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GAUSSIAN RANDOM FIELDS AND MONOGENIC IMAGES

HERMINE BIERMÉ, PHILIPPE CARRÉ, CÉLINE LACAUX, AND CLAIRE LAUNAY

Abstract. In this paper, we focus on lighthouse anisotropic fractional Brownian fields (AFBFs),
whose self-similarity depends solely on the so-called Hurst parameter, while anisotropy is revealed
through the opening angle of an oriented spectral cone. This fractional field generalizes fractional
Brownian motion and models rough natural phenomena. Consequently, estimating the model param-
eters is a crucial issue for modeling and analyzing real data. This work introduces the representation
of AFBFs using the monogenic transform. Combined with a multiscale analysis, the monogenic sig-
nal is built from the Riesz transform to extract local orientation and structural information from an
image at different scales. We then exploit the monogenic signal to define new estimators of AFBF
parameters in the particular case of lighthouse fields. We prove that the estimators of anisotropy
and self-similarity index (called the Hurst index) are strongly consistent. We demonstrate that these
estimators verify asymptotic normality with known variance. We also introduce an estimator of the
texture orientation. We propose a numerical scheme for calculating the monogenic representation
and strategies for computing the estimators. Numerical results illustrate the performance of these
estimators. Regarding Hurst index estimation, estimators based on the monogenic representation of
random fields appear to be more robust than those using only the Riesz transform. We show that
both estimation methods outperform standard estimation procedures in the isotropic case and provide
excellent results for all degrees of anisotropy.

Keywords: Gaussian field, Self-similarity, Anisotropy, Fractional Brownian field, Estimation, Hurst parameter, Mono-
genic signal, Riesz transform.
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1. Introduction

Self-similarity characterizes an object that maintains the same properties at different scales. The self-similarity prop-
erty especially allows to model some rough natural phenomena (see e.g [1, 33, 43, 49] for some applications in medicine,
internet traffic, geophysics, hydrogeology or finance) and then a fractal analysis may provide help for classification of
rough data (see e.g. [34] for a nice review in medical imaging). Moreover, it is particularly adapted to the analysis
of micro-textures, which do not present any geometrical structure or pattern, and are usually modeled by a Gaussian
random field. In medical imaging e.g., modeling a texture obtained by mammograms by a self-similar random field
and studying its self-similarity order allow to distinguish between dense or fatty tissue. The most famous self-similar
Gaussian field is the Fractional Brownian field (fBf) BH with Hurst parameter H ∈ (0, 1), see [36, 31]. This fractional
field generalizes the fractional Brownian motion and has been introduced to model rough natural phenomena. It is the
only isotropic Gaussian centered random field H-self-similar with stationary increments. Moreover, its Hurst parameter
H controls its smoothness: the smaller H is, the rougher the fractional Brownian texture.

The anisotropy of the data is also a very important characteristic to take into consideration in many applications,
e.g. in medicine [10] or in geology [8, 17]. Then, the isotropy property of the fBf severely restricts its use in modelling.
Several authors have then introduced anisotropic generalizations of the fBf, see for example [3, 16, 29, 32, 13]. Espe-
cially, in this paper, we are interested in anisotropic fractional Brownian fields (AFBFs) introduced in [16] and were
used to model and analyse mammograms and bone radiography (see [9] for a survey). AFBFs still have stationary
increments and are defined by a generalization of the fBf’s harmonizable representation allowing the spectral density
to vary with the direction. A self-similar AFBF is then characterized by a Hurst index H that controls its smoothness
and an anisotropic function called the topothesy following [21]. Such fields, also called anisotropic scale-free models
in [22], can be simulated using the turning-band method as proposed in [14] and implemented in the PyAFBF library
[42]. In this paper, we more specifically focus on the class of random fields called elementary field in [14], renamed here
lighthouse fields, in reference to Yves Meyer’s lighthouse measures that are non negative Radon measure whose Fourier
transform is supported by a double circular cone. For such a field the topothesy function is the indicator of a double
cone, and then is characterized by an orientation and the cone opening angle. Such class of AFBFs includes fractional
Brownian fields when the double cone covers the plane.

This work has been supported by the RT CNRS 2179, the RT CNRS 2169 and the project ANR-19-CE40-005
MISTIC. .
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In practice, estimating the model parameters is a very important issue to model and analyse real data. In the
literature, several estimators of the self-similarity index H have been proposed. We refer to [6, 20] and references therein
for some reviews concerning long range dependent random processes and fractional Brownian motion. Especially two
kinds of methods are quite popular in the literature. The first one relies on generalized quadratic variations, see e.g. [27]
for self-similar Gaussian processes with stationary increments, [7, 19] for some Gaussian processes, [18] for stationary
Gaussian fields or [15] for some anisotropic fractional Brownian fields with a spectral density. The second one is based
on wavelets coefficients, see e.g. [23, 5] for the fractional Brownian motion. The Hurst parameter, estimated using
a wavelet-based method, has been established by Abry et al. (see [48, 2]). As claimed by Abry et al., compared
to other estimators the wavelet-based estimator performs well both statistically and computationally. Moreover, the
wavelet-based method can also eliminate certain trends due to the property of its vanishing moments [2]. Several robust
estimators have been proposed based on the standard wavelet-based estimator. For example, Soltani et al. [44] proposed
an enhanced wavelet-based estimator by averaging two wavelet coefficients separated by half the length and taking the
logarithm first or Feng et. al. [25] proposed a robust estimator of the Hurst parameter via general trimean estimators
(a weighted average of the distribution’s median and two quantiles symmetric about the median) of non-decimated
wavelet coefficients.

Moreover, for a lighthouse field, it is also essential to characterize its degree of anisotropy. The degree of anisotropy
can be analyzed using the coherence index associated with the calculation of the structure tensor [40]. However,
particularly to naturally introduce a multiscale approach and complementary information, the monogenic approach is
well-suited as it allows for the calculation of the coherence index and the direction of the field at different scales [37, 40].
Indeed, the monogenic signal, introduced in [24] is defined through the Riesz transform, an analog in dimension of the
Hilbert transform which behaves like the gradient operator.

In this paper, we propose to use the monogenic signal [24] to analyse the class of lighthouse random fields. Studying
this monogenic signal and using an analysis based on monogenic wavelets [45], we derive a first estimator of their
self-similarity parameter H. Then, following [37, 40], inferring only the Riesz tensor, a part of the monogenic tensor,
we propose a second estimator of the self-similarity parameter and also an estimator of the coherence index. For each
proposed estimator, we establish consistency and asymptotic normality.

The paper is organized as follows. Section 2 introduces anisotropic self-similar Gaussian random fields having
a spectral density and the subclass of vertically oriented lighthouses random fields. Next Section 3 focuses on the
monogenic signal of a random field. Then Section 4 explains how the numerical experiments are performed, using a
multiscale decomposition and illustrates the results obtained in Section 3. Then Section 5 studies the estimation of the
Hurst parameter H of such a lighthouse random field using the monogenic signal. Section 6 is devoted to the inference
of the coherence index and the Hurst index based on the Riesz structure tensor. Concerning the estimation of the
Hurst index, this section also provides a comparison with the estimation using the monogenic signal and some other
methods. Section 7 considers the case of a general lighthouse random field which orientation can be non vertical and
introduces an estimator of its orientation as well as numerical results. All the proofs are postponed to the Appendix.

2. Anisotropic self-similar Gaussian random fields

One of the most studied examples of self-similar Gaussian random fields with stationary increments is the fractional
Brownian field BH with Hurst parameter H ∈ (0, 1). This random field is isotropic and the closer the Hurst parameter
is to 0, the rougher the texture created. On the contrary, the closer H is to 1, the smoother the texture appears.
To model scale invariant textures whose properties change according to the observed direction, we can consider some
anisotropic self-similar Gaussian random fields introduced in [16]. Let us recall their definition.

Let W be an isotropic complex Gaussian measure on R2 with Lebesgue intensity (see e.g. [43] for details on such
random measures). Then, for a complex-valued function g : R2 → C, the stochastic integral

W (g) :=

∫
R2

g(ξ)W (dξ)

is well-defined if and only if g ∈ L2
C
(
R2
)
, see [43]. Furthermore, for g ∈ L2

C
(
R2
)
, W (g) is a Gaussian complex-valued

random variable whose characteristic function is given by

∀z ∈ C, E (exp (iℜ (zW (g)))) = exp

(
−1

2
∥W (g)∥22 |z|2

)
where

∥W (g)∥22 =

∫
R2

|g(ξ)|2dξ.

Therefore, we identify W (g) with the random vector (ℜ(W (g)),ℑ(W (g)), a real-valued centered Gaussian vector whose
covariance matrix is ∥W (g)∥22 I2. Moreover, this defines an isometry between complex-valued square integrable functions
and complex Gaussian random variables with covariance structure given by, for all g, g′ ∈ L2

C(R2),

(1) E
(
ℜ(W (g))ℜ(W (g′))

)
= E

(
ℑ(W (g))ℑ(W (g′))

)
= ℜ(⟨g, g′⟩)
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and E
(
ℑ(W (g))ℜ(W (g′))

)
= −E

(
ℜ(W (g))ℑ(W (g′))

)
= ℑ(⟨g, g′⟩),

with

⟨g, g′⟩ =
∫
R2

g(ξ)g′(ξ)dξ =
1

2
E
(
W (g)W (g′)

)
.

Let now f : R2 → R be a spectral density, that is an even non-negative function such that f ∈ L1
(
R2,min(1, |ξ|2)dξ

)
.

Then the real-valued Gaussian random field X whose harmonizable representation is given by

(2) X(x) := ℜ
(∫

R2

[e−ix·ξ − 1]
√

f(ξ)W (dξ)

)
, x ∈ R2

is well-defined and has stationary increments. Moreover, if its spectral density f is an homogeneous function, i.e. if for
ξ ∈ R2\{0}

(3) f(ξ) = t

(
ξ

|ξ|

)
|ξ|−2H−2,

with H ∈ (0, 1) and t ∈ L1(S1) an even non-negative function defined on the unit sphere S1 ⊂ R2, then the random
field X is self-similar of order H, i.e. for every λ > 0

{X(λx);x ∈ R2}(fdd)= λH{X(x);x ∈ R2}

where
(fdd)
= means equality of finite dimensional distributions.

In the following, we will focus on the subclass of lighthouse fields, also called elementary fields in [14]. In this case,
up to a rotation (see Section 7), the function t (respectively the spectral density f) is parameterized by δ ∈ (0, π/2]
(respectively by (H, δ)) and then denoted by tδ (respectively fH,δ).

Definition 2.1. Let H ∈ (0, 1), δ ∈ (0, π/2] and tδ : S1 → [0,∞) be the even function such that

(4) ∀α ∈ (−π/2, π/2], tδ(Θ(α)) = 1|α|≤δ,

where

Θ(α) = (cos(α), sin(α)) ∈ S1.

Moreover, let us consider the spectral density fH,δ defined by

(5) fH,δ(ξ) = tδ

(
ξ

|ξ|

)
|ξ|−2H−2, a.e. ξ ∈ R2.

Then the random field X associated to fH,δ by (2) is called lighthouse Gaussian random field with parameters (H, δ).

When δ = π/2, the lighthouse field is the isotropic fractional Brownian field. Let us also mention that lighthouse
fields can be simulated by the turning-band method (see [14]). Figure 1 shows four examples for H = 0.5 and multiple
δ values. The closer δ gets to 0, the more horizontally oriented the spectral density is and the more vertically oriented
the texture appears.

a) δ = π/2 b) δ = π/4 c) δ = π/12 c) δ = π/64

Figure 1. Realizations of lighthouse random fields for several values of δ and H = 0.5.

Finally, in this paper, we interpret the random field X defined by (2), with f ∈ L1(R2,min(1, |ξ|2)dξ), in terms of a
tempered distribution. For any function u ∈ L2(R2), let us first denote by û its Fourier transform, with

∀ξ ∈ R2, û(ξ) =

∫
R2

e−ix·ξ u(x)dx.

Then let us recall that the Schwartz space S(R2) ⊂ L2(R2) consists of functions u : R2 → R in C∞(R2) such that

∀m ∈ N and j = (j1, j2) ∈ N2, ∥u∥m,j = sup
x∈R2

(1 + |x|)m
∣∣∣Dju(x)

∣∣∣ < ∞.
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We will mainly consider the subspace S0(R2) consisting of functions u ∈ S(R2) such that

û(0) =

∫
R2

u(x)dx = 0

and sometimes S1(R2) ⊂ S0(R2) with also Dj û(0) = 0 or equivalently∫
R2

xj1
1 xj2

2 u(x)dx = 0,

for |j| = j1 + j2 = 1.

For u ∈ S0(R2), one has∫
R2

(∫
R2

|e−ix·ξ − 1|2u(x)2f(ξ)dξ
)1/2

dx ≤ 2

(∫
R2

max (1, |x|) |u(x)| dx
)

×
(∫

R2

min
(
1, |ξ|2

)
f(ξ)dξ

)1/2

< +∞

since f ∈ L1
(
R2,min

(
1, |ξ|2

)
dξ
)
. Then, applying a generalization of the Fubini’s stochastic theorem (see Theorem 2.1

of [39]), gives us that a.s.∫
R2

X(x)u(x)dx = ℜ
(∫

R2

(∫
R2

[e−ix·ξ − 1]
√

f(ξ)u(x)dx

)
W (dξ)

)
= ℜ

(∫
R2

û(ξ)
√

f(ξ)W (dξ)

)
,

since û(0) = 0 and with û
√
f ∈ L2

C
(
R2
)
. Hence we set

(6) ⟨X,u⟩ = ℜ
(∫

R2

û(ξ)
√

f(ξ)W (dξ)

)
.

The random field (⟨X,u⟩)u∈S0(R2) admits a version that is a generalized centered real-valued Gaussian random field

(see [12] for instance) and by (12), its covariance structure is given by

E (⟨X,u⟩⟨X, v⟩) = ℜ
(∫

R2

û(ξ)v̂(ξ)f(ξ) dξ

)
for all u, v ∈ S0(R2). Note that for any real-valued functions u, v ∈ S0(R2), this covariance can be rewritten as

(7) E (⟨X,u⟩⟨X, v⟩) =
∫
R2

û(ξ)v̂(ξ)f(ξ) dξ

since the real-valued function f is even, and û(ξ) = û(−ξ) as well as v̂(ξ) = v̂(−ξ).

3. Monogenic signal of a random field

3.1. Riesz transform. The monogenic signal corresponds to the extension of the notion of 1D analytic signal to
images [24], using a generalization of the Hilbert transform called the Riesz transform. The monogenic signal is defined
as a combination of a real-valued function u defined on R2, which can be identified to an image, and its Riesz transform.
Let us recall that the Riesz transform Ru of a real-valued function u ∈ L2(R2) is the vector Ru =

(
R1u,R2u

)
∈ R2

where for k = 1, 2

(8) Rku(x) =
1

2π
lim
ε→0

∫
R2\Bε(x)

xk − yk
|x− y|3 u(y) dy,

with Bε(x) the closed Euclidean ball with center x and radius ε. Note that we have

(9) ∀ξ ∈ R2\{0}, R̂ku(ξ) = −i
ξk
|ξ| û(ξ).

The following proposition presents useful properties of the Riesz transform [46, 41], including translation and dilation
invariances.

Proposition 3.1. For k ∈ {1, 2}, Rk : L2(R2) → L2(R2) is continuous. Moreover, for any real-valued functions
u, v ∈ L2(R2),

⟨Rku, v⟩ = −⟨u,Rkv⟩.
We also have

R2
1 +R2

2 = −I.

These last two properties imply that for any real-valued functions u, v ∈ L2(R2),

⟨Ru,Rv⟩ = ⟨R1u,R1v⟩+ ⟨R2u,R2v⟩ = ⟨u, v⟩.
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In addition, Rk is translation and scale invariant, meaning that, for all u ∈ L2(R2), x ∈ R2, and λ ∈ R
Rkτxu = τxRku, and Rkdλu = dλRku,

with

(10) τxu(y) = u(y − x) and dλu(y) = u(λy).

The Riesz vector RX of a Gaussian random field X with harmonizable representation (2) can then be defined in
the distribution sense, using the duality property.

Definition 3.2. Let X be a real-valued Gaussian random field defined by (2). Then setting for any real-valued function
u ∈ S0(R2) and for k = 1, 2,

⟨RkX,u⟩ = −⟨X,Rku⟩,
the generalized random field RX is well-defined by

RX(u) = (⟨R1X,u⟩, ⟨R2X,u⟩) , u ∈ S0(R2)

and called Riesz vector of the field X.

3.2. Monogenic representation. The monogenic signal is the combination, again in the distribution sense, of X and
its Riesz vector RX.

Definition 3.3. Let X be a real-valued Gaussian random field defined by (2). The generalized random field MX with
values in R3 defined by

(11) MX(u) = (⟨X,u⟩,RX(u)) , u ∈ S0(R2)

is then called monogenic signal of the random field X.

The monogenic signal MX of the Gaussian random field X is then a centered Gaussian vectorial generalized random
field. Let us now state some of its properties.

Proposition 3.4. Let X be a centered Gaussian random field with stationary increments and spectral density f , that
is the random field defined by (2).

(i) The covariance function of the monogenic signal MX is given by: for any real-valued functions u, v ∈ S0(R2),

(12) CMX (u, v) = E (MX(u)MX(v)∗) =

∫
R2

û(ξ)v̂(ξ)fMX (ξ)dξ,

where for a vector h ∈ C3, h∗ denotes its conjugate transpose and where fMX is defined as the complex matrix
given for a.e. ξ ∈ R2 by

(13) fMX (ξ) =


1 −i ξ1|ξ| −i ξ2|ξ|

i ξ1|ξ|
ξ21
|ξ|2

ξ1ξ2
|ξ|2

i ξ2|ξ|
ξ1ξ2
|ξ|2

ξ22
|ξ|2

 f(ξ) = CM(ξ)f(ξ).

(ii) Then, for any real-valued function u ∈ S0(R2), ⟨X,u⟩ and the Riesz vector RX(u) = (⟨R1X,u⟩, ⟨R2X,u⟩) are
independent.

(iii) For any x ∈ R2, let the translation τx be defined by (10). Then for any real-valued function u ∈ S0(R2), the
random field (MX(τxu))x∈R2 is a centered stationary vectorial Gaussian field with spectral density given by

(14) fMX,u(ξ) = fMX (ξ)|û(ξ)|2 for a.e. ξ ∈ R2,

where fMX is defined in (13).

(iv) Let u ∈ S0(R2) be a real-valued function and for any integer j ∈ Z, consider the real-valued function uj : R2 →
R defined by

(15) uj(x) = 2−ju(2−jx).

If the spectral density f is homogeneous of order H ∈ (0, 1), i.e. is defined by (3), then for any j ∈ Z,

(MX(τxuj))x∈R2
d
= 2j(H+1)(MX(τ2−jxu))x∈R2 .

Proof. See Appendix. □

Remark 3.5. The symbol j is associated to a notion of scale, introducing a multiscale perspective to field analysis.
This approach allows for the deployment of a strategy to estimate various characteristics. Indeed, as we will see in the
numerical section, extracting monogenic coefficients at different scales provides a framework for numerical estimation.

When X is a lighthouse random field and when u is radial, next proposition gives the marginal distribution of
MX(u): its components are in particular independent.
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Proposition 3.6. Let (H, δ) ∈ (0, 1) × (0, π/2] and let X be the lighthouse random field with spectral density fH,δ

introduced by Definition 2.1. If the real-valued function u ∈ S0

(
R2
)
is radial, then for all x ∈ R2,

MX(τxu)
d
=
√

cX(u)DδZ,

with Z a standard Gaussian vector with values in R3,

cX(u) = Var(⟨X,u⟩) =
∫
R2

|û(ξ)|2fH,δ(ξ)dξ,

and the diagonal matrix

Dδ = diag

(
1,

√
1

2
+

sin(2δ)

4δ
,

√
1

2
− sin(2δ)

4δ

)
.

Proof. See Appendix. □

Let us now consider the spherical coordinates of the monogenic signal MX. For any u ∈ S0(u), let us write

(16) MX(u) = AX(u)v⃗X(u)

with AX(u) = |MX(u)|, the amplitude and

(17) v⃗X(u) =

 cos(φX(u))

sin(φX(u)) cos(θX(u))

sin(φX(u)) sin(θX(u))

 ∈ S2

with φX(u) ∈ [0, π), the phase, and θX(u) ∈ [−π, π), the orientation.
The main interest of the monogenic signal comes from the strong relation between the values of its phase and the

geometrical structure of the local signal variations. Moreover, the amplitude is invariant by rotation. When the random
field X is a lighthouse field, next proposition gives the spherical coordinates’ densities.

Theorem 3.7. Let (H, δ) ∈ (0, 1) × (0, π/2] and let X be the lighthouse field with spectral density fH,δ given by (5).
Let the generalized random field (AX , φX , θX) be the spherical coordinates of the monogenic signal MX, i.e. be defined
by (16). Let u ∈ S0

(
R2
)
be a non zero radial function.

(i) Then (AX(τxu), φX(τxu), θX(τxu))x∈R2 , with τx defined by (10), is a stationary random field.

(ii) The random orientation θX(u) follows an offset normal distribution whose probability density function is
defined on [−π, π) by

θ 7→
√

1− χX(u)2

2π(1− χX(u) cos(2θ))
,

with

(18) χX(u) =
sin(2δ)

2δ
.

(iii) Moreover, with cX(u) and Dδ defined in Proposition 3.6,

AX(u)2
d
= cX(u)A2

δ

with A2
δ = |DδZ|2 for Z ∼ N (0, I3) that follows a generalized chi-square distribution E

(
A2

δ

)
= 2.

(iv) In the isotropic case, if δ = π/2, θX(u) follows a uniform distribution on (−π, π) and is independent of
(AX(u), φX(u)). Moreover, the density function of the phase φX(u) is given by

ϕ 7→ sin(ϕ)

(1 + sin2(ϕ))3/2
1(0,π)(ϕ).

(v) Let j ∈ Z and let uj be defined by (15). Then,

v⃗X(uj)
d
= v⃗X(u),

and so the distribution of v⃗X(uj) does not depend on j. Moreover,

AX(uj)
d
= 2j(H+1)AX(u).

Remark 3.8. The parameter χX(u) that characterizes the distribution of the orientation θX(u) does not depend on
u ∈ S0(R2). Moreover, this parameter is the so called coherence index, see [40], of the lighthouse field X. It allows to
measure the directional anisotropy, see section 6.2 which proposes an estimator of this index.

Proof. See Appendix. □

The next section is devoted to the numerical approach and in particular allows to illustrate the previous proposition.
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4. Simulation

4.1. Simulation of lighthouse random fields.
All realizations of lighthouse random fields presented in this paper have been simulated using a turning-band method

adapted to generate two-dimensional anisotropic fractional Brownian fields [14]. This procedure is based on the sim-
ulation of several independent one-dimensional processes, each one generated on an oriented band passing through a
given origin. Once generated, these processes are linearly combined to build the desired two-dimensional field. This
method produces one random field realization, an image, on a grid GN = {0, . . . , N −1}×{0, . . . , N −1} of size N ×N .
Examples of lighthouse random field realizations are presented in Figure 1, for H = 0.5 and for δ = π/2, π/4, π/12 and
π/64, with N = 1024.

4.2. Computation of the monogenic signal.
Following Equation (11), from a realization of a lighthouse random field of size N×N , one can compute the associated

monogenic signal. As we noted in Remark 3.5 following Proposition 3.4, we consider monogenic analysis with a multi-
scale method. Defining monogenic wavelet transforms is a recent topic. The main idea is to combine parallel filterbanks
(Hj , Gj)j∈Z whose underlying wavelet functions form a Riesz triple. We propose to use the undecimated filterbank
design, like in [35] for the numerical scheme and in [30] for the Hurst estimation, because it allows for translation
invariance in the numerical scheme as well as interscale connection.

At a given scale, the monogenic signal is of size N ×N × 3 and consists of a filtered version of the realization and
both Riesz transforms of the filtered realization.

The essential action of the Riesz transform is a pure phase-shifting operation, consequently the low-pass and high-
pass filters H1 and G1 are required to be perfectly neutral with respect to the signal’s phase. Their frequency response
must then be radial, positive and real-valued. In the following, we propose to use the filter G1, defined on the frequency

domain ĜN = {−N
2
, . . . , N

2
− 1} × {−N

2
, . . . , N

2
− 1} as

∀ξ ∈ ĜN , Ĝ1(ξ) = 1− e−|2πξ|2/2.

This high-pass filter has proven particularly efficient to define a monogenic representation of colored images in [45].

Figure 2 displays the filter G1 in the frequency domain and the corresponding low-pass filter H1, defined for all ξ ∈ ĜN

by Ĥ1(ξ) =

√
1− Ĝ1(ξ)2. In this case, the filterbank is computed in the frequency domain with linear complexity,

using the 2-dimensional Fast Fourier Transform.
As we mentioned earlier, a multiscale decomposition of the monogenic signal is required in our estimation procedure,

presented in the next sections. To this end, we propose to use an undecimated filterbank, associated with the filter G1

and the dilated versions

∀j ≥ 2, ∀ξ ∈ ĜN , Ĝj(ξ) = Ĝ1(2
j−1ξ), and Ĥj(ξ) =

√
1− Ĝj(ξ)2.

In Figure 2, we also present the templates of the filters for the next scale 2. As the bank of filters is undecimated, the
realization remains on the same grid GN at any scale j. The main advantage of this is information redundancy, that
is shown to improve inference by decreasing the variance of the estimates. The choice of the optimal scale is a classic
problem and is regularly discussed in articles using wavelet decomposition. For example, it is known that there is a
bias-variance trade-off for choosing scales: the selection of small scale increases the bias, but decrease the variance of
the estimator. This choice results from a compromise, which we propose in this paper.

In practice, given an image Ij of size N × N at scale j ≥ 0, the monogenic signal is obtained by applying the
high-pass filter Gj to Ij and then by computing both Riesz transforms R1Ij ,R2Ij on the filtered realization in the
spectral domain. Then the monogenic signal at scale j is given by these 3 images Ij ,R1Ij ,R2Ij of size N × N seen
as an image of size N × N with vectorial values in R3. The spherical coordinates at each pixel yield the monogenic
parameters Aj , φj , θj of amplitude, phase and orientation as threw new images of size N × N . The realization, Ij+1,
at scale j + 1 is determined by applying the low-pass filter Hj to Ij .

Hence from I0 the realization of our random field X on the discrete grid GN we consider for j ≥ 1 the filtered image
Ij as a realization of {⟨X, τxuj⟩;x ∈ GN} and its Riesz transforms RkIj as a realization of {⟨RkX, τxuj⟩;x ∈ GN},
while the monogenic parameters (Aj , φj , θj) are seen as a realization of {(AX(τxuj), φX(τxuj), θX(τxuj)) ;x ∈ GN}.
Note that the choice of G1 and H1 ensures that we may assume that u is a radial function satisfying the moment
condition Dj û(0) = 0 for |j| = j1 + j2 ≤ 1.

Figure 3 illustrates Theorem 3.7: it presents the empirical and theoretical probability density functions of the
amplitude, the orientation and the phase of the monogenic signal, for a given lighthouse field of parameters H = 0.5
and δ = π/2, π/3 or π/6. The realization used for this estimation is of size 1024 × 1024 and we apply the filter
G1 presented above. To avoid border artefacts we remove 15% on each side of the images of monogenic parameters.
Notice how, thanks to the stationarity, one realization is sufficient to provide satisfying empirical distributions for the
amplitude, the phase and the orientation of the monogenic signal.

A MATLAB implementation (https://github.com/claunay/monog\_img) is available online for simulating light-
house random fields and their monogenic signal, and for estimating their parameters (H, δ).
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Figure 2. The high-pass filter G1 and the associated low-pass filter H1 at scale 1
and the high-pass filter G2 and the associated low-pass filter H2 at scale 2 presented
here in the frequency domain, are used in the monogenic representation of lighthouse
random fields.

5. Inference based on the monogenic signal

5.1. Monogenic tensor.

Definition 5.1. Let X be the random field associated to the spectral density f by (2) and u ∈ S0

(
R2
)
. Then, the

monogenic tensor of the Gaussian random vector MX(u) is its covariance matrix

TMX(u) := E (MX(u)MX(u)∗) ∈ M3(R).

When X is the lighthouse field with spectral density fH,δ, by Proposition 3.6, the monogenic tensor of a radial
function u ∈ S0

(
R2
)
is simply the diagonal matrix

TMX(u) = cX(u)diag

(
1,

1

2
+

sin(2δ)

4δ
,
1

2
− sin(2δ)

4δ

)
In view of Theorem 3.7, for u ∈ S0

(
R2
)
a radial function, for any scale j, we now consider the monogenic tensor of the

function uj defined by (15)

TMX(uj) := E (MX(uj)MX(uj)
∗) ∈ M3(R).

Since X is the lighthouse field with spectral density fH,δ, we have

TMX(uj) =

∫
R2

fMX,uj
(ξ)dξ = 22j(H+1)

∫
R2

fMX,u(ξ)dξ

where the spectral densities fMX,uj
and fMX,u are given by (14). This scaling property will lead to an estimator of

the Hurst index H after estimating the monogenic tensors TMX (uj) for each scale j. A natural empirical estimator of
TMX(uj) is then given by

(19) T Memp
j =

1

N2

∑
x∈GN

MX(τxuj)MX(τxuj)
∗,

where we recall that GN = {0, . . . , N − 1}2 is the grid of size N2 on which the random field X is observed.
Let us emphasize that in the sequel, each symmetric matrix M = (mℓℓ′)1≤ℓ,ℓ′≤3 of size 3 × 3 is identified, when

stating asymptotic normality property, with the vector of length 6, (m11,m22,m33,m12,m13,m23). We obtain the
following theorem.

Theorem 5.2. Let (H, δ) ∈ (0, 1) × (0, π/2] and let X be the lighthouse field with spectral density fH,δ given by (5).
Let u ∈ S0

(
R2
)
be a non-zero radial function and let j ∈ Z. Then T Memp

j is an unbiased estimator of the monogenic

tensor TMX(uj) and

(20) T Memp
j

a.s.−−−−→
N→∞

TMX(uj).
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Amplitude Phase Orientation

Figure 3. Empirical probability density functions of the amplitude, phase and ori-
entation of the monogenic signal of a lighthouse fields with parameters H = 0.5 and
δ = π/2 (top), δ = π/3 (middle), δ = π/6 (bottom), computed on one realization of
size 1024× 1024

.

In addition, for H < 1/2 or choosing u ∈ S1(R2) for 1/2 ≤ H < 1, there exists a symmetric non-negative matrix
ΓT M (uj) ∈ M6(R)\{0} such that

N
(
T Memp

j − TMX(u)
) d−−−−→

N→∞
N (0,ΓT M (uj)) .

Proof. See Appendix. □

By using spherical coordinates (16), we can also write

TMX(uj) = E
(
AX(uj)

2v⃗X(uj)v⃗X(uj)
∗) .

Therefore, since Tr (v⃗X(uj)v⃗X(uj)
∗) = |v⃗X(uj)|2 = 1,

Tr (TMX(uj)) = E
(
AX(uj)

2Tr (v⃗X(uj)v⃗X(uj)
∗)
)
= E

(
AX(uj)

2) .
Then as a simple consequence of Theorem 5.2, we can propose the following consistent asymptotically normal estimator
of E

(
AX(uj)

2
)
.
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Corollary 5.3. Let (H, δ) ∈ (0, 1) × (0, π/2] and let X be the lighthouse field with spectral density fH,δ given by (5).
Let u ∈ S0

(
R2
)
be a non-zero radial function and let j ∈ Z. Then

(21) V emp
j := Tr

(
T Memp

j

)
=

1

N2

∑
x∈GN

|MX(τxuj)|2

is an unbiased estimator of E
(
AX(uj)

2
)
and

V emp
j

a.s.−−−−→
N→∞

E
(
AX(uj)

2) .
Moreover for H < 1/2 or choosing u ∈ S1

(
R2
)
when 1/2 ≤ H < 1, there exists σ2 (uj) > 0 such that

N
(
V emp
j − E

(
AX(uj)

2)) d−−−−→
N→∞

N
(
0, σ2 (uj)

)
.

In addition, if ûj has support in T2, then

σ2(uj) = 32π2

∫
T2

|ûj(ξ)|4fH,δ(ξ)
2dξ.

Proof. See Appendix. □

Now using the fact that AX(uj)
2 d
= 22j(H+1)AX(u)2, by Theorem 3.7, the amplitudes of the monogenic signal at

each scale provide an estimator of the random field Hurst index, introduced in next section.

5.2. Estimation of the Hurst index. Since

(22)
E
(
AX(uj+1)

2
)

E (AX(uj)2)
=

22(j+1)(H+1)E
(
AX(u)2

)
22j(H+1)E (AX(u)2)

= 22H+2,

we simply propose

(23) Hemp
j =

1

2 log(2)
log

(
V emp
j+1

V emp
j

)
− 1.

as an estimator of the Hurst index H.

Theorem 5.4. Let (H, δ) ∈ (0, 1) × (0, π/2] and let X be the lighthouse field with spectral density fH,δ given by (5).
Let u ∈ S0

(
R2
)
be a non-zero radial function and let j ∈ Z. Then recalling (23)

Hemp
j

a.s.−−−−→
N→∞

H.

Let now H < 1/2 or let u ∈ S1(R2) when 1/2 ≤ H < 1. Then there exists ρ(uj) ≥ 0 such that

N

[(
V emp
j

V emp
j+1

)
−

(
E
(
AX(uj)

2
)

E
(
AX(uj+1)

2
) )] d−−−−→

N→∞
N
(
0,

(
σ2(uj) ρ(uj)
ρ(uj) σ2(uj+1)

))
,

with σ2(uj) and σ2(uj+1) given by Corollary 5.3. Moreover

N
(
Hemp

j −H
) d−−−−→

N→∞
N
(
0, γ2(uj)

)
,

with

(24) γ2(uj) =
24H+4σ2(uj)− 22H+3ρ(uj) + σ2(uj+1)

(2 log(2)E (AX(uj+1)2))
2 .

In addition, if ûj has support in T2, then we also have

γ2(uj) =
2π2

(log(2)cX(uj+1))
2

∫
R2

(
|ûj+1(ξ)|2 − 22H+2 |ûj(ξ)|2

)2
fH,δ(ξ)

2dξ.

Proof. See Appendix. □

Figure 4 and Table 1 present the performances of this strongly consistent estimator of the Hurst index. In order to
compare the performances of the estimation method presented with other standard estimation methods in Section 6.3,
we use the same simulation settings as in [25]. The synthesized textures, realizations of lighthouse fields, are of size
1024× 1024. Note that the multiscale decomposition creates border artefacts: at each scale, pixels at the border of the
image degrade the quality of the estimation. To improve the results, we remove a given percentage of pixels on each
side of the realizations. In our experiments, we choose to remove 15% of pixels on each side of the realizations such
that the size of the grid is given by N = 719. Figure 4a) presents the estimates of the logarithm of monogenic signal
squared amplitude computed at each scale, on one realization of a lighthouse random field with parameters δ = π/4
and H = 0.5. We observe a good linearity except at first and last scales. Scales 3 and 4 provide an estimate of the
slope, whose corresponding line is displayed through the red dotted line, while the one with theoretical slope given by
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a) log(V emp
j ) for H = 0.5 and δ = π/4 b) Empirical mean of Hemp

3

Figure 4. Estimation of H for an initial simulation of size 1024×1024 (a) Logarithm
of V emp

j with respect to the scale j computed on one realization with H = 0.5 and

δ = π/4. Dotted lines are computed using two scales (j = 3, 4), with empirical slope in
red and with theoretical slope in black. (b) Empirical mean of Hemp

3 (solid lines) given
by (23), computed on 300 Monte-Carlo simulations for H ∈

{
1
4 ,

3
8 ,

1
2 ,

5
8 ,

3
4 , 0.9, 0.99

}
(dotted lines) and δ ∈

{
π
64 ,

π
8 ,

π
4 ,

3π
8 , π2

}
.

H δ = π/2 δ = 3π/8 δ = π/4 δ = π/8 δ = π/64

MSE

0.3 0.0002 0.0002 0.0003 0.0007 0.0034
0.5 0.0001 0.0002 0.0002 0.0004 0.0023
0.7 0.0001 0.0002 0.0003 0.0005 0.0024
0.8 0.0001 0.0002 0.0003 0.0005 0.0025
0.9 0.0002 0.0002 0.0003 0.0005 0.0027
0.99 0.0017 0.0022 0.0024 0.0026 0.0050

Variance

0.3 0.0001 0.0001 0.0002 0.0005 0.0022
0.5 0.0001 0.0002 0.0002 0.0004 0.0023
0.7 0.0001 0.0002 0.0002 0.0004 0.0024
0.8 0.0001 0.0002 0.0002 0.0005 0.0025
0.9 0.0001 0.0002 0.0003 0.0005 0.0027
0.99 0.0007 0.0010 0.0012 0.0015 0.0039

Table 1. Mean square error and empirical variance of the estimates Hemp
3 , computed

on 300 Monte-Carlo simulations of size 1024× 1024.

the real value of H is provided by the black dotted line. This example shows how, in practice, using the first scales
(j = 1, 2) and the deepest scales (j ≥ 7) of the analysis would impair the estimation.

These observations are coherent with several numerical studies on multiscale representation of images [48]. The first
scales seem to be noisy since we simulate a field that has a spectrum which is a uniform power-law over almost the
full range of frequency. This property will be unsuitable for numerical simulation at very high frequencies, frequencies
associated with the initial scales of the decomposition. On the contrary, information given by the deepest scales
is limited by strong border artefacts and by the size of the filters used for the multi-scale decomposition. Indeed,
although the decomposition is not decimated, the filters are dilated, making artifacts due to edge effects increasingly
visible.

Then we choose Hemp
3 given by Equation (23) as estimator of H. We consider 300 Monte-Carlo simulations. Fig-

ure 4b) presents the empirical mean of Hurst index estimates for H ∈ { 1
4
, 3
8
, 1
2
, 5
8
, 3
4
, 0.9, 0.99} (color) and degrees of

anisotropy δ ∈ { π
64
, π
8
, π
4
, 3π

8
, π
2
} (x-axis). The true Hurst index for each degree of anisotropy is displayed as a dotted

line. Table 1 provides the mean squared error between these estimates and the true Hurst index, and the empirical
variance of the 300 estimates. These results illustrate the high performance of this estimator and stability with respect
to anisotropy, especially when H is distant from 0 or 1 and δ larger than π/8. In addition, for a given H, the greatest
δ is, the more efficient the estimator is. In Section 6.3 below, this estimator based on the monogenic signal will be
compared with one based on the Riesz structure tensor and estimators proposed in [44, 25] in the isotropic framework
(that is when δ = π/2).
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In the following, we recall the definition of the structure tensor, based only on the Riesz transform, that has previously
been used for Hurst index estimation [37, 40]. We show that, as the monogenic tensor, it can provide strongly consistent
estimators for the Hurst index as well as for the degree of anisotropy. Then we compare both Hurst index estimators
numerically.

6. Inference using the structure tensor

6.1. Riesz structure tensor. Olhede et al. [37] and Polisano et al. [40] propose to use the Riesz structure tensor to
detect the directionality and anisotropy of random fields.

Definition 6.1. Let X be a real valued Gaussian random field defined by (2). Then for any u ∈ S0

(
Rd
)
, the Riesz

structure tensor is the matrix

JX(u) := E (RX(u)RX(u)∗) .

Note that we simply have

T MX(u) =

(
cX(u) 0

0 JX(u)

)
.

Choosing u ∈ S0

(
R2
)
a radial function, for any scale j, we consider now the Riesz structure tensor

JX(uj) := E (RX(uj)RX(uj)
∗) .

Note that when X is the lighthouse field with spectral density fH,δ, by Proposition 3.6, this Riesz structure tensor is
simply the diagonal matrix

JX(uj) = cX(u)diag

(
1

2
+

sin(2δ)

4δ
,
1

2
− sin(2δ)

4δ

)
Moreover, given a realization of an elementary field defined on the grid GN of size N ×N , at each scale, an empirical
estimator of the structure tensor is

(25) Jemp
j =

1

N2

∑
x∈GN

RX (τxuj)RX (τxuj)
∗ =

[
T Memp

j

]
2≤p,q≤3

.

We obtain the following proposition. As done when studying the monogenic tensor, in the sequel, each symmetric
matrix M = (mℓℓ′)1≤ℓ,ℓ′≤2 of size 2 × 2 is identified, when stating asymptotic normality property, with the vector

(m11,m22,m12) of length 3.

Proposition 6.2. Let (H, δ) ∈ (0, 1)× (0, π/2] and let X be the lighthouse field with spectral density fH,δ given by (5).
Let u ∈ S0

(
R2
)
be a non-zero radial function and let j ∈ Z. Then Jemp

j is an unbiased estimator of JX(uj) and

(26) Jemp
j

a.s.−−−−→
N→∞

JX(uj).

Moreover, for H < 1/2 or choosing u ∈ S1(R2) for 1/2 ≤ H < 1, there exists a symmetric non negative matrix
ΓR(uj) ∈ M3(R)\{0} such that

N
(
Jemp
j − JX(uj)

) d−−−−→
N→∞

N (0,ΓR(uj)) .

Proof. See Appendix. □

6.2. Estimation of the coherence index.
Let us now recall the definition of the coherence index of the structure tensor RX(u).

Definition 6.3. Let X be a real valued Gaussian random field defined by (2) and let u ∈ S0

(
Rd
)
. Then if the Riesz

structure tensor JX(u) ̸= 0, its coherence index is

χX(u) =
λ+(u)− λ−(u)

λ+(u) + λ−(u)
∈ [0, 1)

where λ+(u) and λ−(u) denote respectively the largest and the smallest eigenvalue of the non-negative symmetric matrix
JX(u).

Considering now the multi-scale approach, for each scale j, we still denote by λ+(uj) the largest eigenvalue of the
Riesz tensor JX(uj) and by λ−(uj) its smallest eigenvalue. Then the coherence index, see [40], given by

(27) χX(uj) =
λ+(uj)− λ−(uj)

λ+(uj) + λ−(uj)
∈ [0, 1),

allows to measure the directional anisotropy.
Consider now a lighthouse field X of parameters (H, δ) ∈ (0, 1) × (0, π/2] and assume that u is a non zero radial

function. Then, since by Proposition 3.6

T MX(uj) =

(
cX(uj) 0

0 JX(uj)

)
,
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we simply get

λ±(uj) = cX(uj)×
[
1

2
± sin(2δ)

4δ

]
> 0

as in Polisano et al. [40]. Moreover,

(28) λ±(uj) = 2j(2H+2)λ±(u).

In addition, the coherence index of the structure tensor at scale j does not depend on the considered scale, but only
on the anisotropic parameter δ:

(29) χX (uj) =
sin(2δ)

2δ
.

The case δ = π
2
, corresponding to the isotropic one yields χX (uj) = 0. As δ decreases, the lighthouse field becomes

more directionally oriented and the coherence index is growing to 1.

With the aim to estimate the coherence index χX(uj), we first estimate the eigenvalues λ+(uj) and λ−(uj), respec-

tively by λ+emp
j the largest eigenvalue of the matrix Jemp

j and λ−emp
j its smallest eigenvalue. We obtain the following

proposition.

Proposition 6.4. Let (H, δ) ∈ (0, 1)× (0, π/2] and let X be the lighthouse field with spectral density fH,δ given by (5).
Let u ∈ S0

(
R2
)
be a non-zero radial function and let j ∈ Z. Then

λ±emp
j

a.s.−−−−→
N→∞

λ±
j .

Moreover, for H < 1/2 or choosing u ∈ S1(R2) for 1/2 ≤ H < 1,

N

((
λ+emp
j

λ−emp
j

)
−

(
λ+(uj)

λ−(uj)

))
d−→

N→+∞
N (0, [ΓR(uj)]1≤l,l′≤2).

In addition, assuming that ûj has support in T2, one has for 1 ≤ l, l′ ≤ 2

[ΓR(uj)]l,l′ = 8π2

∫
T2

ξ2l ξ
2
l′

|ξ|4 |ûj(ξ)|4fH,δ(ξ)
2dξ.

Proof. See Appendix. □

Now for each integer j, we define

(30) χX(uj)
emp =

λ+emp
j − λ−emp

j

λ+emp
j + λ−emp

j

,

as estimator of the coherence index for the scale j.

Theorem 6.5. Let (H, δ) ∈ (0, 1) × (0, π/2] and let X be the lighthouse field with spectral density fH,δ given by (5).
Let u ∈ S0

(
R2
)
be a non-zero radial function and let j ∈ Z. Then

χX(uj)
emp a.s.−−−−→

N→∞
χX(uj).

Moreover, for H < 1/2 or choosing u ∈ S1(R2) for 1/2 ≤ H < 1, one has

(31) N (χX(uj)
emp − χX(uj))

d−→
N→+∞

N (0, σ2
χ(uj)).

In addition, assuming that ûj has support in T2, one has

σ2
χ(uj) =

(2π)2

cX(uj)2

(
1 +

sin(4δ)

4δ
+

3

2

(
sin(2δ)

2δ

)2
)∫

R2

|ûj(ξ)|4fH,δ(ξ)
2dξ.

Proof. See Appendix. □

Figure 5 presents the results of the coherence index estimation from textures generated by lighthouse random fields
with different parameters. Figure 5a) compares the empirical mean of estimations of the coherence index for 300
Monte-Carlo simulations at each scale, for H = 0.5 and various degrees of anisotropy. The target coherence index for
each degree of anisotropy is displayed as a dotted line. We notice that depending on the degree of anisotropy, the first
and last scales do not always allow a correct estimation of χX . We observe that for an image of initial size 1024×1024,
the third scale appears to be the one providing the best results (see Section 5.2 for justifications). Figure 5b) presents
the estimates obtained at scale j = 3 of the coherence index for various degrees of anisotropy (color) and various Hurst
parameters (x-axis). The theoretical value is represented by a dotted line. When H is far from 0 or 1, the χX estimate
is very accurate, regardless of the degree of anisotropy. In the elementary case, the coherence index is defined as the
cardinal sine of the degree of anisotropy (multiplied by 2) and then a good estimate of the coherence index allows us
to estimate δ the degree of anisotropy, by inverting the cardinal sine function, which is a bijection from (0, π] to [0, 1).
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a) H = 0.5 b) j = 3

Figure 5. Empirical mean (solid lines) of χX(uj)
emp given by (30), computed on 300

Monte-Carlo simulations with respect to a) the scale j and the degree of anisotropy
δ ∈

{
π
64 ,

π
8 ,

π
4 ,

3π
8 , π2

}
, for H = 0.5 and b) the degree of anisotropy δ ∈

{
π
64 ,

π
8 ,

π
4 ,

3π
8 , π2

}
and H ∈

{
1
4 ,

3
8 ,

1
2 ,

5
8 ,

3
4 , 0.9, 0.99

}
, using j = 3. The true values of the coherence index

are given by the dotted lines.

6.3. Estimation of the Hurst parameter.
The eigenvalues of the structure tensor provide new estimators of the H index, as we have, for all scale j ∈ Z,

(32)
λ±(uj+1)

λ±(uj)
= 22H+2.

Thus, we define two Hurst index estimators for a given scale j as

(33) H+emp
Rj =

1

2 log(2)
log

(
λ+emp
j+1

λ+emp
j

)
− 1 and H−emp

Rj =
1

2 log(2)
log

(
λ−emp
j+1

λ−emp
j

)
− 1.

In the following, we then propose to estimate the Hurst index by averaging these two estimators, that is by

Hemp
Rj =

H+emp
Rj +H−emp

Rj

2
.

As for the previous estimators, we obtain the following proposition. Since the estimators λ±emp
j are strongly consistent

estimators (see Proposition 6.4), by (32), Hemp
Rj is also a strong consistent estimator of the Hurst index H.

Proposition 6.6. Let (H, δ) ∈ (0, 1)× (0, π/2] and let X be the lighthouse field with spectral density fH,δ given by (5).
Let u ∈ S0

(
R2
)
be a non-zero radial function and let j ∈ Z. Then

Hemp
Rj

a.s.−−−−→
N→∞

H.

Remark 6.7. Note that one may also prove that this estimator is also asymptotically normal. To do so, one can first
establish the asymptotic normality of

(
Jemp
j , Jemp

j+1

)
, a vector of length 6 (still identifying the matrices Jemp

j and Jemp
j+1 to

vectors of length 3), by generalizing the proof done for the vector
(
V emp
j , V emp

j+1

)
∈ R2 (see Proof of Theorem 5.4 in the

Appendix) and then apply the Delta method.

Figure 6a) displays the logarithm of the eigenvalues of the estimator Jemp
j computed at each scale j for a lighthouse

field of parameters H = 0.5 and δ = π/4. We choose to use j = 3 in our experiments as it seems to produce the
best results. Figure 6a) illustrates the effect of the choice of scale: the estimate Hemp

Rj , computed using scales 3 and 4,

gives the blues and red dotted lines whose slope coefficient is equal to log(2)(2Hemp
Rj +2), while the black dotted line is

given by the true Hurst index H = 0.5. Figure 6b) represents the various estimates of H obtained for lighthouse fields
of different degrees of anisotropy and self-similarity orders. Similarly to the estimation of the coherence index, the
quality of the estimation strongly depends on the value of H, regardless of the degree of anisotropy. This observation
is consistent with theoretical results obtained in a similar framework studied by Biermé et al. [11]. On the other
hand, when δ is close to 0, the estimation of H fails. Compared with Figure 4b), the monogenic approach improves
significantly these results.

Table 2 presents the results of several estimation methods adapted to the isotropic case (δ = π/2), and compare
them with ours. The Soltani, Somar and Bochu (SSB) method [44] and the Tukey’s trimean of the mid-energy
(TTME) method [25] are also based on non-decimated wavelet transforms. Both estimators presented here significantly
outperforms the other methods, regardless of the value of H. Comparing this table with Table 1, note that the estimator
using the monogenic tensor produces performances of the same order as these standard methods only for extreme values
of anisotropy (δ = π/64) and Hurst index (H = 0.99). For all other anisotropy degrees and Hurst indexes, the mean
squared error remains substantially lower.
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0.8
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0.9
0.99

a) log
(
λ±emp
j

)
for H = 0.5 and δ = π/4 b) Empirical mean of Hemp

R3

Figure 6. Estimation of H for an initial simulation of size 1024 × 1024 obtained
by the eigenvalues λ±emp

j from JX(uj) (a). Logarithm of the eigenvalues λ±emp
j with

respect to the scale j, computed for one realization with H = 0.5 and δ = π/4.
Dotted lines are computed using two scales (j = 3, 4), with empirical slope in red
for the smallest eigenvalue and in blue for the largest, and with theoretical slopes
in black. (b). Empirical mean of Hemp

R3 (solid lines) given by (33) computed on 300

Monte-Carlo simulations for δ ∈
{

π
64 ,

π
8 ,

π
4 ,

3π
8 , π2

}
and H ∈

{
1
4 ,

3
8 ,

1
2 ,

5
8 ,

3
4 , 0.9, 0.99

}
.

The solid lines give the true values of H.

H SSB [44] TTME [25] MonTens StrucTens

MSE

0.3 0.0016 0.0015 0.0002 0.0002
0.5 0.0019 0.0015 0.0001 0.0001
0.7 0.0025 0.0022 0.0001 0.0001
0.8 0.0027 0.0023 0.0001 0.0001
0.9 0.0032 0.0027 0.0002 0.0002

Variance

0.3 0.0016 0.0015 0.0001 0.0001
0.5 0.0017 0.0013 0.0001 0.0001
0.7 0.0019 0.0018 0.0001 0.0001
0.8 0.0021 0.0018 0.0001 0.0001
0.9 0.0021 0.0018 0.0001 0.0001

Table 2. Comparison of the estimation procedures presented here for the isotropic
case (δ = π/2): Mean square error and empirical variance, computed on 300 Monte-
Carlo simulations of size 1024×1024, for the estimation of the Hurst index H by the
SSB method [44], the TTME method [25] and by the methods based on the monogenic
tensor (MonTens) and on the structure tensor (StrucTens), respectively given by (23)
and (33) using j = 3.

7. Rotation of a lighthouse field

In the previous sections, to simplify notations and computations, we have considered the specific case of lighthouse
fields with a vertical anisotropy direction. That is because their spectral density were defined using a function tδ based
on a frequential cone on the unit sphere that is centered around the parameter Θ(0) = (1, 0) ∈ S1 (Equation (4)).
Nevertheless, our results on the inference of these random fields parameters generalize to general lighthouse fields,
presented in [14, 40].

Definition 7.1. An anisotropic self-similar Gaussian random field Y is called a lighthouse field if its spectral density
is defined by

(34) fH,δ,α0(ξ) = tα0,δ

(
ξ

|ξ|

)
|ξ|−2H−2,

with α0 ∈ [−π
2
, π
2
), H ∈ (0, 1) the Hurst parameter, δ ∈

(
0, π

2

]
and tα0,δ : S1 → [0,∞) the even function such that

∀ α ∈
[
α0 −

π

2
, α0 +

π

2

]
, tα0,δ (Θ(α)) = 1[α0−δ, α0+δ](α)
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where we recall that

Θ(α) = (cos(α), sin(α)) ∈ S1.

In this definition, as before, δ is half the width of the frequential cone. It defines the degree of anisotropy in the
associated texture. The new parameter α0 changes the orientation of the frequential cone defined by fH,δ,α0 , it gives
the orthogonal orientation of the anisotropic random field. For α ∈ T, we introduce

Rα =

(
cos(α) − sin(α)
sin(α) cos(α)

)
,

the 2 dimensional rotation matrix of angle α and recall that R∗
α = R−α. Noting that

fH,δ,α0(ξ) = fH,δ(R
∗
α0

ξ),

it follows that the spectral density of the monogenic field MY (u), defined for some radial u ∈ S0(R) is given by

(35) fMY (ξ) = CM(ξ)fα0(ξ) = Sα0fMX (R∗
α0

ξ)S∗
α0

,

where fMX is given by (13), using the fact that

CM(ξ) = Sα0CM(R∗
α0

ξ)S∗
α0

,

with

Sα0 =

(
1 0
0 Rα0

)
the 3 dimensional rotation matrix of angle α0 and axis (1, 0, 0). Hence the stationary vectorial random field (MY (τxu))x∈R2

satisfies

(MY (τxu))x∈R2

fdd
=
(
Sα0MX(τR∗

α0
xu)
)
x∈R2

.

Then Proposition 3.6 and Theorem 3.7 rewrite as the following proposition.

Theorem 7.2. Let (H, δ) ∈ (0, 1) × (0, π/2]. Let α0 ∈ (−π/2, π/2] and Y be the lighthouse field with spectral density
fH,δ,α0

defined by (34). Let u ∈ S0(R2) be a radial function. Then (MY (τxu))x∈R2 is a centered stationary vectorial
Gaussian field with spectral density given by

(36) fMY,u(ξ) = fMY (ξ)|û(ξ)|2 = Sα0fMX ((R∗
α0

ξ)S∗
α0

for a.e. ξ ∈ R2,

where fMY is defined in (35). Therefore,

MY (τxu)
d
= Sα0MX(τR∗

α0
xu)

d
= Sα0

√
cX(u)DδZ,

with

cX(u) = Var(⟨X,u⟩) =
∫
R2

|û(ξ)|2fH,δ(ξ)dξ = Var(⟨Y, u⟩),

the diagonal matrix

Dδ = diag

(
1,

√
1

2
+

sin(2δ)

4δ
,

√
1

2
− sin(2δ)

4δ

)
and Z ∼ N (0, I3). Moreover, for a given scale j,

(MY (τxuj))x∈R2
d
= 2j(H+1)(MY (τ2−jxu))x∈R2 .

Finally the spherical coordinates satisfy

(AY (τxu), φY (τxu), θY (τxu))x∈R2

fdd
=
(
AX(τR∗

α0
xu), φX(τR∗

α0
xu), θX(τR∗

α0
xu) + α0

)
x∈R2

.

Hence θY (u) follows an offset normal distribution whose probability density function is given by

t 7→
√

1− χY (u)2

2π(1− χY (u) cos(2(t− α0))
,

where χY (u) = χX(u) ∈ [0, 1) is the coherence index given by (18).

Figure 7 presents the empirical probability density functions of the amplitude, the phase and the orientation of the
monogenic signal computed on one realization of three different lighthouse fields of parameters H = 0.5, δ = π/6 and
a rotation offset α0 = 0, α0 = −π/8 and α0 = π/4. This figure illustrates how the orientation of the field α0 only
impacts the monogenic signal’s orientation, by translating its probability density function of α0.

As we now assume to observe MY (τxuj) for x ∈ GN , for some radial function u and at different scales j, we
can proceed as previously by considering T Memp

j as in (19) where X is replaced by Y . It follows that a consistent

and asymptotically normal estimator of the mean square amplitude E(AY (uj)
2)
(
= E(AX(uj)

2)
)
is still obtained by

considering Tr
(
T Memp

j

)
and therefore we can use the same procedure detailed in Section 5.2 to estimate the Hurst

index. However, the Riesz structure tensor (see Definition 6.1) becomes

JY (uj) = Rα0JX(uj)R
∗
α0

= Rα0diag
(
λ+(uj), λ

−(uj)
)
R∗

α0
.
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Figure 7. Empirical probability density functions of the amplitude, phase and ori-
entation of the monogenic signal of a lighthouse fields with parameters H = 0.5,
δ = π/6 and a rotation offset α0 = 0 (top), α0 = −π/8 (middle), α0 = π/4 (bottom),
computed on one realization of size 1024× 1024.

Therefore JY (uj) has the same eigenvalues as JX(uj) but its eigenvectors are rotated from those of JX(uj). Hence,
considering Jemp

j =
[
T Memp

j

]
2≤,q≤3

as in (25), Proposition 6.2 may be generalized to get a consistent and asymptotically

normal estimator of JY (uj) and of the coherence index by considering λ+emp
j the largest eigenvalue of Jemp

j and λ−emp
j

the smallest one. When λ+(uj) > λ−(uj), (or equivalently δ ∈ (0, π
2
)), then, we may define αemp

0,j ∈ (−π/2, π/2)

be such that Θ(αemp
0,j ) is a unit eigenvector of Jemp

j with respect to the greatest eigenvalue λ+emp
j . Note that when

λ+emp
j = λ−emp

j , we simply set αemp
0,j = 0. We present in Figure 8, the results of this procedure. Empirical mean of

αemp
0,3 over 150 Monte-Carlo simulations are computed for different values of H ∈ {1/4, 3/8, 1/2, 5/8, 3/4, 0.9, 0.99}, and

rotation α0 ∈ {−π/4,−π/8, 0, π/8, π/4, π/3} in three different anisotropic cases δ ∈ {3π/8, π/8, π/4}. Recall that this
procedure has no sense for δ close to π/2 since the field is isotropic. Moreover, the closer to 0 the angle δ is, the better
the orientation of the rotation is estimated.

a) δ = 3π/8 b) δ = π/8 c) δ = π/64

Figure 8. Empirical mean of αemp
0,3 (solid lines), computed on 150 Monte-Carlo sim-

ulations for H ∈
{
1
4 ,

3
8 ,

1
2 ,

5
8 ,

3
4 , 0.9, 0.99

}
, α0 ∈ {−π/4,−π/8, 0, π/8, π/4, π/3} and (a)

δ = 3π/8, (b) δ = π/8 and (c) δ = π/64.
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8. Conclusion

This paper described a new strategy to analyse a lighthouse anisotropic fractional Brownian fields (AFBFs), charac-
terized by different parameters: the Hurst index for scale invariance and the coherence index for degree of anisotropy,
that give the structural information of the texture. Estimating the model parameters is a crucial issue for modeling
and analyzing real data. It is therefore essential to propose an estimation strategy that is theoretically validated with
respect to the properties of these estimators, while also relying on a robust numerical methodology. In this paper, we
have proposed a new methodology using the monogenic transform, which provides a comprehensive representation of
the analyzed texture in a multi-scale context.

The multi-scale monogenic representation of lighthouse fields, introduced in this paper, enabled us to define strongly
consistent estimators of both the coherence and Hurst index, that parameterize these fields. We have shown that the
monogenic signal of a lighthouse field is a stationary Gaussian random field. Thanks to the properties of the monogenic
signal, we have demonstrated that these estimators adhere to theoretical guarantees of convergence, in particular,
asymptotic normality.

We discussed a numerical scheme for computing the monogenic transform that adheres to the necessary constraints
in order to preserve the theoretically established qualities of the estimators. Different implementation choices have
been proposed and discussed, both regarding the computation of the representation and the practical application of
the estimators. Our numerical simulations show that these estimators are robust to various values of parameters and
outperform standard estimation methods in the isotropic case. Our methodology is also robust for rotation of texture
and allows to estimate the induced direction of anisotropy.

Appendix A. Proofs

Proof of Proposition 3.4.

(i) Let u, v ∈ S0(R2) be two real-valued function. Then the covariance between the two vectors MX(u) and
MX(v) is

CMX (u, v) = E (MX(u)MX(v)∗)

= E

 ⟨X,u⟩⟨X, v⟩ −⟨X,u⟩⟨X,R1v⟩ −⟨X,u⟩⟨X,R2v⟩

−⟨X,R1u⟩⟨X, v⟩ ⟨X,R1u⟩⟨X,R1v⟩ ⟨X,R1u⟩⟨X,R2v⟩
−⟨X,R2u⟩⟨X, v⟩ ⟨X,R2u⟩⟨X,R1v⟩ ⟨X,R2u⟩⟨X,R2v⟩


by definition of RkX. Hence, by (7) and by (9), we have:

CMX (u, v) =

∫
R2

û(ξ)v̂(ξ)fMX (ξ)dξ

with

fMX (ξ) =


1 −i ξ1|ξ| −i ξ2|ξ|

i ξ1|ξ|
ξ21
|ξ|2

ξ1ξ2
|ξ|2

i ξ2|ξ|
ξ1ξ2
|ξ|2

ξ22
|ξ|2

 f(ξ).

(ii) By Equation (12), for k = 1, 2

Cov (⟨X,u⟩, ⟨RkX,u⟩) = −ℜ
∫
R2

iξk
|ξ| |û(ξ)|

2 f(ξ) dξ = −
∫
R2

iξk
|ξ| |û(ξ)|

2 f(ξ) dξ = 0

since |û|2 f is a real-valued function. Hence since MX(u) is a centered Gaussian random vector with values
in R3, ⟨X,u⟩ and RX(u) are independent.

(iii) As the generalized field MX, (MX(τxu))x∈R2 is a centered Gaussian random field. Moreover, by (12), its
covariance function is given by

CMX(τxu, τyu) =

∫
R2

e−i(x−y)·ξ |û(ξ)|2fMX (ξ)dξ = CMX(τx−yu, u)

and so the random field (MX(τxu))x∈R2 is stationary and, its spectral density is given by (14).

(iv) Let us now assume that the spectral density f is defined by (3). Then, for a given scale j, since ûj(ξ) = 2j û(2jξ),
by a change of variable we get

CMX(τxuj , τyuj) =

∫
R2

e−i(x−y)·ξ22j |û(2jξ)|2fMX (ξ)dξ

=

∫
R2

e−i(x−y)·2−jξ|û(ξ)|2fMX (2−jξ)dξ.
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Hence by Equation (3), we have

CMX (τxuj , τyuj) = 2j(2H+2)

∫
R2

e−i(x−y)·2−jξ|û(ξ)|2fMX (ξ)dξ

= 2j(2H+2)CMX

(
τ2−jxu, τ2−jyu

)
,

which concludes the proof since (MX(τxuj))x∈R2 and (MX(τ2−jxu))x∈R2 are two Gaussian centered random
fields.

□

Proof of Proposition 3.6. By definition, the vector MX(u) is a centered Gaussian vector and so we only have to
compute its covariance matrix

CMX(u, u) =

∫
R2

|û(ξ)|2fMX (ξ)dξ.

By Proposition 3.4, we first have

Cov (⟨X,u⟩, ⟨RkX,u⟩) = 0.

Moreover, setting e1 = (1, 0) ∈ S1 and applying a change of variable in polar coordinates, since u is radial, we have

Cov (⟨R1X,u⟩, ⟨R2X,u⟩) = 2

∫ +∞

0

∫ π/2

−π/2

sin(2α)

2
|û(re1)|2r−2H−11|α|≤δ dαdr = 0.

Similarly we have

Var (⟨R1X,u⟩) = 2

∫ +∞

0

∫ π/2

−π/2

cos2(α)|û(re1)|2r−2H−11|α|≤δ dαdr

= (2δ + sin(2δ))

∫ +∞

0

|û(re1)|2r−2H−1dr

and

Var (⟨R2X,u⟩) = 2

∫ +∞

0

∫ π/2

−π/2

sin2(α)|û(re1)|2r−2H−11|α|≤δdαdr

= (2δ − sin(2δ))

∫ +∞

0

|û(re1)|2r−2H−1dr.

The proof is then concluded noting that we also have

Var(⟨X,u⟩) = 2

∫ +∞

0

∫ π/2

−π/2

|û(re1)|2r−2H−11|α|≤δdαdr = 4δ

∫ +∞

0

|û(re1)|2r−2H−1dr.

□

Proof of Theorem 3.7.

(i) The first assertion is a direct consequence of the stationarity of the random field (MX(τxu))x∈R2 stated in
Proposition 3.4.

(ii) By Proposition 3.6, the Riesz vector RX(u) = (⟨R1X,u⟩, ⟨R2X,u⟩) is a centered Gaussian random vector
with covariance matrix

cX (u)diag

(
1

2
+

sin(2δ)

4δ
,
1

2
− sin(2δ)

4δ

)
.

Note that since u is a non zero function, cX (u) ̸= 0 and then this covariance matrix is positive. Moreover, the
polar coordinates RX(u) are (AX(u) sinφX(u), θX(u)) ∈ [0,+∞) × [−π, π). Then, from [28] (see page 43),
the density function of the angle θX(u) is given by

θ 7→
√
1− b2

2π(1− b cos(2θ))
,

with

b =
Var (⟨R1X,u⟩)−Var (⟨R2X,u⟩)
Var (⟨R1X,u⟩) + Var (⟨R2X,u⟩) =

sin(2δ)

2δ
:= χX(u).

(iii) By Proposition 3.6,

AX(u)2 = |MX(u)|2 d
= cX(u)A2

δ

with Aδ = DδZ and Z a standard Gaussian vector. Since A2
δ is the squared norm of a Gaussian random

vector, its distribution is a Generalized chi-square one. Moreover,

E
(
A2

δ

)
= Tr

(
D2

δ

)
= 2.
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(iv) Let us now assume that δ = π/2. First, χX(u) = 0 and so θX(u) follows the uniform distribution on (−π, π).
Moreover, by Proposition 3.6, MX(u) is a centered Gaussian random vector with covariance matrix

cX(u)

1 0 0
0 1/2 0
0 0 1/2

 .

Therefore, its density is the function

(t1, t2, t3) 7→
1

π
√

2πcX(u)3
e
−

t21
2cX (u) e

−
t22+t23
cX (u) .

Applying a change of variables into spherical coordinates, we obtain that the joint density of (AX(u), φX(u), θX(u))
is

(a, ϕ, θ) 7→ 1

π
√

2πcX(u)3
e
− a2 cos2(ϕ)

2cX (u) e
− a2 sin2(ϕ)

cX (u) r2 sin (ϕ) 1I(0,+∞)(a)1I(0,π) (ϕ) 1I(−π,π) (θ) .

Hence θX(u) is independent from (AX(u), φX(u)). Moreover, the joint density of (AX(u), φX(u)) is

(a, ϕ) 7→

√
2

πcX(u)3
e
− a2(1+sin2(ϕ))

2cX (u) a2 sin(ϕ)1(0,+∞)(a)1(0,π)(ϕ).

By integrating with respect to a, φX(u) admits the expected density function.

(v) Let now j ∈ Z. Then by Proposition 3.4,

MX(uj)
d
= 2j(H+1)MX(u).

Therefore, in terms of spherical coordinates, see (16), we have{
AX(uj)

d
= 2j(H+1)AX(u)

v⃗X(uj)
d
= v⃗X(u).

□

Proof of Theorem 5.2. As we identify a symmetric matrix of M3(R) with a vector of R6, we first define the function
G : R3 7→ R6 as

(37) G(y1, y2, y3) = (y2
1 , y

2
2 , y

2
3 , y1y2, y1y3, y2y3)

for y = (y1, y2, y3) ∈ R3. Then, the result will follow once proven the following strong law of large numbers for

T Memp
j =

1

N2

∑
x∈GN

G (MX(τxuj)) −→ E (G (MX(uj))) a.s.

and the vectorial central limit theorem

(38)
1

N

 ∑
x∈GN

[G (MX(τxuj))− E (G (MX(uj)))]

 −→ N (0,ΓT M (uj)) ,

with ΓT M (uj) ∈ M6(R) an asymptotic covariance matrix detailed in the sequel. To prove this we will use Theorem 4
in [4] and its natural vectorial extension. According to Proposition 3.6, (MX(τxuj))x∈R2 is a stationary centered field,
therefore E(T Memp

j ) = TMX(uj) and we can define for x ∈ R2,

(39) r
(p,q)
j (x) = Cov ([MX(uj)]p, [MX(τxuj)]q) = E ([MX(uj)]p[MX(τxuj)]q) ,

for 1 ≤ p, q ≤ 3. Following Theorem 3.2 of [11], recalling (13), we may write for x ∈ R2

r
(p,q)
j (x) = C(p,q)

MX
(uj , τxuj) =

∫
R2

eix·ξC(p,q)
M (ξ)|ûj(ξ)|2fH,δ(ξ)dξ

where C(p,q)
MX

(·, ·) (respectively C(p,q)
M (·, ·)) is the (p, q) entry of the matrix C(p,q)

MX
(·, ·) (respectively CM(·, ·)). Then we

have

(40) r
(p,q)
j (x) =

∫
T2

eix·ξf
(p,q)

j (ξ)dξ,

where T2 = [−π, π)2 and for a.e ξ ∈ T2

(41) f
(p,q)

j (ξ) = C(p,q)
M (ξ)|ûj(ξ)|2fH,δ(ξ) +R

(p,q)
j (ξ),

with

R
(p,q)
j (ξ) =

∑
k∈Z2∖{0}

C(p,q)
M (ξ + 2kπ)|ûj(ξ + 2kπ)|2fH,δ(ξ + 2kπ).
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Since R
(p,q)
j ∈ L∞(T2) ⊂ L2(T2) we obtain that f

(p,q)

j ∈ L2(T2) as soon as∫
T2

|ûj(ξ)|4fH,δ(ξ)
2dξ < +∞,

which is satisfied when H < 1/2 or choosing u ∈ S1(R2) when 1/2 ≤ H < 1. In this case we obtain by Parseval’s
identity ∑

x∈Z2

|r(p,q)j (x)|2 = (2π)2
∫
T2

|f j

(p,q)
(ξ)|2dξ < +∞.

Then it is sufficient to check that writing G = (Gl)1≤l≤6, each coordinates Gl has Hermite rank greater than 2 (see
Equation (2.2) in [4]). That follows from the fact that for all l ∈ {1, . . . , 6} and p ∈ {1, 2, 3} one has

E ((Gl (MX (uj))− E (Gl (MX (uj)))) [MX(uj)]p) = 0,

using the fact that for all p, p′ ∈ {1, 2, 3} with p′ ̸= p,
E ([MX(uj)]p) = E

(
[MX(uj)]

3
p

)
= 0

E
(
[MX(uj)]

2
p[MX(uj)]p′

)
= E

(
[MX(uj)]

2
p

)
E ([MX(uj)]p′) = 0

E ([MX(uj)]1[MX(uj)]2[MX(uj)]3) = 0

since, by Proposition 3.6 the variables [MX(uj)]p and [MX(uj)]p′ are independent symmetric random variables. Then
by the vectorial extension of Theorem 4 in [4] (using for instance Cramer-Wold device), we obtain the central limit
theorem with for any 1 ≤ l, l′ ≤ 6

(42) [ΓT M (uj)]l,l′ =
∑
x∈Z2

Cov(Gl(MX(uj)), Gl′(MX(τxuj)),

and in particular, for p, q ∈ {1, 2, 3},

[ΓT M (uj)]p,q =
∑
x∈Z2

Cov
(
[MX(uj)]

2
p, [MX(τxuj)]

2
q

)
.

Since MX is a centered Gaussian random vector and since Cov(Z2
1 , Z

2
2 ) = 2Cov(Z1, Z2)

2 when (Z1, Z2) is a centered
Gaussian vector, we then have

(43) [ΓT M (uj)]p,q = 2
∑
x∈Z2

|r(p,q)j (x)|2 = 8π2

∫
T2

|f j

(p,q)
(ξ)|2dξ

for p, q ∈ {1, 2, 3}. Moreover, for p ∈ {1, 2, 3} and ξ ̸= 0, C
(p,p)
M (ξ) > 0 and then f j

(p,p)
is a non zero and non negative

function since u is a non zero function. Hence, [ΓT M (uj)]p,p > 0 for any p ∈ {1, 2, 3} and ΓT M (uj) ̸= 0. In addition,

again by the vectorial extension of Theorem 4 in [4], one can find c > 0 such that

E

N2

 1

N2

∑
x∈GN

[Gl (MX(τxuj))− E (Gl (MX(uj)))]

2
≤ cE

(
[Gl (MX(uj))− E (Gl (MX(uj)))]

2) .
Hence by Theorem 3.2.1 of [26] we also have the almost sure convergence. □

Proof of Corollary 5.3. The strong consistency and the asymptotic normality with

σ2(uj) =

3∑
p,q=1

[ΓT M (uj)]p,q

follows immediately from Theorem 5.2. Note that σ2(uj) > 0 since [ΓT M (uj)]p,p > 0 for p ∈ {1, 2, 3} according to the

proof of Theorem 5.2. Moreover, by (43),

σ2 (uj) = 8π2
3∑

p,q=1

∫
T2

|f j

(p,q)
(ξ)|2dξ,

with f j

(p,q)
defined by (41). Then, if ûj has support in T2, by (41),

σ2 (uj) = 8π2

∫
T2

3∑
p,q=1

|C(p,q)
M (ξ)|2|ûj(ξ)|4fH,δ(ξ)

2dξ = 32π2

∫
T2

|ûj(ξ)|4fH,δ(ξ)
2dξ,

since
∑3

p,q=1 |C
(p,q)
M (ξ)|2 = 4 for all ξ ̸= 0, which concludes the proof. □
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Proof of Theorem 5.4. First the strong consistency follows from (22) and Corollary 5.3. We then have to prove that
the couple

(
V emp
j , V emp

j+1

)
satisfies asymptotic normality. By [38] since we already have the asymptotic normality of each

marginals (see Corollary 5.3), it suffices to check that there exists ρ(uj) such that

N2Cov
(
V emp
j , V emp

j+1

)
−−−−→
N→∞

ρ(uj).

But now, using again the fact that Cov(Z2
1 , Z

2
2 ) = 2Cov(Z1, Z2)

2 when (Z1, Z2) is a centered Gaussian vector,

N2Cov
(
V emp
j , V emp

j+1

)
=

2

N2

3∑
p,q=1

∑
x,y∈GN

Cov ([MX(τxuj)]p, [MX(τyuj+1)]q)
2

=
2

N2

3∑
p,q=1

∑
x,y∈GN

C(p,q)
MX (τxuj , τyuj+1)

2

=
2

N2

3∑
p,q=1

∑
x,y∈GN

∣∣∣∣∫
T2

e−i(x−y)·ξg
(p,q)
j (ξ)dξ

∣∣∣∣2 ,
where instead of (41) we have now

g
(p,q)
j (ξ) =

∑
k∈Z2

C(p,q)
M (ξ + 2kπ)ûj(ξ + 2kπ)ûj+1(ξ + 2kπ)fH,δ(ξ + 2kπ).

Then,

N2Cov
(
V emp
j , V emp

j+1

)
= 2

3∑
p,q=1

∑
x∈G̃N

(
1− |x1|

N

)(
1− |x2|

N

) ∣∣∣∣∫
T2

e−ix·ξg
(p,q)
j (ξ)dξ

∣∣∣∣2
setting G̃N = {−N + 1, . . . , N − 1}2. In addition, by Parseval’s identity,∑

x∈Z2

∣∣∣∣∫
T2

e−ix·ξg
(p,q)
j (ξ)dξ

∣∣∣∣2 = (2π)2
∫
T2

|g(p,q)j (ξ)|2dξ < +∞,

since ∫
T2

|ûj(ξ)ûj+1(ξ)|2 fH,δ(ξ)
2dξ ≤ 1

2

(∫
T2

|ûj(ξ)|4 fH,δ(ξ)
2dξ +

∫
T2

|ûj+1(ξ)|4 fH,δ(ξ)
2dξ

)
< +∞.

It follows that the limit ρ(uj) exists and satisfies

ρ(uj) = 8π2
3∑

p,q=1

∫
T2

|g(p,q)j (ξ)|2dξ.

Let us now set

Σj =

(
σ2(uj) ρ(uj)
ρ(uj) σ2(uj+1)

)
and write Hemp

j = F
(
V emp
j , V emp

j+1

)
with

F (x, y) =
1

2 log(2)
log

(
x

y

)
− 1, x > 0, y > 0.

Since F is differentiable at
(
E
(
AX(uj)

2
)
,E
(
AX(uj+1)

2
))

∈ (0,+∞)2, by the Delta method, we obtain that

N
(
Hemp

j −H
) d−−−−→

N→∞
N
(
0, γ2(uj)

)
,

with the variance

γ2(uj) = ∇F
(
E
(
AX(uj)

2) ,E (AX(uj+1)
2))∗ Σj∇F

(
E
(
AX (uj)

2) ,E (AX (uj+1)
2)) .

Then computing ∇F and recalling (22), one easily obtains (24).

Let us now assume that ûj has support in T2. Then by the previous lines, and since
∑3

p,q=1 |C
(p,q)
M (ξ)|2 = 4,

ρ(uj) = 32π2

∫
T2

|ûj(ξ)ûj+1(ξ)|2 fH,δ(ξ)
2dξ = 32π2

∫
R2

|ûj(ξ)ûj+1(ξ)|2 fH,δ(ξ)
2dξ

In addition, since ûj+1(ξ) = 2ûj(2ξ), ûj+1 has also support in T2 and then by Corollary 5.3, we have
σ2(uj) = 32π2

∫
R2

|ûj(ξ)|4 fH,δ(ξ)
2dξ

σ2(uj+1) = 32π2

∫
R2

|ûj+1(ξ)|4 fH,δ(ξ)
2dξ.
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Therefore,

24H+4σ2(uj)− 22H+3ρ(uj) + σ2(uj+1) = 32π2

∫
R2

(
|ûj+1(ξ)|2 − 22H+2 |ûj(ξ)|2

)2
fH,δ(ξ)

2dξ.

Moreover, we recall that by Theorem 3.7,

E
(
AX(uj+1)

2) = 2cX(uj+1)

Hence, by (24),

γ2(uj) =
2π2

(log(2)cX(uj+1))
2

∫
R2

(
|ûj+1(ξ)|2 − 22H+2 |ûj(ξ)|2

)2
fH,δ(ξ)

2dξ.

□

Proof of Proposition 6.2. It is enough to remark that

Jemp
j =

[
T Memp

j

]
2≤p,q≤3

,

Hence identifying this symmetric matrix with the R3 vector

([Jemp
j ](1,1), [Jemp

j ](2,2), [Jemp
j ](1,2)) = (T Memp

j (2), T Memp
j (3), T Memp

j (6)),

using our previous vectorial identification. The asymptotic covariance matrix is given by ΓR(uj) where for 1 ≤ l, l′ ≤ 3

[ΓR(uj)]l,l′ = [ΓT M (uj)]p(l),p(l′) ,

with p(1) = 2, p(2) = 3 and p(3) = 6. Moreover, ΓR(uj) ̸= 0 since [ΓT M (uj)]p,p ̸= 0 for p ∈ {2, 3}. □

Proof of Proposition 6.4. Let us introduce F± : R3 → R with

F±(y1, y2, y3) =
1

2

(
y1 + y2 ±

√
(y1 − y2)2 + 4y2

3

)
,

for (y1, y2, y3) ∈ R3 and remark that

λ±emp
j = F± (Jemp

j

)
.

Since F± is differentiable at JX(uj) :=
(
λ+(uj), λ

−(uj), 0
)
(still identifying the symmetric matrix with the R3 vector),

the almost sure convergence follows from Proposition 6.2 and by continuity. In addition, the Delta method ensures the
asymptotic normality (see Theorem 3.1 in [47] for instance). Moreover using the fact that ∇F+ (JX(uj)) = (1, 0, 0)
and ∇F− (JX(uj)) = (0, 1, 0), we obtain that

N

((
λ+emp
j

λ−emp
j

)
−

(
λ+
j (uj)

λ−
j (uj)

))
d−→

N→+∞
N (0, [ΓR (uj)]1≤l,l′≤2) = N (0, [ΓT M (uj)]2≤l,l′≤3).

But recalling (43) the asymptotic covariance matrix satisfies, for 1 ≤ l, l′ ≤ 2,

[ΓR(uj)]l,l′ = 8π2

∫
T2

|f (l+1,l′+1)

j (ξ)|2dξ,

where f
(l+1,l′+1)

j is the periodisation of the function C(l+1,l′+1)
M |ûj |2fH,δ. It follows that when ûj has support in T2 one

has

f
(l+1,l′+1)

j (ξ) = C(l+1,l′+1)
M (ξ)|ûj(ξ)|2fH,δ(ξ) =

ξlξl′

|ξ|2 |ûj(ξ)|2fH,δ(ξ),

that yields the result. □

Proof of Theorem 6.5. The strong consistency is an immediate consequence of Proposition 6.2. Moreover the as-

ymptotic normality also follows from this proposition applying the Delta method for F (x+, x−) = x+−x−

x++x− which is

differentiable in a neighborhood of (λ+(uj), λ
−(uj)). Since

∇F (λ+(uj), λ
−(uj)) =

1

cX(uj)

(
1 +

sin(2δ)

2δ
,−1 +

sin(2δ)

2δ

)
,

σ2
χ(uj)cX(uj)

2 is equal to

[ΓR(uj)]1,1

(
1 +

sin(2δ)

2δ

)2

+ [ΓR(uj)]2,2

(
1− sin(2δ)

2δ

)2

− 2[ΓR(uj)]1,2

(
1−

(
sin(2δ)

2δ

)2
)
.

Now assuming that ûj has support in T2, by (A), one has

σ2
χ(uj) =

8π2

cX(uj)2

∫
R2

(
ξ21
|ξ|2 − ξ22

|ξ|2 +
sin(2δ)

2δ

)2

|ûj(ξ)|4fH,δ(ξ)
2dξ.

Hence setting e1 = (1, 0) and using a change of variables in polar coordinates one has

σ2
χ(uj) =

16π2

cX(uj)2

∫ +∞

0

∫ δ

−δ

(
cos(2α) +

sin(2δ)

2δ

)2

|ûj(re1)|4 r−2(2H+2)+1dαdr
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since û is a radial function. But∫ δ

−δ

(
cos(2α) +

sin(2δ)

2δ

)2

dα = δ +
sin(4δ)

4
+ 2

sin(2δ)

2δ
sin(2δ) + 2δ

(
sin(2δ)

2δ

)2

= δ +
sin(4δ)

4
+ 3

sin(2δ)2

2δ
.

Therefore,

σ2
χ(uj) =

(2π)2

cX(uj)2

(
1 +

sin(4δ)

4δ
+

3

2

(
sin(2δ)

2δ

)2
)∫

R2

|ûj(ξ)|4fH,δ(ξ)
2dξ

which concludes the proof. □
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