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Abstract—The deployment of 5G networks has significantly
improved connectivity, providing remarkable speed and capacity.
These networks rely on Software-Defined Networking (SDN) to
enhance control and flexibility. However, this advancement poses
critical challenges including expanded attack surface due to
network virtualization and the risk of unauthorized access to
critical infrastructure. Since traditional cybersecurity methods
are inadequate in addressing the dynamic nature of modern
cyber attacks, employing artificial intelligence (AI), and deep
reinforcement learning (DRL) in particular, was investigated to
enhance 5G networks security. This interest arises from the
ability of these techniques to dynamically respond and adapt
their defense strategies according to encountered situations and
real-time threats. Our proposed mitigation system uses a DRL
framework, enabling an intelligent agent to dynamically adjust
its defense strategies against a range of DDoS attacks, exploiting
ICMP, TCP SYN, and UDP, within an SDN environment designed
to mirror real-life user behaviors. This approach aims to maintain
the network’s performance while concurrently mitigating the
impact of the real-time attacks, by providing adaptive and au-
tomated countermeasures according to the monitored network’s
situation.

Index Terms—Reinforcement Learning, Distributed Denial of
Service, Quality of Service, Software-Defined Networking

I. INTRODUCTION

The advent of 5G networks has ushered in a new era of
connectivity, promising unprecedented speed, reliability, and
capacity [1], [2]. These networks rely on SDN as the backbone
architecture, serving as the infrastructure that enhances both
control and flexibility [1]. However, with this technological
leap comes the inevitable challenge of securing these networks
against evolving cyber threats. Traditional cybersecurity ap-
proaches, such as signature-, blockchain- and rule-based sys-
tems, are unable to address the evolved techniques of modern
cyber threats as they rely on static and rigid rules, which can
result in their inability to effectively deal with unseen attack
patterns. Additionally, they may introduce latencies that are
unacceptable for real-time applications. In response to these
challenges, there is a growing interest in leveraging AI and
DRL techniques to enhance the security of 5G networks [3]
as they can autonomously discover effective defense strategies
in dynamic and uncertain environments. Additionally, RL can
iteratively improve its performance over time by adjusting its
strategies based on the environment’s feedback, enhancing the

resilience of the 5G networks against emerging threats. To
provide a comprehensive understanding, we survey relevant
literature on the role of ML and DRL in enhancing the
security of 5G networks including various perspectives and
methodologies. In particular, we focus on defenses against
distributed denial-of-service (DDoS) attacks given their severe
threat to 5G infrastructures. These attacks can control a large
number of compromised devices to amplify their malicious
impact, making it harder for defenders to simply drop or
disconnect the attacker hosts [4], [5]. Furthermore, in recent
years, the rise of IoT devices with low-cost, high-bandwidth
connections has exacerbated these attacks by providing a vast
pool of vulnerable devices for exploitation.

In this paper, we propose a DRL-based approach that
employs a Double Deep Q-Network (DDQN) algorithm to
dynamically adapt its mitigation strategies in response to
DDoS attacks in SDN with the objective of mitigating their
impact on the network and maintaining its performance for
honest users.

II. RELATED WORK

Given the importance of 5G, many authors argued that the
role of machine learning (ML), beside DRL applications, can
be used to create complex and effective defense systems in-
stead of traditional cybersecurity approaches such as signature-
based, blockchain-based, and rule-based systems, which are
not sufficient to address the rapidly evolving nature of recent
cyber attacks [6]. Mihoub et al. have employed advanced ML
techniques for DoS/DDoS detection and mitigation [7]. Their
approach adopts a fine-grained perspective, identifying differ-
ent subcategories within broader classifications of DoS and
DDoS attacks, achieving promising accuracy of 99.81% with
a Random Forest classifier empowered by the “Looking-Back”
concept. The mitigation component involves the application of
rate-limiting measures on specific traffic or rejection of packets
originating from specific IP addresses. However, the evaluation
of the proposed system is conducted on the Bot-IoT dataset.
While this dataset provides a basis for testing, it may not fully
represent the diverse range of real-world IoT scenarios and
attack variations [8].

Furthermore, Dake et al. introduced an innovative multi-
agent RL framework tailored for SDNs [9]. This framework



employs Multi-Agent Deep Deterministic Policy Gradient al-
gorithm, focusing on enhancing multipath routing efficiency
and robust detection and prevention of malicious DDoS traffic.
Another DRL approach, DeepAir was proposed for adaptive
intrusion response in SDN [10], where a DDQN algorithm was
developed to train the agent on a dataset of network traffic to
learn an optimal intrusion response policy in SDN networks.
The authors considered two types of DoS attacks, TCP SYN
flood and Link layer flood. By learning this dynamic policy,
their approach achieved a significant drop in attack packets
and a remarkable 70% reduction in quality of service (QoS)
violations. However, the evaluation of the proposed approach
is limited to specific scenarios and is not assessed in real-
world. On a different note, Akbari et al. presented a framework
named ATMoS (Autonomous Threat Mitigation using RL in
SDN) to simplify the process of developing RL applications in
the context of network security management with SDN [11].
In the proposed framework, a Neural Fitted Q-learning agent
is employed to mitigate an Advanced Persistent Threat (APT)
and DDoS attacks. The convergence results demonstrate the
efficacy of the proposed approach for active threat mitigation.
However, the number of hosts and their ordering must remain
fixed during training.

III. ATTACKER MODEL

A. Assumptions

We are considering an SDN network with the following
assumptions:

• Hosts exchange various volumes of traffic.
• The attacker’s sending rate exceeds that of legitimate

hosts.
• The attacker takes control of the host associated with the

network connection possessing the highest bandwidth.
• Attacks are applied periodically for specific durations,

which are deemed sufficient to carry out a successful
attack.

B. Attack Scenarios

In this article, we consider an SDN network where different
users are communicating with a server through controlled
switches in a provider network, accomodating varied traffic
volumes across various ingress points. We suppose that the
network under study is composed of n ingress points, m
controlled switches with the condition that n ≥ m, each switch
is connected to all other controlled switches, and finally a
server represented by hs accessible through switch s0. Such
a network composition is depicted in Fig. 1 where the small
colored boxes, denoted by switches’ numbers 10x, indicate
that all switches are interconnected with each others.

The main focus of our problem revolves around an attacker
attempting to compromise a server’s availability by initiating
various DDoS attacks including TCP SYN, UDP and ICMP
floods. This adversarial activity is triggered from a subnet
interfacing with the protected network, producing a mixture
of traffic with varying proportions of legitimate and malicious

flows. The attacker in our approach is smart enough to compro-
mise the host with the highest bandwidth as a starting point
for its malicious activities towards the server, triggering its
attacks for a specific duration, using a substantial quantity of
high-priority threads. Each of them opens its own connection
to the server and executes the predefined attack in autonomy in
order to achieve the highest impact on the server. The duration
of each attack thread varies highly and is randomly defined.

Fig. 1. Network Architecture.

IV. DEEP REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a dynamic paradigm within
machine learning where agents learn to make sequential deci-
sions by interacting with an environment to maximize cumula-
tive rewards. The fundamental essence of RL revolves around
the core concept known as Markov Decision Processes (MDP),
a mathematical framework that models decision-making sce-
narios with states, actions, and rewards. Agents adapt their
strategies through a process of exploration and feedback to
learn optimal policies [12]. In reinforcement learning, an agent
learns to interact with an environment by selecting actions to
maximize cumulative rewards. The agent observes the current
state of the environment, selects an action according to its
policy, and receives feedback in the form of rewards. The
key components include the agent, responsible for decision-
making based on a policy π; the environment, which provides
states s and rewards r in response to actions; and the reward
signal, denoted by rt, representing the immediate reward at
time t for an action at. The agent’s goal is to learn an optimal
policy that maximizes the expected cumulative reward over
time, as formulated by the expression maxπ

∑∞
t=0 E[rt] [13].

In this approach we use one variation of RL algorithms, which
is DDQN algorithm explained in the following subsection.

A. Double Deep Q-Network

Double Deep Q-Network (DDQN) is an improvement to
the Deep Q-Learning (DQN) algorithm aimed at mitigating
the overestimation issue inherent in DQN. In DQN, a single
neural network is employed to compute the estimated values
of possible actions within a given state, denoted as action
values, and the desired Q-values, represented by target values.
However, this mechanism can lead to overestimation of action



values, particularly in scenarios with noisy or high variance
environments [14].

DDQN addresses this problem by utilizing two separate
neural networks: one for action selection and one for action
evaluation. The online network, denoted as Q′, is responsible
for selecting actions, while the target network, denoted as
Q, is used for action evaluation. By decoupling the action
selection and evaluation, DDQN reduces the likelihood of
overestimation [15]. The DDQN algorithm updates the action-
value function using the following formula:

Q∗(st, at) ≈ rt + γQ(st+1, argmax
a′

Q′(st, at))

Here, Q∗(st, at) represents the estimated optimal action-value
function for the current state st and action at. The term
argmaxa′ Q′(st, at) selects the action with the highest value
according to the online network Q′. This selected action’s
value is then evaluated using the target network Q to reduce
overestimation.

V. ADAPTIVE RL FOR DDOS MITIGATION

A. Methodology

In this section, we present our methodology for DDoS attack
mitigation. We focus on an SDN network with an attacker
attempting to compromise a server by launching a diverse set
of DDoS attacks, including TCP SYN, UDP, and ICMP floods,
with varied traffic intensity. This malicious traffic poses a
threat for benign users by disrupting their services. To address
this problem, we employ a real-time monitoring module to
continuously observe the network’s situation during the attack.

This module collects network metrics’ information and
transmits them to the RL module through the controller’s
southbound interfaces. The RL module, selects suitable coun-
termeasures based on its trained neural network to enhance
the network’s performance. These chosen countermeasures
are sent through the controller’s northbound interfaces. The
controller interprets the RL algorithm’s (i.e., the agent’s)
decisions and transforms them into flow rules applied in the
data plane. These measures include the manipulation of traffic
volumes to reduce the volume of malicious traffic sent by at-
tackers, or conversely, to maximize traffic for legitimate users
on different hosts. Other measures include traffic redirection
across multiple switches, which is explained in Section V-C.

The agent taking these measures is trained using the DDQN
algorithm since it is able to deal with continuous state spaces,
to learn and adapt to dynamic environments by continuously
refining its strategies based on feedback from network perfor-
mance and attack mechanism’s severity.

B. RL Model

During training, the RL model learns by interacting with its
environment’s state to optimize actions based on received re-
wards. In our approach, the state of the RL agent encompasses
a diverse set of traffic metrics. These metrics are selected
to offer a comprehensive, holistic overview of the network
environment, enabling the agent to make informed decisions

to optimize performance and enhance the overall efficiency.
The state presented in Table I is defined for each ingress point
and extracted at the controlled switches’ interfaces based on
information computed from captured flows that are deemed to
be originating from mostly honest networks, considering that
the distinction by legitimate and malicious flows is provided
by a third party intrusion detection system.

State metric Extraction method
Total packets in the forward direction
(ingress point to server)

Tshark & CICFlowMe-
ter

Total packets in the backward direction
(server to ingress point)

Tshark & CICFlowMe-
ter

Total size of packets in the forward direction Tshark & CICFlowMe-
ter

Total size of packets in the backward direc-
tion

Tshark & CICFlowMe-
ter

Number of received bytes Controller through OVS
commands

Number of transmitted bytes Controller through OVS
commands

Bandwidth Controller through OVS
commands

Number of lost packets Manually computed
Number of delivered packets Manually computed
Number of transmitted bytes per second Manually computed
Number of transmitted packets per second Manually computed
Controlled switches of the provider network
along ingress point’s path to the server Manually computed

Bandwidth between controlled switches Controller through OVS
commands

Bandwidth between ingress points and
provider’s network

Controller through OVS
commands

Average latency between ingress points and
the server Manually computed

Average packet transmission delay of an
ingress point Manually computed

Average throughput between ingress points
and the server Manually computed

Average jitter between ingress points and the
server Manually computed

TABLE I
NETWORK STATE METRICS

In Table I, the metric representing controlled switches of the
provider network along the ingress point’s path to the server
is a boolean vector of size Ns, i.e., the number of controlled
switches in the provider network. Performance metrics are
calculated based on the data obtained from traced packets
during flow generation phase. These metrics are standard
network ones [16]: throughput, latency, delay, and jitter.

The agent’s actions consist of three options: (1) controlling
bandwidth on the provider side (either increasing or decreasing
it); (2) redirecting flows within the provider network (taking
into account alternative paths between switches); and (3) tak-
ing no action. In the context of our experimental infrastructure,
that has 4 controlled switches, the total number of actions is
45.

In our methodology, we define the parameters for bandwidth
control through a systematic experimentation process designed
to meet the characteristics of our network. Specifically, the
minimum bandwidth threshold was established at 0.01 Mbps,
while ingress links and intra-provider connections had maxi-
mum bandwidth thresholds of 3.1 Mbps and 9.1 Mbps, respec-



tively. Additionally, the bandwidth’s increment and decrement
steps were determined as 0.3 Mbps.

In this study, we use an asymmetric reward function (illus-
trated in Fig. 2) as experiments revealed that greater penalty
for the RL agent’s incorrect actions significantly reduces
training time [17]. Our primary objective is to minimize end-
to-end latency and jitter in the network as they directly impact
quality of service and end-user experience. More precisely, the
reward function is composed of sub-rewards, each of them
ranges from −3 to +3, considering the effect of jitter and
latency related to benign flows between the ingress points and
the server, as detailed in Figure 2, where “attribute” represents
either jitter or latency. Notice that if the agent encounters any
other case not illustrated in the mentioned figure, it is assigned
a minimal penalty of −0.1.

Fig. 2. Performance-dependent reward values for RL agent algorithm.

C. Adaptive Response

In the context of adaptive response in SDN networks,
we present a possible scenario of the RL agent’s behaviour
during an attack exemplified in Fig. 3. In this illustrative
case, both legitimate and malicious traffic originate from
source r1, connected to switch s2. Upon occurrence of a
disturbance in network performance, the RL agent dynamically
reacts by reducing bandwidth on the link between s2 and s0.
During this adaptation, if legitimate users’ quality of service
degrades, which is detected through state measurements con-
ducted by the RL model in section V-B, the agent reroutes
their traffic to an alternative path (green link between s2 and
s3) with enhanced bandwidth, which may involve increasing
bandwidth for the new path (link between s3 and s0) if
needed. Throughout this process, careful consideration is given
to the availability and potential congestion of the selected
network path. The proposed scenario serves as a depiction
of the adaptive capabilities of the RL agent, showcasing its
effectiveness in dynamically optimizing network performance
under varying conditions.

D. Model Implementation

We train the agent over 50 episodes and 100 steps with
DDQN algorithm, using a neural network consisting of an
input layer of 128 neurons (using ReLU activation function),
three intermediate layers comprising a total of 1208 neurons

Fig. 3. Actions’ selection in our approach.

(the first two layers use ReLU activation function having
256 and 694 neurons respectively, while the final one uses
sigmoid activation function with 258 neurons), an output layer
composed of 45 output actions along with linear activation
functions. For optimization, we employ the mean-squared-
error as a loss function, the Adam optimizer, and a stochastic
gradient descent method. We use the following key parameters
for the DDQN training: epsilon decay is 0.998, discount rate
(γ) is 0.85, and the learning rate (α) is 0.01.

VI. EXPERIMENTS AND RESULTS

A. Experimental Settings

1) Software-Defined Network (SDN) Implementation: Our
SDN network is implemented using the Mininet emulator 1

with a customized controller as depicted in Fig. 4. Mininet
provides a virtualized environment for network emulation,
allowing to create and simulate various network scenarios.
Meanwhile, the customized controller facilitates efficient con-
trol and management of the SDN.

Fig. 4. System Architecture.

1https://mininet.org/



2) Traffic Generation: In each step, benign users generate
flows using custom benign traffic generation method. These
flows persist for a duration of d1 = 40s. Meanwhile, malicious
traffic flows generated by the MHDDOS tool 2) persist for a
duration of d2 = 30s.

3) Packet Capture and Network Monitoring: During these
flow periods, we use Tshark 3 to capture packets at controlled
switches’ interfaces, we store the result as a PCAP file. This
file is then used by CICFlowMeter 4 to extract features, which
are then stored in a CSV file.

4) Controller and State Metrics: The controller obtains
state metrics based on the extracted features from the net-
work through its southbound interfaces. Then, it transmits the
network’s state and performance metrics (calculated in section
V-B) to the RL agent using Flask APIs. These APIs enable ef-
ficient communication and information exchange, empowering
the RL agent to compute action evaluations (rewards).

5) RL Agent: On the RL side, the agent computes the action
to be taken, and sends it to the controller. The controller
transforms the high-level policy (RL actions) into flow rules
configured using Open Virtual Switch (OvS) commands to be
applied within the Mininet emulator.

B. Experiment Description

The experiment is conducted on the network depicted in
Fig. 1, with the primary objective of assessing the effectiveness
of our mitigation strategy under different types of DDoS
attacks. The experimental network comprises four controlled
switches, a server, an attacker and multiple ingress points. We
train our RL algorithm within the Mininet emulator, which
operates within a virtual machine operating on Ubuntu 20.04,
equipped with a six-core CPU and 2 GB memory, while the
physical hosts underlying our experiment operate on an Intel
Core i7-12800H CPU. Throughout the training phase, we
diversify various parameters such as attack types and traffic
volumes to simulate a wide range of network conditions.
Additionally, we develop multiple models based on different
ingress points within the network under study. Subsequently,
we evaluate the efficacy of the trained model by analyzing
the agent’s behaviour in terms of bandwidth manipulation
across different connections between controlled switches. Ad-
ditionally, we analyze routes’ redirections for both malicious
and legitimate traffic. This evaluation incorporates a range of
network performance metrics such as jitter, throughput, delay,
and latency, while considering their impact on honest users.

C. Results

We now report how the agent actions evolved during train-
ing iterations, and how it behaved after training completion
resulting in remarkable improvements in network service and
performance for honest users, as represented in Fig. 5. After
training, during the evaluation phase, our approach underwent
testing across diverse attack scenarios of one episode of 100

2https://github.com/MatrixTM/MHDDoS
3https://www.wireshark.org/docs/man-pages/tshark.html
4https://github.com/ahlashkari/CICFlowMeter

steps each. Initially, upon commencing each scenario with
traffic generation, we noticed relatively high average values
for latency, jitter, and delay attributed to the attack’s inten-
sity. However, as the agent iteratively took actions, notable
enhancements were observed. Approximately by the 50th step,
the adverse effects of the attack started to diminish, and the
QoS steadily improved, reaching its best possible state around
the 100th step. At this point, we observed that average jitter
and latency for packet delivery decreased to less than 0.2s,
with average flow delay stabilizing at around 0.04s. These
improvements were consistent across various traffic types.

Furthermore, the average throughput for legitimate traffic di-
rected to the server increased to reach approximately 500kbps
across diverse attack types. In Fig. 6, the proportion of benign

Fig. 5. Average network performance metrics for honest users.

flows reaching the server during different attack types indi-
cated a low percentage at early training stages, not surpassing
28%. However, by the end of training where the algorithm
underwent sufficient training and enough convergence, this
percentage progressively rose, reaching its maximum value of
80.4% during ICMP attacks.

In Fig. 7, we present the newly directed flow routes of the
network (previously represented in Fig. 1 with standard flow
routes) after the intervention of our agent and the application
of its countermeasures, where red lines represent a majority
of malicious flows, while other colors represent a majority of
legitimate ones. Notably, our trained agent efficiently mitigated
the threat originated from a specific ingress point by rerouting
this traffic through a new path passing through the controlled
switch (s102). Simultaneously, it constrained the bandwidth
for malicious traffic from 4.3 Mbps to 0.4 Mbps, while increas-
ing its allocation for legitimate traffic. These measures were
able to mitigate the attack effect on honest users, improving
network performance and their service quality.



Fig. 6. Average legitimate traffic percentage reaching to the server under
different types of DDoS attacks through various training stages.

Fig. 7. Network architecture after redirections and bandwidth throttling
countermeasures.

To sum up, our proposed mitigation strategy effectively
handles diverse traffic volumes while minimizing service
disruption to honest users by dynamically adjusting flexible
countermeasures based on network performance feedback.
However, a limitation lies in occasionally unnecessary redi-
rections, which may raise costs by increasing the number
of controlled switches a flow needs to traverse in order to
reach its destination, without significantly impacting network
performance.

VII. CONCLUSION

In this study, we proposed a DRL-based framework aimed
at mitigating the impact of attacks on network availability,
while ensuring optimal network performance for honest users.
Our framework employs a DDQN algorithm, trained within
a simulated environment reflecting real-world user behaviors
and diverse traffic patterns. Notably, our trained agent was able
to mitigate various DDoS attacks, including TCP SYN, UDP,
and ICMP floods. Moreover, our approach integrates a diverse
array of countermeasures, such as traffic throttling and flow
redirection. It dynamically adjusts its strategies according to
the network situation while preserving the quality of service.
Looking ahead, our future direction involves two primary
objectives: firstly, enhancing our framework by incorporating

a training process that covers all attackers’ positions in a
single training session and within a feasible training time-
frame. Secondly, improving the scalability of the proposed
solution, in terms of adding more ingress points and additional
controlled switches, without affecting the dimensions of the
state representation throughout the training process.
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