. Capturing these singularities numerically via CFD simulations is a317

well-known challenging task [44].318

Figure 14: Scheme of the microfluidics device: 1 – inlets for dispersed phase, 2 – inlets for continuous
phase, 3 – outlet, 4 – X-junctions for drop formation, 5 – coalescence chamber

.

Recording video data as states. This study uses the same observation data in [61] to319

examine droplet dynamics in a microfluidic device made of polydimethylsiloxane (see320

Figure 14). The device has distinct channels and a coalescence chamber for droplet321

interaction. A high-speed video camera attached to an inverted microscope records322

the droplet behavior. The processed dataset includes 47 trajectories, each with 195323

frames captured from video recordings and all the frames are processed into grey-scale324

images with each pixel varying from 0 to 1. Our study focuses exclusively on the frames325

preceding the coalescence or non-coalescence events, thereby eliminating any distinction326

between the two outcomes. This strategy enables us to examine the fundamental droplet327

dynamics independently of the final coalescence event. The video recordings document328

droplet behavior at two superficial velocities: 2.09 mm/s (26 trajectories) and 1.57 mm/s329

(21 trajectories). In total, 7 trajectories, 3 with velocity 2.09 mm/s and 4 with velocity330

1.57 mm/s have corresponding CFD simulations. In this study, the trajectories with331

1.57 mm/s (resp. 2.09 mm/s) are used as training (resp. test) datasets for the surrogate332

model to evaluate the robustness of MEDLA with unseen initial conditions.333

CFD simulations as observations. The CFD framework used here to mimic the exper-
imental observations of the coalescing chamber is based on the solution of the fully
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three-dimensional Navier-Stokes equation given by

∇ · u = 0

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇P +∇ · [µ
(
∇u +∇uT

)
] + F (31)

where u is the velocity, P the pressure, F is the local surface tension force at the interface,334

ρ the density, and µ the dynamical viscosity; the fluids are assumed to be incompressible,335

and the surface tension constant. This equation is solved on a structured Eulerian-grid336

structure, and the interface uses a Lagrangian non-structured adaptive mesh via a hybrid337

Front-tracking/level-set technique [45, 46, 47]. First, the construction of the chamber338

and the four branches is done via a module that we use for the creation of solid objects.339

Using a similar approach as that in [29] which circumvents the need for time-consuming340

construction, meshing, and remeshing. Thus, a static distance function, which is positive341

for the fluid part and negative for the solid part, is set for this purpose. Thus, the shape342

of the coalescence chamber and its 4 branches is the zero iso-value of that distance343

function (see the geometry of the chamber in Figure 15).344

A crucial initialisation is the exact location of the two drops inside the coalescing345

chamber: 7 cases were chosen experimentally at a precise time and this has been used346

to mimic the experiments.347

The pressure fields obtained from the CFD simulations are used to assimilate the348

predictions of the model trained using the recorded videos. The initial pressure field349

highlighted in Figure 15 (a) is a result of the projection method used to solve the entire350

Navier-Stokes method. Contrary to the velocity field which is zero everywhere in the351

domain, except at the boundary condition, the pressure field adjusts itself (higher at the352

inlets and lower and the outlet) in such a way to satisfy the free divergence condition353

∇.u = 0.354

A comparison between the interface and the pressure field obtained from the exper-355

imental image is shown in Figure 16. It is important to note that deriving an explicit356

numerical function from recorded experimental videos to map them to the CFD pressure357

field is exceptionally challenging. Consequently, current DA or LA methods face signifi-358

cant difficulties when attempting to employ multi-domain data for correcting predictive359

models of drop dynamics.360

4.3.2. Surrogate model and data assimilation setup361

The resolutions of the experimental images and pressure field are both set to 256×256362

(see Figure 16). Using the method delineated in Section 3, two distinct training phases363

are implemented. Initially, both the state and observation encoders are trained for 1,000364

epochs exclusively on the 4 trajectories that possess corresponding CFD simulations.365

Subsequently, the state encoder is fine-tuned for another 1,000 epochs, but this time on366

the 40 trajectories without CFD simulations. To align the two encoders, we fine-tune the367

state encoder (see Algorithm 1), while keeping the weights of the observation encoder368

constant. Given that the recorded frames represent the drop edges in a binary form for369

each pixel after pre-processing (see Figure 16), we employ Binary Crossentropy (BCE)370

loss for training both CAE and LSTM models.371

After training the predictive model, MEDLA is tested on the 3 video datasets with a372

superficial velocity 2.09 mm/s. DA is performed at every step to correct the prediction373

as the LSTM is trained with a different flow rate. The new method MEDLA allows us to374

integrate the high-fidelity CFD simulations with the LSTM model predictions, thereby375
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(a) (b) (c)

Figure 15: (a) Numerical initialisation of two drops inside the coalescing chamber. (b) Numerical
snapshots of the interface from its initial state t = 0 s until 0.2 s. (c) Final state highlighting the
velocity field and the streamlines.
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Figure 16: Left to right: From the frame where two drops enter the coalescence chamber to the frame
where drops coalesce or drift apart. The experimental image is the extracted interface from video
recordings and the CFD is the snapshot of the pressure field.
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Figure 17: Training loss (BCE) for the multi-domain encoder-decoder from the 1st epoch, vertical
dashed lines mark the step of learning rate decay.
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Figure 18: MSEs of three trajectories compared to the encoded experimental trajectories on the three
test dataset

enhancing the model’s robustness and accuracy. This is difficult to achieve using the376

current DA and LA approaches due to the absence of an explicit mapping function.377

4.3.3. Results378

We present the BCE loss during the training of multi-domain encoders in Figure 17.379

Consistent with the findings from the preceding two test cases (see Section 4.1 and 4.2),380

the losses for both the training and test datasets consistently decrease and stabilize after381

approximately 300 epochs. This indicates the successful encoding of multi-domain data382

into a shared latent space. However, a gap between training and validation loss can383

be observed for both CFD and experimental data due to the different flow rates in the384

training and the test dataset.385

In this case study, we employ the MSE as our evaluation metric instead of a relative386

error. This choice is made due to the presence of numerous empty pixels in the back-387

ground images, as shown in Figure 16. Figure 18 depicts the evolution of MSE with and388

without MEDLA in the 3 trajectories in the test dataset. It is important to highlight389

that the prediction errors encompass both compression errors as shown in Figure 17, and390

prediction errors from the application of LSTM. Our goal in this study is to diminish391

the latter type of errors by integrating real-time CFD data through MEDLA. It can392

be clearly seen in Figure 18 that the assimilation helps with long-term stability with a393

significant reduction of the prediction error. This finding is consistent with the averaged394

MSE shown in Table 5.395
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Figure 19: Comparison of the decoded images of the three trajectories at the last frame
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Table 5: MSE and online inference time (including decoding) with and without MEDLA

Error Time
Trajectory 1 Trajectory 2 Trajectory 3 Inference time per step

LSTM-MSE 0.867 2.540 3.781 0.23s
MEDLA-MSE 0.666 2.009 3.019 0.31s

A comparison of the decoded images of the three trajectories at the last frame is396

shown in Figure 19. While the LSTM predictions already exhibit a high degree of397

proximity to the reference frames, it becomes evident that the prediction results move398

even closer to the reference frames following assimilation in the test dataset. In fact, the399

original and predicted images of drops are sparse, which can lead to a double penalty400

bias when evaluating using mean square error, as discussed in [4]. Addressing this401

issue remains an open and challenging question within the data assimilation community.402

Nevertheless, within MEDLA, the assimilation process can make use of observation data403

even lacking an explicit mapping function—a challenge that typically cannot be handled404

by conventional DA algorithms.405

In terms of computational cost, the averaged online inference time of 100 repetitions406

is also shown in Table 5. Thanks to its unique structure of encoder-decoder, MEDLA407

manages to efficiently integrate multi-domain data in the assimilation mechanism.408

5. Conclusions and future work409

Current deep-learning assisted DA algorithms encounter significant challenges when410

dealing with multi-domain observation data and complex or non-explicit mapping func-411

tions. In response to these challenges, this paper proposes a novel deep-learning-based412

DA scheme called MEDLA, which uses an encoder-decoder that can perform both encod-413

ing and decoding with multi-domain data. The new approach benefits from the efficiency414

of deep neural networks while aiming to improve DA accuracy by reducing interpola-415

tion/approximation errors. Comprehensive numerical experiments are conducted to eval-416

uate the efficacy of the MEDLA scheme, comparing it to state-of-the-art LA methods.417

The results consistently highlight MEDLA’s superiority in handling multi-scale observa-418

tion data and addressing complex, non-explicit mapping functions. Figure 20 presents a419

qualitative assessment, emphasizing MEDLA’s advantages over existing methods, espe-420

cially when confronted with dense observation data (multi-scale or multi-domain) and421

situations where explicit mapping functions are elusive. As discussed in Section 3 and422

summarized in Figure 20, sparse observations may introduce difficulties when training423

the multi-domain encoder-decoder due to the non-existence of a state-observation bi-424

jective function. Our future works aim to broaden MEDLA’s applicability, particularly425

to scenarios with sparse observation data and diverse sensor configurations. This ex-426

tension may involve integrating MEDLA with techniques such as Voronoi-tessellated427

Convolutional Neural Network (CNN) [19] or masked autoencoders [25]. As discussed428

in Section 4.3.3, efforts will be directed towards optimally designing the training loss429

function and evaluation metrics to account for extreme events. Future work will also430

explore the robustness of MEDLA in handling observation errors with non-explicit and431

highly nonlinear observation operators.432

It is also important to note that some recent work [36] used probabilistic modelling,433

such as variational autoencoders, to perform latent data assimilation. This approach434

27



may lead to a more controlled and smooth posterior distribution. However, the inference435

of probabilistic models typically requires ensemble modelling, which reduces algorithm436

efficiency. We plan to further explore the advantages and disadvantages of using proba-437

bilistic models in latent data assimilation algorithms quantitatively in our future work.438

In summary, this research holds significant applicability across various dynamical sys-

Figure 20: Qualitative comparison of different latent data assimilation algorithm
439

tems, notably in domains such as climate forecasting, natural hazard prediction, and nu-440

clear engineering. In these fields, timely and precise predictions are paramount, and the441

observational data frequently exhibits a multi-domain nature. Additionally, obtaining442

an explicit state-observation function can be challenging in some scenarios. Moreover,443

we envision that the concept of a multi-domain encoder-decoder can be expanded to444

other numerical techniques, such as physics-informed machine learning, facilitating the445

incorporation of multi-domain physical constraints.446
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Appendix457

Computational resources for different test cases458

Test case 1: The CFD simulations and the neural network training were performed459

using the Google Colab platform with an Intel Xeon CPU @2.30 GHz and a Tesla T4460
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GPU.461

Test case 2: The CFD simulations were performed on the high performance comput-462

ing system (Intel Xeon(R) CPU E5-2620, 2.00 GHz, RAM 64 GB). The neural networks463

were trained on a workstation equipped with an Intel i9-12900K processor and an RTX464

A6000 GPU.465

Test case 3: For the CFD simulation, 11 × 11 × 1 processor cores were used to466

carry the simulations of the coalescing chamber with code parallelization based on an467

algebraic domain decomposition technique. The CFD code is written in the computing468

language Fortran 2008 and communications are managed by data exchange across adja-469

cent subdomains via the Message Passing Interface (MPI) protocol. The neural network470

for microfluidic droplet interactions runs on a laptop equipped with an Intel i7-11800H471

processor and an RTX 3080 GPU.472

Structure of the neural networks in different test cases473

The exact structure of the neural networks used in the three test cases in this paper474

are shown in Tables 6, 7, 8 respectively. It is worth mentioning that in test case 2475

(multiphase flow) we first compress the data using the first 1000 principle components476

of POD then simple fully connected neural networks are employed for the autoencoder.477

To ensure effective learning and prevent stagnation, learning rate scheduler is used478

during the training of multi-domain encoder-decoder. For test case 1 and test case 2,479

a customized scheduler is designed where, after the first 100 epochs, the learning rate480

decreases from 1×10−3 to 1×10−5 for the alternating training. We kept the learning rate481

at 1 × 10−5 during the alignment fine-tuning. In test case 3, the ReduceLROnPlateau482

scheduler is used, with a patience of 50 steps and minimum learning rates of 1 × 10−6
483

for the alignment phase and 1× 10−8 for the fine-tuning phase.484
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Table 6: MEDLA Neural Network Architecture for the Burger’s equation (Test case 1)

Component Layer Output Shape Activation
State Encoder
Input - (1, 128, 128) -
Conv2D 4 channels, 8x8 kernel (4, 128, 128) ReLU
MaxPooling 4x4 pool (4, 32, 32) -
Conv2D 8 channels, 4x4 kernel (8, 32, 32) ReLU
MaxPooling 2x2 pool (8, 16, 16) -
Conv2D 8 channels, 4x4 kernel (8, 16, 16) ReLU
MaxPooling 2x2 pool (8, 8, 8) -
Flatten - 512 -
Dense - 15 LeakyReLU
Observation Encoder
Input - (1, 32, 32) -
Conv2D 4 channels, 4x4 kernel (4, 32, 32) ReLU
MaxPooling 2x1 pool (4, 16, 16) -
Conv2D 4 channels, 4x4 kernel (4, 16, 16) ReLU
MaxPooling 2x2 pool (4, 8, 8) -
Flatten - 256 -
Dense - 15 LeakyReLU
Decoder (Shared Decoder)
Input - 15 -
Dense - 512 -
Reshape - (8, 8, 8) -
Conv2D 8 channels, 4x4 kernel (8, 8, 8) ReLU
Upsampling 2x scale (8, 16, 16) -
Conv2D 8 channels, 4x4 kernel (8, 16, 16) ReLU
Upsampling 2x scale (8, 32, 32) -
Conv2D 4 channels, 4x4 kernel (4, 32, 32) ReLU
Upsampling 4x scale (4, 128, 128) -
Conv2D 1 channel, 4x4 kernel (1, 128, 128) Sigmoid
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Table 7: MEDLA Neural Network Architecture for the mutliphase flow (Test case 2)

Component Layer Output Shape Activation
State Encoder
Input - 1000 -
Dense - 128 LeakyReLU
Dense - 30 LeakyReLU
Observation Encoder
Input - 1000 -
Dense - 128 LeakyReLU
Dense - 30 LeakyReLU
Decoder (Shared Decoder)
Input - 30 -
Dense - 128 LeakyReLU
Dense - 1000 LeakyReLU
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Table 8: MEDLA Neural Network Architecture for Drop Interactions (Test case 3)

Component Layer Output Shape Activation
State Encoder
Input - (1, 256, 256) -
Conv2D 8 channels, 16x16 kernel (8, 256, 256) ReLU
MaxPooling 4x4 pool (8, 64, 64) -
Conv2D 16 channels, 8x8 kernel (16, 64, 64) ReLU
MaxPooling 4x4 pool (16, 16, 16) -
Conv2D 32 channels, 4x4 kernel (32, 16, 16) ReLU
MaxPooling 4x4 pool (32, 4, 4) -
Flatten - 512 -
Dense - 16 -
Observation Encoder
Input - (1, 256, 256) -
Conv2D 8 channels, 16x16 kernel (8, 256, 256) ReLU
MaxPooling 4x4 pool (8, 64, 64) -
Conv2D 16 channels, 8x8 kernel (16, 64, 64) ReLU
MaxPooling 4x4 pool (16, 16, 16) -
Conv2D 32 channels, 4x4 kernel (32, 16, 16) ReLU
MaxPooling 4x4 pool (32, 4, 4) -
Flatten - 512 -
Dense - 16 -
Decoder (Shared Decoder)
Input - 16 -
Dense - 512 -
Reshape - (32, 4, 4) -
Conv2D 32 channels, 4x4 kernel (32, 4, 4) ReLU
Upsampling 4x scale (32, 16, 16) -
Conv2D 16 channels, 8x8 kernel (16, 16, 16) ReLU
Upsampling 4x scale (16, 64, 64) -
Conv2D 8 channels, 16x16 kernel (8, 64, 64) ReLU
Upsampling 4x scale (8, 256, 256) -
Conv2D 1 channel, 4x4 kernel (1, 256, 256) Sigmoid
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Acronyms485

NN Neural Network486

ML Machine Learning487

LA Latent data Assimilation488

DA Data Assimilation489

AE Autoencoder490

CAE Convolutional Autoencoder491

BLUE Best Linear Unbiased Estimator492

BCE Binary Cross Entropy493

RNN Recurrent Neural Network494

CNN Convolutional Neural Network495

LSTM long short-term memory496

POD Proper Orthogonal Decomposition497

PC principal component498

SVD Singular Value Decomposition499

ROM reduced-order modelling500

CFD computational fluid dynamics501

MSE mean square error502

BCE Binary Crossentropy503

MAE mean absolute error504

DL Deep Learning505

RF Random Forest506

GLA Generalised Latent Assimilation507

GAN Generative Adversarial Network508

MLP Multi layer percepton509

DDA Deep Data Assimilation510

LSDA Latent Space Data Assimilation511

MEDLA Multi-domain Encoder-Decoder Latent data Assimilation512
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