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Abstract—Real-time Ethernet has become a popular solution
for handling critical communication in embedded systems, partly
thanks to the availability of safe worst-case traversal time
analysis. These analyses scale well, but provide pessimistic upper
bounds on end-to-end delays leading to over-dimensioning of the
network architecture. Computing worst-case delays requires an
exhaustive search over all possible scenarios that quickly leads to
a combinatorial explosion. Consequently, it is limited to network
configuration with less than 100 flows, far from industrial-size
ones with more than 1000 flows. In this paper, we propose a
hybrid approach (HA) that (1) reduces the number of scenarios to
be analysed to get the worst-case delay, (2) leverages exact delays
in order to tighten bounds on worst-case delays when the reduced
number of scenarios is still too big to be completely analysed. On
a realistic avionics case study, HA proved scalable for worst-case
delay computations and reduced upper-bound pessimism by over
40%.

Index Terms—WCTT analysis, Network Calculus, Model
Checking, Hybrid approach, Switched Ethernet.

I. INTRODUCTION

Real-time Ethernet has become a popular networking so-
lution to cope with the increasing demand of critical data
transmissions with hard real-time constraints in the context
of embedded systems. The computation of an upper limit is
mandatory to ensure that no deadline will be missed. Such a
Worst-Case Traversal Time (WCTT) analysis is a required part
of the certification process of safety critical systems, such as an
avionic data network based on Avionic Full DupleX switched
Ethernet (AFDX). In this paper we focus on AFDX.

The traversal time of a frame transmitted on the network
highly depends on the waiting delays in output buffers, thus on
the instantaneous pending traffic in the corresponding output
port. Since the AFDX network is globally asynchronous (no
common clock for switches and end-systems), the arrival
of frames from different flows in an output port cannot be
predicted in advance, and every possible combination of frame
arrivals must be checked to determine the worst-case delay.

Some work has been devoted to the computation of this
worst-case delay [1]–[5]. It is based on Model Checking (MC)
and timed automata [6]. It implements an exhaustive search on
all candidate scenarios for the worst-case delays. Additionally
[7] derives and implements an algorithm which explores all
these candidate scenarios. This algorithm allows the computa-
tion of worst-case delays for network configurations with up
to 60 flows.

For larger configurations the computation does not fin-
ish, since the number of candidate scenarios is intractable.
However this computation can be stopped after a predefined
duration so that only a part of candidate scenarios are analysed.
Therefore, it provides an under estimation of the worst-case
delay. Nevertheless, up to now no approach can compute exact
worst-case delays for industrial-size configurations.

Alternative approaches, such as Network Calculus (NC)
[8], Trajectories [9], [10], Forward Analysis (FA) [11] and
Compositional Performance Analysis (CPA) [12] are based
on conservative models. They compute upper bounds on
the worst-case end-to-end delays based on overestimation of
the traffic and/or underestimation of the service offered by
network components. On the positive side, these approaches
scale well: they are able to analyse large scale systems with
thousands of data flows exchanged over hundreds of nodes.
On the negative side, they compute pessimistic upper bounds,
leading to over-dimensioning of the network. Nevertheless, NC
has been successfully used to dimension and certify the AFDX
network of Airbus A380 and A350 aircraft. Moreover, some
advances have been made in the context of AFDX network
to reduce the pessimism [10], [13]. In [10] improvements in
delay bounds are proposed by considering the serialisation
effect, i.e. frames coming from the same input link cannot
arrive in a switch at the same time. [13] integrates the effect
of temporal separation of flows at source end-nodes which
result in significant improvement in delay bound computation.

The remaining pessimism in the NC approach is analysed
in [14] for industrial AFDX networks. On average, it can be
as high as 11.5%. This remaining pessimism is a matter of
concern since it contributes to increased cost and inefficient
utilisation of the network.

In this paper we propose the Hybrid Approach (HA). It
proceeds iteratively. First it reduces the number of scenarios
to be considered for worst-case analysis. Second it leverages
exact delay analysis to tighten upper bounds when this number
of scenarios remains too high.

The contributions of this paper are the following:

• design and implementation of the Hybrid Approach
which takes advantage of both exact delay and upper
bound computations in order to provide exact worst-case
delay or tight upper bounds,



• evaluation of the approach on a realistic industrial-size
network configuration.

The rest of the paper is organised as follows. Section II
summarises the context of the study, i.e. the AFDX network
and its state-of-the-art timing analysis, and states the problem.
The Hybrid Approach proposed in this paper is presented in
Section III and evaluated in Section IV. Section V concludes
the paper and gives some direction for future work.

II. CONTEXT

A. AFDX Network

An AFDX network is composed of a set of end-systems
interconnected by switches via full-duplex links. Each end-
system is connected to exactly one switch port. The typical
link bandwidth is R = 100 Mbps. Each data flow transmitted
on the network is statically defined as a virtual link (VL) vi
with the following features:

• its Bandwidth Allocation Gap (BAGi), i.e. the minimum
duration between two consecutive frames at its source
end-system,

• its maximum (lmax
i ) and minimum (lmin

i ) frame length,
• its statically defined unidirectional multicast path Pi.

The forwarding process in each switch is based on a static
table. It introduces an upper bounded latency sl. Frames are
served through First-In-First-Out (FIFO) queuing.

Figure 1 shows a small illustrative AFDX network. It is
composed of six end-systems (e1 − e6) interconnected by two
switches (S1, S2). Ten VLs (v0 − v9) are transmitted on this
network. Their features are summarised in Table I.

S1
1

S2
1

v1, v2
v8, v9
v0

v4, v5, v6, v7
v3

e3
e2

e4
e5
e1

e6
v0, . . . v9

v1, v2,
v8, v9,
v0

Fig. 1. Switched Ethernet Network Example

TABLE I
VL PARAMETERS IN NETWORK EXAMPLE (FIGURE 1)

VL BAG
(µsec)

lmax
i

(bytes)
tri

(µsec)
Oex

d,i
(µsec)

v0 128000 107 8.56 0
v1 32000 171 13.68 8000
v2 16000 307 24.56 0
v3 64000 155 12.40 0
v4 32000 543 43.44 24000
v5 128000 263 21.04 4000
v6 32000 571 45.68 8000
v7 16000 407 32.56 0
v8 32000 343 27.44 0
v9 128000 263 21.04 16000

AFDX network does not implement a global synchroniza-
tion. Therefore, clocks of different end-systems are fully

independent and the offset between two VLs generated by two
different end-systems is unknown. It depends on the starting
instant of each end-system and the drift between their clocks.
Hereby, no assumption can be made on this offset.

Conversely, VLs generated by a given end-system are
scheduled, based on the clock of this end-system. This local
scheduling has to ensure a bounded jitter (at most 500 µs)
for each VL at source end-system [15]. It guarantees that the
minimum duration between two consecutive transmissions of
a given VL by its source end-system is never less than its BAG
minus 500 µs. Thus, the first switch on the VL path is able
to check that the traffic contract of the VL is not violated.

This jitter constraint can be ensured by Time Division
Multiple Access (TDMA) scheduling [16]. Periodic slots are
allocated to each VL, fully eliminating the jitter. Such a
TDMA scheduling can be modelled by the release time of
the first frame of each VL (corresponding to its first allocated
slot), called its definite offset [17]. It is noted Oex

d,i for
VL vi generated by end-system ex. Definite offsets for the
configuration in Figure 1 are given in Table I.

Due to this scheduling, there is a temporal separation
between VLs. It is illustrated in Figure 2 for end-system e5
of the configuration in Figure 1. e5 is the source of VLs v8
and v9. From the last column in Table I, definite offsets of v8
and v9 are Oe5

d,8 = 0 µ s and Oe5
d,9 = 16000 µs. Therefore,

the first frames of v8 and v9 start transmission at t = 0 µs
and t = 16000 µs. Since BAG8 = 32000 µs, the second
frame of v8 starts transmission at t = 32000 µs. Then one v8
frame is transmitted every 32000 µs and the whole sequence is
repeated after 128000 µs (hyperperiod of v8 and v9). Hereby,
the temporal separation between one frame of v8 and frame
of v9 is never less than 16000 µs. This minimum temporal
separation from v8 to v9 at node e5 is called relative offset
and noted Oe5

r,8,9. The three first transmissions are depicted in
Figure 2 (top).

e5
0 a1 a4

S1
1

0 a2

w

sl sl

v8 v9 v8

v8 v9

S1
2

0 a3

w

sl sl
v8 v9

(µsec)
t

a1 = Oe5
d,9 = 16000, a2 = O

S1
1

r,8,9 = 15993.6, a3 =

O
S1
2

r,8,9 = 15954.1, a4 = BAG8 = 32000, w = waiting
time in buffer, sl = switching latency.

Fig. 2. Temporal separation of e5 VLs with benchmark v8

The temporal separation between VLs is propagated as long
as the VLs follow the same path. However, it can be reduced,
since different frames might experience different delays. This
phenomenon is illustrated in the arbitrary scenario depicted
in Figure 2. At the switch output port S1

1 , v8 is delayed by
VLs from e4 and e1, due to FIFO scheduling, while v9 is not.



Similarly, at the output port S1
2 , v8 is delayed by VLs from

e3 and e2, while v9 is not. Therefore, the temporal separation
between the first frames of v8 and v9 is reduced.

Since VLs transmit critical data, their maximum end-to-
end delay has to be determined. To that purpose, different
methods for the Worst-Case Traversal Time analysis of VLs
have been proposed. A first set of works has been devoted to
the computation of the exact worst-case end-to-end delay of a
VL. It is presented in the following section.

B. Exact WCTT analysis for AFDX

The end-to-end delay experienced by a frame transmitted
on an AFDX network is composed of the following parts:

• the transmission time (tr) on the links, which is directly
computed from the frame size and the link bandwidth,

• the switching latencies in each crossed switch, which is
upper-bounded by sl per switch,

• the waiting delays in the queues of the crossed output
ports, which depends on the pending frames in these
queues at the arrival time of the frame under study.

Considering the configuration in Figure 1, Figure 3 shows 3
possible scenarios of waiting delay for one v0 frame at S1

1 .
Due to FIFO scheduling, a frame must wait in the queue until
the frames before it are served.

In case 1 in Figure 3, v0 is queued after v2 and v8, and thus
it experiences a waiting delay w1 = trv8 + trv2 = 52 µsec.

Case 2 is similar to case 1 except that v0 is queued before
v2. Hereby, the waiting delay for v0 in the queue is w2 = trv8
= 27.44 µsec.

In case 3, v2 is generated earlier while v9 and v8 are
generated later. v8 doesn’t delay v0 any more since it arrives
after v0 at S1

1 . Conversely, on the arrival of v0 there is a frame
from v2 still waiting to be served. So the waiting delay for v0
in this case is w3 = trv2 = 24.56 µsec.

Case 1
v0e1

e4

e5
v9 v8

v2v1

e5

Case 2 Case 3

w1

v0

v9 v8

v2v1

w2

v0

v9 v8

v2v1

w3

w1 = 52 µsec, w2 = 27.44 µsec, w3 = 24.56 µsec.

Fig. 3. Few of the possible scenarios of waiting delay for v0 at S1
1

These scenarios clearly illustrate that the delay experienced
by a given VL (in this case v0) depends upon the relative
generation time of frames sharing a path in the network and
also upon their order of queuing at the shared output port.

Therefore, the WCTT analysis has to identify one scenario
that maximizes the overall waiting delay in the queues crossed
by the frame under study. [7] proves that a scenario cannot
be candidate to the worst-case if it doesn’t verify the critical
instant property: the frame under study arrives in each output

port on its path at the same instant as one frame from every
other input link of the corresponding switch and the frame
under study is queued last. The competing VLs, whose frames
participate in delaying the frame under study at the critical
instant, are called benchmarks. Coming back to Figure 3, case
2 cannot be candidate to the worst-case, since v0 is queued
before v2. Neither can case 3, since no frame from e4 arrives
at the same time as v0. Conversely, case 1 is a worst-case
candidate.

Based on the critical instant property, let us observe the
worst-case candidate scenarios for v0 on the path e1–S1

1–S1
2–

e6. For the sake of simplicity, assume sl = 0. At the source
end-system e1, v0 is the only VL. Otherwise, at the source
end-system, VLs are separated by offsets and cannot delay
each other, which always leads to only one scenario. At S1

1 ,
since v0 competes with two VLs from e4 and two VLs from
e5, there are four candidate scenarios at the switch port S1

1 .
The frame sequences obtained at S1

1 in these scenarios are
depicted in Figure 4. Additionally, v0 competes in S2 with 4
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Fig. 4. Frame sequence combinations for v0 at S1
1

VLs from e3 and 1 VL from e2, leading to four candidate
scenarios at switch port S1

2 . This means, overall we have 16
candidate scenarios : 4 scenarios at S1

2 for each frame sequence
obtained in the 4 scenarios at S1

1 . These scenarios are depicted
by an inverted tree in Figure 5.

Each terminal node (leaf) of this tree corresponds to a can-



didate scenario which is identified by a label. For instance, the
left-most leaf is labelled v8, v1, v4, v3: in the corresponding
scenario one v0 frame arrives at the same instant as frames
from benchmark VLs v8 and v1 in the S1

1 output port and
frames from benchmark VLs v4 and v3 in the S1

2 output
port. Each internal node (branch point of the tree) aggregates
candidate scenarios in its subtree. For example, the node with
label v8, v2, ∗, ∗ models the four cases where v0 frame arrives
at the same instant as frames from v8 and v2 in the S1

1 output
port. A star means that any frame from the corresponding
input link can arrive at the same instant as v0 frame in the
next output port. Additionally, Figure 5 gives the exact delay
(ED) for each candidate scenario as well as an upper bound
(UB) on the delay which will be detailed in next section.
From Figure 5, the exact worst-case end-to-end delay for v0
is 154.64 µs (scenario v8, v2, v6, v3).

Note that the increase in the number of candidate scenarios
is multiplicative with the number of input links and/or number
of VLs per input link. For instance, a network configuration
with only 62 VLs and having 2 VLs per input link will lead
to 230 scenarios. Thus, it becomes impossible to analyse all
the scenarios in limited time and with finite memory space.
Therefore, the MC approach in [7] cannot cope with industrial
configurations including 1000 VLs. For that reason, a different
approach has been proposed that computes upper bounds on
the end-to-end delays rather than the exact delays.

C. Computing upper bounds on VL delays

The NC approach upper-bounds the delay of a VL at an
output port h by computing the maximum horizontal distance
between the overall arrival curve αh

o (t) of VLs at node h and
the service curve βh(t) provided to these VLs by node h. Let us
illustrate this delay bound computation for v0 of the network
example in Figure 1.

The service provided to all the VLs traversing an output
port h with the link rate R is lower bounded by a service
curve as βh = R[t− sl]+ where, [a]+ means max{0, a} and
sl is the switching latency. In the given network example, we
assume sl = 0. So, the service curve at each output port is the
same and is given as βe1 = βS1

1 = βS1
2 = 100[t]+

The overall traffic at the output port h is then given by
an overall arrival curve αh

o (t). The overall arrival curves
integrating offset based scheduling from AFDX end-systems
are proposed in [13]. We summarise the process.

The network configuration interconnects ne end-systems
e1, . . . ene

. Each of these end-systems ek generates a (possibly
empty) set V h

k of nh
k VLs sharing a given output port h. For

example, the switch output port S1
1 in Figure 1 is shared by

five VLs scheduled by three end-systems: v0 by e1, v1 and v2
by e4, v8 and v9 by e5. So, the basic idea consists in building
one arrival curve (αh

aggr,ek
(t)) for each end-systems ek with a

non-empty set V h
k . This arrival curve is the maximum of the

aggregated arrival curves of vx in V h
k . The aggregated arrival

curve of vx assumes vx as the benchmark VL. It is the sum of
the arrival curve of vx at h and the arrival curves of the other
VLs vy in V h

k shifted right by their relative offset to vx. Then,

the overall arrival curve (αh
o (t)) is the sum of per end-system

arrival curves. Formulas are given in [13].
Let’s illustrate the process on e5. Two aggregated curves

are built, one for each VL coming to S1
1 from e5. Figure 6

(top-left and top-right) shows aggregated curves α
S1
1

aggr,8 and

α
S1
1

aggr,9 with v8 and v9 as benchmark VLs respectively. Then
the arrival curve form the end-system is the maximum of
these aggregated curves, as depicted in Figure 6 (bottom-left).
Figure 6 (bottom-right) shows arrival curves for end-systems
e1, e4 and e5 at the S1

1 output port, as well as the overall
arrival curve (sum of the three previous curves) at the same
port. This overall arrival curve is then used to compute the
delay upper bound.

At S1
2 , the delay upper bound can be computed in a similar

manner. The only difference is that the aggregated flows (from
source end-systems e1, e4 and e5) arriving through S1

1 are
now serialised. Indeed, they are buffered in the same FIFO
queue in S1

1 . Thus they are emitted one by one on the link
towards S1

2 -. In the following output ports, these frames remain
serialised and cannot arrive at the same time. This serialisation
is integrated in the NC [10] by considering that the arrival
curve from one input port has a burst tolerance of no more
than the largest frame size on the link and a rate not higher
than the transmission rate of the link. Thus, the arrival curve of
flows serialised at S1

1 arriving at S1
2 is the minimum between

the arrival curve with the burst equal to largest frame size and
with the rate equal to the link rate and the sum of the per
end-system arrival curves.

The overall process follows a dataflow order. Then an upper
bound on the end-to-end delay of a given VL is obtained by
summing the upper bounds in the output ports on the VL path.
For v0 in Figure 1, the maximum delay upper bounds at e1,
S1
1 and S1

2 respectively are 8.56, 60.56 and 85.93 µsec. Thus,
the end-to-end delay upper bound is 155.05 µsec. In Figure 5,
this upper bound (UB) is shown at the root of the inverted tree,
since it covers all the worst-case candidate scenarios.

The same process can be applied on a subset of worst-
case candidate scenarios. As an example, let’s consider node
v8, v1, ∗, ∗ in Figure 5. It represents the subset of worst-case
scenarios where a v0 frame arrives in the output port S1

1 at the
same time as v8 and v1 frames. Therefore, the overall arrival
curve at S1

1 only considers this situation: the arrival curves for
end-systems e4 and e5 are respectively the curves where v1
and v8 are the benchmark VLs. Conversely, node v8, v1, ∗, ∗
represents all worst-case candidate situations at the output port
S1
2 : v4, v5, v6 and v7 can be the benchmark VLs coming

from e3. Thus, the arrival curve of e3 takes into account four
aggregated arrival curves. Overall, the upper bound on the end-
to-end delay for v0 is 144.03 µs for this subset of scenarios.

D. Problem Statement
MC computes exact delay but is limited to small network

configurations, whereas NC can be easily scaled to industrial-
size networks but computes pessimistic delay upper bounds.

Obviously the computation of the exact worst-case delay
should be preferred. Indeed, an over estimation (i.e. upper
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bound) of this worst-case delay can lead to over-dimensioning
of the network in order to ensure that deadlines are met.

It is important to note that the computation time of both
types of solutions is very different. MC approach suffers from
the fact that adding more interfering VLs and/or switches in
the path of the VL under study results in multiplication of
the number of scenarios to be analysed. In this approach, the
total number of possible scenarios at an output port is the
multiplication of the number of frame sequences from each
input link. For instance, coming back to worst-case analysis
of v0 in Figure 1, adding only 4 more VLs through an
input at S1

2 will increase the number of scenarios to 16×4
= 64 scenarios. Whereas in an industrial AFDX configuration

there are as many as 1000 VLs which will lead to a huge
number of scenarios to be analysed, which cannot be done
in an acceptable time duration. Moreover, it would require a
lot of memory to store and process the corresponding frame
sequences for the given number of scenarios.

[7] shows that this approach computes exact worst-case
delays in around 1 hour when up to 50 VLs are involved and
within a reasonable limit of computation time (exact time is
not specified) when at most 60 VLs are involved.

On the other hand the computation of an upper bound of the
worst-case delay as presented in Section II-C requires a single
data flow computation which is very fast (few milliseconds
when 1000 VLs are involved). This computation can integrate
every possible scenario – corresponding to the root of the
inverted tree in Figure 5 – or a subset of these scenarios –
corresponding to another node of the tree.

In this paper, the idea is then to build a hybrid approach
that leverages the over approximation of the worst-case delay
for a subset of the worst-case candidate scenarios to avoid
the exact delay computation on every scenario in the subset.
The principle can be illustrated on the analysis of v0 for
the configuration in Figure 1. As previously explained and
depicted in Figure 5, 16 scenarios are candidate to the worst-
case. Let’s consider that the exact delays for the 8 scenarios
in the left part of the tree (corresponding to the situation when
v8 delays v0 in the output port S1

1 ) have been computed.
The worst-case delay among these scenarios is 154.64 µsec.
Concerning the right part of the tree (v9 delays v0 in the output
port S1

1 ), the delay upper bound computed by the NC approach
(Section II-C) is 145.75 µsec. It means that no candidate
scenario in the right part of the tree has an exact delay that
exceeds 145.75 µsec. Since one scenario in the left part of the
tree has an exact delay of 154.64 µsec, computing the exact
delay for the scenarios in the right part of the tree is useless.

In this specific case, the 16 exact delay computations can
be safely replaced by 8 exact delay computations and one



upper bound computation. It represents a significant reduction
of the number of computations and time needed to get the
exact worst-case delay. In case of industrial-size network, if
this reduction still leads to an unacceptable computation time,
the process can be stopped at any time to find an upper bound
which is tighter than the one provided by the NC approach.

In the next section we show how this principle can be
generalised, leading to HA.

III. HYBRID APPROACH

The state-space of a given VL is the whole set of worst-
case scenarios for this VL. As shown earlier, the delay upper
bound on a subset of this state-space indicates whether the
worst-case scenario can be in this subset or not. Therefore,
HA identifies all the subsets that cannot include the worst-
case scenario and eliminates them. Then the exact delay has
to be computed only for scenarios in subsets which cannot be
eliminated. This process involves the following steps:

• calculate the exact delay for one carefully selected sce-
nario, using the computation presented in Section II-B,

• eliminate subsets with a delay upper bound (computed
by the approach presented in Section II-C) smaller than
the exact delay computed in the previous step,

• calculate the exact delay for one scenario in a non-
eliminated subset and, if this delay is larger than the
previous one, eliminate additional subsets,

• repeat the same process until, either a time limit has
elapsed, or every scenario is in an eliminated subset or
its delay has been computed.

A. HA Algorithm for exact worst-case delays or tighter upper
bounds

An implementation of HA is given in Algorithm 1. It
assumes no time limit and computes the exact worst-case end-
to-end delay for each VL vi in the network (line 1-9). Let
us focus on the computation for v0 in the AFDX network
example in Figure 1. The worst-case delay for v0 is initialised
to 0 (line 2 in Algorithm 1). As shown in Figure 5, v0
state-space contains 16 candidate scenarios (the tree leaves)
derived from the tree root and 22 subset scenarios (the tree
branch points). The first step is to compute the exact delay
for one of the candidate scenarios. The choice of this first
scenario highly impacts the performance of HA. For instance,
the exact delay of scenario v9,v1,v5,v3 is 106.32 µsec. If it is
selected no branch points (BPs) can be eliminated since they
all correspond to a subset of scenarios having a delay upper
bound greater than 106.32 µsec. We consider the following
greedy heuristic: at each level in the tree we select the branch
with the largest delay upper bound. Indeed, it is more likely
that the leaf at the end of the branch with the highest delay
upper bound will have a larger value of exact delay. The steps
to determine this leaf and also to find the exact worst-case
delay using HA are illustrated in Figure 7.

Starting from the root of the tree (line 3 in Algorithm 1), the
delay upper bounds on the initial branch points are computed
(Figure 7 (a)), 155.05 µsec for v8,*,*,* and 145.75 µsec
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Fig. 7. Exact worst-case E2E delay computation of v0 using HA



for v9,*,*,*.Therefore the branch point with highest upper
bound is selected, i.e. v8,*,*,*. The same process is repeated
(Figure 7 (b) and (c)) with selection of scenarios v8,v2,*,*
(155.05 µsec) and v8,v2,v6,* (154.90 µsec). The selected
branch terminates at leaf v8,v2,v6,v3. This selection process
is performed by function SelectLeaf() (line 5) in Algorithm 1,
where upper bounds (UBs) for 8 branch points are calculated
to obtain the given leaf. The exact delay of 154.64 µsec is
computed at this leaf (line 6), also shown in Figure 7 (d).

Next, this exact delay is compared to the delay upper bounds
of all branch points previously computed. Indeed, these branch
points cover all the leaves except the one where the delay has
been computed. In this example, all these computed branch
points (other than that of the selected leaf) have a delay upper
bound less than 154.64 µsec. It means that the exact delays
of their corresponding leaves will also be less than 154.64
µsec. So they are safely eliminated to obtain a reduced state-
space (Figure 7 (e)). This process is performed by function
CompareDelays() (line 9) in Algorithm 1. Since there are no
more branch points left to be analysed, the process can be
stopped (the loop in line 4 will stop) for v0 and the exact
worst-case delay is that of leaf v8,v2,v6,v3, which belongs to
a scenario where v0 is delayed by v8 and v2 at S1

1 and by v6
and v3 at S1

2 . The same process is repeated in Algorithm 1
for the other VLs in the network configuration.

Algorithm 1: Hybrid Approach algorithm
Output: EWCD : per flow exact worst-case delay
Data: VLs : list of flows v1, v2 . . .
Data: ED : exact delay
Data: UBs : list of upper bounds
Data: BPs : list of branch points
Data: root : tree root
Data: leaf : tree leaf

1 foreach vi ∈ VLs do
2 EWCD = 0;
3 BPs = root(vi) ; // get tree root node

4 while notAnalysed(BPs) do
5 UBs, leaf = SelectLeaf (vi, BPs);
6 ED = ComputeExactDelay(vi, leaf);
7 if (EWCD < ED) then
8 EWCD = ED;
9 BPs = CompareDelays(vi, UBs, ED);

SelectLeaf() returns the leaf and UBs corresponding to the branch
having the highest upper bounds among the given branch points. It
ignores the leaves analysed in previous iterations.
ComputeExactDelay() computes ED for the given leaf.
CompareDelays() compares ED and UBs, eliminates the branch
points where UB < ED and returns non-eliminated branch points.

One single exact delay computation has to be executed for
v0, since it allows eliminating every other worst-case candidate
scenario. The situation might be less favourable. This can be
illustrated with the analysis of v4, as shown in Figure 8. v4
shares switch output ports with VLs from four end-systems:

v8, v9 from e5, v1, v2 from e4, v3 from e2 and v0 from e1.
The most promising branch corresponds to the situation where
v4 arrives in S1

2 at the same time as v8, v2, v3 and v0. The
exact delay for this worst-case scenario candidate is 126.72
µs. It allows the elimination of the subtree at the branch
point v9, ∗, ∗, ∗ (UB = 124.14 µs) but, since UB for subtree
v8, v1, ∗, ∗ is 126.92 µs, it has to be analysed.
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Fig. 8. Exact worst-case E2E delay computation of v4 using HA

Considering an industrial configuration with around 1000
VLs, the reduction in the number of scenarios to be anal-
ysed in HA may be insufficient to complete the process
in acceptable time. In such a case HA algorithm can be
interrupted at any moment to obtain improved delay upper
bounds. It can be illustrated on flow v4 previously discussed.
Let us assume that the process was interrupted right after
calculating the exact delay of 126.72µs at the first selected
leaf (v8, v2, v3, v0 in Figure 9). In this case, the delay of
126.72 µs does not represent the worst-case delay for v4,
however, it is the maximum delay that can be observed in
the sub-branch v8, v2, ∗, ∗. This also means that the delay UB
of 127.02 µs computed by NC is pessimistic, and it can be
safely replaced by 126.72 µs. Similarly, at the branch point
v8, ∗, ∗, ∗ the UB is the maximum of its sub branches’ UBs,
i.e. max{126.92, 126.72} = 126.92µs. Finally, an improved
delay UB of v4 can be obtained at the tree root, which is the
maximum UB among its sub branches v8, ∗, ∗, ∗ and v9, ∗, ∗, ∗,



i.e. max{126.92, 124.14} = 126.92µs.
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Fig. 9. Improved UB computation of v4 using HA

B. Number of computations in HA

As illustrated by the above examples HA requires two sets
of computations, one set of exact worst-case delay computa-
tions based on the approach presented in Section II-B and one
set of upper bound computations using the approach presented
in Section II-C. As previously mentioned the goal of HA
is to limit the combinatorial explosion of the MC approach
presented in Section II-B while still getting the exact worst-
case delay. This limitation is reached thanks to a drastic
reduction of the number of exact delay computations, at the
cost of upper bound computations. In the following paragraph,
we formalise the number of exact delay and upper bound
computations for a VL analysis.

Let us start with the number of computations for the
approaches presented in Sections II-B and II-C. The number of
worst-case candidate scenarios depends on the number of VLs
competing with the VL under study and the number of end-
systems. As presented in Section II-C, each output port h is
crossed by sets of VLs V h

k , where end-system ek is the source
of the VLs in set V h

k . The VL under study vx follows a path
px including plx switch output ports h1, . . . , hplx . Therefore,
every VL in a set V h

k , with h belonging to path px, competes
with vx. Let’s call Vvx the set of VLs competing with vx. We
have:

Vvx =
⋃

1≤k≤ne,h∈px

V h
k (1)

with
V h
k = {vk,h1 , . . . , vk,h

nh
k

} (2)

In all existing avionics network configurations, two VLs that
separate in a switch (are transmitted on different output links)
will never meet later. Thus, V hi

k and V
hj

k with hi ̸= hj are
disjoint sets.

A tree such as the one in Figure 5 can be built for vx. V h
k

sets are considered in an arbitrary order. In order to simplify
the presentation, we rename these sets V1, V2, . . . , Vnbs with
Vi = {vi1, . . . , vini

}. The root of the tree represents any
candidate worst-case scenario. It has n1 children, one per

V1 element, labelled v1i1 , ∗, . . . , ∗ with 1 ≤ i1 ≤ n1. Each
of these nodes has n2 children labelled v1i1 , v

2
i2
, ∗, . . . , ∗ with

1 ≤ i1 ≤ n1 and 1 ≤ i2 ≤ n2. The process repeats until the
leaves of the tree which are labelled v1i1 , . . . , v

nbs
inbs

.
Therefore, the tree is composed of n1 × n2 × . . . × nnbs

leaves and n1 + (n1 × n2) + . . .+ (n1 × n2 × . . .× nnbs−1)
branch point nodes, excluding the root.

The exact worst-case delay analysis presented in Section
II-B computes the delay for each worst-case candidate sce-
nario, i.e. each leaf of the tree. Therefore, n1×n2× . . .×nnbs

computations are required.
The upper bound analysis presented in Section II-C requires

one single computation, corresponding to the root of the tree
that encompasses all worst-case candidate scenarios.

HA will compute the exact delay for between nnbs and
all worst-case candidate scenarios and the upper bound for a
subset of branch point nodes. More precisely, the count can
be divided in two parts.

• In the first part, the delay for the most promising worst-
case candidate scenario is computed. To that purpose
the upper bound is computed for the n1 children of the
root node. Then the upper bound is computed for the n2

children of the node with the highest upper bound, and
so on until the leaves. It leads to n1+ . . .+nnbs−1 upper
bound computations and nnbs exact delay computations.

• In the second part, additional upper bound and exact delay
computations are done for the part of the tree with an
upper bound larger than the current worst-case delay.

Coming back to the network example in Figure 1, in HA
the exact worst-case delay for v0 is obtained after a total 9
computations: 1 leaf for the exact delay (out of 16 leaves) and
8 branch points for upper bounds. The results of HA for all
the VLs in Figure 1 are summarised in Table II. It can be
observed, for all the VLs, that the total number of exact delay
computations (EDS) required in HA is significantly low with
respect to the total number of worst-case candidate scenarios
(MC state-space), at the cost of few upper bound computations
(UBS).

As mentioned earlier, the overhead of UB computation, in
terms of execution time, is negligible as compared to the gain
obtained by reducing the exact delay computation scenarios.
This gain in execution time is not apparent on the small
network example of Figure 1 but, as shown in the next section,
it is very large for an industrial-size network configuration.

Also note that the difference between EWCD and UB in
Table II is very small. But, this difference (i.e. pessimism of
NC) on the industrial configuration is about 8% on average
and higher than 40% for more than 10% of the flow paths.

IV. HA EVALUATION ON A REAL AVIONICS
CONFIGURATION

The HA approach has been implemented using C++ pro-
gramming language. The results presented in this paper are
obtained on a Core i5-4210U processor (2.4 GHz) utilising a
single processor thread with 32 Gb memory. HA is compared
to the state-of-the-art MC (presented in Section II-B) and NC



TABLE II
HA ON VLS IN FIGURE 1

VL max UB EWCD
MC

state-
space

EDS UBS

v0 155.05 154.64 16 1 8
v1 149.15 148.88 8 1 6
v2 171.05 170.64 8 1 6
v3 98.33 97.92 16 3 12
v4 127.03 126.72 4 2 4
v5 82.5 81.92 4 2 4
v6 131.5 131.20 4 2 4
v7 105.48 104.96 4 2 4
v8 173.9 173.52 8 1 6
v9 158.18 157.84 8 1 6

UB = delay upper bound. EWCD = exact worst-case delay
UBS = upper bound scenarios. EDS = exact delay scenarios

(presented in Section II-C) approach. The comparison con-
siders a realistic network configuration based on the network
architecture of the A380 aircraft.

This network configuration includes 96 end-systems inter-
connected by 8 switches forwarding 984 VLs on 6276 paths
(multicast VLs). Each VL is constrained by a frame length
between 84 and 1555 bytes and a minimum inter-frame dura-
tion (BAG) between 2 and 128 ms. Table III (left and centre)
shows the dispatching of VLs among BAGs and maximum
frame lengths. Table III (right) shows the distribution of paths
lengths (number of crossed switches).

TABLE III
VL AND PATH CHARACTERISTICS IN INDUSTRIAL CONFIG

BAG VLs lmaxrange VLs Length Paths
2 20 84–200 278 1 1780
4 40 201-400 396 2 2807
8 78 401–600 157 3 1436
16 142 601–900 69 4 253
32 229 901-1200 28
64 220 1201–1500 51

128 255 >1500 5

A. Exact worst-case delay computation using HA vs MC

In [3], an evaluation of MC approach on a similar industrial
configuration shows that it can successfully compute the exact
worst-case delay, within 1 hour of computation time, on a VL
path when there are at most 50 concurrent VLs, but no precise
information about the state-space is given.

So, we compared our HA approach to the MC approach
on different paths under the same conditions, i.e. at most 1
hour of computation time per path. The obtained results are
summarised in Table IV and Figure 10. Out of 6276 paths,
MC concluded for only 1209 paths, whereas, HA competed
for 465 more paths (i.e. total 1674 paths).

A detailed analysis of these results is presented in the fol-
lowing paragraphs. First we compare the number of scenarios
which have to be computed by both HA and MC for each
VL path. Second, we compare the execution time for both
approaches.

1) Comparing the number of scenarios: We recall that
MC approach only computes ED for candidate worst-case
scenarios, while HA additionally computes UBs for sets of
scenarios. Therefore, the state-space is the number of ED
computations for both approaches, increased by the number
of UB computations for HA.

Paths are divided based on the size and computation time
of the MC state-space in Table IV. The first 819 paths have
an MC state-space smaller than 104 and include 6 to 89
concurrent VLs. On average there are 2.1×103 (ED) scenarios
in MC. Whereas, the state-space of HA has about 7 × 102

(ED+UB) scenarios. This means the HA state-space is about
67% smaller. Similarly, on the next 390 paths, the HA state-
space is about 49% smaller. On these 819+390 = 1209 paths
the computation time per path is less than 1hr for both MC and
HA approaches. On the remaining, 465 paths the computation
time of MC approach is much larger, either due to a very large
state-space or due to a large number of concurrent VLs. On
these paths, when the MC state-space is between 104 and 106,
the HA state-space is 91% smaller. For the largest MC state-
space the HA state-space is 92% smaller. On average the HA
state-space is about 87% smaller for all the 1674 paths.

The relative size difference of the state-space on individual
paths can be observed in Figure 10 (top). The state-space of
MC is the reference and is normalised to 100%. The relative
state-space of HA is given by:

HA state-space
MC state-space

× 100

Recall that the advantage of HA is the reduction of the
number of ED computation. So, in Figure 10 (top) the state-
space of HA is separated between ED computations (green,
orange or red bars) and UB computations (light grey bars). For
illustration purpose, VL paths are sorted in decreasing order
of the absolute difference in MC and HA state-space, i.e. MC
state-space - HA state-space. The paths where the number of
ED computations in HA is smaller than that of MC are shown
by green bars and the remaining paths (no reduction in ED
computations) are shown by orange or red bars.

1128 out of the 1674 analysed paths benefits from HA,
i.e. the number of ED computations is significantly reduced:
the average reduction is 88% (green bars in Figure 10 (top)).
For the remaining 546 paths, the number of ED computations
is the same for both approaches. Since the HA state-space
includes an overhead of UB computations, in some paths the
HA state-space is larger than that of MC. There are 257 paths
where HA has no reduction in ED computations and some
UB computation overhead that accounts for on average 3.45%
larger state-space (red bars in Figure 10 (top)). On the other
289 paths, there is no gain/loss in HA (orange bars in Figure 10
(top)).

On the paths where HA has reduced ED computations
but the state-space is still larger due to the UB computation
overhead, the gain/loss in HA can only be judged based on
the computation time. Indeed, the computation time of UBs is



TABLE IV
HA COMPARED TO MC

MC
State-Space

Paths
analysed

Concurrent
VLs

Average State-Space Execution Time

MC HA % Smaller Per Path Average
MC HA MC HA

< 104 819 6 – 71 2.1 ∗ 103 7 ∗ 102 67% 0sec – 54min 0sec – 49sec 5min 3sec
104 – 106 390 36 – 89 1.4 ∗ 105 7.2 ∗ 104 49% 13sec – 59min 0sec – 45min 17min 4min
104 – 106 382 42 – 100 1.8 ∗ 105 1.6 ∗ 104 91% +1hr 0sec – 59min NA 1min
106 – 107 83 53 – 106 4 ∗ 106 3.1 ∗ 105 92% +1hr 90sec – 54min NA 23min

Overall 1674 6 – 106 2.77 ∗ 105 3.68 ∗ 104 87% - 0sec – 59min NA 3min

much faster than the one of EDs. So, HA can still outperform
MC even when HA state-space is larger.

Fig. 10. Relative gain/loss of HA for an industrial configuration
Note : Green, Orange and Red bars correspond, respectively, to the paths
where HA has positive gain, no gain/loss and some small loss in state-
space/execution.

2) Comparing the Execution Time: The execution time
comparison between HA and the MC approach is also shown
in Table IV and Figures 10 (bottom).

For the comparison scenarios in Table IV, the HA approach
outperforms MC.

For the 1209 paths on which MC was able to conclude
within 1 hour, the average computation time per path is
between 5 and 17 minutes for MC and between 3 sec and
4 minutes for HA. This improvement is mainly due to the
reduction in number of ED computations in HA but also due
to the faster computation of UBs in the HA state-space. On
the remaining 465 paths, HA was able to conclude within 1
hour, but MC could not.

It can be observed from Figure 10 (bottom) that the rel-
ative computation time of the HA approach on individual

paths is significantly less as compared to MC approach. For
comparison purpose, the paths in Figure 10 (bottom) and
Figure 10 (top) are sorted in the same order and follows the
same colour code for ED and UB computations. However, in
Figure 10(bottom), all the paths where the computation time
of the HA state-space is higher than that of MC are marked
red.

Not surprisingly, all the 1128 paths where the ED computa-
tions are reduced have significantly smaller computation time
in HA: on average 92% faster. On 289 paths, HA and MC have
the same computation time. On the remaining 257 paths the
HA execution time is larger (about 12%), due to no reduction
in number of ED computations and/or due to too large UB
computation overhead.

3) Extended evaluation of exact worst-case delay compu-
tation using HA: The comparison scenarios discussed in the
previous paragraphs yielded results only for the paths with
the MC state-space up to 107 and with up to 106 concurrent
VLs. On these paths, the computation time was limited to
1 hour. An extended analysis is carried out to evaluate the
performance of the HA approach on other paths where the
computation time is larger, either due to a very large state-
space or a large number of concurrent VLs. The results are
summarised in Table V. Total 233 paths have been analysed.
The MC state-spaces consisting of up to 1010 ED scenarios
are observed on these paths, on the contrary HA has a much
smaller state-space (up to 107 scenarios). The gain in the HA
approach is calculated only in terms of the reduction in state-
space. Indeed, for these paths MC approach is not expected
to conclude, even with an execution time of a month.

TABLE V
EXTENDED HA EVALUATION

MC
State-
Space

Paths Conc.
VLs

Average State-Space

MC HA %
Smaller

104–
106

69 63–100 6.3 ∗ 105 6.2 ∗ 105 1.5%

106–
108

157 55–114 7.9 ∗ 106 2.9 ∗ 106 62%

108–
1010

7 71–118 1.6 ∗ 108 1.1 ∗ 107 92%

Overall 233 55 – 118 1.04 ∗ 107 2.5 ∗ 106 76%



B. Delay upper bound computation using HA vs NC

As discussed in Section IV-A, HA has an advantage of being
an anytime algorithm, which means it can be interrupted at any
moment to calculate the delay UB. In addition to the 1674
paths discussed above, where the exact worst-case delay was
obtained, we computed delay UB on the remaining 4602 paths
using HA by limiting the computation time to 1 minute. The
results are compared to the UB computed using NC.

For comparison purpose, we also calculated a delay lower
bound (LB) on all the paths using an optimistic method
described in [14]. Indeed, a delay lower bound is always
less than or equal to the exact-worst case delay, and allows
quantifying the upper limit on the pessimism in the delay UBs.
Figure 11 (top) shows the comparison between UBs obtained
using HA (orange dots) and NC (blue dots) and the LBs (green
line), where the paths are sorted in decreasing order of LBs for
illustration purpose. Not surprisingly, the HA UBs are always
smaller than or equal to those of NC on all the paths, thus,
they are less pessimistic. The pessimism of these UBs is also
shown in Figure 11 (middle and bottom), and is calculated for
each path as:

% pessimism =
UB − LB

LB
× 100

The average and maximum pessimism of NC UBs are
8.02% and 59.75%, respectively. The HA was able to compute
about 43% less pessimistic bound, the remaining pessimism of
these UBs is on average 4.53% and the maximum pessimism
is of 17.86%.
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Fig. 11. End-to-end delay upper bound improvement in HA

C. Discussion

Results on the realistic case study show that the HA
approach outperforms MC in terms of execution time and
clearly mitigates the memory problem of MC by reducing the
state-space. Notably, HA allows computation of exact delays
on an industrial-size network where the state-space is too big
to be analysed by MC approach.

However, the gain of HA highly depend on the character-
istics of the analysed VL path. Since HA eliminates subsets
when their upper bound is smaller than the currently computed
largest exact delay, the number of eliminated subsets increases
when upper bounds are very different among internal nodes.
Conversely, subsets are hardly eliminated when upper bounds
are similar among internal nodes.

On the example in Figure 7, one single worst-case candidate
scenario is analysed, since computed upper bounds for subsets
of candidate scenario significantly vary. One reason for this
variation is the difference of frame size between VLs. To
illustrate the impact of frame sizes on the variation of upper
bounds, let us consider the example in Figure 1 with identical
frame size among VLs, i.e. 339 bytes. In this situation the
worst-case delay for v0 is 189.84 µs and the upper bounds
for each subset of candidate scenarios is given in Figure 12.
Since every upper bound is larger than the overall worst-
case, no subset can be eliminated. Therefore, every worst-case
candidate scenario has to be analysed.
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Fig. 12. Upper bounds with identical frame sizes

On the given industrial configuration, very few such cases
are observed. They correspond to paths with the red bars in
Figure 10.

V. CONCLUSION

This paper presents and evaluates HA, a hybrid approach
for the computation of exact worst-case delays and delay
upper bounds on industrial real time Ethernet networks. HA
leverages the upper bound computation based on NC in order
to mitigate the combinatorial explosion of the exact worst-
case computation based on MC. It also leverages exact delay
computation in order to tighten bounds on worst-case delays.
Results show that HA scales up to an industrial case study.
The evaluation considers an avionics network. Nevertheless
HA can cope with any industrial context, provided that end
node scheduling introduces offsets between flows. In the
paper we assume the classical TDMA solution for avionics
configuration. HA can be used with any other solution that
leads to such offsets.

HA assumes a single traffic class. Therefore, frames are
transmitted in a FIFO order in every output port. Such an
assumption is not valid when flows with different criticality



levels share the same network. This situation will occur if
additional less critical flows are transmitted on the AFDX
network. Indeed, the impact of these additional flows will
have to be bounded. It should be obtained thanks to service
disciplines such as Priority Queueing or Round Robin, e.g.
[18]–[22], or the promising IEEE TSN solution [23]. HA
could be extended to such solutions, provided that an upper
bound computation as well as an exact worst case one exist.
These computations have to take into account offsets between
flows emitted by a given end system. Such upper-bound
computations exist, e.g. for Round Robin [24]. Up to now,
exact worst-case computation is limited to FIFO.

Switch or link failure can lead to frame loss. It can be
mitigated by frame replication. In avionics networks, source
end systems transmit each frame on two separate paths and
destination end systems keep the one received first. TSN
proposes FRER which allows multiple frame replications and
eliminations. The exact worst-case computation in HA requires
that two frames that separate in a switch will never meet later
(in another switch). It holds for current avionics replication
solution. It will not be the case with FRER.
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