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Abstract

The objective of this paper is to minimize the energy consumption of a building wall by finding the
optimal locations of the insulation elementary blocks. The direct problem considers a 2D steady state
heat transfer equation. A density (in the mathematical sense) function is introduced to represent
the thermal properties of the wall, i.e. insulation blocks and load bearing materials. On the outside
boundary surface, the convection and incident short-wave radiation flux vary with space. The objec-
tive function is defined as the total heat flux on the inside part of the wall. It is optimized respecting
the constraint of proportion insulation/load bearing material given by standard wall configurations.
The optimal locations of the insulation material blocks are retrieved using an exchange algorithm. It
ensure to find a local minimum solution with a reduced computational effort. Finally, a case study
located in Paris is investigated. Results show the efficiency of the numerical strategy. On the top of
that, the aim of the study is reached by obtaining an improved wall energy efficiency with optimized
insulation locations.

Key words: topology optimization problem, parameter estimation problem, design problem,
two-dimensional heat transfer, building energy efficiency.

1 INTRODUCTION
Within the environmental context, the building energy efficiency represents a major issue. Building

enclosures have been elaborated to protect the occupants from weather daily variations and to minimize
the heat transfer loss. For the past 50 years, several models have been developed to represent the physical
phenomena occurring in building enclosures to assess its energy efficiency. A first review is provided in
[1] with a recent update in [2].

Despite all the simulation programs developed, the building enclosures are often designed under the
following assumption: the incident radiation and convective heat flux are spread uniformly on the en-
closure, i.e. it only varies according to time and not to space. As a consequence, the enclosures are
conceived by association of multiple plane layers composed of different materials. However, in [3], it has
been demonstrated that the variation of the incident flux with space cannot be omitted to accurately
design efficient wall. Thus, the scientific issue is the following: given a flux varying with space, can the
insulation position in the building enclosure can be optimized?

Several works have been proposed in the literature to answer such question. In [4], the thermal and
structure design of lightweight concrete block is optimized. In [5], the same problem is considered with a
more general definition of the holes geometry in the block. Recent development has been proposed in [6]
combining both thermal and mechanical efficiency of building structure through topology optimization.
These results also highlights the possibility of designing new structure with increased energy efficiency
and of elaborating them using 3D printing [7].

However, in the above-mentioned works, the heat transfer model is steady-state, assuming only convec-
tive transfer at the boundary conditions. In addition, the incident short-wave radiation flux, that depends
on both space, is neglected. Those assumptions are in accordance with the actual building simulation
programs. The latter generally requires the transmittance of the enclosure or layer as inputs parameters.
According to standards, the transmittance is defined in steady state conditions with convective transfer
as boundary conditions. This article proposes to go further by carrying thermal design optimization of
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enclosures considering the steady heat transfer phenomena, including the space depending incident radi-
ation and convection flux. To achieve this objective, an efficient strategy is proposed. The optimization
problem is solved using a density-based method. To cut the computational cost, the direct problem is
solved using an advanced numerical method. Furthermore, the optimization problem is solved using an
exchange algorithm, which ensure to find a local minimum, with a reduced computational effort.

The structure of the article is the following. Section 2 presents the physical model of steady heat
transfer in two-dimensional enclosure, considering space varying incident short wave radiation. Then,
Section 3 describes the design problem with the optimization strategy. A case study of an enclosure
located in Paris, France is investigated in Section 4. Last, some conclusions and outlooks are discussed
in Section 5.

2 DIRECT PROBLEM
2.1 Description of Physical Model

The physical problem considers two dimensional stationary heat transfer through a multi-layered wall
as illustrated in Figure 1. The spatial domain is defined by Ω = [0, L] × [0, H], where L

[
m

]
and H

[
m

]
are the thickness and height of the wall, respectively. The physical problem to compute the temperature
of the wall T

[
K

]
can be formulated as:

∂

∂x

(
λ( x, y ) · ∂T

∂x

)
+ ∂

∂y

(
λ( x, y ) · ∂T

∂y

)
= 0 , ∀x ∈ Ωx , ∀y ∈ Ωy , (1)

where λ
[

W ·m−1 · K−1 ]
is the heat conductivity, which varies with space according to the different

layers.
The boundary condition at the interface between the wall Γ 1 and the outside defines the balance

between diffusive, radiative and convective fluxes. It is expressed as:

λ ( x, y ) · ∂T

∂x
= hL ( y ) ·

(
T − T L

∞
)
− qL

∞ ( y) , x = 0 , (2)

where hL
[

W ·m−2 · K−1 ]
is the surface heat transfer coefficient and T L

∞
[

K
]

is the temperature of the
air defined according to climatic data. The incident radiation flux qL

∞
[

W ·m−2 ]
is also defined with

climatic data of the sun beams. It varies according to the space, due to the variation of the sunlit h
according to the urban scene. It includes the direct, diffuse and reflected components as described in [3].
It is computed using pixel counting technique as described in [? ]. The surface heat transfer coefficient
depends on height y and on the wind velocity υ∞

[
m · s−1 ]

[8]:

hL ( y ) = h10 + h11 ·
υ∞

υ0
·
(

y

y0

)β

, (3)

where ( h10 , h11 )
[

W ·m−2 · K−1 ]
are surface coefficients, υ0 = 1 m · s−1 and y0 = 65.33 m are

reference quantities, and β = 0.32 is the velocity variation coefficient. On the inside interface Γ 3, the
diffusive heat transfer in the wall equals the convective ones. Thus, the following boundary condition is
set:

λ ( x, y ) · ∂T

∂x
= −hR ( y ) ·

(
T − T R

∞
)

, x = L , (4)

where the inside heat transfer coefficient hR
[

W ·m−2 · K−1 ]
is defined as [? ]:

hR ( y ) = h20 +
(

hR
21 − hR

20
)
· sin

( πy

H

)
, (5)

( h20 , hR
21 )

[
W ·m−2 · K−1 ]

are surface coefficients, and T R
∞

[
K

]
is the inside building temperature. The

latter is set-up for the occupant’s thermal comfort. At top and bottom of the facade, an adiabatic
conditions is set. Thus, the boundary condition at y = 0 and y = H are expressed as:

−λ( x, y ) · ∂T

∂y
= 0 , y = 0 , −λ( x, y ) · ∂T

∂y
= 0 , y = H . (6)
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Figure 1. Illustration of the domain under investigation.

2.2 Thermophysical properties
The objective is to improve the energy efficiency of the wall by optimizing the insulation domain. By

assumptions, the wall is composed of two materials. The so-called reference case corresponds to the usual
plane layers configuration. It is denoted by sub-script ◦ . In such case, the material properties are defined
as piece-wise functions:

λ(x, y) = λ ◦ =

 λ1 , x ≤ x0

λ2 , x > x0

.

The heat conductivity coefficients λ1 and λ2 corresponds to two different materials. Namely, material λ1
operates as a load materials (for structural purpose) and material λ2 acts as an insulators (for energy
efficiency purpose). Depending on the value of x0, one can represents external or internal thermal
insulation configurations, abbreviated by ETI and ITI, respectively.

The second possibility to define the insulation domain is to divide the insulation domain into N
elementary volumes and to optimize the position of each insulation element. For this, the material
properties is defined by:

λ⊞(x, y) = λ1 + (λ2 − λ1) · f ( x , y ) , (7)

where f ( x , y ) is a function that enables the transition between the material properties of the load
material with subscript 1 and the insulator, with subscript 2 . This function can be seen as a density
(scaled with no unit) function that balance between the two material behavior. Here the function f
is defined using a denoted coarse grid approach, hereinafter abbreviated by CRS. For this, the whole
physical domain Ω is divided into N elementary volumes Ω j such as:

Ω =
⋃
j∈J

Ω j ,

where

J =
{

1 , . . . , N
}

,

is the set of possible positions of an elementary volume Ω j . For each square elementary volume,
(

x j , y j

)
are the coordinates of its center. Then, we define as ξ the set of locations of insulation volumes. Note
that ξ is a subset of J and that the number of elements in the set ξ gives the number of elementary
volumes of insulation N i ⩽ N :

card ξ = N i .
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Then, the function f from Eq. (7) is defined by:

f(x, y) =

1 , ( x , y ) ∈
⋃

j ∈ ξ Ω j ,

0 , ( x , y ) /∈
⋃

j ∈ ξ Ω j .

For j ∈ ξ, the volume Ω j is defined using the R-functions method [9, 10]:

Ω j = Ω R x ∧ τ Ω R y , ∀j ∈ ξ ,

with

Ω R x =
{

x ∈
[

0 , 1
] ∣∣∣∣ h 2 − 2 ( x − x j )

2 h
⩾ 0

}
,

Ω R y =
{

y ∈
[

0 , 1
] ∣∣∣∣ h 2 − 2 ( y − y j )

2 h
⩾ 0

}
,

where h is the half length of each square volume and ∧ τ is the “and” logical operator:

x 1 ∧ τ x 2 ≡
1

1 + τ

(
x 1 + x 2 −

√
x 2

1 + x 2
2 − 2 τx 1 x 2

)
.

Then, to construct the complete domain of insulation Ω i ;

Ω i =
⋃
j∈ξ

Ω j ,

the “union” ∨ τ logical operator is employed:

x 1 ∨ τ x 2 ≡
1

1 + τ

(
x 1 + x 2 +

√
x 2

1 + x 2
2 − 2 τx 1 x 2

)
.

In our computations, the parameter τ is set to 0 . A schematic illustration of the coarse grid approach is
presented in Figure 2. For this example, the domain is divided into N = 9 elementary volumes. The
set of possible positions of an elementary volume is J =

{
1 , . . . , 9

}
. Two volumes of insulation are

represented N i = 2 , placed at the locations ξ =
{

5 , 7
}

.

insulation position

insulation

insulation

load material

Figure 2. Illustration of definition of the material properties using a coarse grid approach.

3 DESIGN PROBLEM
3.1 Definition

The objective is to optimize the energy efficiency of the wall by finding the optimal locations of the
insulation elementary volumes. Given the definition of the material properties in Section 2.2, the space
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of parameters is the set of locations of insulation volumes ξ. The energy efficiency of the wall is defined
regarding the heat flux on the inside surface. The latter is positive since we have a steady state problem
with a positive inward flux on the outside surface. Thus, to improve the energy efficiency, the objective
is to maximize the inside surface heat flux and the optimization problem can formulated by:

ξ⋆ = arg min
ξ ⊂ J

C ( ξ ) , (8)

where the cost function C
[

W . m −2 ]
is defined as minus the average flux on the inside surface:

C = −1
H

∫ H

0
q( x = L , y ) dy , (9)

where the flux in the x direction is defined by:

q = − ( λ⊞(x, y)) ∇T · e x , (10)

where e x is the unit vector of the x axis.
The cost function Eq. (9) needs to be minimized under the following constraint:

S⊞ ≤ S ◦, (11)

where

S⊞ =
∫ H

0

∫ L

0
λ⊞(x, y) dx dy , S ◦ =

∫ H

0

∫ L

0
λ ◦(x, y) dx dy .

The constraint (11) means that the proportion of insulation and load materials should not be higher than
one of the reference case, for a given x 0 .

3.2 Optimization strategy

The exhaustive search of the optimal solution requires
(

N i

N

)
computations of the direct problem. It

corresponds to all possible combination of choosing N i insulation locations out of N possible position.
Even, with a number of total elementary volumes scaling with a few ten, the computational burden of
the exhaustive strategy is too high. In addition, the optimization problems involves integer elements (the
locations of insulation volumes ξ in the set of all possible positions J ) under the volume constraint from
Eq. (11). Algorithm such as genetic ones can be used to solve such optimization problem with integer
parameters. However, the computational cost is also very expensive. Therefore, the strategy adopted in
this work is based on an exchange algorithm [11]. It runs as follows over the iterations m .

Step 1. At m = 0 , an initial configuration ξ 0 is defined where N i = card ξ 0 . Note that constraint
Eq. (11) is verified by setting:

N i ⩽ N ◦ ,

where N ◦ is the number of insulation volumes in the reference case (external or internal thermal insulation
configurations). For such configuration, the cost function C

(
ξ (0) )

is computed according to Eq. (9) and
by solving the governing equations (16)–(21).

Step 2. The second step consists in exchanging the position labels of the current configuration with
ones that correspond to vacant sites so as to maximally decrease the cost function. It is performed by
determining the labels

(
i ⋆ , j ⋆

)
such that:(

i ⋆ , j ⋆
)

= arg max
( i , j ) ∈ S (m)

∆
(

i , j
)

, (12)

where

S (m) = ξ (m) ×
(
J \ ξ (m) )

,

so that S (m) contains all possible exchanges of points, at which insulation volumes currently resides by
labels which are filled by load material. The quantity ∆

(
i , j

)
evaluates the relative changes in the cost

function:

∆
(

i , j
)

=
(
C

(
ξ i ↔ j

)
− C

(
ξ (m) ) )

·
(
C

(
ξ (m) ) ) −1

, (13)
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where ξ i ↔ j means the configuration in which label position i has been replaced by label j .
Step 3. If the relative decrease in the cost function is lower than a set tolerance η

∆
(

i ⋆ , j ⋆
)
⩽ η , (14)

then the algorithm stops since ξ (m) is a locally optimal configuration. Otherwise, the iterations continues
by setting ξ (m+1) ← ξ (m) and m ← m + 1 and coming back to Step 2. The Algorithm 1 synthesizes
the procedure. Regarding the computational resources of the optimization strategy, the theoretical CPU
time is given by the following formula:

t cpu = N m · t dp
cpu ·N dp , (15)

where t dp
cpu is the CPU time spend for one calculation of direct problem, N dp is the number of the

calculations of direct problem. The latter is given by:

N dp = 1 + (N −N i) ·N i .

It is explained by the fact at each iteration, one computation of the direct problem for the current
configuration is needed at Step 5 of Algorithm 1. In addition, the direct problem is computed for the N i

possibilities of changing one volume of insulation with one of the volume of load material. It corresponds
to step 7 of Algorithm 1. An important remark is that those computations are independent and can be
performed in parallel.

Algorithm 1 Exchange algorithm to determine the local optimal configuration of insulation positions.

1: Sample candidate design ξ 0 with card ξ 0 ⩽ N ◦ ▷ Step 1
2: Compute cost function C

(
ξ (0)

)
3: m = 0
4: while ∆

(
i ⋆ , j ⋆

)
⩾ η do

5: State S m ▷ Step 2
6: Determine labels

(
i ⋆ , j ⋆

)
according to Eq. (12)

7: Compute ∆
(

i ⋆ , j ⋆
)

with Eq. (13)
8: m = m + 1
9: end while

10: Set optimal configuration ξ ⋆ = ξ m−1

4 CASE STUDY
4.1 Description

This case study considers a house located in Paris, France. The height and width of the wall are
H = 3 m and L = 35 cm. The building wall is composed from concrete and wood fiber insulation. The
material properties of the wall are taken from French standards [12] and shown in Table 1. The reference
cases are defined for external thermal insulation, denoted as ETI, and as internal insulation, denoted as
ITI. In both cases, the length of the insulation and concrete materials are 15 and 20 cm , respectively. It
corresponds to a reference area S ◦ = 0.45 m 2 .

Table 1. Thermal properties of the materials.

Heat conductivity Volumetric heat capacity Length in reference case

Layer
[

W · m−1 · K−1
] [

MJ · m−3 · K−1
] [

m
]

Concrete 1 .4 2 0 .2

Insulation 0 .05 0 .85 0 .15

Regarding the outside and inside surfaces, the outside heat transfer coefficient hL and the inside heat
transfer coefficient varies according to height as defined in Eq.(3) and Eq.(5), respectively. The following
parameters are used h10 = 5.82 W ·m−2 ·K−1, h11 = 3.96 W ·m−2 ·K−1 , h20 = 0.1 W ·m−2 ·K−1

and h21 = 3 W ·m−2 ·K−1 . The outside wind velocity υ∞ = 6.93 m · s−1. The temperature of the
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air T L
∞ = 10.8 ◦C and the inside building temperature T R

∞ = 19 ◦C. As defined in the physical model,
adiabatic conditions are set for the top and bottom boundaries of the facade.

The investigations are carried out for the day corresponding to the highest value of the outside incident
radiation flux of the January. The facade is located in the urban area with a building of 3 m height located
at 5 m in front of the studied facade. The outside incident radiation heat flux qL

∞ and the surface heat
transfer coefficient hL varies according to height of the facade as shown in Figure 3(a).

6 8 10 12 14 16
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(a)

0 40 80 120 160 200 240
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(b)

Figure 3. (a) Space variation of the surface heat transfer coefficient and (b) of the incident radiation
heat flux.

4.2 Results
The design problem is solved using the optimization procedure described in Section 3 with its algorithm

presented in Section 3.2. As initial configurations in the algorithm (m = 0), the internal, external and
random insulation distribution cases are considered. With this choice, the improvement of the energy
efficiency of the design can be compared along the iterations with the standard configuration. Note also
that parallel computing is used for the optimization. The dimensionless time and space discretizations of
the Du Fort–Frankel scheme are ∆t = 10−3 and ∆x = ∆y = 10−2. As mentioned earlier, for the two
reference cases, 42, 8% of the wall area is covered by insulation material. Thus, given the constraint (11),
the number of elementary volumes of insulation in the design problem is Ni = 0.428 N . Here, Ni is
approximated to the nearest natural number. In this case study N = 49 with the corresponding Ni = 21
is investigated.

The optimal position of insulation volumes for three different initial configurations are given in Fig-
ure 4. It shows that the insulation position tends to the similar locations, for all three different designs of
initial configurations. However, number of iterations needed for the optimization process of three different
initial configurations, are different. The ITI initial configuration case requires m = 18 iterations, while
ETI and random initial configuration cases need m = 8 and m = 10 iterations, respectively. Moreover, in
order to check the consistency of the algorithm, the optimization problem is solved with N = 25 elemen-
tary volumes, with corresponding Ni = 11 elementary volumes of insulation. As shown in Figure 4(h),
despite the different number of N elementary volumes, the shape of the optimized configuration is similar
with the N = 49 cases. The number of iterations needed for computations is 6 iterations and is lower
than N = 49 cases.

More details on changes of the insulation locations iteration by iteration is given in Figure 5. Iterations
start at m = 0 from the ETI configuration, after the algorithm changes one insulation volume place at
each iteration. It ensure to obtain a local minimum of the optimization problem.

The Figure 6(a) shows information about convergence of the optimization algorithm of both N = 49
and N = 25 elementary volume cases. In general, it can be seen that despite of the different number
of elementary values, the value of the cost function is similar, around −1.8 W . m −2. Thus, the energy
efficiency of the wall has been improved by 52.4%. Regarding the N = 49 case, the cost function value
obtained using the ETI and random initial configurations are same. It is consistent with the fact that same
optimized configuration designs are obtained as show in Figures 4(d) and 4(f). ITI initial configuration
design case has a lower optimized cost function compared to others. Consequently, for further analysis,
the optimized design obtained from ITI initial configuration design case is used.
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The optimal distribution illustrated in Figure 4(b) corresponds to an horizontal band of diffusive
material (concrete) on the top of the facade which corresponds to the sunlit area as shown in Figure 3(b).
The heat flux calculated with the initial and optimized designs at x = 0 and x = L are illustrated in
Figure 6(b) and 6(c), respectively. It is confirmed that the heat flux on the inside surface is positive due
to a positive inward flux on the outside facade. In addition, as remarked in Figure 3(b), at the bottom
of the facade (below the 1.5 m) the value of the incident radiation heat flux is lower. Consequently,
Figures 6(b) shows lower value of the heat flux at the same height. However, it can be seen that the value
of the heat flux calculated with optimized design at x = 0 is increased. Moreover, Figure 6(c) shows the
significantly increase of the heat flux value with optimized design at the inner sight of the wall.

Table 2 presents the CPU time needs to solve the optimization problem, computed theoretically as
defined by Eq. (15) (denoted t cpu ), and using parallel computing (denoted t

∥
cpu). As it can be seen, the

theoretical CPU time without parallel computing is higher. By using parallel computing it is decreased
at least by 1.5 times.

Table 2. Computational cost of the algorithm to determine an optimal design.

t dp
cpu N dp N k t cpu t

∥
cpu t

∥
cpu / t cpu

Initial configuration Elem. volumes
[

s
] [

−
] [

−
] [

h
] [

h
] [

%
]

ITI N = 49 , N i = 21 1.16 588 18 3.41 2.26 66.28

ETI 1.21 8 1.58 0.96 60.76

Random 1.20 10 1.96 1.19 60.71

ETI N = 25 , N i = 11 1.28 154 6 0.33 0.19 57.58

5 CONCLUSION

In this paper, the problem of optimizing the insulation position in building wall was considered. The
direct 2D steady heat transfer problem was solved numerically using Du Fort–Frankel method. The
standard building wall composed of two blocks of materials (insulation and load bearing) were replaced
by a new design, described mathematically with a density function. The latter is defined by a number
of elementary volume which position needs to be optimized regarding the wall energy efficiency. The
cost function was minimized taking into account the constraint of proportion of the insulation and load
bearing blocks given by the standard wall case. To solve the optimization problem, an exchange algorithm
is used to reduce the computational cost and ensure to find a local minimum. The optimal location of the
insulation material was obtained. The results of this paper revealed that the applied algorithm converges
relatively fast, spending less than 20 iterations. Moreover, the energy efficiency of the wall was improved
with an optimized design different from the standard building walls. The consistency of the optimized
design was verified with different initial guess configuration and number of elementary volume. The study
can be extended for transient heat transfer problem, researching the behaviour of the optimal positions
of the insulation material during the different seasons.
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Figure 4. Design of the initial (a,c,e,g) and optimized configurations (b,d,f,h) starting with ITI
distribution (a,b), ETI distribution (c,d,g,h), random distribution (e,f). Number of elementary volume
is N = 49 (a–f), and N = 25 (g,h).
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Figure 5. Insulation configurations according to the iterations of the exchange algorithm.
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Figure 6. (a) Convergence of the optimization method. Heat flux on the outside surface (x = 0) (b) and
on the inside surface (x = L) (c) for the optimized and initial ITI configurations.

6 NOMENCLATURE

Latin letters

c volumetric heat capacity [J/(m 3.K)]

hL , h10 , h11 surface heat transfer coefficient [W/(m 2.K)]

υ∞ velocity [m/s]

υ0 velocity variation coefficient [m/s]

T temperature [K]

t time [s]

x horizontal space coordinate [m]

y vertical space coordinate [m]

H building facade height [m]

L thickness of the wall [m]

t f final time [s]

qL
∞ incident radiation flux [W/m 2]

hR , h20 , h21 inside heat transfer coefficient [W/m 2.K]

f( x , y ) function that enables the transition between the material properties [−]

J set of possible positions of an elementary volume [−]

N i number of elementary volumes [−]

N number of elementary volumes of insulation [−]

C cost function [W/m 2]

q total heat flux on the inside and outside part of the wall [W/m 2]

S area [m 2]
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Greek letters

λ heat conductivity [W/(m.K)]

ξ set of locations of insulation volumes [−]

∆x , ∆y dimensionless space step [−]

Subscripts and superscripts

in initial
L
∞ outside boundary
R
∞ inside boundary

◦ reference case

⊞ coarse grid

Abbreviations

ITI internal insulation

ETI external insulation

CRS coarse grid

Rand random

Opt optimized

CPU central processing unit

DP direct problem
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A MOVING FROM THE TRANSIENT HEAT TRANSFER
TO THE STEADY STATE

Furthermore, the direct problem is solved by transforming the problem into a transient one which is
solved until steady state being reached. For this, we define T̃ verifying the problem of:

c ( x, y ) · ∂T̃

∂t
= ∂

∂x

(
λ( x, y ) · ∂T̃

∂x

)
+ ∂

∂y

(
λ( x, y ) · ∂T̃

∂y

)
, ∀x ∈ Ωx , ∀y ∈ Ωy , ∀t ∈ Ωt , (16)

where c
[

J ·m−3 · K−1 ]
is the volumetric heat capacity. The boundary conditions are expressed as:

λ ( x, y ) · ∂T̃

∂x
= hL ( y ) ·

(
T̃ − T L

∞
)
− qL

∞ ( y ) , x = 0 , (17)

λ( x, y ) · ∂T̃

∂x
= −hR ( y ) ·

(
T̃ − T R

∞
)

, x = L , (18)

−λ( x, y ) · ∂T̃

∂y
= 0 , y = 0 , (19)

−λ( x, y ) · ∂T̃

∂y
= 0 , y = H . (20)

Initial condition is expressed as:

T̃ = Tin( x, y ) , ∀( x , y ) ∈ Ω , t = 0 . (21)

where Tin is a given function of space. The transient problem (16) - (21) is solved unsing the Du Fort–
Frankel [3]. It is investigated over the time domain Ω t = [0, t f ], where the final time tf

[
s
]

is defined
such as:

∂T̃

∂t

∣∣∣∣
t=tf

⩽ ϵ , , ∀( x , y ) ∈ Ω ,

where ϵ is a constant set by user. In our computations it is set to 10−2. Thus, in the end, the solution
of Eq. (1) is given by:

T (x, y) = T̃ (x, y, tf ) .
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