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a Université de Toulouse, ONERA DOTA, Toulouse, France 
b Ifremer, DYNECO, LEBCO, Plouzané, France 
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A B S T R A C T   

CNES is currently carrying out a Phase A study to assess the feasibility of a future hyperspectral imaging sensor 
(10 m spatial resolution) combined with a panchromatic camera (2.5 m spatial resolution). This mission focuses 
on both high spatial and spectral resolution requirements, as inherited from previous French studies such as 
HYPEX, HYPXIM, and BIODIVERSITY. To meet user requirements, cost, and instrument compactness constraints, 
CNES asked the French hyperspectral Mission Advisory Group (MAG), representing a broad French scientific 
community, to provide recommendations on spectral sampling, particularly in the Short Wave InfraRed (SWIR) 
for various applications. 

This paper presents the tests carried out with the aim of defining the optimal spectral sampling and spectral 
resolution in the SWIR domain for quantitative estimation of physical variables and classification purposes. The 
targeted applications are geosciences (mineralogy, soil moisture content), forestry (tree species classification, 
leaf functional traits), coastal and inland waters (bathymetry, water column, bottom classification in shallow 
water, coastal habitat classification), urban areas (land cover), industrial plumes (aerosols, methane and carbon 
dioxide), cryosphere (specific surface area, equivalent black carbon concentration), and atmosphere (water 
vapor, carbon dioxide and aerosols). All the products simulated in this exercise used the same CNES end-to-end 
processing chain, with realistic instrument parameters, enabling easy comparison between applications. 648 
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Cryosphere 
Water vapor 

simulations were carried out with different spectral strategies, radiometric calibration performances and signal- 
to-noise Ratios (SNR): 24 instrument configurations × 25 datasets (22 images + 3 spectral libraries). 

The results show that spectral sampling up to 20 nm in the SWIR range is sufficient for most applications. 
However, 10 nm spectral sampling is recommended for applications based on specific absorption bands such as 
mineralogy, industrial plumes or atmospheric gases. In addition, a slight performance loss is generally observed 
when radiometric calibration accuracy decreases, with a few exceptions in bathymetry and in the cryosphere for 
which the observed performance is severely degraded. Finally, most applications can be achieved with a realistic 
SNR, with the exception of bathymetry, shallow water classification, as well as carbon dioxide and methane 
estimation, which require the optimistic SNR level tested. On the basis of these results, CNES is currently eval
uating the best compromise for designing the future hyperspectral sensor to meet the objectives of priority 
applications.   

1. Introduction 

Imaging spectroscopy (IS) is now recognized as a powerful tool for 
satellite-based Earth observation. Several sun-synchronous space mis
sions such as Gaofen 5 (Liu et al., 2019), PRISMA (Meini et al., 2015) or 
EnMap (Guanter et al., 2015) are already operational (Qian, 2021). They 
offer global coverage with a revisit time from 4 to 29 days. All these 
sensors have a ground sampling distance (GSD) of 30 m which reduces 
the range of applications due to the presence of mixed pixels in het
erogeneous scenes (Zhao et al., 2014; Transon et al., 2018). Spatial 
resolution is considered the « Achille heel » for the recovery of fine-scale 
surface parameters. Other authors have mentioned these limitations for 
crop disease detection (Dutta et al., 2006; White et al., 2007), forest 
functional traits estimation (Miraglio et al., 2022), urban area classifi
cation (Cavalli et al., 2008; Heldens et al., 2011), clay mineral mapping 
(Gomez et al., 2015), characterization of acid mine drainage (Davies and 
Calvin, 2017), monitoring of industrial gas plumes (methane, carbon 
dioxyde), smoke (Nesme et al., 2021; Deschamps et al., 2013), or early 
detection of coral bleaching (Yamano and Tamura, 2004). Ustin and 
Middleton (2021) reported that a 10 m GSD is justified to improve the 
mapping capabilities of crops, minerals, snow/ice, water resources, 
vegetation type and condition. 

There is therefore a real need to complement existing IS sensors with 
a new sensor with better spatial resolution. A number of IS missions are 
currently under study, such as SHALOM (Feingersh and Ben-Dor, 2016) 
and PRISMA-NG (Ansalone et al., 2021). For many years, French re
searchers supported by CNES/ DGA have been working on specifications 
of a new 10 m GSD IS sensor under several names: HYPXIM (Briottet 
et al., 2011; Carrère et al., 2013), HYPEX-2 (Briottet et al., 2017) and 
BIODIVERSITY (Briottet et al., 2022). A phase A, led by CNES was 
completed in mid-2022 with the aim of proposing an instrument 
combining hyperspectral imaging (10 m GSD, spectral range 0.45–2.40 
μm, 10 km swath) with panchromatic imagery (2.5 m GSD) with a revisit 
time of 5 days. One of the aims of this study was to define the optimum 
signal-to-noise ratio (SNR), radiometric image quality and spectral 
sampling for different applications, within the constraint of instrument 
compactness: geosciences, forestry, coastal and inland waters, urban 
areas, industrial plumes, cryosphere, and atmosphere. All these appli
cations have been selected because they require high spatial resolution, 
on the order of 10 m, and correspond to the themes identified by Tar
amelli et al. (2020). The aim of this work is therefore to present the 
results of a cross-analysis of these scientific fields, which will help 
consolidate the mission requirements and the payload design. 

After describing the input data in section 2, the end-to-end simulator 
for calculating radiance at the top of the atmosphere is presented in 
section 3, along with the insertion of specific sensor characteristics 
(spectral strategy, SNR, radiometric calibration accuracy), the choice of 
surface reflectance and the methods used to extract the relevant pa
rameters for each application. The results are presented in section 4, 
followed by a discussion in section 5 and a conclusion in section 6. 

2. Materials 

Two types of input data were used to cover these seven scientific 
domains: reflectance spectra measured in the laboratory or simulated 
using dedicated models, presented in section 2.1, and hyperspectral 
images (section 2.2). 

2.1. Laboratory, field and simulated spectra 

The use of laboratory measured spectra concerns applications in 
mineralogy and soil moisture content (SMC) estimation (geosciences), 
while the use of simulated spectra concerns applications in leaf func
tional traits estimation (vegetation), specific surface area (SSA) and 
equivalent black carbon (eBC) estimation (cryosphere), and atmospheric 
aerosol and gas estimation (atmosphere). 

For mineralogy estimation, 38 reflectance spectra of 16 minerals of 
interest (clays, carbonates, sulphates, rare earth elements (REE), oxy- 
hydroxides, etc.) with a wide range of chemical composition and grain 
size were selected from the United States Geological Survey (USGS) 
Spectral Library (https://crustal.usgs.gov/speclab/). The results pre
sented here are limited to the 11 most typical minerals whose spectral 
characteristics are given in Table 1. 

For coastal habitat classification, a library of field spectra was ac
quired using an ASD FieldSpec 4 Hi-Res spectroradiometer, which 

Table 1 
Diagnostic absorption characteristics of 11 representative minerals. Bastnaesite, 
monazite, and xenotime have specific absorption peaks in the visible and near- 
infrared (VNIR) due to varying proportions of rare earth elements: only the four 
main absorption peaks are shown.  

Mineral USGS Reference Wavelength positions of 
diagnostic absorption 
features 

Gypsum Gypsum_HS333.3B ~1.75 μm; secondary 
absorption ~2.21 μm 

Calcite Calcite_WS272 ~2.34 μm; secondary 
absorption ~2.16 μm 

Kaolinite Kaolinite_CM9 Doublet ~2.16 μm and 
~2.21 μm 

Alunite HS295–3B ~1.76 μm, ~2.16 μm; 
secondary absorption ~2.32 
μm 

Goethite Goethite_GDS134 ~0.66 μm, ~0.91 μm; 
secondary absorption ~0.50 
μm 

Hematite Hematite_HS45.3 ~0.86 μm; secondary 
absorption ~0.66 μm 

Jarosite Jarosite_GDS635_Na_Cyprus ~0.43, ~0.92, 2.21 and 2.27 
μm 

Montmorillonite Montmorillonite_SAz-1 ~2.22 μm 
Bastnaesite Bastnaesite_REE_WS320 ~0.58,0.74, 0.80 and 0.86 

μm 
Monazite Monazite_REE_GDS947_Calif ~0.58, 0.75, 0.80 and 0.87 

μm 
Xenotime Xenotime_GDS966_Iveland_REE ~0.66, 0.75, 0.81 and 0.91 

μm  
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covers the wavelength range from 350 to 2500 nm with spectral reso
lution ranging from 3 nm (VIS-NIR) to 8 nm (SWIR). The spectra 
recorded over 2151 bands were calibrated using a Spectralon to provide 
reflectance factor measurements. Three to five spectra were recorded on 
each target to account for intra-target variability. These targets have 
different benthic characteristics: vegetation types (green, red, brown 
algae and microphytobenthos) and substrate types (mud, sand, shells 
and rocks), Sabellaria alveolata bioconstructions, oyster reefs, etc. This 
spectral library will enable us to access the potential of the SWIR for 
discriminating intertidal benthic feature, given that we have no images 
in the coastal zone in this wavelength range. 

For SMC, reflectance spectra of 32 soils measured for different 
gravimetric water contents ranging from 5% to 85% were extracted from 
the Les08 database (Lesaignoux et al., 2013, Fig. 1) used to validate the 
Multilayer rAdiative tRansfer Model of soIl reflectance (MARMIT) 
model (Bablet et al., 2018; Dupiau et al., 2022). 

For the estimation of leaf functional traits, a spectral database was 
generated using the DART ray-tracing model (Gastellu-Etchegorry et al., 
2012) coupled to the PROSPECT leaf radiative transfer model (Jacque
moud et al., 1996) with the input variables described in Table 2. The 
objective is to simulate top of canopy reflectance images similar to those 
acquired by an airborne hyperspectral sensor (see Miraglio et al., 2022). 

To estimate the specific surface area (SSA) and the equivalent black 
carbon (eBC) concentration, snow reflectance spectra were simulated 
with the Two-streAm Radiative TransfEr in Snow model (TARTES, Libois 
et al., 2013) with the input parameters detailed in Table 3. SSA and eBC 
values were determined using in situ hyperspectral measurements 
(Libois et al., 2013; Picard et al., 2016; Dumont et al., 2017; Tuzet et al., 
2019, 2020). 

To estimate the composition of the gaseous atmosphere (water 
vapor, carbon dioxide), performance is assessed on the basis of a stan
dard mid-latitude summer atmosphere, with a CO2 concentration of 400 
ppm. The observation is at nadir and the solar zenith angle is 20◦, while 
the ground reflectance corresponds to a bright desert-like surface. 

For atmospheric aerosols, synthetic top-of-atmosphere (TOA) radi
ances were generated using the Generalized Retrieval of Aerosol and 
Surface Properties (GRASP, Dubovik et al., 2021) algorithm for a fixed 
geometry corresponding to a scattering angle of 150◦ and selected 
nominal wavelengths in the atmospheric windows (419, 441, 492, 546, 
669, 770, 865, 2312 nm). Only a subset of wavelengths was selected, as 
the spectral characteristics of aerosols vary little in the solar domain. A 

mixture of two aerosol types with different size distributions, chemical 
compositions and shapes was used for the simulations: a fine mode for 
pollution particles and a coarse mode for desert dust. The influence of 
gases is negligible in this study, as the spectral bands were selected 
outside the main gas absorption peaks. The top of atmosphere reflec
tance ranged from 0.09 to 0.11 at 419 nm and around 0.01 at 2190 nm, 
representing different aerosol concentrations over a dark surface 
(water). Only one scenario is presented here, corresponding to a con
stant SNR of 200 in the 400–550 nm spectral range and 100 in the 
600–2400 nm spectral range. 

Fig. 1. Reflectance spectra of two soil samples (81StJulien and 31FaugaX1) extracted from the Les08 database (Lesaignoux et al., 2013). https://pss-gitlab.math. 
univ-paris-diderot.fr/marmit/marmit. 

Table 2 
Range of variation in biochemical and physical properties of 
trees. FVC: fractional vegetation cover, LAD: leaf angle dis
tribution, ALA: average leaf angle, LAI: leaf area index, Cab: 
chlorophyll content, Car: carotenoid content, EWT: equivalent 
water thickness, and N: leaf structure parameter in 
PROSPECT.  

Canopy parameter Value and range 

FVC (%) 30, 50, 70, 90 
LAD (◦) Ellipsoidal 
ALA (◦) 55–65 
LAI (m2/m2) 1–4 
Cab (μg/cm2) 5–70 
Car (μg/cm2) 4–20 
EWT (g/cm2) 0.001–0.025 
LMA (g/cm2) 0.001–0.025 
N 1.5–2.1  

Table 3 
Definition of the variation ranges of the inputs for the TARTES simulations.  

Variable Range 

Spectral range 350–3000 nm at 1 nm resolution 
Specific surface area (SSA) 3–100 kg m− 2 

Sun zenith angle 0–80◦ by 10◦ step 
Dust 11 values between 0 and 500 10− 6 g 

g− 1 

Equivalent black carbon (eBC) 
concentration 

11 values between 0 and 300 10− 9 g 
g− 1  
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2.2. Airborne hyperspectral imaging 

Images were acquired by airborne sensors with different spectral 
resolutions: NEO-HySpex (4–7 nm, https://www.neo.no/), NEO-ODIN 
(3–6 nm, https://www.neo.no/), AVIRIS-C (10 nm, https://aviris.jpl. 
nasa.gov/), and AVIRIS-NG (3.7 nm, https://aviris.jpl.nasa.gov/). 
They all cover the 0.4–2.5 μm spectral range. Table 4 lists the images and 
variables of interest for each scientific field. 

The Fabas forest is composed of six distinct dominant species, 
including Quercus sp., Douglas pine (Pseudotsuga menziesii), Laricio pine 
(Pinus nigra), maritime pine (Pinus pinaster), Weymouth pine (Pinus 
strobus) and black locust (Robinia pseudoacacia). These six species are 
included in the classification process, along with two additional classes: 
other conifer and deciduous trees. 

For urban areas, ten classes were considered: tile, vegetation, 
shadow, high reflectance, asphalt, bare soil, pavement, road, stadium 
and stone. 

For shallow water bottom classification, three classes were consid
ered for the Porquerolles site (sand, Posidonia oceanica and Caulerpa 
taxifolia), and four classes for Camargue site (sediments, zosters, green 
algae and red algae). 

3. Method 

The processing chain is detailed in Fig. 2. Each application targets 
one or more variables of interest. For each, a reference value is defined 
and hyperspectral data (spectra or images) are produced. The end-to- 
end simulator propagates this data to the top of the atmosphere, just 
as it would have been acquired by a satellite. Various satellite perfor
mances can be simulated. Next, a specific method is applied to retrieve 
the variable of interest from the satellite data. Finally, the estimated 
value is compared with the reference value. The difference between the 
estimate and the reference indicates whether or not the satellite’s per
formance meets the application’s requirements. 

Fig. 3 gives the processing orders and the main parameters used in 
our simulations. 

The End-to-End simulator and the processing for each application are 
detailed in the following. 

3.1. End-to-end simulator 

The aim of the end-to-end simulator (Fig. 2) is to simulate the output 
signal, in spectral radiance unit, that a sensor can acquire, taking into 
account its own errors, and then to carry out the atmospheric correction 
to retrieve the spectral reflectance of the surface. 

All data processing was carried out using an end-to-end simulator 
developed and operated by the French Space Agency (CNES), so that 
results could be compared (Fig. 2). This simulator allows two types of 
input to be taken into account, depending on the data available for each 
application: surface reflectance spectra or airborne images expressed in 
radiance units. 

3.1.1. Input top-of-atmosphere spectral radiance 
The COMANCHE code (Poutier et al., 2002), based on MODTRAN 5.3 

(Berk et al., 2005), was used to calculate the TOA radiance. We chose the 
MODTRAN standard parameters which were coherent with the case 
studies, i.e. a mid-latitude summer atmosphere and a rural aerosol type 
with a 23 km horizontal visibility. The solar angular conditions were 
deduced from the input acquisition conditions (Table 4). A nadir 
viewing angle was applied for all images since they were all acquired at 
nadir. The resulting TOA spectral radiance is then processed further to 
simulate the acquired signals in the hyperspectral and panchromatic 
channels. 

3.1.2. Output top-of-atmosphere spectral radiance 
Several scenarios were explored to quantify the instrumental effects 

on the final products: 

● Two signal-to-noise ratios: optimistic (O) [100–400] @Lref and real
istic (R) [50–250] @Lref (Fig. 4), with Lref the reference radiance. 
Gaussian noise with a zero mean and a standard deviation σ was 
added to the input radiance. σ is equal to: 

σ(λ)=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a(λ) + b(λ).L(λ)

√

with a a constant noise and b a noise associated to the radiance, both 
depending on the spectral width, L the TOA radiance, and λ the central 
wavelength of the spectral band. Lref is defined for an albedo of 0.3, a sun 
zenith angle of 60◦ and nadir viewing, a standard mid-latitude winter 
atmosphere, and a continental aerosol type with a 23 km horizontal 

Table 4 
IS images used in this study, with θS sun zenith angle applied in subsequent 
simulations and all the images are acquired at nadir.  

Scientific 
domain 

Acquisition 
date 

Location Sensor 
characteristics 

Applications: 
Variable of 
interest 

Geosciences Sept. 2019 
θS = 50.5◦

Cherves- 
Richemont, 
France 

HySpex: 
GSDVNIR =

0.5 m 
GSDSWIR = 1 
m 

Mineralogy: 
gypsum, calcite 

Sept. 2019 
θS = 50.2◦

Chevanceaux, 
France 

HySpex: 
GSDVNIR =

0.5 m 
GSDSWIR = 1 
m 

Mineralogy: 
kaolinite 

June 2020 
θS = 15.8◦

Cuprite, NV, 
USA 

AVIRIS-NG 
GSD = 2.9 m 

Mineralogy: 
alunite, 
kaolinite, iron 
oxy-hydroxides 

June 2014 
θS = 76.1◦

Mountain 
Pass, CA, USA 

AVIRIS-NG 
GSD = 3.7 m 

Mineralogy: 
bastnaesite 
(carbonate- 
fluoride 
mineral, REE) 

Vegetation Sept. 2015 
θS = 47.3◦

Fabas Forest, 
France 

HySpex: 
GSDVNIR = 4 
m 
GSDSWIR = 4 
m 

Tree species 
classification 
(temperate 
forest, LAI = 3 
m2/m2): 20 
species 

June 2014 
θS = 17.9◦

Tonzi Ranch, 
CA, USA ( 
Fig. 11) 

AVIRIS-NG 
GSD = 4 m 

Mediterranean 
woodland 
savannah, (LAI 
= 0.8 m2/m2): 
Cab, Car, LMA 
and EWT 

Coastal 
waters 

July 2016 
θS = 31.3 −

32.3◦

Roscoff, 
France 

HySpex 
GSDVNIR =

0.5 m 

Bathymetry 

Sept. 2017 
θS = 42.4◦

Porquerolles 
Island, France 
(Fig. 13) 

HySpex 
GSDVNIR = 1 
m 

Bathymetry, 
Water column 
estimation: 
phytoplancton, 
SPM, CDOM 
Bottom 
classification of 
shallow water. 

July 2019 
θS = 22.5◦

Camargue, 
France 

HySpex 
GSDVNIR = 1 
m 

June 2019 
θS = 25.5◦

Champeaux, 
France 

HySpex 
GSDVNIR =

0.5 m 

Classification of 
intertidal 
coastal habitats 
(10 classes) 

Urban area June 2015 
θS = 20.5◦

Toulon, 
France 

NEO-ODIN 
GSD = 0.5 m 

Urban land 
cover (10 
classes) 

Industrial 
site 

Sept. 2015 
θS = 58.2 −

60.7◦

Fos-sur-Mer, 
France 

HySpex 
GSD = 1.4 m 

Aerosol plume 

Oct. 2019 
θS = 15.0◦

New Mexico, 
USA 

AVIRIS-C 
GSD = 6.6 m 

Methane leaks  
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visibility.  

● Two absolute and interband calibration performances (Fig. 5): 
threshold (t) [5% absolute, 2% interband] and target (T) [3% abso
lute, 1% interband].  

● Six instrumental spectral response functions (ISRF) defining different 
sampling strategies, labelled from #1 to #6 (Table 5). Note that the 
spectral configurations #1 to #5 in the VISNIR are similar and that 
the spectral configurations differ mainly in the SWIR. The ISRF de
fines how sensible are each spectral channel to every incoming 
wavelength. The TOA equivalent radiance acquired in a given 

spectral band i is computed by: Li =

∫
ISRFi(λ). L(λ).dλ
∫

ISRFi (λ).dλ 
where L(λ) is the 

TOA radiance computed in section 3.1.1 and ISRFi(λ) the spectral 
response of band i. ISRFi(λ) is modeled as a Gaussian function with a 
central wavelength λCi and a full width at half maximum FWHMi. 
Table 5 provides the spectral step (i.e. the distance between λCi and 
λCi+1) and the spectral width (FWHM) of each sampling strategy. 
Note that strategy #5 is a sum of Gaussian functions with a linear 
increasing FWHM. Several ISRFs were tested as the matrix detector 
might have a limited number of lines to record all the spectral bands. 
This disadvantage can be overcome by widening the channels spec
tral width and thus reducing their number. To take into account that 
the central wavelength of each band may not be known precisely, the 
calculation includes a constant spectral shift of 1 nm, typical from a 
spectral calibration error. 

Note the instrument parameters used are realistic and that the sensor 
is technologically feasible. 

In summary, a scenario is defined by a spectral strategy (#1 to #6), a 
calibration performance (t for threshold or T for target) and a SNR (O for 
optimistic or R for realistic). Each scenario is then referred to as the triplet 
(spectral strategy, calibration, SNR). A star indicates that the comment 
applies to all possibilities in the triplet component. The reference sce
nario is (#1, T, O), i.e. 10 nm wide spectral channels with the lower 
calibration errors and the best SNR. 

In addition, the instrument introduces some blurring into the image, 

the magnitude of which depends on the wavelength and is modeled by 
the modulation transfer function (MTF). Due to the push-broom acqui
sition mode, the MTF is not equivalent along and across the satellite 
track (Fig. 6). When processing the spectral libraries, the MTF simula
tion is not activated as only one pixel is processed. 

The instrument also features a panchromatic channel (PAN). Four 
additional images were generated with two SNR (realistic or optimistic, 
Fig. 4) and two instrumental calibration performances (threshold or 
target). Fig. 7 shows the normalized sensitivity of the panchromatic 
channel and its point spread function at 639 nm. 

To summarize the end-to-end processing chain, the input TOA 
radiance is first affected by the MTF (reduction of the input spatial 
resolution), then by the ISRF (reduction of the input spectral resolution). 
At this point, the absolute calibration error as well as the inter-band 
calibration error are applied. The last step corresponds to the instru
mental noise simulation. 

In the end, for each input image, this experimental design produced 
twenty-four simulated images representative of various instrumental 
performances. However, the sensor design does not yet allow us to take 
into account other potential defects, such as stray light, geometric errors 
(geolocation, band registration, etc.), across-track variations in instru
ment characteristics (MTF, ISRF, etc.) including the smile effect, polar
ization sensitivity, directional effects induced by slowing down the 
satellite during acquisition or, and detector defects (remanence, dead 
pixels, etc.). 

3.1.3. Spectral surface reflectance 
The complexity of atmospheric correction algorithms allow them to 

be adapted to different situations. In this study, simulated data or images 
have been corrected for atmospheric effects with high performance so as 
not to interfere with the other parameters of interest (i.e., instrument 
configuration). However, some typical sources of error are accounted 
for:  

● An error of 5 km in horizontal visibility: the upward transfer is 
performed with a visibility of 23 km and the downward transfer with 
a visibility of 18 km. Aerosol type remains unchanged. 

Fig. 2. Overview of the end-to-end simulator.  

Fig. 3. Processing order of the end-to-end simulation chain. *: Not applied on applications based on TOA images (gas content estimation, pan-sharpening), **: Not 
applied on spectral libraries. ISRF: instrumental spectral response function, MTF: Modulation transfer function. 
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● A 5% error in the water vapor content: the downward transfer is 
calculated with 95% of the water vapor content simulated on the 
upward transfer. 

As the upward transfer is done numerically, the atmospheric 
correction can be carried out with the same performance whatever the 
target. This choice makes it possible to compare images from one 
application to another. 

3.2. Description of methods by scientific field 

For each scientific field covered by this study, Table 6 provides the 
variables of interest, the input format, the method used to estimate these 

variables, the bibliographic reference detailing the method and the 
evaluation criteria. 

3.2.1. Geosciences 
A first assessment of the impact of instrument characteristics was 

carried out qualitatively on spectra of representative minerals extracted 
from the spectral library and image pixels. The positions and shapes of 
their absorption features enabled us to visually evaluate the different 
scenarios, in particular with regards to the spectral strategy. Next, a 
quantitative assessment was carried out using the Spectral Analyst (SA) 
algorithm in the ENVI software (https://www.nv5geospatialsoftware. 
com/). This compares the spectra of representative minerals with 
those of a reference spectral library at the same spectral resolution, 

Fig. 4. Top: reference spectral radiance, Lref, used to define SNR. Bottom left: optimistic SNR. Bottom right: realistic SNR.  
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resampled according to the spectral characteristics (band positions and 
full width at half maximum) of the different strategies. This procedure 
enabled us to assess the impact of instrument calibration and SNR. To 
compare the spectra, we used two well-known spectral matching tech
niques called Spectral Angle Mapper (SAM) (Kruse et al., 1993) and 
Spectral Feature Fitting (SFF) (Clark et al., 1990). SAM determines the 
spectral similarity between two spectra by treating them as two vectors 
in a space whose dimensionality is equal to the number of bands, and 

calculating the angle between these vectors. This technique is insensitive 
to illumination and albedo effects when used on calibrated reflectance 
spectra. SFF is based on the least squares method. The reference spectra 
are scaled to match the unknown spectra after the continuum is removed 
from both (Clark et al., 1990; Mars and Rowan, 2010). SAM and SFF 
values are calculated on VNIR (0.4–1.3 μm), SWIR1 (1.3–2.0 μm) and 
SWIR2 (2.0–2.5 μm) to avoid as far as possible problems associated with 
atmospheric corrections in the two main water vapor absorption bands 
around 1.4 and 1.9 μm. This also allows us to focus on spectral ranges 
where the selected minerals exhibit diagnostic absorption features, 
which is recommended with these spectral matching techniques. The SA 
result is a ranked or weighted score, with higher scores indicating 
greater confidence. 

Soil moisture content is estimated by inversion of the MARMIT 
model, which represents a wet soil as a dry soil covered by a thin layer of 
liquid water of thickness L (Bablet et al., 2018). The dry soil can be fully 
or partially covered with water, with a coverage fraction equal to ϵ. The 
two input parameters of MARMIT, L and ϵ are estimated by minimizing 
the cost function: 

χ2(L, ϵ)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑λ2

λ1

(Rmeas(λ) − Rmod(λ, L, ϵ))2

nλ

√
√
√
√
√

with nλ the number of wavelengths (or channels), Rmeas the measured 
soil reflectance, and Rmod the soil reflectance estimated by MARMIT. The 
lower and upper bounds of the model parameters are 0 and 1 for ϵ, 0 and 
0.2 cm for L. A calibration step is required to establish a statistical 
relationship between the mean water thickness (mean light path) 

Fig. 5. Absolute and interband calibration errors: threshold and target.  

Table 5 
Spectral sampling strategies. The spectral range from 1850 to 1950 nm is unused.  

Sampling 
Strategy 

VNIR (400–900 nm) SWIR (900–1850 nm/1950–2400 nm) 

Spectral step 
(nm) 

Spectral width 
(nm) 

Number of 
channels 

Spectral step 
(nm) 

Spectral width (nm) Number of 
channels 

#1 10 10 51 10 10 136 
#2 10 10 51 20 20 68 
#3 10 10 51 16 16 85 
#4 10 10 51 22 for λ ≤ 1.95 

10 for λ > 2.05 
22 for λ ≤ 1.95 
10 for λ > 2.05 

86 

#5 10 10 51 12 Linear increase from 14 to 17 nm over [0.9–1.3], 
[1.3–1.8], and [1.95–2.4], 

112 

#6 8 16 63 10 20 136  

Fig. 6. Modulation transfer function (MTF) of five spectral bands of the instrument in the frequency domain.  
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Fig. 7. (Left) Normalized sensitivity of the panchromatic channel. (Right) Point spread function at 639 nm.  

Table 6 
Methods used to retrieve application-related variables. SA: Spectral Analyst, SAM: Spectral Angle Mapper, SD: standard deviation, SFF: Spectral Feature Fitting, SVM: 
Support Vector Machine, PLS: Partial Least Square, ACE: Adaptive Coherence Estimator, RMSE: Root-Mean-Square Error, PM: Particle Matter.  

Scientific 
domain 

Variable of interest Type of IS 
inputs (unit) 

Method and author Reference value of the 
variable of interest 

Evaluation criteria 

Geosciences Mineral composition Image (surface 
reflectance) 

Visual assessment 
SAM (Kruse et al., 1993) 
SFF (Clark et al., 1990) 

Mineralogical maps of 
the site 

Position and shape of absorption 
features 
Identification if SA > 0.7 and SAM <0.2 
Identification if SA > 0.7 and max 
(RMSE of SFF) > 0.1 

Soil moisture content Spectra 
(surface 
reflectance) 

MARMIT model (Bablet et al., 2018) Laboratory 
measurements 

RMSE between laboratory input and 
satellite outputs 

Vegetation Tree species classification Image (surface 
reflectance) 

Supervised classification: SVM with 
Radial Basis function (Gimenez et al., 
2022) 

In situ measurements Mean, RMSE values of Overall 
Accuracy, F-score over the 24 scenarios 
and 30 iterations each 

Leaf functional traits Image (surface 
reflectance) 

Hybrid method using DART/PROSPECT 
simulations and PLSR (Miraglio et al., 
2022) 

Traits maps from a high 
spatial resolution image 

RMSE by comparing ISRF #1 and the 
others ISRF 

Coastal 
zones 

Bathymetry Image (surface 
reflectance) 

HYPIP processing chain (Lennon et al., 
2013) 

Lidar measurements SD and RMSE/bathymetric Lidar 

Bathymetry and bio- 
optical aquatic 
parameters 

Image (surface 
reflectance) 

Hybrid method based on the Lee model ( 
Lee et al., 1999; Minghelli et al., 2020) 

Lidar measurements, in 
situ water 
characterization 

RMSE/in situ data 

RE(%) =
100
N

∑N
i=1

⃒
⃒ŷi − yi

⃒
⃒

yi
/in situ 

data 
Classification of intertidal 
coastal area 

Image (surface 
reflectance) 

With and without IS Pansharpening +
Fully Constrained Least Square – the 
endmembers are known (Heinz and 
Chang, 2001) 

Manual in situ 
classification map 

Normalized RMSE on abundance 

Intertidal coastal area Spectra 
(surface 
reflectance) 

PLS and discriminant analysis (Lee et al., 
2018) 

In situ field spectra Kappa coefficient 
Overall Accuracy 

Urban area Urban Land Cover 1 Image (TOA 
radiance) 

IS Pansharpening, Random Forest 
classification (Loncan et al., 2015) 

Manual classification Good classification rate/reference 
image 

Urban Land Cover 2 Image in TOA 
radiance unit 

Upsampling of the IS image, SVM 
classification, fusion with PAN ( 
Ouerghemmi et al., 2017) 

Manual classification Mean F-Score over the classes 

Industrial 
site 

PM1 Flux of industrial 
aerosol plume 

Image (TOA 
radiance) 

Multitemporal algorithm (Foucher et al., 
2019) 

In situ measurements Estimated error 
High objective: <80 μg/m3 

Low objective: <150 μg/m3 

Methane concentration of 
industrial plume 

Image (TOA 
radiance) 

Plume detection with ACE detector, 
quantification of the concentration ( 
Nesme et al., 2021) 

JPL estimation Estimated error 
High objective: <1000 ppm m 
Low objective: <1500 ppm m 

Cryosphere Specific Surface Area, 
equivalent black carbon 
content of snow 

Spectra 
(surface 
reflectance) 

Hybrid method with TARTES (Dumont 
et al., 2017) 

Simulations Bias, standard deviation of the 
estimates/reference inputs 

Atmosphere Water vapor and CO2 Spectra (TOA 
radiance) 

Optimal estimation theory (Herbin et al., 
2013) 

Simulations RMSE 

Aerosols Spectra (TOA 
radiance) 

GRASP and optimized fitting following the 
multi-term Least Square Method (Dubovik 
et al., 2021) 

Simulations RMSE  
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defined as φ = L × ϵ and the measured SMC. The evaluation of the 
method consists in retrieving SMC by applying the relation found in the 
calibration step and comparing it with the measured values. The RMSE is 
calculated on 160 SMC values ranging from 5 to 85%. 

3.2.2. Vegetation 
A supervised support vector machine (SVM) classification is applied 

together with a radial basis function (RBF) kernel to classify tree species 
on the basis of spectral signatures extracted from the HySpex image and 
corresponding to the field inventory. Two subsets are randomly gener
ated, a training one (70%) and a validation one (30%). The training 
subset is used to optimize the RBF-SVM hyper-parameters, C and 
Gamma. The strategy followed is based on an exhaustive grid search 
strategy with 5-fold cross validation aimed at maximizing the overall 
accuracy (OA) of the classifier. The space defined by C values ranging 
from 10− 2 to 109 and Gamma values ranging from 10− 7 to 10 is 
explored. The model is then trained using the parameters obtained and 
the training subset. Next, the trained SVM classifier is applied to the 
validation subset. The method’s performance is evaluated using the OA 
and F-score, the user and producer accuracy for each class. As the scores 
can depend on initial conditions, the whole procedure is repeated 30 
times and the mean and RMSE of each accuracy score is calculated. 
Thirdly, the tree species map is produced using the same scheme with 
the spectral signature dataset for the training and the image for appli
cation. Ultimately, the relevance of each of the twenty-four scenarios is 
evaluated using this classification scheme, and compared using the 
mean and standard deviation of the accuracy scores obtained. 

Leaf functional traits are estimated using a hybrid method based on 
training a partial least squares regression (PLSR) on the previously 
described spectral database generated by DART. An automatic deter
mination of the optimal number of latent variables and a selection of the 
most important variables in the projection design are performed for the 
PLSR parameterization. To optimize trait extraction, the spectral range 
is adapted to the influence of each trait: 0.5–0.8 μm for chlorophyll 
(Cab) and carotenoids (Car), and 1.5–2.4 μm for leaf mass per area 
(LMA) and equivalent water thickness (EWT) (Miraglio et al., 2022). 
Then, the optimal trained PLSR is applied on the airborne image to 
derive inversion maps of leaf traits, and the RMSE is calculated by 
comparing the reference scenario (#1) with the others (#2 to #6). 

3.2.3. Coastal zones 
Shallow water bathymetry is estimated in the 400–900 nm range 

using the SWIM® software developed by Hytech-imaging (Lennon et al., 
2013). SWIM® includes modules for the correction of the sun glint at the 
surface and for the correction of the air/water interface. Both SWIM and 
HYPIP include modules for uncertainty propagation from the sensor to 
the final products. Another method is applied to simultaneously esti
mate bathymetry and bio-optical parameters and perform shallow water 
bottom classification (Lee et al., 1999; Minghelli et al., 2020). The 
aquatic bio-optical parameters are chlorophyll, suspended particulate 
matter (SPM), colored dissolved organic matter (CDOM), depth, bottom 
sediment abundance, zosters, green and red algae. 

A fully constrained least squares (FCLS) unmixing method is also 
applied to the airborne VNIR image to estimate the abundance of the 
several seabed species. Partial least squares - discriminant analysis (PLS- 
DA) analysis (Lee et al., 2018) is then used for VNIR-SWIR field spectra 
to evaluate the discrimination performance of BIODIVERSITY configu
rations. This method can be applied to datasets with few observations 
and many explanatory variables (spectral reflectance), as is the case 
with the spectral library used in this study. 

3.2.4. Urban area 
Considering that a GSD of 10 m is not sufficient to classify an urban 

area, a hyperspectral pansharpening method called Gain is first applied 
(ULC1). It is inspired by the Brovey transform applied to the RGB + PAN 
case (Saroglu et al., 2004), but has been generalized to the HS + PAN 

case (Loncan et al., 2015). A supervised classification method (random 
forest) is then applied to the resulting image. Ten classes are selected, 
each composed of twenty spectra. The calibration and validation phases 
follow the k-fold method: random selection of five groups with a uni
form distribution of each class, then four groups are used for calibration 
and the last one for validation. A second urban land cover (ULC2) 
method is applied. First, a hyperspectral image is oversampled (bilinear 
interpolation) to a GSD of 2.5 m corresponding to the panchromatic 
band. Then, a supervised SVM classification is performed. Ten classes 
are considered. Fifty training samples were selected for each class, to 
provide a model unbiased by the unbalanced distribution of classes. This 
number is considered sufficient to obtain efficient classification models, 
while keeping a sufficient number of validation samples. For each 
classification, ten iterations of the classification process (involving 
random selection of training samples) are performed. The classification 
results are evaluated by averaging the F-scores over the classes. 

3.2.5. Industrial site 
Characterization of PM1 aerosols in an industrial plume uses a multi- 

temporal algorithm (Foucher et al., 2019). The objective is to determine 
the difference between two images corrected for illumination and 
viewing angles, acquired in two wind directions to enhance the PM1 
plume signature. The differential model depends on aerosol properties, 
such as radius, single scattering albedo, and concentration. A correlation 
map (adaptive coherence estimator, ACE) between the temporal dif
ferential and the a priori plume signature from different aerosols types is 
then calculated. The model assumes a constant layer height of 100 m: for 
a GSD of 10 m, a mass of 1 g would correspond to a concentration of 100 
μg/m3, or a column concentration of 10− 2 g/m2. Pixel concentration is 
estimated using a linear formalism. To validate the estimate, the error 
must be below a given threshold (high or low objectives) (Table 6). 

Industrial methane plumes are characterized in two stages (Nesme 
et al., 2021). To validate the estimate, the error must be below a given 
threshold (Table 5): a low threshold associated with a flow rate of 
around 30 g/s, a high threshold associated with a flow rate of around 50 
g/s. The detection map is built from thresholds on the ACE detector, on 
the residuals, and on a priori sensitivity. The amount of excess methane 
is associated with the transmission τgaz deduced by inversion of the 
equation: 

L∗
g = L∗

ng τgaz (2)  

with L∗
g the sensor radiance corresponding to excess gas in the optical 

path and L∗
ng the sensor radiance of the same pixel without excess gas, 

both corrected for atmospheric path radiance. 

3.2.6. Cryosphere 
The snow surface is characterized by two properties accessible from 

imaging spectroscopy (Dumont et al., 2017): the specific surface area 
(SSA), the ratio between the surface area of air-ice and the snow mass 
and the equivalent black carbon concentration (eBC). The extraction 
method finds optimal values for the two variables that minimize the 
difference between a large set of measured reflectance data and TARTES 
simulations. 

3.2.7. Atmosphere 
The method for quantifying water vapor and carbon dioxide used the 

Shannon information content with the formalism proposed by Rodgers 
(2000). It introduces the theory of optimal estimation, widely described 
by Herbin et al. (2013). The a priori errors of the CO2 and H2O profiles 
are set at 5% and 10% respectively. The covariance matrix of mea
surement errors is deduced from instrument performance and accuracy. 
The latter is related to the radiometric noise expressed by the SNR 
defined as Optimistic-Target, and Realistic-Threshold. The accuracy of 
non-retrieved parameters is set to δT = 1K, compatible with the typical 
values used by the European Centre for Medium-Range Weather 
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Forecasts on each layer of the temperature profile for assimilation, and 
to an uncertainty of 0.5◦ on the optical path. 

The atmospheric aerosol retrieval method uses the GRASP algorithm. 
The inversion procedure is based on a statistically optimized least 
squares method and combines the advantages of a variety of approaches 
(Dubovik, 2004). This method has already been applied to PRISMA 
images (Litvinov et al., 2021). 

4. Results 

4.1. Geosciences 

Table 7 presents only a representative subset of the results focusing 
on cases with spectral strategies (#1, #2, #5 and #6) and with realistic 
SNR conditions representing medium and extreme scenarios. 

All diagnostic gypsum absorption bands (Table 1) are detected. As 
expected, there is also an impact of smoothing due to a lower spectral 
resolution on the shape of the secondary 2.21 μm absorption for # 2 and 
# 6. In terms of quantitative evaluation (Table 7), the SAM score 
(respectively SFF) is above 0.75 (resp. 0.61) in SWIR1 except for (#2, T, 
R), and 0.90 (resp. 0.73) in SWIR2. Whatever the scenario, good scores 
are obtained with SWIR1 except for (#2, T, R) where gypsum is not 
identified despite a higher SNR (150:1). 

Diagnostic absorption of calcite at ~2.34 μm is present for all sce
narios but smoothing (#2, #5, and #6) has an impact on shape and 
position, leading to possible confusion with dolomite, another carbon
ate, whose absorption is located at ~ 2.33 μm. For all scenarios, sec
ondary absorption at ~2.16 μm is very low. Whatever the scenario 
(Table 7), the SAM score is > 0.88 and the SFF score >0.73. 

The kaolinite doublet (Table 1) is visible for #1 and slightly visible 
for #5 and #6 for which the weaker absorption at ~ 2.16 μm is atten
uated (Fig. 8). Confusion with other clay minerals is possible and the 
crystallinity of kaolinite cannot be characterized because the relative 
strength of the doublet absorptions is modified. Unfortunately, the 
kaolinite doublet is no longer visible with #2. According to Tables 7 and 
in all scenarios, SAM remains >0.88 and SFF >0.76. 

For gypsum, the diagnostic absorption at 1.76 μm is present. The 
other absorptions are detected regardless of the scenario, except for (#2, 
T, R) and (#5, T, R) for which there is a small difference in the right- 
hand side of the absorption at ~2.16 μm that could hamper identifica
tion when using a feature-fitting approach. However, high scores are 
obtained (SAM >0.85 and SFF >0.77). 

Diagnostic absorptions in the VNIR for goethite and hematite are 
detected whatever the scenario; meanwhile residual peaks related to 
atmospheric correction can be corrected. This is confirmed by the fact 
that SAM can detect goethite (score >0.73) but hematite detection re
mains more challenging (score >0.64). In contrast, SFF cannot detect 
the corresponding absorption bands (score <0.53). 

All jarosite absorption bands are detected in the infrared, regardless 
of the scenario tested, leading to SAM scores >0.79 in the VNIR and 

>0.87 in the SWIR. High scores >0.71 are also achieved with SFF except 
for (#6,T,R). However, whatever the scenario, the jarosite absorption at 
~0.45 μm is not detected because it is partially cut off, being located at 
the edge of the VNIR; this could be a problem for jarosite identification. 

The montmorillonite absorption band is detected for all scenarios 
except for (#2,T,R), where a shape change is detected. SAM and SFF 
scores are high, >0.9 and >0.73, respectively. 

Finally, rare-earth elements (bastnaesite, monazite and xenotime) 
spectra show clear diagnostic absorptions in the VNIR for all scenarios 
(Fig. 9). However, instrument calibration and atmospheric correction 
errors induce “peaks” located in the absorption bands of dioxygen 
(~0.76 μm) and water vapor (~0.94 and ~1.13 μm). This explains the 
poor SFF scores. On the contrary, SAM scores are >0.67, the lowest score 
being obtained for (#6,T,R). 

Estimated soil moisture content is unaffected by the scenarios, with a 
mean RMSE of 2.6% and a standard deviation of 0.1%. 

4.2. Vegetation 

The overall accuracy (OA) performance is summarized in Table 8 for 
tree species classification. 

The overall accuracy of optimistic simulations (mean OA value 0.82) 
is better than that of realistic simulations (mean OA value 0.76), what
ever the sampling strategy. Performance depends only on the SNR (7% 
loss between optimistic and realistic), but not on calibration. 

For the estimation of leaf functional traits, the optimistic and realistic 
scenarios perform similarly regardless of the trait studied, and are not 
further discriminated in the following. Fig. 12 shows the Cab, Car, LMA 
and EWT maps obtained with scenario (#1,T,O). Comparison of leaf 
trait estimation performance for sampling strategies #2 to #6 versus #1 
leads to an average RMSE of 2.2 μg/cm2 for Cab (average standard de
viation of 0.5 μg/cm2), 0.8 μg/cm2 for Car (resp. 0.1 μg/cm2), 0.0008 g/ 
cm2 for LMA (resp. 0.0003 g/cm2) and 0.0014 g/cm2 for EWT (resp. 
0.0000 g/cm2). In fact, the same RMSE values are found for EWT 
whatever the scenario. The performance of threshold compared with 
target deteriorates slightly, with an average increase in RMSE of 0.5 μg/ 
cm2 for Cab, 0.1 μg/cm2 for Car and 0.0004 g/cm2 for LMA. Globally, 
whatever the scenario, similar performances were obtained in terms of 
RMSE. 

These results can be compared to absolute RMSE values of 8.5 μg/ 
cm2 for Cab under the same conditions (Miraglio et al., 2020), or to an 
RMSE of 8.1 μg/cm2 for a sparse coniferous forest (Zarco-Tejada et al., 
2019). For Car, Miraglio et al. (2020) found an RMSE of 2.24 μg/cm2, 
Zarco-Tejada et al. (2013) an RMSE of 0.9 μg/cm2 on crops and Asner 
et al. (2015) an RMSE of 0.2 μg/cm2 on tropical forests. Over tropical 
forests, Chadwick and Asner (2016) found an RMSE of 0.0020 g/cm2 

and Asner et al. (2015) an RMSE of 0.0023 g/cm2 for LMA. Buddenbaum 
et al. (2015) estimated EWT on European beech seedlings with an RMSE 
of 0.0007 g/cm2, within a range of 0.001–0.008 g/cm2. Li et al. (2008) 
retrieved EWT with an RMSE of 0.0132 g/cm2 from optical libraries and 

Table 7 
SAM/SFF scores from Spectral Analyst (SA) tool (scenario #, t for threshold, T for Target, R for Realistic). Note that SA was performed on a subset of the SWIR2 to avoid 
the problem caused by CO2 absorption peaks. In the SWIR1, gypsum and alunite scores are estimated by excluding atmospheric water vapor absorption at 1.4 μm.  

Mineral (#1, T, R) (#1, t, R) (#2, T, R) (#5, T, R) (#6, T,R)  

VNIR SWIR 1 SWIR 2 VNIR SWIR1 SWIR 2 SWIR1 SWIR 2 SWIR 1 SWIR 2 VNIR 
Gypsum  0.77/0.64 0.90/0.77  0.75/0.61 0.90/0.84 0.00/0.58 0.94/0.92 0.96/0.94 0.93/0.88  
Calcite   0.91/0.73   0.88/0.82  0.94/0.92  0.94/0.89  
Kaolinite   0.91/0.78   0.88/0.76  0.92/0.85  0.92/0.85  
Alunite  066/0.49 0.89/0.80  0.43/0.00 0.85/0.77 0.00/0.57 0.88/0.84 0.72/0.94 0.90/0.84  
Goethite 0.73/0.47   0.77/0.53       0.84/0.10 
Hematite 0.68/0.27   0.65/0.18       0.64/0.00 
Jarosite 0.80/0.71  0.91/0.70 0.79/0.70  0.87/0.71  0.95/0.91  0.93/0.87 0.85/0.01 
Montmorillonite   0.90/0.73   0.90/0.79  0.95/0.91  0.94/0.88  
Bastnaesite 0.68/0.40   0.67/0.40       0.61/0.03 
Monazite 0.75/0.40   0.75/0.43       0.74/0.15 
Xenotime 0.69/0.60   0.71/0.70       0.64/0.21  
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simulated data. 

4.3. Coastal zones 

For bathymetry, since scenarios #1 to #5 have the same spectral 
strategy in the VNIR, only scenarios #1 and #6 will be compared. 
Table 9 summarized the results for the three images used to estimate 
bathymetry. 

Water depth is estimated at between 0 and 10 m in Porquerolles Is
land and between 0 and 2.5 m in Camargue. 

For Roscoff, the (*,T,*) scenarios give better results than the (*,t,*) 
scenarios (decrease of around 0.7 m). Scenario #6 tends to smooth out 
the results, with a noise distribution similar to that of scenario #1. The 

impact of calibration is therefore the most critical factor. The perfor
mance of bathymetric products calculated with the target calibration is 
consistently better than that calculated with the threshold calibration. 
Using the best configuration (#1,T,*), bathymetric product performance 
is close to that calculated with the original HySpex data. The SNR effect 
is insignificant, but caveats can be made about the impact of noise 
inherent in the source data, which could have an impact on the cali
bration present value and noise effects. 

For Porquerolles, the target calibration gives better results than the 
threshold calibration (Fig. 14). The difference between derived ba
thymetry and the in-situ data is small (RMSE <2.8 m) including for the 
threshold calibration case corresponding to a relative error <30% which 
remains satisfactory (Dekker et al., 2011). Retrieval performance is 
better for #6 than for #1. For Camargue, the target calibration provides 
20% better bathymetry retrieval than that obtained with the threshold 
calibrations. The latter is not acceptable: the relative difference between 
bathymetry retrieval and in-situ data is ~80%. Performance is consis
tently better for sampling strategy #1 than for sampling strategy #6. 

The use of synthetic dataset is relevant for developing remote sensing 
inversion algorithm dedicated to retrieve the bathymetry in coastal 
ecosystems. A relative error <20% should ideally be sought to signifi
cantly improve understanding of these ecosystems. For the classification 
of shallow water bottoms, Tables 10 and 11 give the classification results 
obtained for Porquerolles Island and Camargue. 

For Porquerolles, the average RMSE found for retrieval of bottom 
abundance fractions varies according to the background (Fig. 14): sand 
(30-28%), Posidonia oceanica (32–46%) and Caulerpa taxifolia (4–24%). 
The lowest RMSE is obtained on the latter with an RMSE <10% except 
for (#1,T,R) and (#6,T,R). The best scenarios are (#1,T,O), (#6,T,O), 
(#1,t,O), (#6,t,O), (#1,t,R) and (#6,t,R). For Camargue, the RMSE error 
is between 2% and 49% for all scenarios. The retrieval of zoster species 
(between 2% and 19%) leads to the best results. Overall, the best sce
nario for estimating the four variables is (#6,T,O). The performance of 
the inversion is better for most of the retrieved parameters in the case of 
the Camargue area than that of Porquerolles Island. As the bathymetry 

Fig. 8. Three kaolinite spectra extracted from the Chevanceaux image, from left to right: (#1,T,R), (#5,T,R), (#2,T,R).  

Fig. 9. Representative rare-earth elements spectra extracted from the Mountain Pass image. Left: Reference USGS reflectance spectrum. Right: Reflectance for 
scenario (#1,t,R) after atmospheric correction. 

Table 8 
Overall accuracy performance of tree species classification.   

Optimistic Realistic 

Target Threshold Target Threshold 

#1 0.82 ± 0.03 0.83 ± 0.03 0.76 ± 0.04 0.76 ± 0.03 
#2 0.81 ± 0.02 0.81 ± 0.03 0.74 ± 0.03 0.74 ± 0.04 
#3 0.82 ± 0.03 0.81 ± 0.03 0.75 ± 0.03 0.77 ± 0.02 
#4 0.82 ± 0.03 0.81 ± 0.03 0.75 ± 0.03 0.75 ± 0.03 
#5 0.82 ± 0.03 0.82 ± 0.03 0.78 ± 0.03 0.76 ± 0.03 
#6 0.83 ± 0.04 0.84 ± 0.02 0.77 ± 0.03 0.79 ± 0.04  

Table 9 
Bathymetry performance obtained on the three images.   

RMSE (m) 

Site Roscoff Porquerolles Island Camargue 

Scenario #1-5 #6 #1-5 #6 #1-5 #6 
Optimistic, Target 1.0 1.2 1.5 1.2 0.3 0.4 
Optimistic, Threshold 1.7 1.8 2.0 1.6 0.4 0.5 
Realistic, Target 1.2 1.2 2.2 1.4 0.3 0.4 
Realistic, Threshold 1.8 1.8 2.8 1.7 0.4 0.5  
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of Camargue is much lower than that of Porquerolles Island, the TOA 
radiance is higher, which reduces the influence of sensor noise on 
retrieval performance. A degradation in sensor calibration induces a 
significant decrease in inversion performance and thus reduces the 
ability to correctly derive bathymetry in shallow water. Sensitivity to 
SNR shows that a strategy involving wider spectral bands is preferred (i. 
e., Porquerolles Island). The narrow spectral band strategy only has an 
advantage when SNR is not the limiting factor, typically for shallow 
water sites such as Camargue. Estimates of abundance fraction of bottom 
species proved to be inconsistent and non-exploitable (RMSE >3 m) for 
bottom depths >10 m. 

For coastal habitat classification, unmixing performance was evalu
ated on the VNIR hyperspectral image and compared with the reference. 
RMSE performance is very similar across all scenarios (average RMSE 
4.65%, average standard deviation 3.73%). A slight improvement is 
obtained using pansharpened images (4.26% and 3.40%, respectively). 
This is not surprising given the high spatial heterogeneity of these areas 
and the need for fine spatial resolution to improve the accuracy of 
biological component estimates. The best performances were obtained 
with (#6,T,O) and (#1,T,O), and the worst with (#1,t,R) with or 
without prior pansharpening. 

Finally, PLS-DA applied to the VNIR-SWIR spectral library on a 
limited number of scenarios (#1,T,R), (#2,T,R), (#5,T,R), (#1,t,R) led 
to better performances than those obtained with VNIR images (Kappa 
ranging from 0.76 to 0.92). The application studied here (coastal 
benthic habitats in heterogeneous intertidal area) seems more sensitive 
to instrumental noise. Among the four scenarios tested, the best per
formance is obtained with (#2,T,R). Wide bands, as provided by #2, 
having a better SNR therefore improve the results underlining the 
importance of SNR in the discriminant process. 

4.4. Urban land cover 

Whatever the scenario, performance is very similar. With the ULC1 
method (Fig. 15), OA performance is between 66 and 67% with target 
calibration and between 64.9 and 65.1% with threshold calibration. With 
the ULC2 method, all scenarios are similar, with an F-score of ~54% ±
0.1. This classification is based primarily on the overall spectral shape of 
the reflectance and is therefore insensitive to spectral strategies. 

4.5. Industrial site 

To estimate PM1 aerosols, only the VNIR is used. Consequently, only 
sampling strategies #1 and #6 are considered. First, the detection per
formance of the aerosol plumes present in the images is evaluated by 
estimating the percentage of true positives and false positives compared 
with the airborne image used as a reference (Table 12). As performance 
does not depend on calibration, only an average value is given. 

The detection rate varies from 56% to 67% and the false detection 
rate from 19% to 23%. There is no trend between these values and 
changes in the instrument specifications, especially with the optimiza
tion of segmentation parameters. Table 13 shows the average sensitivity 
to aerosol properties estimated from the differential image for #1 and 
#6. This includes uncertainty due to instrumental mode, native noise, 
registration errors and radiative transfer model assumptions. This image 
was acquired with a high sun zenith angle and a low spatial extent of the 
plume. With this particular geometry, the downward solar flux does not 
pass through the plume, leading to poor soot estimation whatever the 
strategy. 

When the aerosol model is known, the high objective of 80 μg/m3 is 
reached for (*,T,O), and the acceptable low objective of 150 μg/m3 is 
reached for all scenarios. However, when the aerosol model is unknown 
(uncertainties in radius and soot fraction), the increase in uncertainty 
depends on the sensitivity of the estimate of aerosol radius and soot 
content. Only scenarios (#1,T,O), (#1,t,O) and (#6,t,O) meet the low 
objective. 

Table 14 shows methane estimates. In the case of a realistic SNR and 
a threshold value for calibration, sampling strategy #3 achieves the low 
objective of 1500 ppm m. Sampling strategy #1 is better than strategy 
#3 in the case of high SNR (optimistic), but has no advantage in the case 
of low SNR (realistic). Sampling strategy #6 performs better at all SNRs 
and provides results within the high objective of 1000 ppm m. However, 
due to the low spectral resolution, it leads to an increase in false alarms 
compared with the other strategies, which induced a bias in the flow rate 
estimation. For sampling strategies #1 to #5, the high objective is only 
achieved with a high SNR (optimistic). 

4.6. Cryosphere 

Table 15 shows the results of retrieval of specific surface area (SSA) 
and equivalent black carbon (eBC) concentration. The results show that 
instrumental noise and sampling strategy have a negligible effect 
compared with calibration errors. SSA retrieval is generally satisfactory, 
while eBC concentration retrieval is more challenging. In some cases, 
degradation of the spectral strategy slightly modifies sensitivity to other 
errors. Thus, a high-performance calibration should enable us to esti
mate these two key parameters, whereas a low-performance calibration 
will only give access to SSA. The retrieval of SSA and eBC concentration 
is not affected by the change in spectral resolution from 10 to 20 nm in 
the SWIR. 

4.7. Atmosphere 

Table 16 summarizes the total uncertainties of the H20 and CO2 at
mospheric columns. As the variations in performance are not very large, 
only the two extreme cases (*,T,O) and (*,t,R) are shown. 

For water vapor, whatever the sampling strategy, the degradation in 

Table 10 
RMSE error for bottom abundance fraction retrieval in Porquerolles Island.  

Scenario Sand (%) Posidonia oceanica (%) Caulerpa taxifolia (%) 

(#1,T,O) 29 33 8 
(#6,T,O) 28 32 4 
(#1,t,O) 30 33 4 
(#6,t,O) 29 33 4 
(#1,T,R) 38 46 24 
(#6,T,R) 29 34 11 
(#1,t,R) 30 35 4 
(#6,t,R) 28 32 4  

Table 11 
RMSE error for bottom abundance fraction retrieval in Camargue.  

Scenario SPM (%) Zoster (%) Green algae (%) Red algae (%) 

(#1,T,O) 11. 19. 23. 23. 
(#6,T,O) 15. 2. 17. 26. 
(#1,t,O) 20. 7. 25. 49. 
(#6,t,O) 34. 5. 10. 49. 
(#1,T,R) 14. 17. 15. 27. 
(#6,T,R) 17. 6. 16. 32. 
(#1,t,R) 2. 11. 18. 49. 
(#6,t,R) 31. 9. 9. 49.  

Table 12 
Detection rate compared with the airborne image.   

True positive (%) False positive (%) 

(#1,t, O), (#1, T, O) 56 19 
(#6,t, O), (#6, T, O) 64 23 
(#1,t, R), (#1, T, R) 64 21 
(#6,t, R), (#6, T, R) 67 23  
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SNR and image quality leads to a slight increase in the average uncer
tainty from 4.5 to 5.7%. Total uncertainty on the tropospheric CO2 
profile is minimum at around 2.0 with (#1,T,0), corresponding to an 
uncertainty of 8 ppm on the estimated tropospheric CO2 column. It is 
maximum at around 2.6 with (#2,T,R), corresponding to an uncertainty 
of 10.5 ppm on the estimated tropospheric CO2 column. Thus, sampling 
strategy #1 is the best option, while #2 is the least favorable. In contrast 
to H2O, the best SNR is preferable to spectral resolution for a better 
estimation of the tropospheric CO2 column. Finally, in the case of 
simultaneous restitution of both gas concentrations, the choice of 
spectral strategy will depend mainly on the measurement noise. 

Fig. 10 shows retrieved versus assumed AOT in the forward radiance 
simulations, the former thus representing the reference (true) values, at 
492 nm and 865 nm. Consistently good spectral retrieval indicates 
correct aerosol model identification. The figure shows the AOT corre
lations for SNR = 200 (spectral bands centered on 419, 441, 492 and 
546 nm) and SNR = 100 (spectral bands centered on 669, 770, 865 and 
2190 nm) for the scenario (#1,T,R). A slight degradation compared to 

the noise-free case (not presented here) was noted in the simulations. At 
the same time, the retrieved AOT values and spectral dependence are 
reasonably good: R is ~0.99 and RMSE from 0.023 to 0.036. These 
performances are considered to be of reasonable quality, since the same 
simulations, but without noise, led to RMSEs of 0.015 and 0.025, 
demonstrating that intrinsic GRASP uncertainty explains a large part of 
the RMSE. With an SNR of 50, the retrieval convergence algorithm is 
very poor for all channels. 

5. Discussion 

5.1. Synthesis of the results 

Table 17 summarizes the results. This is followed by discussions on 
spectral strategy (section 5.3.1), SNR (section 5.3.2) and calibration 
performance (section 5.3.3). 

5.1.1. Spectral strategy 
As shown in Table 5, the different spectral strategies are fairly 

equivalent over the VNIR and variable over the SWIR. Two types of 
results can be distinguished, depending on the variable to be extracted. 

First, when searching for local spectral features characterizing a 
material, the method’s performance is highly dependent on the spectral 
strategy. This is the case for mineralogy, where the kaolinite doublet can 
only be discriminated with sampling strategies #1 and #4. Sampling 
strategies #5 and #6 are acceptable for some minerals, but lead to 
confusions for others. Sampling strategies #2 and #3 fail to achieve the 
objectives set for mineralogy. These results confirm the work of Swayze 
et al. (2003), who predicts a spectral resolution of 10 nm to discriminate 
clays and more specifically kaolinite. Sun et al. (2006) estimate that a 
spectral sampling interval of 8.2 nm and a SNR >200 between 1.95 and 
2.4 μm does not affect the identification of the 15 minerals tested. 
Furthermore, kaolinite (resp. dickite) cannot not be detected if the 
spectral sampling interval is > 16.4 nm (resp. 12.3 nm). On the other 
hand, Chabrillat et al. (2002) showed that a spectral resolution of 17 nm 
reduces the ability to detect kaolinite in a mixture, as the Al–OH doublet 
is not well sampled, but allows the detection of smectites or illites. 
Although the spectral resolution of HyMAP (~17 nm) is almost half that 
of AVIRIS (~10 nm), Kruse (2002) showed that both sensors can sepa
rate calcite from dolomite and the three varieties of sericite present in 
Northern Grapevine mountains (NV, USA). 

Spectral sampling #2 is not recommended for H2O and CO2 esti
mates, but the best spectral strategy depends strongly on SNR. Spectral 
sampling #6 is not recommended for bathymetry and aerosol plume. For 
the gas plume, spectral sampling #5 fails to detect CH4 accurately 
(<1500 ppm m). 

Methods based on the use of the global spectral shape do not depend 
on the spectral sampling strategy. This is the case for SMC, tree species 
classification, tree functional trait estimation, bathymetry, shallow 
water bottom classification, coastal habitat classification, urban land 
cover, snow and ice characterization, and aerosols. They depend on 
either the SNR (bathymetry, classification in general) and/or instrument 
calibration (bathymetry, classification, characterization of industrial 
plant and snow). Gomez et al. (2018) evaluated the predictive perfor
mance of clay soil properties as a function of spectral configuration and 
showed that it did not depend on spectral sampling, which ranged from 
5 to 100 nm. For tree species identification, Jianxin Jia et al. (2022) 
compared the classification performance of eleven species with different 
bandwidths, which ranged from 9.6 to 153.6 nm. They conclude that 
classification performance is similar for a bandwidth ranging from 9.6 to 
19.2 nm, and if the bandwidth is widened, leading to a similar SNR, 
spatial resolution can be improved. Serbin and Townsend (2020) rec
ommended spectral sampling and FWHM of 10 nm for leaf pigments 
(Cab, Car), of 20 nm for EWT and LMA. These results are in line with our 
results. 

Table 13 
Average sensitivity to PM1 mass concentration for the aerosol model studied.  

Scenario Concentration 
(μg/m3) 
Known aerosol 
type 

Radius 
(nm) 

Absorptance 
(%) 

Concentration (μg/ 
m3) Unknown 
aerosol type 

(#1,T, 
O) 

73 42 30 140 

(#6,T, 
O) 

74 43 40 160 

(#1,t,O) 91 90 5 145 
(#6,t,O) 92 57 4 140 
(#1,T, 

R) 
82 45 30 280 

(#6,T, 
R) 

79 53 40 190 

(#1,t,R) 106 100 50 260 
(#6,t,R) 98 70 50 170  

Table 14 
Methane abundances (ppm.m) for each scenario. Note that the reference value 
obtained from the airborne image is 510 ppm m.   

Optimistic Realistic 

Sampling Target Threshold Target Threshold 

#1 900 980 1330 1490 
#2 980 1050 1300 1510 
#3 900 1120 1310 1420 
#4 930 1020 1330 1410 
#5 890 1000 1250 1450 
#6 800 860 1070 1160  

Table 15 
Mean bias and standard deviation on retrieved SSA and eBC. The SSA reference 
value is 2 ± 1 m2/kg. The black carbon reference value is 18 ± 14 ng/g.   

Optimistic Realistic 

Variable (*,T,O) (*,t,O) (*,T,R) (*,t,R) 
SSA (m2/kg) 4 ± 2 7 ± 4 4 ± 3 8 ± 4 
eBC (ng/g) 84 ± 56 102 ± 64 83 ± 56 101 ± 64  

Table 16 
Mean error and standard deviation on H20 and CO2 estimates calculated for the 
six sampling strategies.   

H20 (%) CO2 (%) 

Scenario (*,T,O) (*,t,R) (*,T,O) (*,t,R)  
4.5 ± 0.8 5.7 ± 1.0 2.3 ± 0.2 2.5 ± 0.1  
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5.1.2. Signal-to-noise ratio 
For applications using specific absorption bands, performance de

pends firstly on SNR (optimistic/realistic) and secondly on calibration 
performance. Estimates are slightly degraded between optimistic and 
realistic, but most of the applications tested depend little or not at all on 
the SNR studied, with the exception of bathymetry and classification of 
shallow waters, and estimation of carbon dioxide and methane contents. 

For mineralogy, according to Kruse (2002), an SNR of at least 100 in 
the SWIR is required for mineral detection, so the realistic SNR is slightly 
above this limit, while the optimistic SNR is higher, as for the PRISMA or 
EnMap instruments (Peyghambari and Zhang, 2021). Below this value, 
applications such as calcite-dolomite or clay discrimination, mineral 
mapping, soil component discrimination or sediment detection is critical 
(Transon et al., 2018). Thus, such discrimination will be difficult if not 
impossible with the current SNR of the mission. Sun et al. (2006) esti
mate that an SNR of at least 200 at 2100 nm is required to map minerals 
with linear spectral unmixing. Chabrillat et al. (2002) show that 
detection of dark clays or dark Granero shales requires an SNR >600 to 
detect them partially. 

5.1.3. Calibration performance 
Most of the applications tested depend little or not at all on the 

calibration scenarios, with the exception of bathymetry (not filled for 
threshold) and cryosphere (equivalent black carbon concentration not 
estimated with threshold). A slight loss in performance was observed 
between target and threshold calibrations. Whatever the spectral strat
egy, scenarios with target calibration performance and optimistic SNR 
clearly delivered similar performance. Scenarios with threshold calibra
tion performance and optimistic SNR and scenarios with target calibra
tion performance and realistic SNR represent a good compromise. With 
the SNR used in this study, the impact of instrument calibration on 
mineralogy is low. There is no obvious difference between target and 
threshold cases. Spectral calibration and atmospheric correction errors 
should be taken with care, as they can induce peaks at H2O and CO2 
wavelengths, which can be problematic for the identification of certain 
minerals, depending on the algorithm selected. 

5.2. End-to-end simulation 

These end-to-end simulations were performed with realistic 

Fig. 10. Top: Correlation between retrieved and assumed aerosol optical thickness (AOT) in case of forward radiance simulations for SNR = 200 (spectral bands 
centered on 419, 441, 492 and 546 nm) and SNR = 100 (spectral bands centered on 669, 770, 865 and 2190 nm). AOTs are presented at 492 nm and 865 nm. R is the 
correlation coefficient, RMSE is the root mean square error, N is the number of points and the colour of the points represent their density - dark red is for maximal. 
Bottom: Histograms of absolute differences in AOT (black for all, red for AOT <0.2 and blue for AOT >0.2). (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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instrument characteristics. All products simulated in this exercise used 
the same end-to-end processing chain, with similar and realistic 
instrumentation parameters, which facilitated comparisons between the 
different applications. This work was based on 24 instrument configu
rations × 27 spectral datasets (22 images + 5 spectral libraries) leading 
to 648 simulations with different spectral strategy, calibration perfor
mance and SNR combinations. However, some limitations were identi
fied. One of the first limitations was that all the instrumental defects 
were not taken into account such as the straylight, the geometrical errors 
(geolocation, band co-registration, etc.), the across-track variations of 
the instrument characteristics (MTF, ISRF, etc. including the smile effect 
for instance), the polarization sensitivity and the detector defects (such 
as remanence, dead pixels, etc.). Another limitation was the potential 
overestimation of the performance of the atmospheric correction. Only 
the water vapor content and the aerosols load errors were considered. 
The following sources of errors have been neglected: carbon dioxide 
abundance, aerosol type and the environment effects. Some applications 
may show better performance here than the ones actually achievable on 
satellite images. However, the comparison between applications and 
between different instrumental configurations should remain relevant. 
Another limitation of this approach was to consider that the perfor
mance of the atmospheric correction was constant whatever the per
formance of the instrument. In practice, the degradation of the 
instrument will also degrade the atmospheric correction, and will 
therefore affect the final products even more. The quality of the atmo
sphere correction was closely related to the calibration performance 
because the atmospheric water vapor correction uses absorption bands 
that must be calibrated. But the calibration of bands affected by the 
atmosphere is more difficult with methods based on ground acquired 

data (known as vicarious methods), and thus dedicated on-board cali
bration facilities are required. 

5.3. Dependence to the application methods and their input datasets 

The results of this study were obtained with specific estimation 
methods on specific input datasets. The relative performances observed 
in this context gave valuable information for the satellite design with 
seven applications covered; but further work will be required to 
consolidate the conclusions at an even larger scale. For coastal habitat 
classification, the SWIR spectral range improved classification perfor
mance when using spectral libraries. This observation needs to be 
evaluated at the image level. SMC was estimated with the MARMIT 
model (Bablet et al., 2018) but an updated version called MARMIT-2 is 
now available (Dupiau et al., 2022) and could improve our results. 
Impurities in snow were not well estimated, one reason being related to 
the choice of the inverse method, so future work would focus on 
developing a new and more adapted method. The urban area classifi
cation was performed using the hyperspectral pansharpening method 
named GAIN. The presence of mixed pixels limited the performance of 
the method. Constans et al. (2021) proposed a new method handling 
mixed pixels which will be evaluated in the future. 

6. Conclusion 

CNES is working on a hyperspectral mission (0.40–2.45 μm, 10 m 
GSD, 10 km swath) with a panchromatic camera (2.5 m GSD). A phase A 
study has just been completed in mid-2022. A large French scientific 
community has been involved to optimize the instrument design. Taking 

Table 17 
Summary of thematic performance by strategy. The color code is as follow: indicates that performance is achieved, indicates that 
performance is around the objective threshold, indicates that performance is below the objective threshold. When necessary, the 
objective threshold (Δ) is indicated in the first row. 
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into account the technological constraints of the SWIR detector, an 
analysis of several spectral sampling strategies was conducted to assess 
their impact on end-user applications (mineralogy, vegetation, coastal 
area, urban area, industrial site, cryosphere and atmosphere). 

An end-to-end simulator has been developed to generate the hyper
spectral images that the satellite under design will acquire, taking into 
account the main instrumental effects. It will be improved by including 
other sources of error when the instrument design matures. 

It has also been shown that most of applications can be realized with 
an optimistic SNR level and target calibration, whatever the sampling 
scenario. With optimistic SNR and threshold calibration, most applica
tions have been achieved, with the exception of bathymetry and cryo
sphere (eBC). With realistic SNR and a target calibration, most 
applications have been achieved, with the exception of industrial 
aerosols. Finally, with realistic SNR and threshold calibration, most ap
plications have been achieved, with the exception of bathymetry, bot
tom classification of shallow water, industrial aerosol and cryosphere 
(eBC). We also found that some spectral strategies were unable to track 
certain spectral features for mineralogy and industrial gas estimation. 
All scenarios tested were simulated with the same atmospheric uncer
tainty on water vapor content and aerosol optical thickness, regardless 
of instrument configuration. 

Based on these results, CNES is studying the best compromise for 
designing the hyperspectral sensor that will meet the objectives of the 

priority applications. These preliminary conclusions need to be 
confirmed by further studies, in particular taking into account the 
dependence between scenario and atmospheric correction performance, 
as well as improvements in estimation methods. Other applications will 
be evaluated, such as crop characterization, pollution monitoring and 
plastic detection. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

For the estimation of leaf functional traits, we thank Susan L. Ustin 
(John Muir Institute of the Environment, University of California, Davis, 
USA) for providing the validation dataset (NASA grant No. 
NNX12AP08G), NASA JPL for providing AVIRIS-NG images, and Jean- 
Philippe Gastellu-Etchegorry and the DART team (CESBIO) for their 
help in using the DART model. We also thank Marcos Herreras-Giralda 
(GRASP SAS) for his help with the inversion of the GRASP algorithm 
on synthetic data.  

Appendix 

This appendix completes the results obtained in this work: maps of leaf functional traits, shallow water bottom classification and urban land cover. 
Fig. 11 is an RGB image of the Tonzi site. Fig. 12 shows the Cab, Car, LMA and EWT maps estimated on QUDO with sampling strategy (#1,T,O).  

Fig. 11 
Tonzi site (CA, USA) 
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Fig. 12 
Leaf functional trait maps obtained with scenario (#1,T,O). Top left: Cab. Top right: Car. Bottom left: LMA. Bottom right: EWT. 

Fig. 13 is an RGB image of the Porquerolles site. Fig. 14 shows maps of water parameters (chl, SPM, CDOM), depth and seabed abundance with (#1, 
T,O).  

Fig. 13 
The true color hyperspectral image captured by HYSPEX for the Porquerolles site. 
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Fig. 14 
Estimation of water parameters (chl, SPM, CDOM), depth and seabed abundance with (#1,T,O) at Porquerolles site. 

Fig. 15 is an RGB image of the Toulon area with the classification map obtained with (#1,T,O).  

Fig. 15 
Left: RGB reference image of Toulon at 2.5 m GSD. Right: Classification map with (#1,T,O). 
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