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Context

Introductive example

High load in train

.

Decrease in comfort

|

Passenger dizziness

|

Disruption/Perturbation of the traffic
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Primary disruption

Definitions

Disruption =/= delay (caused by a disruption)

Primary disruption =/= secondary disruption
(delay caused by the delay of another train)

(Palmquvist, 2023) Several trains impacted by a disruption
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Context

Goalss

Prediction of the probability of passenger-linked primary disruption
Study the specific relationship with passenger load

Literature review

Authors(s) Year

Context

Prediction Scale

Goverde, Hansen, Hooghiemstra & Lopuhaa 2001
Yuan 2006
Spanninger, Trivella, Blichel & Corman 2022
Vere-Jones 1995
Berthe 2022
Zou & Yue 2017
Fink, Zio & Weidmann 2014
2019,

Yap & Cats 2021

Train delays
Train delays
Train delays
Earthquakes
Injuries in sport
Road

No Stop
No Stop
Yes
Yes
Yes
Yes

Infrastructure-linked train disruption Yes Equipment

Train disruption

Station,

Yes Time period
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Data

= >
Stop scale = 1 direction, 1 date, 1 train, 1 station

3 specific stop-scale data sources:

Disruption details
Manually reported

Transport plan

) From passenger countin
From on-rail tag systems P 8 g

infrared sensors
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Perimeter

CERGY LE HAUT PERSAN-BEAUMONT
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ERMONT-EAUBONNE

LA DEFENSE-GRANDE ARCHE SAINT-DENIS
SAINT-LAZARE

SAINT-NOM-LA-BRETECHE-FORET-DE-MARLY
GARE DU NORD

VERSAILLES R.D

6 months of data: September 2022 — February 2023

In this perimeter: 1,200,087 observations
1 observation = 1 direction, 1 date, 1 train, 1 station

MASS TRANSIT ACADEMY
EER 03/07/2024




Primary disruptions in this perimeter

2439 events of primary disruption

Distribution of primary disruption type by occurrence

53 % Passenger dizziness

Malicious act

53% of the delays are caused Alarm signal

by primary disruptions Door obstruction
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Passenger load

Load

Focus on the load before arriving
at a stop

Relative load

Relative load: decile of the load
everything else being equal but
the date (direction, train, station,
day type)

=/= Absolute load
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Preliminary observation

Correlation

<9th decile >9th decile

No disruption 89 % 11 %

Passenger-linked 82 %

primary disruption

—>Disruption more frequent over the 9th decile
in load
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—>Chi-squared test: reject the independence at
the 5% threshold

—>Varying with disruption type: 24% for
passenger dizziness
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Logistic model

— Specific focus on passenger-linked disruptions
— Isolate the specific impact of the load
— Control variables from the literature (Yap & Cats, 2021)

1<P@=1w)
n

9
= logit(P(y = 1|X)) = + *x+z-*x-+e
]:
where y: disruption dummy, x;: absolute passengers load , x;: control variables

Significant: pseudo — Ri.r = 0.31; high according to Domenchich & McFadden, (1975).
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Logistic model

9
logit(P(y = 11X)) = fo + fu 1+ ) B + &

Parameters .
Jj=2

Variable Coefficient  Standard error

Absolute passenger load 0.0035*** 0
Train frequency -0.0796***
Terminus station (dummy)  6.6939***
Transfer station (dummy)  -0.5137%**
Saturday (dummy) -0.9285***
Sunday (dummy) -1.6990***
Morning (dummy) -0.4903***

Afternoon (dummy) -0.4206**
***n<0.01; **p<0.05

MASS TRANSIT ACADEMY Constant -9.7706*** 1,200,087 observations
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Logistic model

Summary

100 more people inside the train lead to an increase in +42% of passenger-linked
primary disruption probability (everything else being equal)

[ For the specific case of passenger dizziness, +100 people lead to an increase in +47% ]

— Similar results with a Poisson regression

— Impact about half as much taking all types of primary disruptions and the model is
less well fitted
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Conclusion & Discussion

Outcomes

v" New data enables a study of primary disruptions at the stop scale
v Primary disruption is more frequent over the 9th decile in load
v A quantitative projection is made thanks to a logit model

Future works

» Develop a nested logit model taking into account disruption types

» Extend the study to a larger sample (including more crowded lines)

» Add other relevant control variables (weather...)

» In addition to primary disruptions probability, quantify their impacts (delay, number of
secondary disruptions...)
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Appendix: other models

Model Disruption type Log-likelihood Pseudo-R2 RMSE MAE

Logit Passenger-linked -1846 0.31 0.16 0.04
Logit All -5909 0.33 0.33 0.13

Logit Non passenger-linked -4636 0.31 0.28 0.10
Poisson Passenger-linked -1850 0,31 0.16 0.04
Random forest Passenger-linked NA NA 0.18 0.03

Random forest All NA NA 0.31 0.10
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Appendix: discussion on the pseudo-R2

pseudo-R2

R2

Used for

Principle

Formula

Good value

Reference

Logit regression

Proportion of
deviation

In(Ly)
" In(Ly)

>0.3
McFadden, (1973)

Linear regression

Proportion of
variance

2O —9)°

1 -
Yy —¥)?
09-1
Wright, (1921)
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