
HAL Id: hal-04659802
https://hal.science/hal-04659802v1

Preprint submitted on 23 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic Black-Box Optimization using Multi-Fidelity
Score Function Estimator

Atul Agrawal, Phaedon-Stelios Koutsourelakis, Kislaya Ravi, Hans-Joachim
Bungartz

To cite this version:
Atul Agrawal, Phaedon-Stelios Koutsourelakis, Kislaya Ravi, Hans-Joachim Bungartz. Stochastic
Black-Box Optimization using Multi-Fidelity Score Function Estimator. 2024. �hal-04659802�

https://hal.science/hal-04659802v1
https://hal.archives-ouvertes.fr

Stochastic Black-Box Optimization using
Multi-Fidelity Score Function Estimator

Atul Agrawal∗, Phaedon-Stelios Koutsourelakis
Professorship of Data-Driven Materials Modelling

Technical University of Munich
Munich, Germany

{atul.agrawal,p.s.koutsourelakis}@tum.de

Kislaya Ravi∗, Hans-Joachim Bungartz
Chair of Scientific Computing

Technical University of Munich, Germany
{kislaya.ravi,bungartz}@tum.de

Abstract

Optimizing the parameters of physics-based simulators is crucial in the design
process of engineering and scientific systems. This becomes challenging when
the simulator is stochastic, computationally expensive, black-box, multi-modal,
and has a high-dimensional parameter space, such as when simulating complex
climate models that involve numerous interacting variables and uncertain parame-
ters. Many traditional optimization methods rely on gradient information, which is
frequently unavailable in legacy black-box codes. To address these challenges, we
present SCOUT-Nd (Stochastic Constrained Optimization for N dimensions), an
algorithm designed to efficiently estimate gradients, reduce noise in the gradient
estimator, and enhance convergence properties through the use of natural gradients.
SCOUT-Nd also incorporates multi-fidelity schemes and an adaptive number of
samples to minimize computational effort. We validate our approach using stan-
dard benchmark analytical problems, demonstrating its superior performance in
parameter optimization compared to existing methods. Additionally, we showcase
the algorithm’s efficacy in a complex real-world application: optimizing wind farm
layout.

1 Introduction

Several real-world continuous optimization problems are too difficult to solve due to the involvement
of complex physics-based simulators in the objective or the constraints. These physics-based simula-
tors are used across fields of engineering and science to drive research [1]. There are many problems
that fit into this category, spanning a wide array of fields such as aeronautic design [2, 3], applications
in healthcare and science [4, 5], material design [6, 7], optimizing particle-physics instruments [8],
optimizing wind-farm layouts [9], general physics [10, 11], reinforcement learning (RL) [12] and
generating synthetic training data for machine learning related tasks [13, 14].

We consider a high-dimensional and expensive to a query function f : Rd → R. The high-
dimensional parameter space, multiple local optima, the lack of gradients, and stochasticity in
the objective function evaluation make the optimization non-trivial. This setting is prevalent in
science and engineering domains [15]. Optimization is primarily facilitated through gradient-based or

∗equal contribution

Preprint. Under review.

gradient-free ("black-box") methods [16]. Gradient-based methods are effective when derivatives are
readily available [17, 5, 18, 19]. Over the past decade, the surge in interest in machine learning (ML)
has significantly propelled the field of differentiable programming [16]. However, in most real-world
optimization scenarios involving physics-based simulators, gradients are not available inherently [20].
They are typically obtained through one of several strategies: a) employing the adjoint method [21,
5, 22], b) rewriting the simulator in a differentiable programming language such as JAX, PyTorch,
Julia, etc. [23, 24], or c) developing a differentiable surrogate, e.g. based on neural networks, to
approximate the objective function (e.g., [8]). The first two options pose significant implementation
challenges, often involving extensive modifications to legacy codes, thus impeding applying ML
to scientific computing [25]. Furthermore, training a differentiable surrogate can be prohibitively
expensive due to the initial cost of data generation. Also, the effectiveness of the optimization is
contingent upon the quality of the surrogate model developed. Recently, automatic differentiable
(AD) compiler methods [26] have emerged, providing gradients of legacy codes written in C, C++,
Fortran, etc. These methods facilitate integration with existing machine learning infrastructure and
support gradient-based optimization. However, these approaches are not directly comparable to the
methods proposed in the current study.

The gradient-free methods [27, 28, 29] are used for optimization when only black-box evaluations
are possible. It is also commonly called simulation-based inference(SBI)/optimization [1, 30]. Some
widely used methods include genetic algorithms [31], Bayesian Optimization and their extensions
[32, 33], and Evolution strategy (ES) methods [34, 35, 36], to name a few. The gradient-free methods
perform poorly on high-dimensional parametric spaces [29]. To remedy this, recently, stochastic
gradient estimators [37] have been used to estimate gradients of black-box functions and, hence,
perform gradient-based optimization [38, 39, 10, 13, 40]. However, they do not account for the
constraints. Also, since the methods rely on Monte Carlo techniques, the computational cost can be
very high due to many expensive simulator calls, and the gradients can be very noisy.

This work introduces a novel gradient-free approach SCOUT-Nd (Stochastic Constrained
Optimization for N Dimensions) and MF-SCOUT-Nd (Multi-Fidelility Stochastic Constrained
Optimization for N Dimensions) for constrained stochastic optimization involving stochastic black-
box simulators with high-dimensional parametric dependency. As per the notion of oracles [41, 16],
the proposed algorithm uses a stochastic, zeroth-order oracle [42]. We draw inspiration from Varia-
tional Optimization [43, 44] to estimate the gradients, provide extensions that account for constraints,
and employ multi-fidelity strategies to improve efficiency by incorporating lower-fidelity and less
expensive simulator(s). The proposed algorithm consists of the following major elements: (a) A
non-intrusive method to estimate gradients of black-box physical simulators (Sec. 2.2), with an ability
to account for stochasticity in the objective (Sec. 2) and handle constraints using penalty methods
(Sec. 2.1). (b) Strategies to reduce the variance of the gradient estimator (Sec. 2.3). (c) Ability
to handle non-convexity (Sec. 2.6). (d) Better optimum and well-behaved convergence properties
using natural gradients (Sec. 2.4). (e) Multi-fidelity strategies (Sec. 2.7) and adaptive selection
of the number of samples for gradient estimation (Sec. 2.6.4 and Sec. 2.7.1) to provide trade-off
between computational cost and accuracy. The structure of the rest of the paper is as follows. Sec. 2
defines the problem we address in the present work and the proposed algorithm with relevant details
and analysis. In Sec. 3, we present the state-of-the-art performance of SCOUT-Nd/MF-SCOUT-Nd
on standard benchmark analytical problems and compare the results with popular gradient-free
(constrained) optimization methods like Constrained Bayesian Optimization (cBO)[45], COBYLA
[46] and SLSQP[47]. Secondly, we test our algorithms on a real-world, expensive, physics-based
simulator. We choose the windfarm layout optimization case [15], which, owing to the absence of
derivatives, presence of constraints, multi-model surface, and stochasticity, provides a challenging
test case for black-box optimization routines [48]. We compare our results with SLSQP. In Sec. 4,
we summarize our findings and discuss limitations and potential enhancements.

2 Methodology

Problem statement We are concerned with optimizing a scalar-valued function f(x, b) subject to
constraints C(x) = {C1(x), . . . , CI(x)}, where x ∈ Rd denote the potentially high-dimensional
deterministic parameters and b represents uncertain parameters [38]. A lack of knowledge about
the parameters or the inherent noise in the system may cause uncertainty. The objective f or the
constraints C depend implicitly on the output of the black-box simulator, thus we only have access to

2

a zero-order oracle. Since the solution of the optimization problem to obtain the optimal design x
involves the random vector b, its variability needs to be involved in the optimization process to limit
its negative effect on the optimal design. This is classically done using a robustness measure [49, 50]
given byR. The general parameter-dependent nonlinear constrained optimization problem can be
stated as

min
x
R[f(x, b)], s.t Ci(x) ≤ 0, ∀i ∈ {1, . . . , I}. (1)

In this work, we will only consider the expectation as a robustness measure, in which case, the
problem can be stated as follows:

min
x

Eb[f(x, b)], s.t Ci(x) ≤ 0, ∀i ∈ {1, . . . , I}. (2)

In addition to that, the gradient of the objective function and the constraint is unavailable. Hence, one
cannot directly apply gradient-based optimization methods.

2.1 Penalizing the constraints

To tackle the constrained optimization problem (Eq. (2)), we convert it to an unconstrained one using
penalty-based methods [51, 52]. We define an augmented objective function L as follows:

L(x, b,λ) = f(x, b) +

I∑
i=i

λi max (Ci(x), 0) , (3)

where λi > 0 is the penalty parameter for the ith constraint and the max(·, ·) controls the magnitude
of the penalty applied. One can make the enforcement of a particular constraint stricter by increasing
the value of the corresponding penalty parameter. Incorporating the augmented objective (Eq. (3)) in
Eq. (2), one can arrive at the following optimization problem:

min
x

Eb[L(x, b,λ)]. (4)

Optimization The Monte Carlo method approximates the expectation, which induces noise. We alle-
viate the dependence on the penalty parameter λ by using the sequential unconstrained minimization
technique (SUMT) algorithm [53]. The algorithm considers a strictly increasing sequence {λn} with
λn → ∞. [53] show that when λn → ∞, then the sequence of corresponding minima, say {x∗

n},
converges to a global minimizer x∗ of the original constrained problem. The SUMT technique has
also been shown to work with non-linear constraints [54]. This adaptation of the penalty parameters
helps to balance the need to satisfy the constraints with the need to make progress towards the optimal
solution. Augmented Lagrangian [55] represents an alternative approach that could be considered for
application in this context, though it has not been explored in the current study.

2.2 Gradient Estimation

Since the design variable x can be high-dimensional, gradient-free methods such as genetic program-
ming, Bayesian Optimization, etc. may not be as efficient as gradient-based, and the latter should be
used whenever available [28]. Unfortunately, the direct computation of derivatives of L with respect
to the optimization variables x is not feasible because of the unavailability of the gradients of the
objective function and the constraints. One notes many active research threads across disciplines are
trying to tackle this bottleneck of unavailability of gradients in physical simulators [1, 39, 56, 57, 5,
10]. We draw inspiration from the Variational Optimization [43, 58, 13], which constructs an upper
bound of the objective function as shown below:

min
x

∫
L(x, b,λ)p(b) db ≤

∫
L(x, b,λ)p(b)q(x | θ) db dx = U(θ), (5)

where q(x | θ) is a probability density over the design variables x with parameters θ. If x∗ yields
the minimum of the objective Eb[L], then this can be achieved with a degenerate q that collapses to
a Dirac-delta, i.e. if q(x | θ) ≈ δ(x − x∗). The inequality above would generally be strict for all
other densities q or parameters θ. Hence, instead of minimizing Eb[L] with respect to x, we can
minimize the upper bound U(θ) with respect to the distribution parameters θ. Under mild restrictions

3

outlined by [44], the bound U(θ) is differential w.r.t θ. One can evaluate the gradient of U(θ) using
the ’log-derivative trick’ [37] as shown below:

∇θU(θ) = ∇θEx,b[L(x, b,λ)]

= ∇θ

∫
q(x | θ)p(b)L(x, b,λ) dx db

=

∫
∇θq(x | θ)p(b)L(x, b,λ) dx db

=

∫
q(x | θ)∇θ log q(x | θ)p(b)L(x, b,λ) dx db

= Ex,b [∇θ log q(x | θ)L(x, b,λ)] . (6)

As per [44], the expected objective U(θ) conserves the convexity of the original objective, thus
helping in the convergence properties. The Monte Carlo estimation of the expectation shown in Eq.
(6) is as follows:

∂U

∂θ
≈ 1

S

S∑
i=1

L(xi, bi,λ)
∂

∂θ
log q (xi | θ) . (7)

Eq. (6) is known as the score function estimator [59]. In a manner similar to the REINFORCE
[12], we take gradient steps on θ. The score function estimator also appears in the context of
reinforcement learning [60]. In the present work, we work with functions with continuous domains,
so we use Gaussian for q(·). For the special case where q(x | θ) is factored Gaussian, the resulting
gradient estimator is also known as parameter-exploring policy gradients [61], or zero-order gradient
estimation [62]. The number of samples S per iteration is usually of the order O(d) [35, 60] (also
demonstrated in Sec. 2.6.4). This can be problematic for high-dimensional problems. Fortunately,
the gradient estimation can be embarrassingly parallelized. One needs to synchronize random
seeds between machines before optimization, i.e., each machine knows what perturbations the other
machine used, so each machine only needs to communicate a single scalar to and from the other
machine to agree on a parameter update. This approach also ensures that gradient estimation is
non-intrusive, meaning that the physics-based simulator does not need modification to accommodate
the optimization routine. Consequently, legacy simulators can be used without any adjustments.

2.3 Variance reduction

Monte Carlo gradient estimation suffers from high variance. Extensive work has been done in this
regard in the past decades [37]. In the present work, we propose using the baseline method discussed
in [63] to reduce the mean square error of the estimator in Eq. (7). This is given by:

∂U

∂θ
≈ 1

S

S∑
i=1

∂

∂θ
log q (xi | θ)

L(xi, bi,λ)−
1

S − 1

S∑
j=1,j ̸=i

L(xj , bj ,λ)

 . (8)

The above is an unbiased estimator with no additional cost beyond the S samples.

We also propose to use Quasi-Monte Carlo (QMC) sampling [64] for variance reduction, thus
promising a more accurate gradient estimate [65]. QMC replaces S randomly drawn samples with a
pseudo-random sequence of samples of length S with low discrepancy. This sequence covers the
underlying design space more evenly than the random samples, thereby reducing the variance of the
gradient estimator. Also, it has been shown that under certain conditions, QMC (O(S−1)) reaches a
faster rate of convergence as compared to random sampling (O(S−1/2)). From a theoretical point of
view, the benefit of QMC vanishes in very high dimensions. However, [66] showed that the gains are
observed up to dimension 150 in practice. In this work, we present the results using Sobol points
[67].

2.4 Natural Gradients

We observe parametric oscillations in the optimization of the 2D Ackley function around the optima,
as can be seen in Fig. 1(a) and Fig. 1(b). The Ackley function is widely used to study optimization

4

algorithms due to its complex, multi-modal landscape. These oscillations occur due to moving in
the parametric space θ using the gradient descent with Euclidean distance as the distance measure.
This makes the update dependent on the particular parameterization of the distribution q(x | θ).
Therefore, a change in parameterization leads to different gradients and different updates. Hence, the
optimization is more difficult, and step size reduction with increasing iterations is crucial for stability
[68, 69]. To resolve this, we utilize natural gradients [68, 34], which relies on a more ’natural’
measure of distance DKL(θ

′∥θ) between the distributions q(x|θ) and q(x|θ′), with DKL(θ
′∥θ) de-

noting the Kullback-Leibler divergence [70]. The natural gradient is then the solution to a constrained
optimization problem which involves (for details, please see [34])

F =

∫
q(x | θ)∇θ log q(x | θ)∇θ log q(x | θ)⊤ dx (9)

= Ex

[
∇θ log q(x | θ)∇θ log q(x | θ)⊤

]
, (10)

where F is the Fisher Information Matrix (FIM) of the given parametric family of search distributions.
As mentioned earlier, in SCOUT-Nd/MF-SCOUT-Nd, the q takes the form of a Multivariate Normal
(MVN) with θ := (µ,Σ) where Σ := diag(σ2

1 , . . . , σ
2
d). Using the analytical derivative of the MVN,

we obtain the following expression for the FIM:

F (µ,Σ) = diag
(

1

σ2
1

, · · · , 1

σ2
d

,
2

σ2
1

, · · · , 2

σ2
d

)
. (11)

We use σ2
i = e2βi , reparametrized FIM is given by:

F (µ,Σ) = diag(e−2β1 , · · · , e−2βd , 2, · · · , 2). (12)

If the F matrix is invertible, the Monte Carlo gradient estimate is updated to

∇̃θU = F−1∇θU(θ). (13)

The gradient in the equation above is called the natural gradient [68, 71]. As can be seen in the
equation above, the F matrix scales the gradients. Therefore, it can also be seen as a step-size
adaptation.

The tendency of the natural gradient is to reduce the value of the gradient if the variance is smaller
than one. This slows down the convergence speed in the beginning, even after dampening. One needs
natural gradients only near the optimum. So, we apply the natural gradients only when the optimizer
is near the optimum. We can identify if the optimizer is in the proximity of the optimum when the
value of the variance has decreased to a small value (i.e., ∥Σ∥≤ σnat-grad). Another way suggested by
[69] is to apply a dampening constant to the Fisher information matrix, given by

F̃ = F + ηI. (14)

The isotropic damping η can be set constant or using an exponential decay approach by

η =

{
η̃ if iteration k < Ncut-off,

max
(
η̃ · exp

(
−k−Ncut-off

Ncut-off

)
, ηlower bound

)
else.

(15)

In subsequent numerical experiments, the parametric values choose are η̃ = 10−1, ηlower bound = 10−6

and Ncut-off = 100.

Using the Ackley function, we study the benefits of adding natural gradients to the proposed algorithm.
As can be seen in Fig. 1(c) and Fig. 1(d), the evolution of the parameters θ around the optimum
are without oscillations, as opposed to the case when natural gradients are not used (Fig. 1(a) and
Fig. 1(b)). This well-behaved parametric evolution also translates to a better optimum, even in high
dimensional cases, as seen in Fig. 2.

2.5 Termination criterion

Our proposed algorithms use gradient descent methods to optimize the function. Gradient-based
optimization methods converge to a local optimum. Subsequent optimization steps yield only marginal
improvements. In such scenarios, continuing the optimization process may be inefficient. It can be
beneficial to terminate the algorithm to conserve computational resources. This section explores

5

0 200 400
iterations

−0.05

0.00

0.05

µ

µ1

µ2

(a) Without natural gradients

0 100 200 300 400 500
iterations

10−7

10−5

10−3

10−1

σ
2

σ2
1

σ2
2

(b) Without natural gradients

0 200 400
iterations

−0.10

−0.05

0.00

0.05

0.10

µ

µ1

µ2

(c) With natural gradients

0 100 200 300 400 500
iterations

10−6

10−4

10−2

100

σ
2

σ2
1

σ2
2

(d) With natural gradients

Figure 1: Illustrations highlighting the effect of natural gradients on the 2D Ackley function opti-
mization near the optima.

Figure 2: Evolution of Ackley function value with d = 64 to highlight the influence of natural
gradients. Theoretical f(x∗) = 0, learning rate = 0.1, number of samples = 64.

several criteria for terminating the algorithm, addressing both constrained and unconstrained cases
separately.

In unconstrained optimization, no penalty term is involved, simplifying the optimization algorithm to
a single loop that repeatedly estimates gradients and takes gradient descent steps. We terminate when
the computational budget exceeds a predefined limit or the distribution q collapses to a Dirac-delta.
For a Gaussian distribution, this occurs when the norm of the variance falls below a specified cut-off
value(σcut-off). The method proposed for unconstrained optimization problems is summarized in the
Algorithm 1.

There are two loops in the algorithm for constrained optimization. The outer loop increases the value
of the penalty constant (λ). The inner loop performs the gradient descent step for a fixed penalty
constant. We terminate the outer loop under the same conditions as the unconstrained optimization
i.e., when the computational budget runs out or the distribution q collapses to a Dirac-delta. For the
inner loop, termination occurs when the computational budget exceeds the predefined limit for a
penalty constant or the distribution q collapses to a Dirac-delta. Additionally, we might encounter
cases where, for a fixed value of λ, the optimizer gets stuck at a local optimum in a region where the
constraint is not satisfied because the penalty constant is insufficient. This situation can be detected

6

Algorithm 1: SCOUT-Nd algorithm for unconstrained optimization
Input : Objective function f(x, b) , distribution q(x | θ), gradient descent optimizer G,

Natural gradient starting variance σnat-grad, Maximum budget Nmax, variance cut-off
value σcut-off

1 Set initial point θ0 := {µ0,Σ0}
2 Initialize k ← 0
3 do
4 xi ∼ q(x | θk), bi ∼ p(b) // Sampling step
5 Evaluate objective function f(xi, bi)
6 Monte Carlo gradient estimate∇θU // Eq. (8), 7
7 if ∥Σk∥< σnat-grad then
8 Compute the natural gradients ∇̃θU // Eq. (13)

9 ∇θU ← ∇̃θU
10 end
11 θk+1 ← G(θk,∇θU) // Gradient Descent
12 k ← k + 1
13 while k < Nmax and ∥Σk∥> σcut-off

Output :µk,Σk

Algorithm 2: SCOUT-Nd algorithm for constrained optimization
Input : Objective function f(x, b) , constraints C(x), distribution q(x | θ), gradient descent

optimizer G, list of penalty terms {λm}Mm=1, λM →∞, Natural gradient starting
variance σnat-grad, Maximum budget for inner and outer loop N inner

max , N outer
max , variance

cut-off value σcut-off
1 Set initial point θ0 := {µ0,Σ0}
2 Initialize k ← 0, m← 1
3 do
4 n← 0
5 do
6 xi ∼ q(x | θk), bi ∼ p(b) // Sampling step
7 Evaluate augmented objectives L(xi, bi,λm) // Eq. (3)
8 Monte Carlo gradient estimate∇θU // Eq. (8), 7
9 if ∥Σk∥< σnat-grad then

10 Compute the natural gradients ∇̃θU // Eq. (13)

11 ∇θU ← ∇̃θU
12 end
13 θk+1 ← G(θk,∇θU) // Gradient Descent
14 n← n+ 1, k ← k + 1
15 while n < N inner

max and ∥Σk∥> σcut-off
16 if ∃i : Ci(µk) > 0 and ∥Σk∥> σcut-off then
17 Σk ← Σ0

18 end
19 m← m+ 1
20 while k < N outer

max and ∥Σk∥> σcut-off
Output :µk,Σk

if the norm of the variance falls below a specified cut-off value (σcut-off) and the constraint is not
satisfied. In such cases, we reset the value of the variance term (Σk) to its initial value. The method
proposed for constrained optimization problems is summarized in the Algorithm 2.

7

2.6 Method Analysis

2.6.1 Covergence studies

Our proposed algorithm optimizes U(θ) instead of f(x). Let us convert the distribution to standard
normal distribution as follows:

U(θ) = E[f(µ+ σ · z)]z∼N (0,I), (16)

where σ is the vector containing the diagonal entries of Σ. We are ignoring the stochastic term b
from the analysis because we assume that the noise term gets marginalized in Eq. (16). Using the
Taylor expansion and the simplifications detailed in the Appendix B, we get

U(θ) = f(µ) +
1

2

d∑
i=1

σi
2 ∂2f

∂xi
2
(µ) +O(∥σ∥4). (17)

Taking the derivative of Eq. (17) with respect to µ:

∂U

∂µ
=

∂f

∂µ
(µ) +

1

2

d∑
i=1

σi
2 ∂3f

∂xi
2∂µ

(µ) +O(∥σ∥4). (18)

The mean µ corresponds to the location x in the parameter space. We can ignore the higher order
variance term in Eq. (18) for ∥σ∥< 1. So, the difference between ∂U/∂µ and ∂f/∂x has a term
involving the variance and the third derivative of the function. Let us call that term as drift term. In
an ideal case scenario, the derivative of the objective function with respect to the parameter ∂f/∂x
should be equal to the derivative of the convoluted objective function with respect to the mean of
the distribution ∂U/∂µ. Let the optimum parameter obtained using the gradient descent algorithm
performed on U be θ∗ = {µ∗,σ∗} and on f be x∗. If we ensure that ∂f/∂x = ∂U/∂µ, the µ∗ and
x∗ should converge to the same value. This is achievable when either ∥σ∥→ 0 or the third derivative
term tends to zero.

Now, taking the derivative of Eq. (17) with respect to σ and ignoring the higher order terms of σ, we
get

∂U

∂σi
= σi

∂f2

∂2xi
. (19)

The double derivative is positive at the local minimum. If the function does not have a very high rate
of change of curvature, ∂U/∂σi > 0 in the proximity of the local minimum. This means that the
gradient descent method decreases the value of ∥Σ∥ as one comes close to the local minimum. A
smaller value of the ∥Σ∥ leads to a smaller drift term. This means that if the optimizer reaches the
proximity of a local minimum, the derivative of the convoluted objective function(U) with respect to
the mean of the distribution(µ) comes closer to the derivative of the actual objective function(f) with
respect to the parameter space(x). So, the optimizer converges to the local minimum of the objective
function.

2.6.2 Gradient Correction for constraints

Let us consider an optimization problem:

min
x

x2, s.t 1− x ≤ 0. (20)

The optimum for the optimization problem in Eq. (20) lies at 1.0, which coincides with the boundary
of the feasible domain. The Fig. 3 shows the plot corresponding to the constraint element of the
augmented function L(x), as well as the constraint segment within the upper bound U(µ, σ) over a
range of variance values for the distribution. Ideally, the constraint term should not exert influence
within the confines of the feasible region. The Fig. 3 reveals that the constraint term’s influence
on U(µ, σ) remains nonzero within the feasible zone. This influence progressively diminishes with
the reduction in the σ value. Notably, this influence tends to deter the optimizer from maintaining
proximity to the constraint boundary, even when the optimum resides along this boundary. When
we run our suggested algorithm to solve the problem in Eq. (20), the algorithm will reach the area
inside the feasible boundary and get pushed away from the boundary because of the constraints.
Eventually, the value of σ decreases, and the effect of the constraint around the boundary diminishes,

8

0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0

O
bj

ec
ti

ve
va

lu
e

max(C(x), 0)

σ2 = e−1
σ2 = e−2

σ2 = e−3

Figure 3: Contribution of the constraint term for the problem given in Eq. (20). The blue curve
shows the constraint term in the augmented function L(x). The orange, green, and red curves show
the constraint term in the upper bound U(µ, σ) for decreasing values of the σ. We observe that the
tendency of the constraint to move the optimum away from the boundary is higher for a bigger value
of σ. This misguides the optimizer, especially when the optimum lies on the boundary of the feasible
region.

moving towards convergence at the boundary. This approach is suboptimal, mainly when dealing with
computationally demanding objective functions, as it decelerates the convergence rate. We propose
a strategy aimed at mitigating this effect by enforcing the value of the gradient of the constraint’s
contribution to the upper bound (U) with respect to the position parameter (µ) to assume a zero value
if that constraint is satisfied

(
i.e.,

∂UCj

∂µ = 0, if Cj(µ) ≤ 0, where UCj = Ex,b[Cj(x, b)]
)

.

2.6.3 Overcoming multiple local optima

−20
0

20x1 −20
0

20

x 2

5

10

15

20

f (
x 1

, x
2)

(a) 2D Ackley function as f(x)

−20
0

20µ1 −20
0

20

µ 2

5

10

15

20

U
(µ

, σ
)

(b) U(θ) with Σ = e0I

−20
0

20µ1 −20
0

20

µ 2

5

10

15

20

U
(µ

, σ
)

(c) U(θ) with Σ = e−10I

Figure 4: Comparing the effect of Gaussian convolution on the 2D Ackley function.

−10 −5 0 5 10
x1

−10

−5

0

5

10

x
2

0

3

6

9

12

15

18

(a) Mean evolution plotted over
f(x) value.

0 200 400 600 800 1000
iterations

2.900

2.925

2.950

2.975

3.000

3.025

µ

µ1

µ2

(b) Mean evolution

0 200 400 600 800 1000
iterations

10−7

10−6

10−5

σ
2

σ2
1

σ2
2

(c) Variance evolution

Figure 5: Effect of starting the optimization with a very small variance. The starting value of variance
is given as Σ = diag(σ2

1 , σ
2
2) with σ1

1 = σ2
2 = e−10.

9

−10 −5 0 5 10
x1

−10

−5

0

5

10

x
2

0

3

6

9

12

15

18

(a) Mean evolution plotted over
f(x) value.

0 200 400 600 800 1000
iterations

0

1

2

3

µ

µ1

µ2

(b) Mean evolution

0 200 400 600 800 1000
iterations

10−5

10−4

10−3

10−2

10−1

100

σ
2

σ2
1

σ2
2

(c) Variance evolution

Figure 6: Effect of starting the optimization with a high variance. The starting value of variance is
given as Σ = diag(σ2

1 , σ
2
2) with σ1

1 = σ2
2 = e0.

Casting the objective f(x) as U(θ) has the additional advantage of escaping local optima by smooth-
ing the objective function. It can be viewed as a Gaussian-blurred version of the original objective
f(·), free of non-smoothness. The degree of this smoothing is contingent upon the choice of Σ.
Examplalarily, we demonstrate this smoothening effect using the Ackley function, which has a highly
non-convex surface, as illustrated in Fig. 4. The figure hints towards the significant effect the initial
value of the design variable variance can have on the quality of the optimum. We optimized the 2D
Ackley function using our proposed algorithm under two distinct initial variance scenarios to study
the effect of initial design variable variance. This is illustrated in Fig. 5 and Fig. 6 for small and
high variance, respectively. The optimizer is trapped in a local minimum when the initial variance
is small (ref. Fig. 5) and dodges several local optima to converge at the global optima (ref. Fig. 6)
when the initial variance is high. This property is also confirmed upon testing using the Rastringen
function (ref. Fig. 21). These tests underscore the importance of starting with considerably significant
variance.

2.6.4 Sample Size

Let us assume that after kth step of optimization, we are in a state θk := (µk,Σk), where µk :=
{µ1,k, . . . , µd,k} and Σk := diag(σ2

1,k, . . . , σ
2
d,k). Let us represent the exact and the Monte Carlo

approximation of the gradient in Eq. (7) by ∇θk
U and ∇̂θk

U respectively. Let us represent the
variance of the samples used to approximate the gradient in Eq. (7) at the kth optimization step by
Vk := {V1,k, . . . , Vd,k, . . . , V2d,k} with

Vi,k = V
[
L(x, b,λ) ∂

∂θi
log q (x | θk)

]
. (21)

One can write the MSE of the gradient approximation as

E
[(
∇̂θk

U −∇θk
U
)2]

=
Vk

S
. (22)

Upon using the vanilla stochastic gradient descent method with learning rate α, the next exact state
(θk+1), and the approximate state (θ̂k+1) can be obtained as

θk+1 = θk + α∇θk
U,

θ̂k+1 = θk + α∇̂θk
U.

(23)

Note that this analysis can be extended to other variations of the gradient descent methods by changing
the formula in Eq. (23). We can write the MSE of the state as

E
[(

θ̂k+1 − θk+1

)2]
= α2Vk

S
. (24)

The Monte Carlo estimator in Eq. (7) is unbiased i.e., E[∇̂θk
U] = ∇θk

U . This transfers the
unbiasedness to the states, which leads to

E
[
θ̂k+1

]
= θk+1. (25)

10

Now, we want to choose the number of samples such that distance between the Gaussian distribution
obtained by exact gradient value (q(θk+1)) and the Gaussian distribution obtained by the approximate
gradient (q(θ̂k+1)) in probability space is less than a desired value given by εKL. This distance
measure is given by the Kullback-Leibler divergence [72], written as

DKL(q(θ̂k+1) || q(θk+1)) =
1

2

(
log
| Σ |
| Σ̂ |

+ tr
(
Σ−1Σ̂

)
+ (µ̂− µ)

T
Σ−1 (µ̂− µ)− d

)
,

=
1

2

d∑
i=1

(
log σ2

i,k+1 − log σ̂2
i,k+1 +

σ̂2
i,k+1

σ2
i,k+1

+
(µ̂i,k+1 − µi,k+1)

2

σ2
i,k+1

)
− d

2
,

(26)
where (̂·) represent the states obtained using approximate gradients. Taking expectation on both sides
of Eq. (26), then simplifying the expression using Eq. (24), and Eq. (25), we obtain

E
[
DKL(q(θ̂k+1) || q(θk+1))

]
=

1

2

d∑
i=1

log σ2
i,k+1 − E

[
log σ̂2

i,k+1

]
+

E
[
σ̂2
i,k+1

]
σ2
i,k+1

+
E
[
(µ̂i,k+1 − µi,k+1)

2
]

σ2
i,k+1

− d

2
,

=
1

2

d∑
i=1

(
log σ2

i,k+1 − E
[
log σ̂2

i,k+1

]
+

α2Vi,k

Sσ2
i,k+1

)
,

<
1

2

d∑
i=1

log σ2
i,k+1 − logE

[
σ̂2
i,k+1

]︸ ︷︷ ︸
Jensen’s ineqality

+
α2Vi,k

Sσ2
i,k+1

 =

d∑
i=1

α2Vi,k

2Sσ2
i,k+1

(using Eq. (25)),

=⇒ E
[
DKL(q(θ̂k+1) || q(θk+1))

]
<

d∑
i=1

α2Vi,k

2Sσ2
i,k+1

(27)
We obtained the upper bound of the KL divergence between the approximate and exact distribution.
We enforce a bound on the KL divergence by bounding the upper bound by a parameter εKL, providing
an expression for the sample size

E
[
DKL(q(θ̂k+1) || q(θk+1))

]
< εKL,

=⇒
d∑

i=1

α2Vi,k

2Sσ2
i,k+1

< εKL,

=⇒ S >

d∑
i=1

α2Vi,k

2εKLσ2
i,k+1

.

(28)

When one uses natural gradients then the expression becomes

S >

d∑
i=1

α2Vi,kσ
4
i,k

2εKLσ2
i,k+1

. (29)

From the above, we observe:

• For higher dimensional problems, more samples are required.

• Variance reduction techniques help in decreasing sample size requirement by reducing the
variance of the gradient Vk.

• The number of samples is proportional to the step size. Smaller step sizes require fewer
samples because of small changes in the parameter values in the gradient descent step.

• When employing natural gradients, the number of samples required is relatively smaller
when closer to the optimum (i.e., σ4

i,k → 0).

11

Adaptive sample size(εKL = 10−2)
S =4
S =8
S =16

S =32
S =64
S =128
S =256

0 200 400 600 800 1000
Number of iterations

10−2

10−1

100

101

O
bj

ec
ti

ve
va

lu
e

f(
x)

(a) Evolution of the objective function value
against the number of optimization steps

0 10000 20000 30000 40000 50000
Number of function evaluations

10−2

10−1

100

101

O
bj

ec
ti

ve
va

lu
e

f(
x)

(b) Evolution of the objective function value
against the number of function evaluations

Figure 7: Numerical study to compare the performance SCOUT-Nd with adaptive sample size and
fixed sample sizes on 32-dimensional Ackley function. We switch off the natural gradients and QMC
for all the cases to ensure a similar condition for all the test cases.

By using Eq. (28) or Eq. (29), we can dynamically determine the number of samples required at each
optimization step. We initially sample a predefined number of points and then verify if the conditions
are met. If they are unsatisfied, we sample additional points to fulfill the requirements. We iteratively
add the newly sampled points, continuing this process until the conditions in Eq. (28) and Eq. (29)
are satisfied. To conserve computational resources, we utilize both new and existing points instead of
resampling all points. However, this approach precludes using QMC due to the non-nested behavior
of Sobol points.

The value of Σk+1 is not known at the beginning of the kth optimization step. To address this, we
make the assumption that the change from Σk to Σk+1 is relatively small but has a significant impact
on Eq. (28). First, we compute the number of samples by substituting σ2

i,k+1 with σ2
i,k in Eq. (28).

Then, we calculate Σk+1 through a gradient descent step and verify if the conditions for Eq. (28) are
met. If they are not, we adjust the number of samples and recalibrate the value of Σk+1 by repeating
the gradient descent step. This process is iterated until Eq. (28) is satisfied.

We numerically evaluate the performance of adaptive sample size against various fixed sample size
cases in optimizing the 32-dimensional Ackley function. Figure 7 illustrates the evolution of the
objective function against the number of optimization steps and function evaluations. As discussed
in Algorithms 2 and 1, natural gradients are employed when the variance falls below a specified
threshold (σnat-grad). Since natural gradients start at different steps for different test cases, they are
excluded from this numerical test to ensure fair comparison. Additionally, we do not use Quasi-Monte
Carlo (QMC) methods for fixed sample size cases, as QMC is incompatible with the adaptive sample
size method.

From Fig. 7(a), we observe that the convergence rate improves as the number of samples increases.
Additionally, the optimum quality is better with a larger sample size. This is attributed to the smaller
mean square error(MSE) in gradient estimation associated with larger sample sizes, leading to faster
convergence and improved optimum results. Notably, optimization with adaptive sample sizes falls
in between, achieving an optimum quality comparable to that of optimization with 128 samples.

We observe from Fig. 7(b) that as the number of samples increases, the convergence slows down.
While maintaining a low mean squared error (MSE) in each iteration brings advantages, it also leads
to more function evaluations. Optimization using a small sample size converges faster in terms of
function evaluations. However, the optimum quality is compromised due to the high noise in gradient
estimation, resulting in oscillations around the optimum. In contrast, optimization with adaptive
sample size selects an appropriate number of samples based on the estimator’s variance.

12

Based on these observations, we can conclude that a higher sample size is suitable when function
evaluation is inexpensive or we have sufficient computational resources to parallelize the gradient
estimation step. However, in cases where function evaluation is expensive, using an adaptive sample
size is more practical.

2.7 Multi-fidelity

The main computational bottleneck of the gradient estimation using Eq. (7) is the multiple evalu-
ation of the objective function. This becomes a significant concern for computationally expensive
simulators. We propose to solve this problem using the multi-fidelity (MF) method [73] in the Scout
algorithm, termed as MF-SCOUT-Nd. Suppose we are given a set of L functions modeling the same
quantity and arranged in ascending order of accuracy and computational cost {f (1), f (2), . . . , f (L)}
and the corresponding augmented functions as {L(1),L(2), . . . ,L(L)}. To evaluate the gradients, we
are calculating the expectation. Following the methods mentioned in [74], we can write the highest
fidelity augmented function as a telescopic sum of the other fidelities:

L(L)(x, b,λ) = L(1)(x, b,λ) + (L(2)(x, b,λ)− L(1)(x, b,λ))+

. . .+ (L(L)(x, b,λ)− L(L−1)(x, b,λ))

= L(1)(x, b,λ) +

L∑
ℓ=2

(
L(ℓ)(x, b,λ)− L(ℓ−1)(x, b,λ)

)
. (30)

Multiplying with∇θ log q(x|θ) and taking expection on both the sides:

Ex,b

[
L(L)∇θ log q(x|θ)

]
= Ex,b

[
L(1)∇θ log q(x|θ)

]
+

L∑
ℓ=2

Ex,b

[
(L(ℓ) − L(ℓ−1))∇θ log q(x|θ)

]
.

(31)

As per the Eq. (6), the left-hand side of the equation is the gradient of the highest fidelity function
with respect to the distribution parameter

(
∇θU

(L)(θ)
)
. All the expectations on the right-hand side

of the equation can be estimated using an unbiased Monte Carlo estimator. Now, the equation above
is simplified as

∇θU
(L)(θ) ≈ 1

S1

S1∑
i=1

L(1)(xi, bi,λ)
∂

∂θ
log q (xi | θ)

+

L∑
ℓ=2

1

Sℓ

Sℓ∑
i=1

(
L(ℓ)(xi, bi,λ)− L(ℓ−1)(xi, bi,λ)

) ∂

∂θ
log q (xi | θ) , (32)

where Sℓ is the number of samples used in the estimator at the fidelity level ℓ. We assume that
the approximation quality between each fidelity improves as we increase the fidelity. So, the
number of samples required to approximate the expectation decreases as the fidelity increases (i.e.,
S1 > S2 > . . . > SL). We replace Eq. (3) and Eq. (7) with Eq. (30) and Eq. (32) respectively in the
Algorithm.1 and 2, with the rest of the steps remaining the same to handle multi-fidelity.

2.7.1 Sample size for multi-fidelity derivative estimator

In this section, we will discuss the number of samples allocated to each fidelity level for the estimation
of the derivative. We follow the approach and notations used in Sec. 2.6.4. Let us define the variable
V

(ℓ)
k as

V
(ℓ)
k =

∑d

i=1

V[L(1)(x,b,λ)∇θi
log q(x|θk)]

2σ2
i,k+1

, if ℓ = 1,∑d
i=1

V[(L(ℓ)(x,b,λ)−L(ℓ−1)(x,b,λ))∇θi
log q(x|θk)]

2σ2
i,k+1

, otherwise.
(33)

Following the steps in Sec. 2.6.4, we can derive the following for the multi-fidelity case

E
[
DKL(q(θ̂k+1) || q(θk+1))

]
<

L∑
ℓ=1

α2V
(ℓ)
k

Sℓ
. (34)

13

MF adaptive sample size(εKL = 10−2)

MF adaptive sample size(εKL = 10−3)

MF fixed sample size(S1 = 256, S2 = 64)
SF fixed sample size(S = 256)

0 200 400 600 800 1000
Number of iterations

10−2

10−1

100

101

O
bj

ec
ti

ve
va

lu
e

f(
x)

(a) Evolution of the objective function value
against the number of optimization steps.

0 10000 20000 30000 40000 50000
Computational cost

10−2

10−1

100

101

O
bj

ec
ti

ve
va

lu
e

f(
x)

(b) Evolution of the objective function value
against the computational cost.

Figure 8: Numerical study to compare the performance MF-SCOUT-Nd with adaptive sample size
and fixed sample sizes on 32-dimensional Ackley function (the function defined in Appendix. C). We
switch off the natural gradients for all the cases to ensure a similar condition for all the test cases. We
assume the high-fidelity model is four times more expensive than the low-fidelity model.

Let Cℓ be the cost of evaluating f (ℓ). We obtain the number of samples for each level by minimizing
the total cost such that the upper bound of the KL divergence in Eq. (34) is equal to εKL. This
approach is extensively used in multilevel Monte Carlo literature [74, 75, 76]. The optimization
problem is stated as

S∗
ℓ,k =argmin

Sℓ

L∑
ℓ=1

CℓSℓ,

s.t.
L∑

ℓ=1

α2V
(ℓ)
k

Sℓ
= εKL,

(35)

where S∗
ℓ,k represents the optimum number of samples for the ℓth fidelity and kth step. One can

analytically solve this problem using a Lagrange multiplier. The optimum number of samples is

S∗
ℓ,k =

∑L
ℓ=1

√
V

(ℓ)
k Cℓ

εKL

α2

√
V

(ℓ)
k

Cℓ
. (36)

The value of Σk+1 is not known when we want to calculate the number of samples. To overcome
this problem, we use the same procedure as described in Sec. 2.6.4.

We conducted a numerical evaluation to compare the performance of multi-fidelity gradient estimation
using fixed and adaptive sample sizes against single-fidelity fixed sample size cases with 256 samples
to optimize the 32-dimensional Ackley function. Figure 8 illustrates the evolution of the objective
function against the number of optimization steps and function evaluations. We did not employ
natural gradient and QMC methods for the same reasons discussed in Sec. 2.6.4. We assume the
high-fidelity model is four times more expensive than the low-fidelity model.

From Fig. 8(a), we observe that the convergence rate with respect to the optimization step for the
multi-fidelity method with fixed sample size is almost the same as the single-fidelity methods with
256 samples even when multi-fidelity method uses less computational resources demonstrating the
advantage of using the multi-fidelity method. Additionally, the multi-fidelity adaptive sample size
approach with a smaller upper bound (εKL = 10−3) reaches a better the optimum as compared to the
bigger upper bound (εKL = 10−2) due to a more accurate approximation of the gradients.

We observe from Fig. 8(b) that multi-fidelity methods converge faster with respect to the com-
putational cost than the single-fidelity method. The multi-fidelity adaptive sample method also
outperforms the multi-fidelity fixed sample size method by selecting the optimal number of points
based on the estimator’s variance while minimizing the computational cost. The case with a larger

14

0 100 200 300 400 500
α

0.0

0.2

0.4

0.6

0.8

1.0

d s
(α

)

SCOUT-Nd
MF-SCOUT-Nd

COBYLA
cBO

SLSQP

(a) ϵf = 0.1

0 100 200 300 400 500
α

0.0

0.2

0.4

0.6

0.8

1.0

d s
(α

)

SCOUT-Nd
MF-SCOUT-Nd

COBYLA
cBO

SLSQP

(b) ϵf = 0.01

Figure 9: Data Profile plots to show the aggregate performance of the different optimization problems
on the given set of benchmark problems. We observe that SCOUT-Nd and MF-SCOUT-Nd were able
to solve most of the benchmark problems with both accuracy levels ϵf = 0.1, and ϵf = 0.01.

εKL exhibits a faster initial convergence rate but results in a lower quality optimum. Therefore, it
is advisable to begin with a larger value of εKL for faster initial convergence and decrease it as you
approach the optimum.

Based on these observations, we conclude that the multi-fidelity methods help reduce computational
resources compared to the single-fidelity method, and the adaptive formulation further decreases the
computational load. Additionally, one can enhance the optimum quality by adjusting the value of
εKL.

3 Numerical Illustrations

This section compares the proposed algorithm with the state-of-the-art algorithms using standard
benchmark analytical problems. Additionally, we highlight the algorithm’s efficacy in a complex
real-world application: optimizing wind farm layout. In the following, we use PyTorch [77] to
efficiently compute the gradient of the densities. After the gradient estimation, we use the ADAM
optimizer [78] as the stochastic gradient descent method. In this work, q(x | θ) takes the form of a
Gaussian distribution unless otherwise stated with parameters θ = {µ,Σ} representing mean and
diagonal covariance2, respectively. The code for the algorithm and the numerical experiments can be
found in https://github.com/KislayaRavi/scout-Nd.

3.1 Benchmark Studies

Before applying our algorithm to a real-world problem, we test it on standard optimization bench-
marks. We select thirty benchmarks to test the algorithm’s ability to handle different types of
optimization challenges like multi-modality, constraints, behavior in valleys, dimension scalability,
etc. The list of benchmarks is given in the Appendix C. We slightly modify the function to make the
corresponding low-fidelity function for MF-SCOUT-Nd. For each problem, Gaussian noise with a
standard deviation of 0.01 was added to turn the problem stochastic.

We compare our proposed algorithm with state-of-the-art derivative-free optimization algorithms
like Constrained Optimization by Linear Approximation (COBYLA) [46], Sequential Least SQuares
Programming (SLSQP) [47], and Constrained Bayesian Optimization (cBO) [45]. We use the
implementation of COBYLA and SLSQP from the Scipy library [79] and the implementation of cBO
from the BayesianOptimization library [80]. We run 1000 optimization steps for each optimizer.

We use the data profile curve [29] to compare the overall performance of the algorithms for the whole
set of benchmarks. Let S represent the set of optimizers and P be a set of benchmark problems. The

2In the subsequent investigation Σ = diag(σ2
1 , . . . , σ

2
d) with σ2

i = e2βi unless otherwise stated.

15

https://github.com/KislayaRavi/scout-Nd

0 100 200 300 400 500
Number of optimization steps

10−6

10−4

10−2

100

|f
(x

)
−

f(
x∗

)|

SCOUT-Nd
MF-SCOUT-Nd

COBYLA
cBO

SLSQP

(a) 3-dimensional Hartmann function

0 500 1000 1500 2000
Number of optimization steps

100

102

104

|f
(x

)
−

f(
x∗

)|

SCOUT-Nd
MF-SCOUT-Nd

COBYLA
cBO

SLSQP

(b) 16-dimensional Rosenbrock function

Figure 10: Evolution of optimum for 3-dimensional Hartmann function and 16-dimensional Rosen-
brock function. 3-dimensional Hartmann function has 4 local minima. We observe from Figure 10(a)
that COBYLA and SLSQP got stuck in a local minimum, whereas other methods that can handle
multi-modal problems reached a global minimum. cBO struggles in high-dimensional problems such
as 16-dimensional Rosenbrock functions as depicted in Figure 10(b)

.

Table 1: The table showing the number of low and high-fidelity function evaluations (SLF and SHF)
for different benchmark problem (p) as a function of the dimension (dp)

dp ≤ 2 2 < dp ≤ 4 4 < dp ≤ 8 dp > 8

SLF SHF SLF SHF SLF SHF SLF SHF

Single-fidelity case - 32 - 64 - 128 - 256
Multi-fidelity case 32 8 64 16 128 32 256 64

data profile ds(α) [29] of an optimizer s ∈ S is given by

ds(α) =
1

|P|

∣∣∣∣{p ∈ P :
tp,s

dp + 1
≤ α

}∣∣∣∣ , (37)

where p ∈ P represents a benchmark problem, dp is the dimension of benchmark and tp,s is the
minimum number of optimization steps a solver s requires to reach the optimum of a problem p within
accuracy level ϵf . We ran each benchmark five times, each with different seeds. So, the total number
of benchmarks is |P|= 30(number of unique benchmarks)× 5(number of random seeds) = 150. In
the benchmark studies, we use a fixed sample size for expectation evaluation for all the optimization
methods to ensure an unbiased comparison. The number of low-fidelity samples (SLF) and high-
fidelity samples (SHF) to calculate the expectation at each step of optimization depends upon the
dimension of the benchmark problem as shown in Table 1.

We can observe from Fig. 9 that SCOUT-Nd and MF-SCOUT-Nd solved more benchmark problems
with a given level of accuracy(ϵf). Our proposed algorithms outperform other derivative-free methods
because we use gradient approximation to move toward the optimum. This not only helped us to
converge faster but also tackled high-dimensionality. MF-SCOUT-Nd had a similar performance
level as SCOUT-Nd, but it uses less high-fidelity function evaluations to reach the same level of
accuracy, thereby saving computational resources.

Our experiments show that COBYLA and SLSQP struggle to handle multimodal models. In some
benchmark cases, these two methods converge early to local optima. For instance, we observe this
behavior for the 3-dimensional Hartmann function, which has 4 local minima. COBYLA and SLSQP
get stuck in one of the local minima as observed in Fig. 10(a).

Bayesian optimization methods are known to struggle in high-dimensional space [81]. Moreover, they
also struggle in the Rosenbrock function, where it finds the valley but takes a long time to converge
to the minimum [81]. We plot the evolution of the optimum for the 16-dimensional Rosenbrock
function in Fig. 10(b) and observe that cBO struggles to handle high-dimensionality and valleys.

16

3.2 Windfarm Layout Optimization

We apply SCOUT-Nd and MF-SCOUT-Nd to windfarm layout optimization problem [15]. The
primary goal of wind farm layout optimization is to position the wind turbines to reduce interference
and thus maximize power production. This is a challenging and complex problem due to the variable
nature of the wind and the complex interactions between turbines through their wakes. The challenges
are listed as follows:

• Uncertainty due to the wind. Generally, the wind speed and wind direction are treated as
random variables.

• Availability of only black box evaluations of the numerical simulators [48, 9]. This would
make gradient-based methods rely on finite differences, which would significantly increase
derivative computational cost and derivatives may also have significant errors [82]. If
gradient-free methods are employed, they may struggle when the problem is high dimen-
sional as they do not usually scale well to problems with more than 30 design variables
[83].

• A highly multimodal design space, making the problem highly non-convex [84]. This
multimodality makes it difficult for classical gradient-based methods, as they require the
objective function to be smooth enough [15], or else they might get stuck in local optimum.
Gradient-free methods can handle multimodality better, however, they suffer from the curse
of dimensionality as discussed above. Thus, there exists no best algorithm, the choice of
which is situation and problem-dependent [9, 48].

Owing to the challenges discussed, and their significant overlap with the strengths of the proposed
algorithm, the problem serves as an ideal testing ground for SCOUT-Nd/MF-SCOUT-Nd.

Problem Definition: The objective of the wind farm layout optimization is to maximize the AEP 3

by changing the position of the wind turbines. The turbines are constrained to stay within a given
area and with a minimum separation between them. This objective and the constraints result in a
problem of nonlinear optimization under uncertainty with deterministic constraints:

argmin
x

Eb[−AEP (x, b)] s.t C(x) ≤ 0, (38)

where b = {b1, b2, . . . , bn} represents a vector of the random variable for the wind data with
p(b) being the joint probability density function of the uncertain variables. Common uncertain
variables are the wind direction and the freestream wind speed [15]. x denotes a sequence of pairs
of coordinates for each wind turbine, which can take on continuous values in a bounded domain.
The expected AEP is computed by marginalizing the uncertain parameters. To marginalize, some
commonly used methods are Monte Carlo, Polynomial Chaos, rectangular quadrature, etc to name a
few [85]. In this work, we used a weighted average, which amounts to the rectangular integration rule.
C(x) = {C1(x), C2(x)} denotes the constraints this problem has with C1(x) denoting the separation
between the two turbines constraint and C2(x) denoting the area constraint. In particular, they are
defined as

C1(x) = K(2D −Qi,j) i, j = 1 . . . nturbines; i ̸= j (39)
C2(x) =M(Ni,m) i = 1 . . . nturbines; m = 1 . . . nboundaries, (40)

where Qi,j is the distance between each pair of turbines i and j , and D is the turbine diameter.
The normal distance, Ni,m, from each turbine i to each boundary m is defined as negative when
a turbine is inside the boundary and positive when it is outside the boundary. We aggregate the
distance between two turbine constraints using the Kreisselmeier–Steinhauser functional K(·)[86],
which reduces the number of constraints to 1. Also, we define a functionM(·), which aggregates the
normal distance constraints by taking the mean of the positive values of Ni,m.M(·) is calculated as

M(·) = 1

|N+|
∑

ηi∈N+

ηi; with, N+ = {ηi ∈ N |ηi > 0} (41)

3The Annual energy production (AEP) is given by expected power multiplied by the number of hours in a
year.

17

where |N+| is the cardinality of the set N+. These aggregations produce a less complex optimization
problem.

Implementation details/test cases In the experiments performed, we used the NREL 5MW reference
turbine [87]. For wake models, we have used their implementation in FLOw Redirection and
Induction in Steady State (FLORIS) [88]. We use Jensen [89]4 as the low-fidelity (LF) wake model
and Gauss-Curl Hybrid (GCH) [90]5 as the high-fidelity (HF) model as suggested in [91]. The
low- and high-fidelity models for this problem use different wind roses6 bin resolutions, leading to
accuracy and computational differences caused by both fidelity and resolution. Each bin adds an
identical set of function calls and operations to the summing process, so the cost scales linearly. In
the subsequent experiments, the wind speed is constant at 8m/s for simplicity.

We investigate two cases with different numbers of wind turbines, as shown in Table 2. The particular
choice is made to study the influence of dimensions of the design variable. We use six wind direction
bins for the LF and 18 wind direction bins for the HF (ref. Fig. 11). In terms of computational costs,
a single LF model evaluation, denoted as cLF , incurs approximately 33% (or one-third) of the cost
associated with a single evaluation of the HF model, represented as cHF . For example, in the scenario
involving 24 turbines, the Jensen model (the LF model) requires approximately 0.015 seconds per
execution. In contrast, the GCH model(HF model) demands about 0.044 seconds per execution when
run on a single processor core. Consequently, the overall computational expense of determining the
Annual Energy Production (AEP) using the HF model is about nine times higher than that required
for the LF model.

For both cases, we perform a comparative study between SCOUT-Nd with the HF model, MF-SCOUT-
Nd employing both the LF and the HF model, and the Sequential Least SQuares Programming
(SLSQP) [47] with the HF model. Within the domain of wind farm layout optimization, variants of
sequential quadratic programming (SQP)-based algorithms are predominantly employed [85, 9, 91]
due to their gradient-based nature (gradients computed via finite differences) and their capability
to manage constraints effectively. An extensive comparison with different optimization methods is
beyond the scope of the present investigation. Interested readers can find details in [9].

Table 2: Optimization problem cases: design variables, objective, and constraints

Cases objective design variables dimension Constraints

8 turbine farm AEP x, y locations 16 Turbine spacing [252 m,∞),
bound constraint (x ∈ [0, 2666 m], y ∈
[0, 2666 m])

24 turbine farm AEP x, y locations 48 Turbine spacing [252 m,∞),
bound constraint (x ∈ [0, 8000 m], y ∈
[0, 8000 m])

Results This section presents the results obtained upon running the optimization methods for the two
cases presented in Table. 2. The hyper-parameter setting for the optimization methods is given in
Appendix D, particularly in Table. 5 and Table. 6 for the 8 turbines and 24 turbine cases, respectively.
Here, we use a fixed sample size for expectation evaluation for all the optimization methods to ensure
a fair comparison. For both cases, a grid layout is chosen as the initial layout for all three optimization
methods. Naturally, the optimizer is expected to push the turbines towards the boundaries to minimize
wake interactions, leading to increased AEP. The results for the two cases with the optimization
methods are quantitatively compared in Table. 3 and Table. 4, and qualitatively compared in Fig. 12,
Fig. 16, Fig. 13 and Fig. 18. The evolution of the augmented objective, objective and constraints for
the optimization with SCOUT-Nd and MF-SCOUT-Nd for 8 turbine case are illustrated in Fig. 14

4The Jensen wake model uses a simplistic velocity deficit to represent the wake, and this deficit is summed
when wakes interact using the sum-of-squares method.

5The solver simplifies the Reynolds-averaged Navier-Stokes (RANS) equations to obtain a parabolic equation
for the wake deficit. The equation is solved in a three-dimensional domain to obtain the wake velocity in a wind
plant.

6Wind rose is a graphical tool used in the context of wind farms to represent the distribution of wind speed
and direction at a particular location

18

Figure 11: Wind Rose for 18 wind direction bins and a constant wind speed of 8 m/s

and Fig. 15 respectively. Similarly, Fig. 19 and Fig. 20 illustrate the evolutions for the 24 turbine case.

We draw the following conclusions from the tables and figures:

• For the 8 turbine case, from Fig. 12 we observe that all three optimization methods push
the turbine towards the boundaries while maintaining the distance between them as per the
constraints. This significantly reduces the wake interactions as observed in Fig. 13. This
translates to an increase in AEP as reported in Table. 3. In this case, SLSQP reports the
highest AEP percentage gain (8.73%) from the initial grid layout, followed by SCOUT-
Nd (8.26%) and MF-SCOUT-Nd (8.02%). However, the MF-SCOUT-Nd is the cheapest
with around 67% computational cost of the SLSQP. This was expected as the SLSQP is a
gradient-based method, and dim=16 poses a fairly smooth objective surface, outperforming
method like ours. With an optimized value of hyperparameters, SCOUT-Nd/MF-SCOUT-Nd
might come closer (or even cross) to the SLSQP in terms of AEP improvement, but this is
not the goal of the present investigation.

• For the 24 turbine case, from Fig. 16 we observe that both SCOUT-Nd and MF-SCOUT-Nd
push the turbine towards the boundaries from the initial grid layout, which is expected from
global optima. This can also be understood from the power vs. wind direction plot in Fig.
17. Additionally, Fig. 18 illustrates the wake interactions along the most prominent wind
direction, i.e., from the north side. However, as seen in the Fig. 16, the SLSQP failed to
push the turbine towards the boundaries as it got trapped in local optima. We also confirm
this behavior by running the SLSQP optimizer using different initial layouts drawn from
the Latin hypercube as presented in Fig. 22. With the increase in dimensions, owing to
the multimodel nature of the problem, the gradient-based optimizers can face this issue,
also reported in [9, 84, 15]. This is also reflected in the AEP values reported in the Table.
4. The SCOUT-Nd reports the highest AEP percentage gain from the initial grid layout,
followed by MF-SCOUT-Nd and then the SLSQP. Although the MF-SCOUT-Nd resulted
in slightly lower AEP gain as compared to the SCOUT-Nd, interestingly, it took around
1/3 of the cost of SCOUT-Nd optimization with HF. This underscores the capability of our
method to be robust and to handle non-convexity in high dimensions (as asserted in Sec.
2.6) in real-world physical applications. By introducing Multi-fidelity, our method allows
the analyst to balance the trade-off between the computational cost and the optimum quality.

• The Figures.14 15, 19 and 20 point towards the convergence of SCOUT-Nd and MF-SCOUT-
Nd for both the cases by illustrating the evolution of the augmented objective, objective and
constraints. As can be seen from the figures, initially the constraints on average are violated.
As the optimization progresses, the penalty is also more strongly enforced, thus satisfying
the constraints eventually. Further diagnostics of the optimization, like the evolution of
the design variables and penalty parameters, are given in Appendix D. In all the cases
presented, the optimization is terminated by the ϵσ convergence criterion for the outer
loop. The optimum quality can be further increased by reducing its value, although with
an increased computational cost. The convergence criterion, number of samples, and step
size are entwined together in a complicated fashion, influencing the convergence rate and
the optimum quality as discussed in Sec. 2.6.4 and Sec. 2.7.1. As with any optimization

19

algorithm [34], we rely on carefully selected heuristics to balance the tradeoff between
computational cost and solution accuracy.

Table 3: Optimization results comparison for 8 turbine case.

Algo. LF calls HF calls Computational cost
(in cHF

#)
AEP (in MWh)† % AEP gain†

SCOUT-Nd - 600 · 32 · 18* 345, 600cHF (1.83x) 116, 472.50 8.26%

MF-SCOUT-Nd 615 · 32 · 6* 615 · 8 · 18* 127,526.4cHF (0.67x) 116, 214.37 8.02%

SLSQP - 10, 484 · 18 188, 712cHF (1x) 116, 978.31 8.73%

† The initial gird layout AEP = 107, 581.42 MWh.
cHF is the cost of a high-fidelity run for a single pair of wind direction and wind speed. cLF ≈ 0.33cHF .
* total no. of steps × no. of samples/step × no. of solver call/AEP evaluation.

−500 0 500 1000 1500 2000 2500 3000 3500
x (m)

0

500

1000

1500

2000

2500

y
(m

)

Old locations New locations

(a) SLSQP

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
x/xmax

0.0

0.2

0.4

0.6

0.8

1.0

y
/y

m
a
x

Old locations New locations

(b) SCOUT-Nd

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
x/xmax

0.0

0.2

0.4

0.6

0.8

1.0

y
/y

m
a
x

Old locations New locations

(c) MF-SCOUT-Nd

Figure 12: Windfarm layout with 8 turbines comparing the layout used to initialize (in blue) the
optimization routine and the optimized layout (in red) found using SLSQP (a), SCOUT-Nd (b) and
MF-SCOUT-Nd (c). The SLSQP and SCOUT-Nd use the GCH model [90], while the MF-SCOUT-Nd
uses a combination of the less accurately resolved Jensen wake model [89] and the GCH model. Each
dot represents a wind turbine. The blue line represents the boundary of the wind farm. Quantitative
Results are given in Table. 3 and the hyperparameters used to perform the optimization are detailed
in Table. 5.

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

Initial layout
(Wind Direction 360o, Wind speed 8m/s)

0.4

1.2

2.0

2.8

3.6

4.4

5.2

6.0

6.8

7.6

m
/s

(a) Initial Layout

0 1000 2000

−1000

−500

0

500

1000

1500

2000

2500

Optimal layout
(Wind Direction 360o, Wind speed 8m/s)

0.9

1.8

2.7

3.6

4.5

5.4

6.3

7.2

m
/s

(b) SCOUT-Nd

0 1000 2000

−1000

−500

0

500

1000

1500

2000

2500

Optimal layout
(Wind Direction 360o, Wind speed 8m/s)

0.6

1.5

2.4

3.3

4.2

5.1

6.0

6.9

7.8
m

/s

(c) MF-SCOUT-Nd

Figure 13: Velocity deficit contour plots along the primary wind direction for the initial layout
(a), optimized layout with SCOUT-Nd (b), and optimized layout with MF-SCOUT-Nd (c). The
corresponding AEPs are given in Table. 3.

4 Conclusions

We presented SCOUT-Nd, a novel approach for (constrained) optimization problems involving
expensive, stochastic black-box simulators with high-dimensional parametric dependency. We

20

0 200 400 600
Iterations

−1.06

−1.04

−1.02

−1.00

E[
L(
·)]

Aug. Objective Function

(a)

0 200 400 600
Iterations

−1.06

−1.04

−1.02

−1.00

E[
f

(·)
]

Objective Function

(b)

0 200 400 600
Iterations

0.00

0.05

0.10

0.15

E[
C(
·)]

C1

C2

(c)

Figure 14: Diagnostics of the optimization run with SCOUT-Nd involving the high-fidelity GCH
model [90], for the 8 turbine wind farm case. From left to right, the expected value of augmented
objective (a), objective (b), and constraints (c). The objective, constraints, and design variables are
normalized. The physical meanings are given in Table.2.

0 200 400 600
Iterations

−1.05

−1.00

−0.95

−0.90

E[
L(
·)]

Aug. Objective Function

(a)

0 200 400 600
Iterations

−1.14

−1.12

−1.10

−1.08

−1.06

E[
f

(·)
]

Objective Function

(b)

0 200 400 600
Iterations

0.00

0.05

0.10

0.15

0.20

E[
C(
·)]

C1

C2

(c)

Figure 15: Diagnostics of the optimization run with MF-SCOUT-Nd involving the low-fidelity Jensen
wake model [89] and the high-fidelity GCH model [90], for the 8 turbine wind farm case. From left to
right, the expected value of augmented objective (a), objective (b), and constraints (c). The objective,
constraints, and design variables are normalized. The physical meanings are given in Table.2.

−2000 0 2000 4000 6000 8000 10000
x (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

y
(m

)

Old locations New locations

(a) SLSQP

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
x/xmax

0.0

0.2

0.4

0.6

0.8

1.0

y
/y

m
a
x

Old locations New locations

(b) SCOUT-Nd

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
x/xmax

0.0

0.2

0.4

0.6

0.8

1.0

y
/y

m
a
x

Old locations New locations

(c) MF-SCOUT-Nd

Figure 16: Windfarm layout with 24 turbines comparing the layout used to initialize (in blue) the
optimization routine and the optimized layout (in red) found using SLSQP (a), SCOUT-Nd (b) and
MF-SCOUT-Nd (c). The SLSQP and SCOUT-Nd use the GCH model [90], while the MF-SCOUT-Nd
uses a combination of the less accurately resolved Jensen wake model [89] and the GCH model. Each
dot represents a wind turbine. The blue line represents the boundary of the wind farm. Quantitative
Results are given in Table. 4 and the hyperparameters used to perform the optimization are detailed
in Table. 6.

21

Table 4: Optimization results comparison for 24 turbine case.

Algo. LF calls HF calls Computational cost
(in cHF

#)
AEP (in MWh)† % AEP gain†

SCOUT-Nd - 2, 648 · 128 · 18* 6, 100, 992cHF (3.13x) 347,112.88 3.98%

MF-SCOUT-Nd 2, 350 · 128 · 6* 2, 350 · 32 · 18* 1,949,184cHF (1x) 343, 662.69 2.98%

SLSQP - 7, 200 · 18 129, 600cHF
†† 336, 221.53 0.71%

†† The optimization run gets trapped in local minima around iteration 120, hence the low AEP and computational cost..
† The initial gird layout AEP = 333, 834.84 MWh.
cHF is the cost of a high-fidelity run for a single pair of wind direction and wind speed. cLF ≈ 0.33cHF .
* total no. of steps × no. of samples/step × no. of solver call/AEP evaluation.

0 100 200 300
Wind direction (o)

28

30

32

34

36

38

40

P
ow

er
(M

W
)

Initial grid layout

Optimal layout, Scout

Optimal layout, (MF)Scout

(a)

0°

45°

90°

135°

180°

225°

270°

315°

10

20

30

40

Power output for different layouts

Initial grid layout

Optimal layout Scout

Optimal layout (MF)Scout

(b)

Figure 17: Wind farm power as a function of wind direction for the initial grid layout, SCOUT-Nd
optimized layout, and the MF-SCOUT-Nd optimized layout for the 24 turbine case.

0 2000 4000 6000
0

1000

2000

3000

4000

5000

6000

7000

Initial layout
(Wind Direction 360o, Wind speed 8m/s)

0.6

1.5

2.4

3.3

4.2

5.1

6.0

6.9

7.8

m
/s

(a) Initial layout
0 2000 4000 6000 8000

0

2000

4000

6000

8000

Optimal layout
(Wind Direction 360o, Wind speed 8m/s)

0.9

1.8

2.7

3.6

4.5

5.4

6.3

7.2

m
/s

(b) SCOUT-Nd
0 2000 4000 6000 8000

0

2000

4000

6000

8000

Optimal layout
(Wind Direction 360o, Wind speed 8m/s)

0.6

1.5

2.4

3.3

4.2

5.1

6.0

6.9

7.8

m
/s

(c) MF-SCOUT-Nd

Figure 18: Velocity deficit contour plots along the primary wind direction (from the North side) for the
initial layout (a), optimized layout with SCOUT-Nd (b), and optimized layout with MF-SCOUT-Nd
(c). The corresponding AEPs are given in Table. 4.

included strategies and carefully chosen heuristics to handle non-convexity, reduce gradient estimator
variance, and improve convergence properties and robustness. We also extended the proposed
approach to include multi-fidelity strategies and adaptive sample size for gradient estimation to limit
the number of expensive to evaluate simulator calls. Our method is embarrassingly parallelizable and
non-intrusive, thus very attractive to various engineering and physics optimization problems.

We performed experiments on various academic toy problems with common optimization challenges
like multi-modality, constraints, behavior in valleys, dimension scalability, etc., and compared our
algorithm against several baselines. For a given level of accuracy and computational budget, our
method solves most of the problems from the toy problem pool. We also demonstrated that it
could handle multi-modalities and high-dimensionality better than the baselines. Additionally, we
demonstrated the improved quality of the optimum and better convergence rate when including

22

0 500 1000 1500 2000 2500
Iterations

−1.0

−0.9

−0.8

−0.7

E[
L(
·)]

Aug. Objective Function

(a)

0 1000 2000
Iterations

−1.03

−1.02

−1.01

E[
f

(·)
]

Objective Function

(b)

0 500 1000 1500 2000 2500
Iterations

0.000

0.025

0.050

0.075

0.100

0.125

E[
C(
·)]

C1

C2

(c)

Figure 19: Diagnostics of the optimization run with SCOUT-Nd involving the high-fidelity GCH
model [90], for the 24 turbine wind farm case. From left to right, the expected value of augmented
objective (a), objective (b), and constraints (c). The objective, constraints, and design variables are
normalized. The physical meanings are given in Table.2.

0 500 1000 1500 2000
Iterations

−1.0

−0.8

−0.6

−0.4

E[
L(
·)]

Aug. Objective Function

(a)

0 1000 2000
Iterations

−1.02

−1.01

−1.00

E[
f

(·)
]

Objective Function

(b)

0 500 1000 1500 2000
Iterations

0.00

0.05

0.10

0.15

E[
C(
·)]

C1

C2

(c)

Figure 20: Diagnostics of the optimization run with MF-SCOUT-Nd involving the low-fidelity Jensen
wake model [89] and the high-fidelity GCH model [90], for the 24 turbine wind farm case. From
left to right, the expected value of augmented objective (a), objective (b), and constraints (c). The
objective, constraints, and design variables are normalized. The physical meanings are given in
Table.2.

natural gradients. We also tested our algorithm on a complex real-world case of optimizing wind farm
layout and compared it against a baseline. We observed that our method improved upon the baseline
optimization results, thus showing the successful optimization of a complex stochastic system with
a user-defined objective function. Also, the MF-SCOUT-Nd produced comparable accuracy at a
one-third cost.

The work presented serves as a fertile ground for several extensions and applications. In future
research, we intend to adapt and apply the proposed method to optimize hyperparameters in neural
networks. Since the algorithm addresses the differentiability issue in problems involving physics-
based simulators, integrating into several Scientific Machine Learning paradigms is also possible [92,
25]. This includes hybrid approaches that combine "known physics" (physics-based simulators) and
"learned physics" (neural network, for example), thus relying on efficient gradient flow. As suggested
in [34], we plan to incorporate a full covariance matrix into the design variable density to enhance
performance. Furthermore, integrating Importance sampling step into gradient estimation could yield
improvements, particularly in scenarios where the objective function landscape contains valleys.

Acknowledgements

A.A. and P.S.K acknowledge the support of VDI Technologiezentrum Gmbh and the Federal Ministry
for Education and Research (BMBF) in the context of the project "Probabilistic machine learning
for the calibration and validation of physics-based models of concrete" (FKZ-13XP5125B). K.R
and H.J.B acknowledge the support of Helmholtz Association under the research school Munich
School for Data Science (MUDS). The authors declare that there is no conflict of interest regarding
the publication of this paper.

23

Appendix

A Influence of initial value of design variable variance

−2
0

2
x1 −2

0

2

x 2

10

20

30

40

50

f
(x

1
, x

2
)

(a) Rastringin function surface

−2 0 2
x1

−3

−2

−1

0

1

2

3

x
2

Rastrigin function

0

8

16

24

32

40

48

56

(b) Initial value of Σ = e−2I

−2 0 2
x1

−3

−2

−1

0

1

2

3

x
2

Rastrigin function

0.06

0.12

0

8

16

24

32

40

48

56

(c) Initial value of Σ = e0I

Figure 21: Using 2d Rastringin function to highlight the influence of the initial value of design
variance on escaping local optima. White contour lines represent the initial q(θ) and red contour
lines represent the final design variable distribution q(θ∗)

B Taylor Expansion simplification

Our proposed algorithm relies on optimizing U(θ) instead of f(x). Let us convert the distribution to
standard normal distribution as follows:

U(θ) = E[f(µ+ σ · z)]z∼N (0,I). (42)

Writing down the Taylor expansion of f(µ+ σ · z) till the third derivative:

f(µ+ σ · z) = f(µ) +

d∑
i=1

σizi
∂f

∂xi
(µ) +

1

2!

d∑
i,j=1

σiσjzizj
∂2f

∂xi∂xj
(µ) . . .

+
1

3!

d∑
i,j,k=1

σiσjσkzizjzk
∂3f

∂xi∂xj∂xk
(µ) +O(∥σ∥4),

where zi, σi and xi are the ith component of z, σ and x respectively. We take expectation on both
sides to get U(θ).

U(θ) = E[f(µ+ σ · z)]z∼N (0,I)

= f(µ) +

d∑
i=1

σiE[zi]
∂f

∂xi
(µ) +

1

2!

d∑
i,j=1

σiσjE[zizj]
∂2f

∂xi∂xj
(µ) . . .

+
1

3!

d∑
i,j,k=1

σiσjσkE[zizjzk]
∂3f

∂xi∂xj∂xk
(µ) +O(∥σ∥4).

(43)

We simplify the above expression using the following observations:

E[zi] = 0 because of 0 mean

E[zizj] =
{
1 if i = j because standard deviation of the distribution is 1
0 otherwise because the variables are independent and have zero mean

E[zizjzk] = 0 because skewness of normal distribution is zero
The simplified expression is:

U(θ) = f(µ) +
1

2

d∑
i=1

σi
2 ∂2f

∂xi
2
(µ) +O(∥σ∥4) (44)

24

C List of benchmarks

We represent the dimension of the search space by dp. The list of benchmarks is as follows:

C.1 Sphere problem

We run this problem for dimensions dp = {2, 4, 8, 16, 32}. The high-fidelity and the low-fidelity
function are given by:

fhigh(x) =

d∑
i=1

x2
i ,

flow(x) =

d∑
i=1

1.1x2
i .

(45)

It is a simple problem with a single global minimum at the (0, . . . dp times).

C.2 Constrained Sphere problem

We run this problem for dimensions dp = {2, 4, 8, 16, 32}. The objection function is same as
Equation 45 but with a constraint 1− x1 − x2 ≤ 0. The optimum lies on the constraint boundary at
(0.5, 0.5, 0, . . . dp − 2 times). The problem checks the ability of the algorithm to handle constraints.

C.3 Ackley function

We run this problem for dimensions dp = {2, 4, 8, 16, 32}. The high-fidelity and the low-fidelity
function are given by:

fhigh(x) = −20 exp

−0.2
√√√√ 1

dp

dp∑
i=1

x2
i

− exp

 1

dp

dp∑
i=1

cos(2πxi)

+ 20 + exp(1),

flow(x) = −22 exp

−0.2
√√√√ 1

dp

dp∑
i=1

1.1x2
i

− 0.9 exp

 1

dp

dp∑
i=1

cos(2πxi)

+ 20 + exp(1).

(46)
It is a multimodal problem with a global minimum at (0, . . . d times).

C.4 Rosenbrock function

We run this problem for dimensions dp = {2, 4, 8, 16}. The high-fidelity and the low-fidelity function
are given by:

fhigh(x) =

dp−1∑
i=1

100(xi+1 − x2
i)

2 + (1− xi)
2,

flow(x) =

dp−1∑
i=1

101(xi+1 − x2
i)

2 + 1.01(1− xi)
2 + 0.2.

(47)

The function is unimodal, but the minimum lies in a narrow valley is at (1, 1, . . . dp times). The
optimizers find the valley of the problem but take a long time to converge to the minimum [81].

25

C.5 Zakharov function

We run this problem for dimensions dp = {2, 4, 8, 16}. The high-fidelity and the low-fidelity function
are given by:

fhigh(x) =

dp∑
i=1

x2
i +

(
d∑

i=1

0.5ixi

)2

+

 dp∑
i=1

0.5ixi

4

,

flow(x) =

dp∑
i=1

x2
i +

(
d∑

i=1

0.55ixi

)2

+

 dp∑
i=1

0.5ixi

4

.

(48)

It has one minimum at (0, . . . dp times). It is a plate-shaped function. Optimizers tend to get stuck in
the flat regions of the function.

C.6 Bohachevsky function: 1

This is a 2-dimensional bowl-shaped problem. The high-fidelity and the low-fidelity function are
given by:

fhigh(x) = x2
1 + 2x2

2 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7,

flow(x) = x2
1 + 2.1x2

2 − 0.32 cos(3πx1)− 0.41 cos(4πx2) + 0.7.
(49)

The minimum lies at (0, 0).

C.7 Bohachevsky function: 2

This is a 2-dimensional bowl-shaped problem. The high-fidelity and the low-fidelity function are
given by:

fhigh(x) = x2
1 + 2x2

2 − 0.3 cos(3πx1) cos(4πx2) + 0.3,

flow(x) = x2
1 + 2.1x2

2 − 0.31 cos(3πx1) cos(4πx2) + 0.3.
(50)

The minima lies at (0, 0).

C.8 Six-hump camel function

This is a 2-dimensional function with six local minima. The high-fidelity and the low-fidelity function
are given by:

fhigh(x) = 4x2
1 − 2.1x4

1 +
x6
1

3
+ x1x2 − 4x2

2 + 4x4
2,

flow(x) = 4x2
1 − 2.2x4

1 +
x6
1

3.2
+ 1.1x1x2 − 4.1x2

2 + 4x4
2.

(51)

There are two global minima at (0.0898,−0.7126) and (0.0898, 0.7126).

C.9 Three-hump camel function

This is a 2-dimensional function with three local minima. The high-fidelity and the low-fidelity
function are given by:

fhigh(x) = 2x2
1 − 1.05x4

1 +
x6
1

6
+ x1x2 + x2

2,

flow(x) = 2.1x2
1 − 1.06x4

1 +
x6
1

6
+ 1.1x1x2 + x2

2.

(52)

C.10 Beale function

This is a 2-dimensional multimodal problem. The high-fidelity and the low-fidelity function are given
by:

fhigh(x) = (1.5− x1 + x1x2)
2 + (2.25− x1 + x1x

2
2)

2 + (2.625− x1 + x1x
3
2)

2,

flow(x) = (1.54− x1 + x1x2)
2 + (2.29− x1 + x1x

2
2)

2 + (2.675− x1 + x1x
3
2)

2.
(53)

26

The minima lies at (3, 0.5).

C.11 Hartmann 3d function

This is a 3-dimensional problem with four local minima. The high-fidelity and the low-fidelity
function are given by:

fhigh(x) = −
4∑

i=1

αi exp

− 3∑
j=1

Aij(xj − Pij)
2

 ,

flow(x) = −1.1
4∑

i=1

αi exp

− 3∑
j=1

Aij(xj − Pij)
2

+ 0.1,

(54)

where α, A and P are defined as:

α = (1, 1.2, 3, 3.2)
T

A =

 3 10 30
0.1 10 35
3 10 30
0.1 10 35

P =

0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547
0.0381 0.5743 0.8828

The global minima lies at (0.114614, 0.555649, 0.852547).

C.12 Hartmann 4d function

This is a multimodal 4-dimensional problem. The high-fidelity and the low-fidelity function are given
by:

fhigh(x) = −
4∑

i=1

αi exp

− 4∑
j=1

Aij(xj − Pij)
2

 ,

flow(x) = −1.1
4∑

i=1

αi exp

− 4∑
j=1

Aij(xj − Pij)
2

+ 0.1,

(55)

where α, A and P are defined as:

α = (1, 1.2, 3, 3.2)
T

A =

 10 3 17 3.5
0.05 10 17 0.1
3 3.5 1.7 10
17 8 0.05 10

P =

0.1312 0.1696 0.5569 0.0124
0.2329 0.4135 0.8307 0.3736
0.2348 0.1451 0.3522 0.2883
0.4047 0.8828 0.8732 0.5743

The global minima lies at (0.1873, 0.1906, 0.5566, 0.2647).

D Further details of the windfarm layout optimization

In the windfarm layout optimization case, we observed that for high dimensional optimization, the
SLSQP was trapped in local optima when optimization was started from a grid layout. To confirm this

27

−2000 0 2000 4000 6000 8000 10000
x (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

y
(m

)

Old locations New locations

−2000 0 2000 4000 6000 8000 10000
x (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

y
(m

)

Old locations New locations

−2000 0 2000 4000 6000 8000 10000
x (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

y
(m

)

Old locations New locations

−2000 0 2000 4000 6000 8000 10000
x (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

y
(m

)

Old locations New locations

−2000 0 2000 4000 6000 8000 10000
x (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

y
(m

)

Old locations New locations

−2000 0 2000 4000 6000 8000 10000
x (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

y
(m

)

Old locations New locations

Figure 22: Windfarm layout optimization with SLSQP for 24 turbine case with 6 different initial
layouts sampled with latin hypercube. In the six runs, the final layout never reaches the boundaries
(as expected for an optimal layout) and the optimizer gets trapped in the local optima

behavior, we ran the SLSQP optimizer using different initial layouts drawn from the latin hypercube
as presented in Fig. 22.

Table 5 and Table 6 show the hyperparameters of the algorithms used for the windfarm layout
optimization case for 8 turbine and 24 turbine cases, respectively.

The Figures.23 24, 25 and 26 provides optimization diagnostics of SCOUT-Nd and MF-SCOUT-Nd
for both the cases. In all four figures, it is interesting to observe the normalized design variable mean
fluctuation near the wind farm boundary around the initial iterations and the corresponding constraint
violation. Gradually as the penalty is more strongly enforced (by increasing the penalty parameter λ)
the constraints are satisfied on average, accompanied by stabilization of the design variable mean.

Table 5: Hyper-parameters of algorithms used to carry-out experiments for 8 turbine windfarm case.

SCOUT-Nd MF-SCOUT-Nd SLSQP†

parameter value parameter value parameter value

η 5e− 02 η 5e− 02 ftol 1e− 10

SHF 32 (SLF , SHF) (32,8) maxiter 400
εµ 1e− 05 εµ 1e− 05 eps 0.01
εσ 1e− 04 εσ 1e− 04 - -

† The parameters of SLSQP correspond to the parameters in its Scipy implementation. More
details can be found here and [47].

Table 6: Hyper-parameters of algorithms used to carry-out experiments for 24 turbine windfarm case

SCOUT-Nd MF-SCOUT-Nd SLSQP

parameter value parameter value parameter value

η 1e− 02 η 1e− 02 ftol 1e− 12

S 128 (SLF , SHF) (128,32) maxiter 400
εµ 1e− 05 εµ 1e− 05 eps 0.01
εσ 5e− 04 εσ 5e− 04 - -

28

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

0 200 400 600
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

µ

(a)

0 200 400 600
Iterations

10−6

10−5

10−4

10−3

10−2

σ
2

(b)

0 200 400 600
Iterations

100

4× 10−1

6× 10−1λ

(c)

Figure 23: Diagnostics of the optimization run with SCOUT-Nd involving the high-fidelity GCH
model [90], for the 8 turbine wind farm case. From left to right, the mean of the design variables (a),
the variance of the design variables (b), and the penalty term λ (c).

0 200 400 600
Iterations

0.00

0.25

0.50

0.75

1.00

µ

(a)

0 200 400 600
Iterations

10−5

10−4

10−3

10−2
σ

2

(b)

0 200 400 600
Iterations

100

4× 10−1

6× 10−1

2× 100

3× 100

λ

(c)

Figure 24: Diagnostics of the optimization run with MF-SCOUT-Nd involving the high-fidelity GCH
model [90], for the 8 turbine wind farm case. From left to right, the mean of the design variables (a),
the variance of the design variables (b), and the penalty term λ (c).

0 500 1000 1500 2000 2500
Iterations

0.00

0.25

0.50

0.75

1.00

µ

(a)

0 500 1000 1500 2000 2500
Iterations

10−7

10−6

10−5

10−4

10−3

10−2

σ
2

(b)

0 500 1000 1500 2000 2500
Iterations

100

101

102

103

λ

(c)

Figure 25: Diagnostics of the optimization run with SCOUT-Nd involving the high-fidelity GCH
model [90], for the 24 turbine wind farm case. From left to right, the mean of the design variables (a),
the variance of the design variables (b), and the penalty term λ (c).

0 500 1000 1500 2000
Iterations

0.00

0.25

0.50

0.75

1.00

µ

(a)

0 500 1000 1500 2000
Iterations

10−6

10−5

10−4

10−3

10−2

σ
2

(b)

0 500 1000 1500 2000
Iterations

100

101

102

103

λ

(c)

Figure 26: Diagnostics of the optimization run with MF-SCOUT-Nd involving the high-fidelity GCH
model [90], for the 24 turbine wind farm case. From left to right, the mean of the design variables (a),
the variance of the design variables (b), and the penalty term λ (c).

29

References
[1] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. “The frontier of simulation-based in-

ference”. In: Proceedings of the National Academy of Sciences 117.48 (2020), pp. 30055–
30062.

[2] James Reuther et al. “Aerodynamic shape optimization of complex aircraft configurations via
an adjoint formulation”. In: 34th aerospace sciences meeting and exhibit. 1996, p. 94.

[3] Martina Hasenjäger et al. “Three dimensional evolutionary aerodynamic design optimization
with CMA-ES”. In: Proceedings of the 7th annual conference on Genetic and evolutionary
computation. 2005, pp. 2173–2180.

[4] Mohamed Jebalia et al. “Identification of the isotherm function in chromatography using
CMA-ES”. In: 2007 IEEE Congress on Evolutionary Computation. IEEE. 2007, pp. 4289–
4296.

[5] Atul Agrawal and Phaedon-Stelios Koutsourelakis. “A probabilistic, data-driven closure model
for RANS simulations with aleatoric, model uncertainty”. In: Journal of Computational Physics
(2024), p. 112982. ISSN: 0021-9991. DOI: https://doi.org/10.1016/j.jcp.2024.
112982. URL: https://www.sciencedirect.com/science/article/pii/
S0021999124002316.

[6] Atul Agrawal et al. “From concrete mixture to structural design–a holistic optimization
procedure in the presence of uncertainties”. In: arXiv preprint arXiv:2312.03607 (2023).

[7] Maximilian Rixner and Phaedon-Stelios Koutsourelakis. “Self-supervised optimization of
random material microstructures in the small-data regime”. In: npj Computational Materials
8.1 (2022), p. 46.

[8] Tommaso Dorigo et al. “Toward the end-to-end optimization of particle physics instru-
ments with differentiable programming”. In: Reviews in Physics 10 (June 2023), p. 100085.
ISSN: 2405-4283. DOI: 10.1016/j.revip.2023.100085. URL: https://www.
sciencedirect.com/science/article/pii/S2405428323000047 (visited
on 05/21/2024).

[9] Jared J Thomas et al. “A comparison of eight optimization methods applied to a wind farm
layout optimization problem”. In: Wind Energy Science Discussions 2022 (2022), pp. 1–43.

[10] Sergey Shirobokov et al. “Black-box optimization with local generative surrogates”. In: Ad-
vances in Neural Information Processing Systems 33 (2020), pp. 14650–14662.

[11] Zhe Zhang, Minghao Song, and Xiaobiao Huang. “Online accelerator optimization with a
machine learning-based stochastic algorithm”. In: Machine Learning: Science and Technology
2.1 (Dec. 2020), p. 015014. DOI: 10.1088/2632-2153/abc81e. URL: https://dx.
doi.org/10.1088/2632-2153/abc81e.

[12] Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist rein-
forcement learning”. In: Machine learning 8.3 (1992), pp. 229–256.

[13] Nataniel Ruiz, Samuel Schulter, and Manmohan Chandraker. “Learning to simulate”. In: arXiv
preprint arXiv:1810.02513 (2018).

[14] German Ros et al. “The synthia dataset: A large collection of synthetic images for semantic
segmentation of urban scenes”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 3234–3243.

[15] Joaquim RRA Martins and Andrew Ning. Engineering design optimization. Cambridge Uni-
versity Press, 2021.

[16] Mathieu Blondel and Vincent Roulet. “The Elements of Differentiable Programming”. In:
arXiv preprint arXiv:2403.14606 (2024).

[17] Jonas Degrave, Michiel Hermans, Joni Dambre, et al. “A differentiable physics engine for
deep learning in robotics”. In: Frontiers in neurorobotics (2019), p. 6.

[18] Filipe de Avila Belbute-Peres et al. “End-to-end differentiable physics for learning and control”.
In: Advances in neural information processing systems 31 (2018).

[19] Didier Lucor, Atul Agrawal, and Anne Sergent. “Simple computational strategies for more
effective physics-informed neural networks modeling of turbulent natural convection”. In:
Journal of Computational Physics 456 (2022), p. 111022.

[20] Daniel Golovin et al. “Google vizier: A service for black-box optimization”. In: Proceedings
of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining.
2017, pp. 1487–1495.

30

https://doi.org/https://doi.org/10.1016/j.jcp.2024.112982
https://doi.org/https://doi.org/10.1016/j.jcp.2024.112982
https://www.sciencedirect.com/science/article/pii/S0021999124002316
https://www.sciencedirect.com/science/article/pii/S0021999124002316
https://doi.org/10.1016/j.revip.2023.100085
https://www.sciencedirect.com/science/article/pii/S2405428323000047
https://www.sciencedirect.com/science/article/pii/S2405428323000047
https://doi.org/10.1088/2632-2153/abc81e
https://dx.doi.org/10.1088/2632-2153/abc81e
https://dx.doi.org/10.1088/2632-2153/abc81e

[21] Michael B Giles and Niles A Pierce. “An introduction to the adjoint approach to design”. In:
Flow, turbulence and combustion 65.3 (2000), pp. 393–415.

[22] Alexander Luce et al. “Merging automatic differentiation and the adjoint method for photonic
inverse design”. In: Machine Learning: Science and Technology 5.2 (June 2024), p. 025076.
DOI: 10.1088/2632-2153/ad5411. URL: https://dx.doi.org/10.1088/
2632-2153/ad5411.

[23] Philipp Holl and Nils Thuerey. “Phi-ML: Intuitive Scientific Computing with Dimension Types
for Jax, PyTorch, TensorFlow & NumPy”. In: Journal of Open Source Software 9.95 (2024),
p. 6171. DOI: 10.21105/joss.06171. URL: https://doi.org/10.21105/joss.
06171.

[24] Sean Gasiorowski et al. “Differentiable simulation of a liquid argon time projection chamber”.
In: Machine Learning: Science and Technology 5.2 (Apr. 2024), p. 025012. DOI: 10.1088/
2632-2153/ad2cf0. URL: https://dx.doi.org/10.1088/2632-2153/
ad2cf0.

[25] Nathan Baker et al. Workshop report on basic research needs for scientific machine learn-
ing: Core technologies for artificial intelligence. Tech. rep. USDOE Office of Science (SC),
Washington, DC (United States), 2019.

[26] William Moses and Valentin Churavy. “Instead of rewriting foreign code for machine learning,
automatically synthesize fast gradients”. In: Advances in neural information processing systems
33 (2020), pp. 12472–12485.

[27] Jeffrey Larson, Matt Menickelly, and Stefan M Wild. “Derivative-free optimization methods”.
In: Acta Numerica 28 (2019), pp. 287–404.

[28] Charles Audet and Michael Kokkolaras. Blackbox and derivative-free optimization: theory,
algorithms and applications. 2016.

[29] Jorge J Moré and Stefan M Wild. “Benchmarking derivative-free optimization algorithms”. In:
SIAM Journal on Optimization 20.1 (2009), pp. 172–191.

[30] Rajesh Ranganath, Sean Gerrish, and David Blei. “Black box variational inference”. In:
Artificial intelligence and statistics. PMLR. 2014, pp. 814–822.

[31] Wolfgang Banzhaf et al. Genetic programming: an introduction: on the automatic evolution of
computer programs and its applications. Morgan Kaufmann Publishers Inc., 1998.

[32] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. “Practical bayesian optimization of
machine learning algorithms”. In: Advances in neural information processing systems 25
(2012).

[33] Friedrich Menhorn et al. “A trust-region method for derivative-free nonlinear constrained
stochastic optimization”. In: arXiv preprint arXiv:1703.04156 (2017).

[34] Daan Wierstra et al. “Natural evolution strategies”. In: The Journal of Machine Learning
Research 15.1 (2014), pp. 949–980.

[35] Krzysztof M Choromanski et al. “From complexity to simplicity: Adaptive es-active subspaces
for blackbox optimization”. In: Advances in Neural Information Processing Systems 32 (2019).

[36] Abhinav Anand, Matthias Degroote, and Alán Aspuru-Guzik. “Natural evolutionary strategies
for variational quantum computation”. In: Machine Learning: Science and Technology 2.4
(July 2021), p. 045012. DOI: 10.1088/2632-2153/abf3ac. URL: https://dx.doi.
org/10.1088/2632-2153/abf3ac.

[37] Shakir Mohamed et al. “Monte carlo gradient estimation in machine learning”. In: The Journal
of Machine Learning Research 21.1 (2020), pp. 5183–5244.

[38] Georg Ch Pflug. Optimization of stochastic models: the interface between simulation and
optimization. Vol. 373. Springer Science & Business Media, 2012.

[39] Gilles Louppe, Joeri Hermans, and Kyle Cranmer. “Adversarial Variational Optimization
of Non-Differentiable Simulators”. en. In: Proceedings of the Twenty-Second International
Conference on Artificial Intelligence and Statistics. ISSN: 2640-3498. PMLR, Apr. 2019,
pp. 1438–1447. URL: https://proceedings.mlr.press/v89/louppe19a.
html (visited on 11/22/2022).

[40] Atul Agrawal et al. “Multi-fidelity Constrained Optimization for Stochastic Black Box Simula-
tors”. In: arXiv preprint arXiv:2311.15137 (2023).

[41] Arkadij Semenovič Nemirovskij and David Borisovich Yudin. “Problem complexity and
method efficiency in optimization”. In: (1983).

31

https://doi.org/10.1088/2632-2153/ad5411
https://dx.doi.org/10.1088/2632-2153/ad5411
https://dx.doi.org/10.1088/2632-2153/ad5411
https://doi.org/10.21105/joss.06171
https://doi.org/10.21105/joss.06171
https://doi.org/10.21105/joss.06171
https://doi.org/10.1088/2632-2153/ad2cf0
https://doi.org/10.1088/2632-2153/ad2cf0
https://dx.doi.org/10.1088/2632-2153/ad2cf0
https://dx.doi.org/10.1088/2632-2153/ad2cf0
https://doi.org/10.1088/2632-2153/abf3ac
https://dx.doi.org/10.1088/2632-2153/abf3ac
https://dx.doi.org/10.1088/2632-2153/abf3ac
https://proceedings.mlr.press/v89/louppe19a.html
https://proceedings.mlr.press/v89/louppe19a.html

[42] Anthony Nguyen and Krishnakumar Balasubramanian. “Stochastic zeroth-order functional
constrained optimization: Oracle complexity and applications”. In: INFORMS Journal on
Optimization 5.3 (2023), pp. 256–272.

[43] Thomas Bird, Julius Kunze, and David Barber. Stochastic Variational Optimization.
arXiv:1809.04855 [cs, stat]. Sept. 2018. URL: http://arxiv.org/abs/1809.04855
(visited on 11/08/2022).

[44] Joe Staines and David Barber. Variational Optimization. arXiv:1212.4507 [cs, stat]. Dec. 2012.
URL: http://arxiv.org/abs/1212.4507 (visited on 11/08/2022).

[45] Jacob R Gardner et al. “Bayesian optimization with inequality constraints.” In: ICML.
Vol. 2014. 2014, pp. 937–945.

[46] Michael JD Powell. A direct search optimization method that models the objective and con-
straint functions by linear interpolation. Springer, 1994.

[47] Dieter Kraft. “A software package for sequential quadratic programming”. In:
Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt (1988).

[48] Laurens Bliek et al. “EXPObench: benchmarking surrogate-based optimisation algorithms on
expensive black-box functions”. In: arXiv preprint arXiv:2106.04618 (2021).

[49] Aharon Ben-Tal and Arkadi Nemirovski. “Robust solutions of uncertain linear programs”. In:
Operations research letters 25.1 (1999), pp. 1–13.

[50] Dimitris Bertsimas, David B Brown, and Constantine Caramanis. “Theory and applications of
robust optimization”. In: SIAM review 53.3 (2011), pp. 464–501.

[51] I.-J. Wang and J.C. Spall. “Stochastic optimization with inequality constraints using simulta-
neous perturbations and penalty functions”. en. In: 42nd IEEE International Conference on
Decision and Control (IEEE Cat. No.03CH37475). Maui, HI, USA: IEEE, 2003, pp. 3808–
3813. ISBN: 978-0-7803-7924-4. DOI: 10.1109/CDC.2003.1271742. URL: http:
//ieeexplore.ieee.org/document/1271742/ (visited on 10/28/2022).

[52] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.
[53] Anthony V Fiacco and Garth P McCormick. Nonlinear programming: sequential unconstrained

minimization techniques. SIAM, 1990.
[54] Giampaolo Liuzzi, Stefano Lucidi, and Marco Sciandrone. “Sequential penalty derivative-free

methods for nonlinear constrained optimization”. In: SIAM Journal on Optimization 20.5
(2010), pp. 2614–2635.

[55] Michel Fortin and Roland Glowinski. Augmented Lagrangian methods: applications to the
numerical solution of boundary-value problems. Elsevier, 2000.

[56] Mark A Beaumont, Wenyang Zhang, and David J Balding. “Approximate Bayesian computa-
tion in population genetics”. In: Genetics 162.4 (2002), pp. 2025–2035.

[57] Paul Marjoram et al. “Markov chain Monte Carlo without likelihoods”. In: Proceedings of the
National Academy of Sciences 100.26 (2003), pp. 15324–15328.

[58] Joe Staines and David Barber. “Optimization by Variational Bounding.” In: ESANN. 2013.
[59] Peter W Glynn. “Likelihood ratio gradient estimation for stochastic systems”. In: Communica-

tions of the ACM 33.10 (1990), pp. 75–84.
[60] Tim Salimans et al. “Evolution strategies as a scalable alternative to reinforcement learning”.

In: arXiv preprint arXiv:1703.03864 (2017).
[61] Frank Sehnke et al. “Parameter-exploring policy gradients”. In: Neural Networks 23.4 (2010),

pp. 551–559.
[62] Yurii Nesterov and Vladimir Spokoiny. “Random gradient-free minimization of convex func-

tions”. In: Foundations of Computational Mathematics 17.2 (2017), pp. 527–566.
[63] Wouter Kool, Herke van Hoof, and Max Welling. “Buy 4 REINFORCE Samples, Get a

Baseline for Free!” en. In: (July 2022). URL: https://openreview.net/forum?id=
r1lgTGL5DE (visited on 11/11/2022).

[64] Josef Dick, Frances Y Kuo, and Ian H Sloan. “High-dimensional integration: the quasi-Monte
Carlo way”. In: Acta Numerica 22 (2013), pp. 133–288.

[65] Mark Rowland et al. “Geometrically coupled monte carlo sampling”. In: Advances in Neural
Information Processing Systems 31 (2018).

[66] Paul Glasserman. Monte Carlo methods in financial engineering. Vol. 53. Springer, 2004.

32

http://arxiv.org/abs/1809.04855
http://arxiv.org/abs/1212.4507
https://doi.org/10.1109/CDC.2003.1271742
http://ieeexplore.ieee.org/document/1271742/
http://ieeexplore.ieee.org/document/1271742/
https://openreview.net/forum?id=r1lgTGL5DE
https://openreview.net/forum?id=r1lgTGL5DE

[67] Il’ya Meerovich Sobol’. “On the distribution of points in a cube and the approximate evaluation
of integrals”. In: Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 7.4 (1967),
pp. 784–802.

[68] Shun-Ichi Amari. “Natural gradient works efficiently in learning”. In: Neural computation
10.2 (1998), pp. 251–276.

[69] Da Tang and Rajesh Ranganath. “The Variational Predictive Natural Gradient”. In: Proceedings
of the 36th International Conference on Machine Learning. Ed. by Kamalika Chaudhuri and
Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. PMLR, Sept. 2019,
pp. 6145–6154. URL: https://proceedings.mlr.press/v97/tang19c.html.

[70] Solomon Kullback and Richard A Leibler. “On information and sufficiency”. In: The annals
of mathematical statistics 22.1 (1951), pp. 79–86.

[71] C Radhakrishna Rao. “Information and the accuracy attainable in the estimation of statistical
parameters”. In: Breakthroughs in Statistics: Foundations and basic theory. Springer, 1992,
pp. 235–247.

[72] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning.
Vol. 4. 4. Springer, 2006.

[73] Benjamin Peherstorfer, Karen Willcox, and Max Gunzburger. “Survey of multifidelity methods
in uncertainty propagation, inference, and optimization”. In: Siam Review 60.3 (2018), pp. 550–
591.

[74] Michael B Giles. “Multilevel monte carlo methods”. In: Acta numerica 24 (2015), pp. 259–328.
[75] Stefan Heinrich. “Multilevel monte carlo methods”. In: Large-Scale Scientific Computing:

Third International Conference, LSSC 2001 Sozopol, Bulgaria, June 6–10, 2001 Revised
Papers 3. Springer. 2001, pp. 58–67.

[76] Friedrich Menhorn et al. “Multilevel Monte Carlo estimators for derivative-free optimization
under uncertainty”. In: International Journal for Uncertainty Quantification 14.3 (2024).

[77] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learning library”.
In: Advances in neural information processing systems 32 (2019).

[78] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980 (2014).

[79] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”.
In: Nature Methods 17 (2020), pp. 261–272. DOI: 10.1038/s41592-019-0686-2.

[80] Fernando Nogueira. Bayesian Optimization: Open source constrained global optimization
tool for Python. 2014–. URL: https://github.com/bayesian-optimization/
BayesianOptimization.

[81] Victor Picheny, Tobias Wagner, and David Ginsbourger. “A benchmark of kriging-based infill
criteria for noisy optimization”. In: Structural and multidisciplinary optimization 48 (2013),
pp. 607–626.

[82] JS Gray et al. “Automatic evaluation of multidisciplinary derivatives using a graph-based
problem formulation in OpenMDAO, 15th AIAA”. In: ISSMO Multidisciplinary Analysis and
Optimization Conference, Atlanta, Georgia, USA. 2014.

[83] Luis Miguel Rios and Nikolaos V Sahinidis. “Derivative-free optimization: a review of algo-
rithms and comparison of software implementations”. In: Journal of Global Optimization 56
(2013), pp. 1247–1293.

[84] Andrew PJ Stanley and Andrew Ning. “Massive simplification of the wind farm layout
optimization problem”. In: Wind Energy Science 4.4 (2019), pp. 663–676.

[85] Andrés Santiago Padrón et al. “Polynomial chaos to efficiently compute the annual energy
production in wind farm layout optimization”. In: Wind Energy Science 4.2 (2019), pp. 211–
231.

[86] Nicholas MK Poon and Joaquim RRA Martins. “An adaptive approach to constraint aggrega-
tion using adjoint sensitivity analysis”. In: Structural and Multidisciplinary Optimization 34
(2007), pp. 61–73.

[87] Jason Jonkman et al. Definition of a 5-MW reference wind turbine for offshore system devel-
opment. Tech. rep. National Renewable Energy Lab.(NREL), Golden, CO (United States),
2009.

[88] NREL. FLORIS. Version 1.0.0. 2019. URL: https://github.com/NREL/floris.

33

https://proceedings.mlr.press/v97/tang19c.html
https://doi.org/10.1038/s41592-019-0686-2
https://github.com/bayesian-optimization/BayesianOptimization
https://github.com/bayesian-optimization/BayesianOptimization
https://github.com/NREL/floris

[89] Niels Otto Jensen. A note on wind generator interaction. Risø National Laboratory, 1983.
[90] Jennifer King et al. “Control-oriented model for secondary effects of wake steering”. In: Wind

Energy Science 6.3 (2021), pp. 701–714.
[91] John Jasa et al. “Effectively using multifidelity optimization for wind turbine design”. In: Wind

Energy Science Discussions 2021 (2021), pp. 1–22.
[92] Anuj Karpatne, Ramakrishnan Kannan, and Vipin Kumar. Knowledge Guided Machine Learn-

ing: Accelerating Discovery Using Scientific Knowledge and Data. CRC Press, 2022.

34

	Introduction
	Methodology
	Penalizing the constraints
	Gradient Estimation
	Variance reduction
	Natural Gradients
	Termination criterion
	Method Analysis
	Covergence studies
	Gradient Correction for constraints
	Overcoming multiple local optima
	Sample Size

	Multi-fidelity
	Sample size for multi-fidelity derivative estimator

	Numerical Illustrations
	Benchmark Studies
	Windfarm Layout Optimization

	Conclusions
	Influence of initial value of design variable variance
	Taylor Expansion simplification
	List of benchmarks
	Sphere problem
	Constrained Sphere problem
	Ackley function
	Rosenbrock function
	Zakharov function
	Bohachevsky function: 1
	Bohachevsky function: 2
	Six-hump camel function
	Three-hump camel function
	Beale function
	Hartmann 3d function
	Hartmann 4d function

	Further details of the windfarm layout optimization

