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Abstract9

Dwell time is a crucial stake for railway operations corresponding to 20% of the10

total travel time in a mass transit context. A relevant margin must be allocated to the11

dwell time to guarantee the robustness of a timetable. Several studies have evaluated12

the robustness of the running time. However, except for a few heuristics, little work has13

tackled the issue of measuring the dwell time without margin named tight dwell time14

in this work. Then, we present two methods to estimate the tight dwell time from high-15

resolution passenger flow data. Given the access to this data, both methods enable16

estimating the tight dwell time for all the stops while existing heuristics are limited17

to late trains and/or few passengers. Besides, our developed methods highlight the18

propensity of existing heuristics to overestimate what they measure. The estimation19

ex-post of the tight dwell time would help the design of future timetables.20

Keywords: Railway, dwell time, alighting and boarding time, margins, passenger flow21

data.22

1 Introduction23

The last decade has seen a change in the way the transport sector is viewed, with the24

sustainability of the system being called into question (Armstrong & Preston, 2011). In25

line with this, efforts are being made to increase the modal share of more sustainable26

modes of transport and induce a shift away from private motorized transport. Railways27

are one of the modes that can play a vital role in this process and make transportation28

systems more sustainable from an environmental point of view. However, despite railways29

providing a green alternative to road transport the potential environmental benefits will30

only come to fruition when ridership is sufficiently high (Givoni et al., 2009), meaning that31

it is important to make railway an attractive mode of transport. The attractiveness of32

railways is affected by the quality of service that is offered such as the service frequency33

and on-time performance of railways, along with travel speed and vehicle tidiness (Mouwen34

& Rietveld, 2013; van Loon et al., 2011). These quality aspects of railways present a trade-35

off, however, since an emphasis on the frequency of services often comes at the cost of36

on-time performance (Mouwen & Rietveld, 2013). To ensure the quality of railways it is37

thus important to balance both the frequency as well as the on-time performance. One38

way in which railway operators can directly influence this balance is through the design39

of a timetable. The timetable forms the backbone of railway systems by providing the40

location and direction of trains at specified points in time (Goverde, 2005) and indicates41

the service offered to passengers, showing both when and how often a train will run.42

1.1 Timetabling43

Timetable planning, or timetabling, is the task of scheduling when and where trains will44

run within a given network, matching the desired train routes to the available infrastructure45
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(Goverde, 2005). The way a timetable is constructed can directly affect the level of service46

for passengers, both in terms of the frequency of the services offered as well as the ability47

for trains to run on time. In dense areas, trains operate with minimal headway, based on48

the block lengths, characteristics of the train such as running and braking speeds, and local49

guidelines (Goverde, 2005; Palmqvist, 2019). Some margin has also to be applied. When50

tolerances are planned too tight, i.e. too little time is scheduled to realistically perform51

the tasks at hand, the likelihood of delays increases. On the other hand, if too much time52

is planned for each task, the frequency at which trains can operate will be reduced and53

with it the attractiveness of railways. Timetabling thus poses a balancing act in which is54

it important to schedule both realistic and appropriate times for all the different elements55

that make up the final timetable (Hansen, 2010), a non-trivial task. Broadly speaking, a56

timetable for passenger trains can be divided into two main elements, these being the run57

and dwell time of a train. The run time refers to the time it takes for a train to travel58

between two subsequent stations, whereas dwell time refers to the time a train is stationary59

at a station. The study presented here focuses on the latter of these, the dwell time.60

1.2 Importance of dwell times61

Dwell times are of interest to study since they make up a large part of the travel time in62

dense railway networks (about 20% in the Paris region, for example), where trains halt63

often to allow for passengers to board and alight. Furthermore, dwell times can have a64

strong effect on the operation of trains in dense areas. Since these trains are bound by65

this minimum headway the dwell time can become the limiting factor to determine the66

frequency at which trains can be operated. When dwell times are not accurately scheduled67

this can lead to dwell time delays. Dwell time delays arise when a train is stationary68

for longer than scheduled (Buchmueller et al., 2008) and although small can accumulate69

over an entire journey (Christoforou et al., 2020) and cause knock-on delays due to trains70

occupying a platform for longer than scheduled (Yamamura et al., 2012). Some studies71

proposed estimation of dwell times via short-term prediction (Li et al., 2016) but only for72

short stops with no mandatory departure time. A major challenge for railway operators73

in high-density networks is to define adequate dwell times when designing a timetable: a74

dwell time which both ensures a feasible timetable (Hansen, 2010) and an optimal use of75

the available capacity (Goverde, 2005).76

1.3 Scheduling of dwell times77

Despite the importance of dwell times, current approaches to scheduling dwell times rely78

on rules of thumb and the experience from planners (Wiggenraad, 2001; Christoforou et79

al., 2020). Scheduling dwell times will become increasingly important as operators want80

to increase the frequency of trains operated, often without increasing the available infras-81

tructure. In the Netherlands, for example, there is the ambition to run six trains an hour82

on some busy corridors (IenW, 2022), putting increased stress on the need for adequate83

scheduling principles. An important aspect of scheduling dwell times is to know the dwell84

time without margin referred to as tight dwell time in this work. The tight dwell time is85

especially relevant for timetabling in heavily utilized railway systems, as the dwell time86

becomes a limiting factor (see for example the impact of the crowd in simulations done by87

Luan & Corman (2022)).88

Definition. Tight dwell time is the necessary time for the dwelling process without any89

margin.90

Other authors have tried to approach this notion, referring to various heuristics as minimum91

dwell times which correspond to the minimum time needed to complete the alighting92

and boarding process and to depart from a station if everything goes as fast as possible93

(Goverde, 2005; Pedersen et al., 2018). Although several dwell time models that attempt to94
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predict such a minimum dwell time exist, mainly based on regression models, the potential95

of such models has not yet been realized (Yang et al., 2019). For example, testing the96

well-cited dwell time model by Weston (1989) at a larger number of stations, Harris (2005)97

found that the model does not perform well under high passenger loads.98

Furthermore, many of the studies focusing on minimum dwell times are limited by small99

sample sizes, limited to a small number of stations, or limited to manual observations100

(see for example the work done by Puong (2000)). Recent years have seen an increase in101

the volume and granularity of the available data (Palmqvist, 2019) allowing for a more102

in-depth study into dwell times. At the same time, research into minimum dwell times103

has remained scarce, with a recent example being the study by Cornet et al. (2019) who104

made use of automatic passenger count data to infer a minimum dwell time. Moreover,105

the definition of minimum dwell time indicates that this is the dwell time corresponding106

to when everything goes as fast as possible. Such an assumption is not realistic, that is107

why we introduce the notion of tight dwell which instead is an estimate of the necessary108

dwell time for people to alight and board properly without any extra time. To the best of109

our knowledge, no studies have dealt with a similar notion so far.110

1.4 Objective of the paper111

Given the need for an increased understanding of tight dwell times, the objective of the112

study presented here is to define a way in which the tight dwell time can be better estimated113

for commuter trains. To do so we make use of highly detailed passenger flow data collected114

on board suburban commuter trains in the Paris region area and propose two novel methods115

to estimate tight dwell times based high resolution passenger flow data. The first method116

makes use of the time gaps between the flows of passengers, defining the tight dwell time117

based on clusters of passengers. The second method makes use of the cumulative flow of118

passengers. We then define which of the proposed approaches is most promising, compare119

it to methods found in the literature, and show the usability and precision of our proposed120

methods. It is worth noting that we do not attempt to define or estimate the dwell time121

margin itself, as this requires information on the scheduling principles which cannot be122

disclosed. Instead, the work presented here is limited to the tight dwell time itself.123

1.5 Structure of the paper124

The remainder of the paper is organized as follows. First, we present a literature review125

(Section 2), in which we define the components of dwell times precisely and how dwell time126

has been estimated up to now. Some formalization of the problem components follows127

(Section 3). Our data is then described (Section 4). Our two new methods to estimate128

the tight dwell times are presented in Section 5, along with two existing methods used to129

estimate minimal dwell times. We thus compare their results (Section 6). This comparison130

leads us to select the method based on cumulative flows, and by comparing it further with131

the two selected methods from the literature, we show its superiority when sufficiently132

high-resolution data is available. Section 7 illustrates the most appropriate method on133

a branch of line N of the Paris suburban network and shows that we can even make a134

door-by-door analysis. A discussion and a conclusion end the paper.135

2 Literature review136

In this study, we introduce the notion of tight dwell time which is not tackled in the137

literature. Yet, the study presented here is supported by several existing works. We138

review these works in this section.139
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Figure 1: Dwell time components as presented by Buchmueller et al. (2008)

2.1 Components of dwell times140

Although the dwell time of a commuter train is often spoken of as a single process it is,141

in fact, made up of different individual processes. Seriani & Fujiyama (2019) define dwell142

time as having both static and dynamic time elements. According to their definition, the143

static element of a dwell time consists of mechanical processes such as the door opening144

and closing, and the dynamic element consists of the alighting and boarding process. In145

line with this, Buchmueller et al. (2008) state two main processes make up the dwell time,146

these being the passenger service time and the train dispatching time. The authors further147

divide dwell time into five different sub-processes, including the door-unblocking, door148

opening, boarding/alighting, door closing, and train dispatching process.149

The time needed to complete the static elements of the dwelling process is dependent on150

the design of the train. Trains can be equipped with sliding extensions to allow for a level151

entry, for example. The time needed to open the door is longer when such an extension is in152

place (Buchmueller et al., 2008). Although considered to be a static element of dwell times,153

the time needed to open a door can be dynamic when the doors do not open automatically154

and passengers are required to request a door opening (Harris, 2015). The time needed to155

complete the dynamic element of dwell times is governed by the alighting and boarding156

time (Goverde, 2005). Since trains have multiple doors there are multiple alighting and157

boarding processes at the same time, and it is the door where this takes the longest which158

defines the alighting and boarding time making it the "critical door" (Buchmueller et al.,159

2008; Coulaud et al., 2023). Note that the critical door is specific to the station, the time160

of the day, the rolling stock, and so on. This adds another source of variability, which161

concurs in justifying the necessity for margins.162

2.2 Margins and robustness163

When designing a timetable it is important to include realistic running and dwell times to164

ensure that the final timetable is feasible (Hansen, 2010). One way to ensure the feasibility165

of the scheduled times is to include some form of margins in both the running and dwell166

times. Here, margins refer to time supplements added on top of the scheduled times to167

allow for any fluctuations, be it a result of driver behavior or delays (Andersson et al.,168

2011; Goverde, 2005). These margins are important since it is unlikely that the actual169

operation will follow the scheduled times. Adding margins to running times is common170

in timetables (Palmqvist, 2019), and are usually a percentage of the nominal running171

time. This percentage is based on local planning principles, with seven percent being the172

norm in the Netherlands (Goverde, 2005), three percent in Sweden (Palmqvist, 2019), and173

five percent for the suburban trains operated in Paris. Other margins can be added at174

important locations, also known as nodes, and is common practice in Sweden (Palmqvist,175

4



2019) and Switzerland (Vromans, 2005), for example, and is also common practice in176

France.177

Having these margins in place helps with the robustness of a timetable, meaning that small178

deviations from the scheduled time do not lead to a delay (Dewilde et al., 2011). Adding179

margins is a balancing act, however, where too many, or too large margins will result in180

unnecessarily long travel times. On the other hand, too few, or too small margins can181

lead to robustness issues. To ensure a robust timetable, planners need thus to measure182

the robustness of a timetable and modify the timetable in such a way that robustness is183

maintained whilst keeping other planning objectives in mind (Andersson et al., 2013).184

2.3 Estimating tight dwell times185

As mentioned, margins can be added to both the running and dwell time of trains. Running186

time margins are relatively straightforward to calculate since the nominal running time can187

be calculated based on a feasible speed-distance profile over an open stretch of track for188

a train, taking the track alignment characteristics into account (Goverde, 2005). The189

nominal running time can then be compared to the realized operation of a given set of190

trains to measure the margins present in the timetable. In contrast to this, dwell time191

margins are less straightforward to calculate given the stochastic nature of dwell times.192

The alighting and boarding time, especially, makes the actual dwell time subject to high193

variability (Cornet et al., 2019), and comparing the scheduled and realized dwell times is194

not trivial.195

Only a limited number of methods have been proposed in the past to measure the margin196

present in dwell times. One way to do so is to make use of situations where a train197

arrives with such a delay that it enters the station after its scheduled departure time. An198

example of this approach was explained by Pedersen et al. (2018). Coulaud et al. (2023)199

also highlighted that late train dwell times are impacted at the first order by the passenger200

flows which suggests a reduction of margin for late trains. In such cases, trains will depart201

as soon as possible, and the dwell time is likely to only include the alighting and boarding202

time. Yet, none of these approaches quantified the reduction in margins for late trains.203

Some authors (Cornet et al., 2019) criticized this approach highlighting that some late204

trains could not leave the station right after the alighting and boarding process was com-205

pleted, due to signalization and dispatching decisions for instance. Daamen et al. (2009)206

and Kecman & Goverde (2013) proposed methods to identify route conflicts that could207

be used for filtering out trains without conflict. For example, Kecman & Goverde (2015)208

presented a machine-learning approach to predict dwell times using this filtering method.209

Apart from route conflicts, the driver’s behavior and his sensitivity to how much time210

to wait before leaving may impact such estimation of the alighting and boarding time.211

Another approach to overcome these problems is proposed by Cornet et al. (2019) taking212

advantage of passenger flow data instead. Having access to detailed passenger count data213

(i. e. the total number of people alighting and boarding the train and the load of the214

train at every stop) Cornet et al. (2019) defined a measure they call the reduced passen-215

ger flow. The minimum dwell time is subsequently obtained as a function of the reduced216

passenger flow. Whilst promising, the two approaches described above are only defined for217

late trains and do not allow to capture the variability in the flow of both alighting and218

boarding passengers. Moreover, only the study of Coulaud et al. (2023) used door-by-door219

counting data but focused on dwell time prediction. In this work, we are presenting a way220

to estimate tight dwell times for any stop, a metric that captures the variability of the221

passenger flow.222
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Variable Index
Train number k
Station s
Date d
Train door index j
Time (relative to the opening of the door) t

Table 1: Indexes.

Quantity Expression
Total volume of passenger for one line

∑
k,s,d,j,tNk,s,d,j,t

Passengers’ volume in one day/one line
∑

k,s,j,tNk,s,d,j,t

Annual station volume
∑

k,d,j,tNk,s,d,j,t

Annual volume for a train and a station
∑

d,j,tNk,s,d,j,t

Daily station volume
∑

k,j,tNk,s,d,j,t

Volume by stop
∑

j,tNk,s,d,j,t

Volume by door
∑

tNk,s,d,j,t
Alighting or boarding at time t
(relative to the latest opening of the door) Nk,s,d,j,t

Table 2: Examples of levels of resolution and their formalized expression.

3 Formalization of the problem components223

In this section, we are first introducing a general mathematical framework for counting224

data and dwell times components data.225

3.1 Hierarchy of resolutions in passengers flow data226

In this section, we introduce the different levels of resolution (and the related indexes) that227

may exist concerning the available passenger flow data. The highest resolution for counting228

passengers that either alight or board a train is the movement of passengers through a door.229

A passenger is defined as someone who alights or boards a train once. In practice, this230

means that a passenger who has boarded a train and then alights the train later will be231

counted twice, once as a boarding and once as an alighting passenger. Count data on this232

resolution does, however, not provide information on when and where the event took place.233

To be able to do so, four pieces of information are needed: the train number k, the station234

s, the day d, and the door j. An additional fifth piece of information is required to be able235

to study dwell time components, this being the time when a passenger crosses the door236

relative to the opening of the door t. Table 1 sums up these notations.237

The highest resolution of data can be noted as Nk,s,d,j,t, and provides information on238

the number of passenger movements for train k, at station s, on date d, at door j, and239

time t after the opening of the door. Lowering this resolution is often synonymous with240

aggregating Nk,s,d,j,t over several indexes that correspond to operational quantities. Table241

2 shows several examples of levels of resolution. For example, summing Nk,s,d,j,t over time242

(t) and door (j) results in the volume of passengers per stop; and summing Nk,s,d,j,t over243

time (t), door (j), and train number (k) results in the daily station volume. Summing over244

all the indexes means getting the total volume of passengers for the studied line in the245

studied period.246

Although higher resolutions enable more precise analysis, it is harder to reach in practice.247

Indeed, three kinds of restrictions may exist to access higher resolutions of passenger flow248

data:249

1. Data collection. If the data is collected manually, it is not possible to be precise250

enough to get the time t of the passengers’ movement relative to the opening of the251
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door;252

2. Data storage. If the data is collected automatically, the data has to be transmit-253

ted from the train to a server and stored. The highest resolution makes the data254

heavier and the storage on-board and transmission off-board are either complicated255

or expensive which is dissuasive for many transport companies;256

3. Competition between companies. Knowing precisely the passengers’ movements257

is a critical piece of data for railway operation and, provided they have higher reso-258

lution data available, some companies may consider it confidential.259

As a consequence, most of the works done using counting data so far have used lower-260

resolution data. Figure 2 illustrates the data hierarchy by showing the levels of resolution261

and associated use cases and works. At a macroscopic scale, the Global Transport In-262

vestigation (DRIEA, 2022) shows, among other information, the evolution of the total263

volume of passengers in the Paris region every decade. The annual station volume is also264

interesting to model, especially for new stations or new lines, the four-step model is the265

most common tool to do so (McNally, 2007). The passenger volume of one day can be266

a useful piece of data to predict disruption for example (Yap & Cats, 2021). When only267

manual counting data is available, the annual volume for a train and a station is the most268

appropriate piece of data to build timetables (Brethomé, 2018). Besides, the daily station269

prediction (De Nailly, 2023) does not need more than daily station volumes. The vol-270

umes by stop helped improve the robustness of timetables (Cornet et al., 2019; Medeossi271

& Nash, 2020; Christoforou et al., 2020; Kuipers & Palmqvist, 2022) while the volume by272

door is a precious piece of data to model dwell times (Coulaud et al., 2023; Kuipers, 2024).273

The highest level of resolution has not been tackled in the literature, to the best of our274

knowledge.275

3.2 Dwell time components276

The observed dwell time (DT ) of a train is composed of several components: the technical277

time (TT ), the alighting and boarding time (ABT ), and some margin (M):278

DT = ABT +M + TT.279

The resolution of the data we have access to enables the design of new methods to estimate280

directly the alighting and boarding time. In Section 5, two new methods that we have281

developed are presented. We can then define the tight dwell time (TDT ) as the dwell time282

without margin as follows:283

TDT = ABT + TT284

We can suppose the technical time (TT ) to be constant among the doors and the stops285

(Buchmueller et al. (2008) showed some variability but was less important than the one286

observed for the other variables). By contrast, the alighting and boarding time can vary287

among the stops and the doors for a given stop and the margin can differ between stops as288

well. The alighting and boarding time is the necessary time for all the passengers to either289

alight or board the train. As an example, the time for a passenger arriving late at the290

station and boarding right before the departure of the train is included in the alighting and291

boarding time while a long period between two passengers’ movements is not included. We292

define the alighting and boarding time for a given door j as a door alighting and boarding293

time (DABTj), and the margin as a door margin (DMj). We then have:294

ABT = max
j

DABTj295

296
M = min

j
DMj297
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Lowest
resolution

∑
k,s,d,j,tNk,s,d,j,t

Evolution of volume
(DRIEA, 2022)

∑
k,s,j,tNk,s,d,j,t

Passengers’ volume in one
day to predict disruptions
(Yap & Cats, 2021)

∑
k,d,j,tNk,s,d,j,t

Four step model to model
macroscopic demand
(McNally, 2007)

...

∑
d,j,tNk,s,d,j,t

Build timetable
from manual counting
(Brethomé, 2018)

∑
k,j,tNk,s,d,j,t

Daily station volume
prediction
(De Nailly, 2023)

...

∑
j,tNk,s,d,j,t

Improve robustness
(Cornet et al., 2019;
Medeossi & Nash, 2020;
Christoforou et al., 2020;
Kuipers & Palmqvist, 2022)

...

∑
tNk,s,d,j,t

Model dwell times
(Coulaud et al., 2023;
Kuipers, 2024)

...

Highest
resolution

Nk,s,d,j,t

Figure 2: Use cases of passenger flow data by level of resolution, where N is the number of
passengers, k the train number, s the station, d the day, j the door, and t the time when
the passenger cross the door (relatively to the opening of the door). The omission marks
correspond to other ways to aggregate the passenger flow. Existing works can be found for
each level of resolution except the highest.
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Variable Notation
Dwell Time DT
Alighting and Boarding Time ABT
Margin on the observed dwell time M
Technical Time TT
Local Alighting and Boarding Time (door level) DABT
Local Margin (door level) DM
Minimum Dwell Time (for fixed p and s) MDT (p, s)
Tight Dwell Time TDT

Table 3: Summary of the notations. All these variables are times with seconds as units.
We introduce the tight dwell time which is the dwell time without margin.

3.3 Cornet’s minimum dwell time definition298

Cornet et al. (2019) introduced the notion of minimum dwell time (MDT ) for a reduced299

passenger flow (p), for a fixed station s0. Here, p represents the size of the passenger flow300

and has a value between 0 and 1 such that p = 0 corresponds to a train with almost no301

passenger exchange and p = 1 to a train with many alighting and/or boarding passengers.302

The minimum dwell time for a fixed reduced flow p0 is obtained as follows:303

MDT (p0, s0) = min
k,d s.t. p=p0

DTk,s0,d304

In the remainder of this paper, we estimate MDT and TDT with different methods, the305

notation X̂ is used for the estimation of any variable X. We will then compare the results306

of our new methods with the ones of Cornet’s method. Yet, we do not estimate the same307

variables. However, by adding the hypotheses that ÂBT and M̂ are independent and that308

lim|{k,d}|→∞

(
min

k,d s.t. p=p0
M̂k,s0,d

)
= 0, we can demonstrate that:309

lim
|{k,d}|→∞

(
min

k,d s.t. p=p0
T̂DT k,s0,d

)
= lim

|{k,d}|→∞
M̂DT (p0, s0).310

ABT is a flow variable determined by how passengers alight and board the train and how311

many they are, whereas M is an operational variable and is determined by the departure312

time of a train. Thus, the independence between the estimation of these variables is a313

reasonable hypothesis. As far as the limit of the minimal margin is concerned, a case may314

exist where the train departs as soon as the alighting and boarding process is finished315

(assuming an infinite dataset) which corresponds to M = 0.316

This proposition (demonstrated in Appendix) makes it possible to perform a comparison317

between M̂DT as defined by Cornet et al. (2019) and T̂DT that we estimate based on the318

methods presented in this study.319

4 Presentation of our data and perimeter320

In this section, we are presenting the perimeter and the specific data that we used in this321

study.322

4.1 High resolution passenger flow data used in this study323

The rolling stocks in operation are equipped with an automatic passenger count system324

at each door which counts both the number of alighting and boarding passengers using325

infrared sensors. Every several seconds, a signal is sent to an onboard computer that326

registers the cumulative number of passenger movements. In addition to this, the system327
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Figure 3: Map of line N. All dots are stations served by ligne N. Opaque dots correspond
to the services of branch Paris-Dreux that we will tackle in the sequel.
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Figure 4: Regio2N design for line N of the Paris commuter trains network (top). Data
at the counting event scale obtained via the infrared sensors of the Regio2N (bottom).
Counting events are the number of passengers’ movements since the last counting event.
Two counting events are separated randomly by several seconds.
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registers whether the train doors are open or closed. It also provides information on the328

train number and the name of the stop. An important number of stops (around 30%,329

randomly distributed) is not counted by the sensors which leads to gaps in the data. Such330

gaps are not issues for our study since we are only focusing on the stops where the data is331

available.332

The data used in this study originates from Line N of the Paris commuter trains network,333

shown in Figure 3 and has been collected over six months from September 2022 to March334

2023. Line N consists of three branches and various services are operated on each branch335

(omnibus and semi-directs). The rolling stock in use is the Regio2N, illustrated in Figure336

4. Each carriage has eight doors which are 1.60m wide and require passengers to press337

a button to initiate the opening procedure. The technical time is supposed deterministic338

and uniform at 7s (as reported in the technical documentation). The services on this line339

are operated with both single units and double units.340

The study presented here (see Section 6) focuses on Versailles-Chantiers, which is the main341

station in line N (except for Paris terminus) both in terms of passenger traffic (nearly 15342

000 passengers boarding per day in 2018) and in terms of train traffic (more than 200343

trains a day on weekdays). To compare the methods, we select only trains toward Paris.344

A more general analysis is performed in Section 7 where we consider all the services on345

Dreux branch. On this branch, two trains per hour during peak hours and one train346

per hour during off-peak hours are operated. This branch undergoes two convergences347

with the other branches of the line: the first between Villiers-Neauphle-Pontchartrain and348

Plaisir-Grignon, the second between Plaisir-Grignon and Versailles-Chantiers.349

The automatic passenger count data makes it possible to have access to data close to the350

highest resolution we presented previously. The data is disaggregated in terms of k, s, d, j351

and partially aggregated on t (as shown in Table 1). Indeed, for each quadruplet (k,s,d,j),352

we have a list of counting events. A counting event means that at a given time t′, Nk,s,d,j,t′353

passengers have alighted/boarded the train since the latest counting event (or the opening354

of the door in the case of the first counting event). Figure 4 shows an example of such355

kind of data. The time separating two counting events is truly random, having a standard356

deviation of 18s for an average of 13s and a median of 7s.357

The daily alighting and boarding volumes for a given train number are compared to deter-358

mine the accuracy of the system. For a given train k at a given date d, the total number359

over all stops of people alighting shall be the same as the total number of people boarding.360

In the case of the presented data, the total number of alighting differs by 5% on average361

(3% in median) from the total number of boarding which gives an insight into a decent362

data quality. In addition to this, a study by the provider of the data has validated the363

quality of these sensors.364

4.2 Dwell time measurement365

For dwell time measurement, several kinds of sensors measure the observed dwell times via366

automatic vehicle localization (AVL). In this study, we used data from the infrared sensors.367

These sensors indicate the time when the door is fully open and the time when the door is368

fully closed. This data has been validated by the operator. Traditionally, dwell times are369

measured as the time between the last rotation of the wheels when the train arrives and370

the first rotation of the wheels when the train leaves. However, the first rotation of the371

wheels may happen quite a long time after all doors are closed (about 6s) and may vary372

from one train to another and from one driver to another. As the opening and closing of373

the door take deterministic times, our choice helps reduce the randomness included in the374

technical time when comparing a method estimating the alighting and boarding time and375

a method that measures a dwell time (see Section 5). Moreover, it helps avoid potential376

synchronization issues between clocks of different sensors.377
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5 Presentation of methods to estimating tight dwell times378

As stated before, part of the objective of the study presented here is to compare our two379

methods to estimate the tight dwell time to heuristics proposed in the literature. These380

methods are presented in this section, starting with a description of the two heuristics381

proposed in the literature.382

5.1 A simple heuristic: observed dwell times for late trains383

One way to determine the tight dwell time is to make use of situations where the train384

enters the station with such a delay that it arrives after its scheduled departure time. An385

example of this approach was explained by Pedersen et al. (2018). They hypothesized that386

a late train would only dwell for the shortest time needed, i.e. the time needed for the387

alighting and boarding process to be completed. This is commonly done to recover some388

of the delay time. The margin is then at least partly consumed as shown by Coulaud et al.389

(2023). In the sequel, we will compare the dwell time in this situation to the tight dwell390

time that we will estimate with our new method.391

One particularity of this method is that it does not need any passenger flow data which392

makes it an attractive method: it only relies on the scheduled and actual arrival and393

departure times. Nevertheless, it does come with a drawback; Cornet et al. (2019), for394

example, criticized this approach highlighting that some delayed trains could not leave the395

station right after the alighting and boarding process was complete due to signalization396

and dispatching decisions for instance or relative to the driver behavior. This could lead397

to situations where dwell time is significantly greater than the tight dwell time. Some398

works proposed corrections to improve this approach, filtering route conflict (Daamen et399

al., 2009; Kecman & Goverde, 2013, 2015) but for the sake of simplicity, we will not further400

discuss these route conflict corrections in the sequel.401

5.2 A heuristic based on passenger volumes: Cornet’s minimum dwell time402

Given the influence of passengers on dwell times, Cornet et al. (2019) proposed to use403

passenger flow data to estimate a minimum dwell time. The workflow proposed is the404

following:405

1. Select one station and one direction;406

2. Perform a principal component analysis (PCA) on the number of alighting at one407

stop, the number of boarding at one stop, and the load of the train to define p (the408

normalized first principal component) called reduced passenger flow;409

3. Consider only trains for which the observed departure time is strictly greater than410

the scheduled departure time;411

4. Separate all the stops by their values p in 200 windows ([0,0.005];[0.005,0.01]. . . );412

5. Get the minimum dwell time M̂DT as the minimal observed dwell time among the413

window of p in which the stop is.414

In this case, p is an illustration of the relative importance of the passenger flow and is a415

value between 0 and 1 with p = 0 meaning that there are no passengers, p = 1 indicating416

the maximum flow encountered in the dataset.417

In link with the available resolution of data (
∑

j,tNk,s,d,j,t), Cornet et al. (2019) assumed418

that the flow was uniformly distributed among the doors, something which is not likely.419

Given that the data available for our study provides information on the distribution of420

passengers on a door-by-door level, it is possible to include this aspect. Another adaptation421

to the method proposed by Cornet et al. (2019) is the exclusion of the load factor of the422
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Figure 5: Illustration of how to get Cornet’s minimum dwell time (M̂DT ) from the observed
dwell time Versailles-Chantiers toward Paris. M̂DT (p) being the minimum observed dwell
time for p, p represents the size of the passenger flow.

train. The line studied here is not heavily used and it is possible to assume that standing423

passengers are rarely present given the seating capacity of the trains.424

These adjustments mean that we changed step 2 and step 4 of the workflow presented425

above. In step 2, we performed a PCA on the number of people alighting at one door and426

the number of people boarding at the same door. In step 4, we consider for each stop the427

maximum value p among the doors before separating the stops. Figure 5 shows the last428

step of this framework for Versailles-Chantiers toward Paris.429

This method is based on the hypothesis that MDT entirely depends on the reduced pas-430

senger flow p. However, one may conjecture the existence of instabilities in the alighting431

and boarding time regarding the passenger flow such as slower passengers and passenger432

boarding before the end of the alighting process.433

5.3 Tight dwell time estimation using high-resolution passenger flow data434

The following sections present two methods to estimate the tight dwell time, based on435

high-resolution passenger flow data (presented in Section 4.1). Both methods estimate436

the door alighting and boarding time ( ̂DABT ) based on the profile of the passenger flow.437

The first method is the "cluster method" in which the alighting and boarding time at438

a door is determined as a function of clusters of passengers. The second method is the439

"quantile method" in which the necessary time for a specified quantile of the passenger440

flow to perform the alighting and boarding process is considered.441

5.3.1 Cluster method442

The cluster method is inspired by an existing method for the estimation of the alighting443

and boarding time at the door level (Wiggenraad, 2001). The main challenge to estimate444 ̂DABT is to distinguish the main flow of passengers from the margins. Indeed, late arriving445

passengers or people remaining on the platform waiting for the alarm to board may bias446

our understanding of the alighting and boarding process. Then, one needs to make the447

difference between isolated movements and cluster movements. For Wiggenraad (2001), a448

cluster is the movement of a group of passengers separated by less than three seconds (the449

cluster size parameter, ∆t). By contrast, an isolated movement would be the movement of450

one person separated by more than three seconds from the other passengers.451

Such a protocol could be put into practice without modification if the data had the highest452

13



0 10 20 30 40 50

D1
D2
D3
D4
D5
D6
D7
D8
D9

D10
D11
D12
D13
D14
D15
D16

1 10 3 13 10 6 7
1 12 2 1 1 1
2 12 4 1

1 9 1 5
1 4 1

1 1

22 12 3 4 5 8 5 1 1
1 6 6 5 8 3 2 1

2 2 5 4 1 7 3
1 8 2 9
2 5 6 6 2 1

1 41 5 3
1 4 2 3 3 1
1 2 8 3 2 1

Time [s]

5

10

15

20

25

0 10 20 30 40 50

D1
D2
D3
D4
D5
D6
D7
D8
D9

D10
D11
D12
D13
D14
D15
D16

Time [s]

Figure 6: Heatmap of counting events and the number of passengers’ movements in each
counting event for each door (left), induced clusters representing the main flow of passen-
gers (right), time 0 is the opening of the doors.

resolution. In our case, we deal with counting events, so we need to adjust our method.453

Thus, we take the following definition: two counting events are in the same cluster if there454

are less than ∆t seconds by passengers in the later counting event relative to the time455

between the two counting events. We define the estimated ̂DABT as the duration of the456

first cluster. Figure 6 illustrates the process of estimating ̂DABT with the cluster method.457

As explained in Section 3, to get ÂBT one needs to take the maximum ̂DABT among the458

doors of the train for this stop (ÂBT = max
j

̂DABT j). The estimated tight dwell time459

will therefore be T̂DT = ÂBT + TT .460

The value of the cluster size parameter (∆t) shall be chosen carefully. Indeed, a too-461

low value for ∆t would lead to splitting clusters in isolated movement, resulting in an462

underestimation of T̂DT . A too-high value for ∆t would imply considering too many463

passengers in clusters and part of the margin would be included in the estimated T̂DT .464

As an illustration, Figure 7 shows the mean value of T̂DT for various ∆t values (among all465

the trains toward Paris at Versailles-Chantiers). This confirms our qualitative analysis as466

T̂DT increases with ∆t until reaching a plateau. In the sequel, we are focusing on ∆t=3s467

and ∆t=7s (respectively before and after the plateau).468

5.3.2 Quantile method469

Another way to deal with isolated movements is to consider the necessary time for a470

quantile q of the passenger flow to perform the process. This necessary time has, then,471

to be expanded to take into account all the passengers proportionally to the portion q of472

them. Figure 8 illustrates this method for q=0.9. On the left of the figure, we can see473

that the last passengers’ movements are realized much later than the other passengers’474

movements. Then, we extrapolate the necessary time for this quantile q (orange cross) to475

obtain the time per passenger to board/alight the train (i.e. the slope of the green line).476

We then take ̂DABT (purple line) as the product of this time per passenger by the total477

number of passengers which corresponds to the intersection between the green line and the478

red line. The idea behind this method is to give every passenger a sufficient amount of time479

to alight/board the train without adding too much time for the slowest passengers. Once480

again, this method defines an estimation of ̂DABT , and one needs to take the maximum481

among the doors and add the technical time to obtain the desired estimation of T̂DT .482

The choice of q is important. A too-low value would make the extrapolation less relevant483

as the average time per passenger is taken on fewer passengers. A too-high value leads484
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Figure 7: Average estimated tight dwell time (T̂DT ) over the dataset computed with the
cluster method versus the cluster size parameter ∆t. The higher ∆t the higher T̂DT on
average until reaching a plateau.
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Figure 8: Cumulative passengers (alighting and boarding) against time (blue dots) and
quantile q=0.9 (the orange cross), (left) ̂DABT computation by adding a time propor-
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Figure 9: Average estimated tight dwell time (T̂DT ) over the dataset computed with the
quantile method versus the quantile q. High values are obtained for little q due to side
effects. After reaching a minimum, the value increases again with q corresponding to the
fact that slower passengers alight/board later in the process.

Method Subset of the data used Sample size Subsection
Quantile method All 2381 6.1
Cluster method All 2381 6.1
Cornet’s Trains leaving later than 1392 6.3
minimum dwell time their theoretical departure time

windows having several values of p
Observed dwell time Trains arriving later than 467 6.2
for late trains their theoretical departure time

Table 4: Subsets required to use the different methods.

to considering several people who are not in the main flow in the computation. Figure485

9 shows the mean value of T̂DT for various q values (among all the trains toward Paris486

at Versailles-Chantiers). One may see that the highest T̂DT on average are obtained487

for q=0.1 corresponding to the reaction time of the first passengers at the very beginning488

who take longer to alight/board. By contrast, the lowest T̂DT are obtained on average489

for q=0.5 which is coherent with the fact that people moving first (alighting or boarding)490

tend to be faster than the others. In addition, most of the time the first passengers’491

movements correspond to alighting movements which are often faster than boarding ones.492

After q=0.5, the average T̂DT increases until q=0.9. In the sequel, we are focusing on493

q=0.4 (corresponding to taking less than half of the passengers for the extrapolation)494

and q=0.9 (close to all the passengers) and comparing this method to the three already495

presented.496

6 Results: comparison of the methods497

In this section, we show the comparisons between the four methods presented previously.498

In the following subsections, the most restrictive sample is chosen to compare the methods499

two by two where both are defined. Table 4 reminds the sub-sets on which each method is500

defined and highlights the subset used in the following subsections.501
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6.1 Quantile method vs Cluster method502

First, we compare the quantile method and the cluster method. Figure 10 shows the503

comparison between these two methods with the sets of parameters (∆t=3s, ∆t=7s) and504

(q=0.4, q=0.9). We see a good correspondence between the two methods most of the time.505

However, when there is a significant difference between the tight dwell times obtained by506

the two methods it is often a case of underestimation of the cluster method compared to507

the quantile method. Indeed, the cluster method ignores the isolated passenger movements508

while everyone is provided a time to alight/board in the quantile method. For example, if509

the flow is slow enough: the cluster method may ignore most of the passengers while the510

quantile method may add a particularly long time to the duration of the quantile. This511

results in a large difference between the two estimations. The case of ∆t=7s and q=0.4512

is specific, we see a light underestimation of the quantile method in many cases. Taking513

q=0.4 gives on average close to the smallest T̂DT (see Figure 9 in Section 5.3.2) while514

∆t=7s gives on average values close to the highest (see Figure 7 in Section 5.3.1). In515

other words, ∆t=7s means ignoring very few isolated passengers’ movements and q=0.4516

computes the time per passenger where it is the smallest.517

Without excluding the cluster method from practical estimations, the quantile method is518

more resilient in terms of data quality. Indeed, the times of the counting events are only519

used in a cumulative way which mitigates the impact of potential gaps in the data which520

is not the case for the cluster method. Some points, Figure 10, illustrate this fact, they521

have particularly low T̂DT with the cluster method while having quite a high T̂DT with522

the quantile method. For the sake of consciousness, we will compare the existing methods523

only with the quantile method in the following sections.524

6.2 Estimated tight dwell times with quantile method vs observed dwell times525

for late trains526

In this section, T̂DT estimated with the quantile method (presented in Section 5.3.2) are527

compared to observed dwell times (DT ) for late trains (presented in Section 5.1). This528

comparison, shown in Figure 11 is performed using one station (Versailles-Chantiers) and529

one direction (toward Paris), and only trains for which the observed arrival time is greater530

than the theoretical departure time are selected. Observed dwell times for late trains are531

generally greater than T̂DT no matter their value. This means that train drivers are532

not able to leave the station as soon as the alighting and boarding process is completed.533

DT for late trains is often much greater than T̂DT computed with the quantile method534

and the difference is less for q=0.9 than for q=0.4. This difference is coherent with the535

fact that slower passengers’ movements are taken into account with a greater value of536

q. Nevertheless, several points do not follow this general observation and their computed537

T̂DT with the quantile method is greater than their actual DT . This is an artifact of the538

quantile method: if the chosen quantile q includes a high proportion of slower passengers,539

then T̂DT will be over-estimated with the quantile method. This situation is rare and540

even rarer with a higher q value as slower passengers need to be more numerous at the541

given stop in those cases.542

6.3 Estimated tight dwell times with quantile method vs Cornet’s minimum543

dwell time544

In this section, we compare T̂DT estimated with the quantile method with M̂DT estimated545

with Cornet’s method. We only consider the stops where the observed departure time of546

the train is strictly greater than the theoretical departure time, which makes Cornet’s547

method applicable. Figure 12 shows the histograms of T̂DT values for two values of p and548

two values of q and the associated values of M̂DT . For those examples, the minimal values549

of T̂DT obtained with the quantile method are less than M̂DT obtained with Cornet’s550
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Figure 10: Comparison of estimated tight dwell times (T̂DT ) between the quantile method
with q=0.4 (top) and q=0.9 (bottom) and cluster method with ∆t=3 (left) and ∆t=7
(right). Both methods give most of the time similar T̂DT . The points where the difference
is significant may correspond to too early separation from the first cluster in the cluster
method resulting in an under-estimation with this method.
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Figure 11: Comparison of the actual observed dwell time (DT ) for late trains and the
estimated tight dwell time (T̂DT with the quantile method for q=0.4 (left) and q=0.9
(right). Except for rare exceptions, DT is almost always larger than T̂DT for late trains.
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Figure 12: Histogram of the tight dwell times (T̂DT ) estimated with the quantile method
and the minimum dwell time (M̂DT ) estimated with Cornet’s method for p=0.05 (top)
and p=0.09 (bottom), for q=0.4 (left) and q=0.9 (right). Except for p=0.05 and q=0.9,
Cornet’s M̂DT is greater than the minimum of the quantile method’s T̂DT which suggests
potential residual margins in Cornet’s estimation. For fixed p, the spread of T̂DT is large.

method, except for the case of p=0.05 and q=0.9 where the minimum is greater but close551

to Cornet’s M̂DT . We can interpret this result as suggesting the existence of residual552

margins in Cornet’s estimation or an underestimation in the quantile method. The spread553

of T̂DT values is non-negligible for one value of p while M̂DT is unique which means that554

the quantile method can take into account the variability of the flow.555

Figure 13 shows the M̂DT (estimated with Cornet’s method) and minimal T̂DT (obtained556

with the quantile method) versus the reduced flow p. We cannot estimate M̂DT for high p.557

The values obtained with the quantile method are always equal or less than Cornet’s M̂DT .558

As already mentioned, nothing can guarantee Cornet’s M̂DT to be free of margin while the559

tight dwell time obtained with the quantile method is defined as free of margin. Moreover,560

a quantile of the flow is not the total flow: for instance, if people in the quantile are much561

faster than the others, this will lead to an underestimation of T̂DT (and vice versa). Hence,562

the minimal value of T̂DT for a given p can be obtained for a particularly fast quantile563

compared to the rest of the flow which could concur in explaining the difference.564
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Figure 13: Comparison of Cornet minimum dwell times (M̂DT ) and minimal tight dwell
time (T̂DT ) obtained with the quantile method versus the reduced flow p for q=0.4 (left)
and q=0.9 (right). In both cases, Cornet’s method gives greater M̂DT than the quantile’s
minimal T̂DT for all values of p which highlights residual margins in Cornet’s method.

6.4 Summary of the comparisons565

In this subsection, we summarize the previous results. We review the distribution of the566

value obtained with each method, fixing the most appropriate parameter for the cluster567

and quantile method is required to do so. To make everything comparable, we consider568

only late trains (those having their observed arrival time greater than their theoretical569

departure time). After that, we assess the methods based on new qualitative indicators.570

These indicators evaluate how relevant each method is for practical use.571

As seen in Section 5, the quantile method is quite robust to the parameter choice from572

q=0.2: despite small differences, the average of the estimated tight dwell time is close.573

Qualitatively, a better estimation is performed when the time per passenger is computed574

on more passengers (which means a higher q) but a too-high value may take into account575

particularly slow passengers. We can use an elbow criterion in Figure 9 (in Section 5.3.2) to576

decide which value to choose. In our case, the most appropriate value based on this criterion577

would be q=0.8. A similar comment can be stated for the cluster method which is also578

robust to the parameter choice from ∆t=2s, having similar average values. Qualitatively,579

a too-low value would result in ignoring too many passengers whereas a too-high value580

would result in considering the entire flow as the main flow. We can, once again, use an581

elbow criterion in Figure 7 (in Section 5.3.1) to decide which value to choose. In our case,582

the most appropriate value based on this criterion would be ∆t=6s. Those two values are583

used for a summary of the comparisons between all the methods discussed so far.584

First, Figure 14 shows the statistical distribution of the values obtained with each method.585

We see that for late trains, all the methods give values smaller than the actual observed586

dwell time DT . Cornet’s M̂DT is close to the values of both the cluster and the quantile587

method but with a less important range between small and high values. The quantile588

method gives T̂DT slightly greater than the cluster method.589

Nevertheless, this paper aims to show how relevant those methods are for practical use.590

Table 5 qualitatively sums up the pros and cons of each method over the following criterion:591

• The robustness relative to data lack of quality,592

• The resolution of the data used (see Section 3.1),593

• The range of usability if the data is accessible,594

• The amount of necessary data to perform one estimation.595
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Figure 14: Distribution of the results of the four presented methods for the subset of trains
arriving later than their theoretical departure time (467 observations). T̂DT and M̂DT

are generally smaller than DT . The cluster and quantile method give T̂DT slightly smaller
than Cornet’s M̂DT but with a higher dispersion.

Criterion Observed dwell time Cornet’s minimum Cluster Quantile
for late trains dwell time method method

Robustness ++ + - ++
Resolution - - - ++ ++
Range of usability - - - + +
Amount of
necessary data + - - -

Table 5: Summary of qualitative comparisons of the four presented methods. The quantile
method is the most appropriate way to estimate a tight dwell time for practical implica-
tions.
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The quantile method has high robustness and resolution; it has a large range of usability596

when the data is accessible. The amount of necessary data is the only item where the597

method is challenging. Nevertheless, the data required is provided continuously by the598

APC system which makes it easy to access once the system is available. To conclude, the599

quantile method is the most appropriate way to estimate a tight dwell time for practical600

implications.601

7 Use case on the line N602

In this section, we apply the quantile method to estimate the tight dwell times for all603

stations of the branch Paris-Dreux on line N (presented in Section 4.1). We chose to focus604

only on the direction toward Paris and on weekdays. The terminus (Paris-Montparnasse605

and Dreux ) were removed since there is no point in estimating a tight dwell time at a606

terminus. We selected the couples (k,s) where we had at least ten dates of observations607

(d) and could then estimate a tight dwell time. This resulted in the absence of certain608

train numbers in our analysis due to gaps in the data (see Section 4.1). Figure 15 shows609

the average values of T̂DT for all the stations and all the services of this branch and this610

direction computed with the quantile method (q=0.8) between September 2022 and March611

2023. The stations where T̂DT was on average higher correspond to the main stations of612

the line (i.e. Versailles-Chantiers and Plaisir - Grignon). These two stations also being613

the only connection stations in the line (except for the terminus), some services also had614

higher T̂DT on average. These services corresponded to the morning peak hours. Line N615

being a commuter train, the direction toward Paris was the busiest during the morning616

peak hours, which was coherent with having higher tight dwell times. One can notice617

that the station Houdan had quite high T̂DT on average, whereas it was not a connection618

station nor did it gather some specific point of interest. So far, we have no explanation for619

these values.620

Figure 16 shows the same illustration for the opposite direction (toward Dreux). The621

observations on the connection stations (Versailles-Chantiers and Plaisir - Grignon) still622

hold. The busiest services were in the evening peak hours which is coherent with line623

N being a commuter train. However, the mean values of T̂DT estimated in the main624

station were smaller toward Dreux. This is possibly due to a lack of train numbers in our625

data, especially in the evening peak hours. If the busiest trains are not recorded in the626

evening peak hours, it is normal to see a difference with the morning peak hours. We can627

also imagine that the distribution of the passengers’ movements might have been more628

homogeneous in the evening than in the morning.629

This second assumption is partly validated by Figure 17 which shows the mean door630

alighting and boarding time ̂DABT estimated for the Paris-Dreux services at Versailles-631

Chantiers. We find that the front doors are often the busiest toward Paris with some doors632

with a particularly long ̂DABT (door 2 for service 164866 or doors 7 and 8 for service633

164878). Toward Dreux, the mean ̂DABT values are more homogeneous. For services634

165847 and 165855 in particular, the maximal ̂DABT is not that high on average while635

being important for several doors. Toward Paris, doors 1 to 8 are always busier than doors636

9 to 16, this is probably because the terminus Paris-Montparnasse is a dead-end station637

where the exit is at the front of the train. The same explanation may hold for trains toward638

Dreux where the pattern is the opposite (doors 9 to 16 are busier because they are closer639

to the entrance of the platform).640

A widespread idea to explain the length of dwell times is that alighting and boarding times641

are linear with passengers’ movement. Figure 18 mitigates this general idea, showing642

the estimated ̂DABT with the quantile method (q=0.8) versus the number of passenger643

movements at Versailles-Chantiers, toward Paris, at door 8. Despite an increasing trend,644

we see a large spread of the ̂DABT for a given number of passenger movements. This is645
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Figure 15: Average estimated tight dwell times (T̂DT ) for all services on line N, branch
Paris-Dreux toward Paris computed with the quantile method, q=0.8. The largest T̂DT
are obtained for the connection stations in the morning peak hours which is coherent with
the commuting nature of line N.

due to the difference between alighting and boarding but also to the variability of the flows646

regarding passengers’ behavior (e.g. more stressed passengers moving faster or boarding647

passengers in front of the doors). The attempted linear fit is of poor quality (having648

R2=0.44) and it does not cross the origin. This is probably due to a change of regime for649

more than ten passengers’ movements: ̂DABT being more spread and increasing less fast650

for more than ten passengers’ movements than for less.651

8 Conclusions and perspectives652

8.1 Main research findings653

New passenger flow data with a higher resolution being accessible, we developed two new654

methods enabling us to compute the tight dwell time.655

Contrary to existing methods, the cluster method and the quantile method enable an656

extension of the situations where one can estimate a tight dwell time from only late stops657

of late trains to any stop of any train. With these new methods, one can moreover estimate658

the alighting and boarding time for any door. Compared to the quantile method, the659

existing heuristics show weaknesses. Taking the observed dwell times of late trains is660

an overestimation of the tight dwell time while Cornet’s minimum dwell time does not661

take into account enough variability. Indeed, the developed methods took into account the662

instability of the passenger flow: for the same number of passengers alighting and boarding,663

the necessary time to complete the alighting and boarding process may vary and change664

the tight dwell time. Our methods capture this variability.665
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Figure 16: Average estimated tight dwell times (T̂DT ) for all services on line N, branch
Paris-Dreux toward Dreux computed with the quantile method, q=0.8. The largest T̂DT
are obtained for the connection stations in the evening peak hours which is coherent with
the commuting nature of line N.

8.2 Implications for practice666

The extension of the estimation to any stop enables the computation of tight dwell times667

and margins for past circulations. Knowing those values will help to optimize the timetable668

for the future. Having an estimation for the alighting and boarding time at all the doors669

of the train gives an illustration of the distribution of the passengers’ movements in the670

platform train interface. For example, some doors may have high DABT values while671

others may have low ones. Such an illustration would help to evaluate policies to make the672

alighting and boarding times more uniform among the doors.673

8.3 Limitations of the current study674

In this study, the assessment of the new methods we proposed was done by comparison675

to existing methods. To ensure a fair comparison, we made the estimations in similar676

subsets of the data (i.e. for late trains or non-early trains, see Table ??). This means677

we have no assessment directly for non-late trains and the extrapolation of the results for678

late trains should be done cautiously. Furthermore, the comparison we made was relative679

to the existing methods. We highlighted that Cornet’s minimum dwell time keeps little680

margin but our methods may also have underestimated the tight dwell time (depending on681

their parameter ∆t or q) and we were not able to measure precisely to what extent. The682

main issue there was that we did not compare the same object. One could always have683

imagined a situation comparable where people alight and board faster which would have684

given a smaller TDT . The methods we proposed compute the TDT as TDT = ABT +TT685

(TT being the technical time). This suggests that everything that is not included in the686

alighting and boarding time is a margin and should be dropped to compute TDT . This687

implies that the time for a particularly slow passenger to alight/board the train should688

be considered as a margin (slow regarding the parameter ∆t or q) and we know that it is689

not always the case. Such an issue could be discussed in more detail using video of the690
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Figure 17: Mean door alighting and boarding times ( ̂DABT ) for all doors and all services
on line N, branch Paris-Dreux at Versailles-Chantiers toward Paris (top), toward Dreux
(bottom) computed with the quantile method, q=0.8. Toward Paris, the busiest doors are
the ones in the front of the train while it is the opposite toward Dreux; in coherence with
Paris being a dead-end station.
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Figure 18: Door alighting and boarding times ( ̂DABT ) at door 8 for all services on line N
at Versailles-Chantiers toward Paris versus the number of passenger movements computed
with the quantile method, q=0.8. Despite an increasing trend, ̂DABT is not well modeled
by a linear fit of passengers’ movements.

dwelling process but we only have access to passenger counting data.691

8.4 Future research directions692

As already mentioned, the methods we developed enabled us to analyze the tight dwell693

times for past circulations. Future research should focus on predicting TDT for future694

circulations. Knowing obtained T̂DT , some margin will have to be smartly added to build695

a robust timetable for an existing line. Some more advanced work will be able to make696

possible predictions of TDT for new missions, new stops, or even new lines.697
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9 Appendix806

9.1 Demonstration of the comparability of Cornet’s M̂DT and estimated T̂DT807

In this section, we demonstrate that if ÂBT and M̂ are independent and808

lim|{k,d}|→∞

(
min

k,d s.t. p=p0
M̂k,s0,d

)
= 0, then:809

lim
|{k,d}|→∞

(
min

k,d s.t. p=p0
T̂DT k,s0,d

)
= lim

|{k,d}|→∞
M̂DT (p0, s0).810
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First, we trivially have (without any hypothesis):811

min
k,d s.t. p=p0

T̂DT k,s0,d ≤ M̂DT (p0, s0),812

which holds if one takes the limit.813

Second, for any ϵ > 0, there exists n a positive integer, such that if |{k, d}| ≥ n, there814

exists (k0, d0) such that:815 
ÂBT k0,s0,d0 ≤ lim|{k,d}|→∞

(
min

k,d s.t. p=p0
ÂBT k,s0,d

)
+ ϵ

2

M̂k0,s0,d0 ≤ lim|{k,d}|→∞

(
min

k,d s.t. p=p0
M̂k,s0,d

)
+ ϵ

2 ,
816

as the estimation of ÂBT k,s,d and M̂k,s,d is supposed independent. Assuming that:817

lim
|{k,d}|→∞

(
min

k,d s.t. p=p0
M̂k,s0,d

)
= 0.818

This implies that:819

ÂBT k0,s0,d0 + M̂k0,s0,d0 ≤ lim
|{k,d}|→∞

(
min

k,d s.t. p=p0
ÂBT k,s0,d

)
+ ϵ.820

In particular,821 (
min

k,d s.t. p=p0
ÂBT k,s0,d + M̂k,s0,d

)
≤ lim

|{k,d}|→∞

(
min

k,d s.t. p=p0
ÂBT k,s0,d

)
+ ϵ.822

This being true for any ϵ, one obtains:823

lim
|{k,d}|→∞

(
min

k,d s.t. p=p0
ÂBT k,s0,d + M̂k,s0,d

)
≤ lim

|{k,d}|→∞

(
min

k,d s.t. p=p0
ÂBT k,s0,d

)
.824

And, adding TT ,825

lim
|{k,d}|→∞

M̂DT (p0, s0) ≤ lim
|{k,d}|→∞

(
min

k,d s.t. p=p0
T̂DT k,s0,d

)
.826

Therefore,827

lim
|{k,d}|→∞

M̂DT (p0, s0) = lim
|{k,d}|→∞

(
min

k,d s.t. p=p0
T̂DT k,s0,d

)
.828

In practice, if we see that the minimum in a given window of p of T̂DT we measure with829

our methods is close enough to M̂DT estimated for the same value of p, this means that830

the methods are coherent. By contrast, if the minimum in a given window of p of T̂DT we831

measure with our methods is different from M̂DT for the same p, then either the minimal832

margin is not zero, or the amount of data is not large enough, or one of the methods is not833

coherent.834
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