Impact of passenger load on disruption probability in suburban railway services

Mattéo GUILLEMARD – Mehdi BAALI – Rémi COULAUD – Christine BUISSON *TransitData, 03/07/2024*

Context

Introductive example

Primary disruption

Definitions

Disruption =/= delay (caused by a disruption)

Primary disruption =/= secondary disruption (delay caused by the delay of another train) (*Palmqvist*, 2023)

Criteria

MASS TRANSIT ACADEMY

03/07/2024

Disruption = when a train undergoes a **delay increase of more than 5min** between two stops

Primary disruption = when the train right before underwent no disruption during its whole travel Station

Primary disruption

Context

Goalss

Prediction of the **probability of passenger-linked primary disruption** Study the specific relationship with **passenger load**

Literature review

Authors(s)	Year	Context	Predictior	n Scale
Goverde, Hansen, Hooghiemstra & Lopuh	aä 2001	Train delays	No	Stop
Yuan	2006	Train delays	No	Stop
Spanninger, Trivella, Büchel & Corman	2022	Train delays	Yes	
Vere-Jones	1995	Earthquakes	Yes	
Berthe	2022	Injuries in sport	Yes	
Zou & Yue	2017	Road	Yes	
Fink, Zio & Weidmann	2014	Infrastructure-linked train disruption	n Yes	Equipment
Yap & Cats	2019,	Train disruption	Yes	Station,
rap & Cats	2021		162	Time period

MASS TRANSIT ACADEMY

3 specific stop-scale data sources:

6 months of data: September 2022 – February 2023

In this perimeter: 1,200,087 observations

1 observation = 1 direction, 1 date, 1 train, 1 station

MASS TRANSIT ACADEMY 03/07/2024

Primary disruptions in this perimeter

2439 events of primary disruption

53% of the delays are **caused by primary disruptions**

TRANSIT ACADEMY

45% in a case study in the Netherlands (*Weeda, 2006*)

Distribution of primary disruption type by occurrence

Passenger load

Load

Focus on the **load** before arriving at a stop

Relative load

Relative load: decile of the load everything else being equal but the date (direction, train, station, day type) =/= **Absolute load**

Preliminary observation

Correlation

	<9th decile	>9th decile
No disruption	89 %	11 %
Passenger-linked primary disruption	82 %	18 %

 \rightarrow Disruption more frequent over the 9th decile in load

→Chi-squared test: reject the independence at the 5% threshold

→Varying with disruption type: 24% for passenger dizziness

Logistic model

- \rightarrow Specific focus on passenger-linked disruptions
- \rightarrow **Isolate** the specific impact of the load
- → Control variables from the literature (Yap & Cats, 2021)

$$\ln\left(\frac{P(y=1|X)}{1-P(y=1|X)}\right) = logit(P(y=1|X)) = \beta_0 + \beta_1 * x_1 + \sum_{j=2}^{9} \beta_j * x_j + \varepsilon$$

where y: disruption dummy, x₁: absolute passengers load, x_i: control variables

Significant: $pseudo - R_{McF}^2 = 0.31$; high according to *Domenchich & McFadden*, (1975).

Logistic model

Parameters

9 $logit(P(y = 1|X)) = \beta_0 + \beta_1 * x_1 + \sum_{i=1}^{n} \beta_i * x_i + \varepsilon$ i=2

Variable	Coefficient	Standard erro
Absolute passenger load	0.0035***	0
Train frequency	-0.0796***	0.011
Terminus station (dummy)	6.6939***	0.314
Transfer station (dummy)	-0.5137***	0.010
Saturday (dummy)	-0.9285***	0.254
Sunday (dummy)	-1.6990***	0.387
Morning (dummy)	-0.4903***	0.132
Afternoon (dummy)	-0.4206**	0.206
Constant	-9.7706***	0.328 1,

Summary

100 more people inside the train lead to an increase in +42% of passenger-linked primary disruption probability (everything else being equal)

For the specific case of **passenger dizziness**, +100 people lead to an increase in +47%

 \rightarrow Similar results with a Poisson regression

→ Impact about **half as much** taking all types of primary disruptions and the model is less well fitted

Conclusion & Discussion

Outcomes

- ✓ New data enables a study of **primary disruptions** at the stop scale
- ✓ Primary disruption is more frequent over the 9th decile in load
- ✓ A quantitative projection is made thanks to a logit model

Future works

- > Develop a nested logit model taking into account disruption types
- Extend the study to a larger sample (including more crowded lines)
- Add other relevant control variables (weather...)
- In addition to primary disruptions probability, quantify their impacts (delay, number of secondary disruptions...)

Bibliography

Weeda, V. A. (2006). Analyse dispunctualiteit, verstoringsregistratie en rij-en halteertijden: Resultaten casestudy Rotterdam-Dordrecht (in Dutch), Report T&P 2006.007, Department Transport & Planning. *Delft University of Technology, Delft*. Goverde, Hansen, Hooghiemstra & Lopuhaä 2001

Yuan, J. (2006). *Stochastic modelling of train delays and delay propagation in stations* (Vol. 2006). Eburon Uitgeverij BV. Spanninger, T., Trivella, A., Büchel, B., & Corman, F. (2022). A review of train delay prediction approaches. *Journal of Rail Transport Planning & Management*, *22*, 100312.

Vere-Jones, D. (1995). Forecasting earthquakes and earthquake risk. International Journal of Forecasting, 11(4), 503-538.

Berthe, M. (2021). Modèles de prédiction d'événements rares en suivi longitudinal. Application au risque de blessure chez les sportifs professionnels (Doctoral dissertation, Université Clermont Auvergne).

Zou, X., & Yue, W. L. (2017). A bayesian network approach to causation analysis of road accidents using netica. *Journal of advanced transportation*, 2017(1), 2525481.

Fink, O., Zio, E., & Weidmann, U. (2013, September). Extreme learning machines for predicting operation disruption events in railway systems. In *Proceedings* of the European Safety and Reliability Conference (pp. 1-8).

Yap, M., & Cats, O. (2019, June). Analysis and prediction of disruptions in metro networks. In 2019 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS) (pp. 1-7). IEEE.

Yap, M., & Cats, O. (2021). Predicting disruptions and their passenger delay impacts for public transport stops. *Transportation*, 48(4), 1703-1731.

Domenchich, T., & McFadden, D. (1975). A Theory of individual travel demand. Urban Travel Demand, 33-46.

Appendix: other models

Model	Disruption type	Log-likelihood	Pseudo-R2	RMSE	MAE
Logit	Passenger-linked	-1846	0.31	0.16	0.04
Logit	All	-5909	0.33	0.33	0.13
Logit	Non passenger-linked	-4636	0.31	0.28	0.10
Poisson	Passenger-linked	-1850	0,31	0.16	0.04
Random fores	t Passenger-linked	NA	NA	0.18	0.03
Random fores	t All	NA	NA	0.31	0.10

Appendix: discussion on the pseudo-R2

	pseudo-R2	R2
Used for	Logit regression	Linear regression
Principle	Proportion of deviation	Proportion of variance
Formula	$1 - \frac{\ln(L_M)}{\ln(L_0)}$	$1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \overline{y})^2}$
Good value	>0.3	0.9 - 1
Reference	McFadden, (1973)	Wright, (1921)

