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On the cut-elimination of the modal µ-calculus:1

Linear Logic to the rescue2

Esaïe BAUER & Alexis SAURIN # �3

Université Paris Cité & CNRS & INRIA, Pl. Aurélie Nemours, 75013 Paris, France4

Abstract5

This paper presents a proof-theoretic analysis of the modal mu-calculus, well-known in verification6

theory and relevant to the model-checking problem. More precisely, we prove a syntactic cut-7

elimination for the non-wellfounded modal mu-calculus, using methods from linear logic and its8

exponential modalities. To achieve this, we introduce a new system, µLL∞
□ , which is a linear9

version of the modal mu-calculus, intertwining the modalities from the modal mu-calculus with10

the exponential modalities from linear logic. Our strategy for proving cut-elimination involves (i)11

proving cut-elimination for µLL∞
□ and (ii) translating proofs of the modal mu-calculus into this new12

system via a "linear translation," allowing us to extract the cut-elimination result.13
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1 Introduction20

Eliminability of cut and the modal µ-calculus. Since Kozen’s seminal work on the21

modal µ-calculus [12], this logic based on modal logic extended with least and greatest22

fixed-points has been extremely fruitful for the study of computational systems, especially23

reactive systems, both for their specification and their verification. In addition to its wide24

expressive power, its deep roots in logic also allow for a number of fruitful approaches, be25

they model-theoretic, proof-theoretic, automata-theoretic, as well as complexity-theoretic.26

Still, cut-elimination – a cornerstone of modern proof-theory – only received partial27

solutions [17, 5, 15, 16, 1], either as cut-admissibility statements (usually obtained as28

corollary of a completeness theorem with respect to a cut-free proof system – and therefore29

noneffective) or as syntactic cut-elimination results capturing only a fragment of the calculus.30

Some of them are admissibility results [17, 1], possibly using non-wellfounded or circular31

systems (allowing proof-trees with infinitely long branches). Systems with ω-rule (allowing32

infinitely branching proof-trees) also enjoy cut-admissibility (see [11] for instance), however33

a problem that arises when trying to describe a syntactic cut-elimination is the fact that a34

choice on the number of times a µ-rule must be made sometimes before knowing how many35

times it should be to fit each hypotheses of a ν-rule. In [5], the authors discuss a specific36

example where syntactic cut-elimination fails. Syntactic results of cut-elimination can still be37

found in ω-rule systems [16, 5, 15], however these systems are strict fragments of the modal38

µ-calculus. In fact, there is no syntactic cut-elimination theorem for the modal µ-calculus.39

The present work establishes syntactic cut-elimination theorems for the modal µ-calculus40

by providing a proof-theoretic analysis grounded on linear logic stemming from the striking41

remark that logic presents at the same time a deep unity and a wide diversity.42

On unity and diversity in computational logic. While the unity of logic is embodied by43
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2 Modal µ-calculus cut-elimination

its fundamental objects and questions1, the vast diversity of logics and the broad nature of44

reasoning are a source of multiplicity of formalisms which often turn out to be incompatible.45

This leads, for instance, Miller [14], to argue that “it is far more accurate to say that46

its universal character has been badly fractured in the past few decades”, due to the wide47

range of its applications, the various families of logics that have emerged and the different48

computational tools that are in use often with little relationship. Miller’s analysis of this49

fracture goes to the point of proposing the following questions as the first of a list of50

“challenges”:51

Challenge 1: Unify a wide range of logical features into a single framework. How best can we52

explain the many enhancements that have been designed for logic: for example, classical /53

intuitionistic / linear, fixed points, first-order / higher-order quantification, modalities,54

and temporal operators? (...)55

In the present paper, we partially address Miller’s first challenge, providing a common56

framework for two of the main logics that emerged in the 1980s, Kozen’s modal µ-calculus [12]57

and Girard’s linear logic [9]. Working in the setting of circular and non-wellfounded proof58

systems for the above logics, we propose a so-called linear decomposition of the modal µ-59

calculus in linear logic with fixed-points. This proof-theoretic analysis of the modal µ-calculus60

allows us a finer-grained treatment of syntactic cut-elimination.61

Cut-admissibility vs cut-elimination. The treatment of the cut-inference in sequent-62

based proof-systems follows two main traditions: (i) one can consider cut-free proofs as63

the primitive proof-objects, establishing that the cut-inference is admissible (according to64

that tradition, the cut-inference essentially lives at the meta level, ensuring compositionality65

of the logic) or (ii) one can consider that the cut inference lives at the object-level and66

is a fundamental piece of proofs, establishing that it is eliminable thus ensuring the sub-67

formula property (and its numerous important consequences, ranging from consistency to68

interpolation properties). This second tradition often comes with the investigation of a69

syntactic, or effective, approach to cut-elimination, consisting in a cut-reduction relation on70

proofs, shown to be (at least) weakly normalizing, the normal forms being cut-free proofs. In71

several settings (most notably LJ and LL [9]), such cut-reductions may have a computational72

interpretation that is the starting point of Curry-Howard correspondence built upon sequent73

calculus [6].74

Linear Logic. Linear logic (LL) is often described as a resource-sensitive logic. It is more75

accurate, though, to view it as a logic designed for analyzing cut-elimination itself. Indeed, LL76

comes from an analysis of structural rules, aiming at controlling them rather than weakening77

them as in substructural logics. This solves some fundamental drawbacks of cut-elimination78

in classical logic, such as its non-termination or non-confluence. For instance, LL permits79

the decomposition of both intuitionistic and classical logic, in a structured and fine-grained80

manner allowing the refinement of the cut-elimination of those logics as well as their notion of81

model (allowing the building of a non-trivial denotational model of proofs for classical logic);82

the prototypical example of such a linear decomposition consists in decomposing the usual83

intuitionistic arrow (that is the function type of the λ-calculus), A ⇒ B, into a replication84

operator and a linear implication, !A ⊸ B [9, 7]. Further analyzes on these exponential85

modalities led to the finding of alternative presentations offering the possibility to tame their86

1 E.g. how to design logical languages and use logical consequence from a model- or a proof-theoretic
perspective, what are the invariants emerging from models or proofs and how to provide algorithms and
software to mechanize these studies and with what intrinsic expressiveness and complexity?
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complexity in a flexible way, introducing light logics, but considering alternative – generally87

weaker – exponential modalities. The proof theory of LL was extended to LL extended with88

fixed-points in the finitary and non-wellfounded setting [2, 8, 20] and µLL∞ allowed for the89

same kind of linear decomposition for (the non-wellfounded version of) µLJ and µLK. A90

natural question is therefore whether LL and its extensions with fixed-points can help us91

achieving syntactic cut-elimination for the modal µ-calculus as well.92

Contributions. The discussion of the above paragraph suggests a first question: what93

would be a linear decomposition of the modal µ-calculus? The first contribution of this paper94

is to provide such a linear decomposition of the modal µ-calculus which is compatible with95

circular and non-wellfounded proof theory, µLL∞
□ . This linear-logical modal µ-calculus will96

allow us to complete the analysis of cut-elimination for the modal µ-calculus.97

We therefore adopt the following roadmap in the body of the paper: in Section 2, we recall98

the necessary technical background about µLL∞ and µLK∞
□ (with list and sequence-based99

sequents). In Section Section 3, we motivate and introduce µLL∞
□ , the linear calculus in100

which one can decompose the modal µ-calculus. We then prove cut-elimination for µLL∞
□ in101

Section 4 before defining the linear decomposition of µLK∞
□ and concluding its cut-elimination102

theorem in Section 5 in the form of an infinitary weak-normalizing cut-reduction system.103

2 Sequent calculi for (non-)wellfounded & circular proof systems104

2.1 The Modal µ-calculus105

Formulas. First we define the pre-formulas of the modal µ-calculus, µLK∞
□ :

F, G ::= a ∈ A | X ∈ V | µX.F | νX.F | □F | ♢F | F ⊥ | F → G | F ∨ G | F ∧ G | F | T.

Knaster-Tarski’s theorem guarantees the existence of extremal fixed-points for monotonic106

functions on complete lattices; monotonicity is reflected syntactically as a positivity condition107

on fixed-point variables. We therefore consider only pre-formulas satisfying this condition:108

▶ Definition 1 (Positive and negative occurrence of a fixed-point variable). Let X ∈ V be a109

fixed-point variable, one defines the fact, for X, to occur positively (resp. negatively) in a110

pre-formula by induction on the structure of pre-formulas:111

X occurs positively in X.112

X occurs positively (resp. negatively) in c(F1, . . . , Fn), if there is some 1 ≤ i ≤ n such113

that X occurs positively (resp. negatively) in Fi for c ∈ {□,♢, ∨, ∧}.114

X occurs positively (resp. negatively) in F ⊥ if it occurs negatively (resp. positively) in F .115

X occurs positively (resp. negatively) in F → G if X occurs either positively (resp.116

negatively) in G or negatively (resp. positively) in F .117

X occurs positively (resp. negatively) in δY.G (with Y ̸= X) if it occurs positively (resp.118

negatively) in G (for δ ∈ {µ, ν}).119

▶ Definition 2 (Formulas). A µLK∞
□ formula F is a closed pre-formula such that for any120

sub-pre-formula of F of the form δX.G (with δ ∈ {µ, ν}), X does not occur negatively in G.121

By considering the µ, ν, X-free formulas of this system, we get a fixed-point-free version122

of the modal µ-calculus: LK□. By considering the □,♢-free formulas of µLK∞
□ , we get the123

µ-calculus. Finally, the intersection of these two systems, is the propositional classical logic.124

Sequent calculus. We now define the sequents, inference rules and proofs for µLK∞
□ .125
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ax
F ⊢ F

Γ1 ⊢ F, ∆1 Γ2 ⊢ F, ∆2 cutΓ1, Γ2 ⊢ ∆1, ∆2

Γ ⊢ F, ∆
□p

□A ⊢ □F,♢∆
Γ, F ⊢ ∆

♢p
□A,♢F ⊢ ♢∆

Γ ⊢ F1, ∆
∨1

rΓ ⊢ F1 ∨ F2, ∆
Γ ⊢ F2, ∆

∨2
rΓ ⊢ F2 ∨ F2, ∆

Γ, F1 ⊢ ∆ Γ, F2 ⊢ ∆ ∨lΓ, F1 ∨ F2 ⊢ ∆
FΓ, F ⊢ ∆

Γ, F1 ⊢ ∆ ∧1
lΓ, F1 ∧ F2 ⊢ ∆

Γ, F2 ⊢ ∆ ∧2
lΓ, F2 ∧ F2 ⊢ ∆

Γ ⊢ F1, ∆ Γ ⊢ F2, ∆ ∧rΓ ⊢ F1 ∧ F2, ∆
TΓ ⊢ T, ∆

Γ, A ⊢ B, ∆ →rΓ ⊢ A → B, ∆
Γ1, B ⊢ ∆1 Γ2 ⊢ A, ∆2 →lΓ1, Γ2, A → B ⊢ ∆1, ∆2

Γ, A ⊢ ∆
⊥rΓ ⊢ A⊥, ∆

Γ ⊢ A, ∆
⊥lΓ, A⊥ ⊢ ∆

Γ ⊢ ∆ wrΓ ⊢ F, ∆
Γ ⊢ ∆ wlΓ, F ⊢ ∆

Γ ⊢ F, F, ∆ crΓ ⊢ F, ∆
Γ ⊢ F, F, ∆ crΓ ⊢ F, ∆

Γ1, G, F , Γ2 ⊢ ∆ exlΓ1, F, G, Γ2 ⊢ ∆
Γ ⊢ ∆1, G, F , ∆2 exrΓ ⊢ ∆1, F, G, ∆2

Figure 1 Rules of LK□

Γ, F [X := µX.F ] ⊢ ∆
µlΓ, µX.F ⊢ ∆

Γ ⊢ F [X := µX.F ], ∆
µrΓ ⊢ µX.F, ∆

Γ, F [X := νX.F ] ⊢ ∆
νlΓ, νX.F ⊢ ∆

Γ ⊢ F [X := νX.F ], ∆
νrΓ ⊢ νX.F, ∆

Figure 2 Rules for the fixed-point fragment

▶ Definition 3 (Sequent). A sequent is a pair of two lists of formulas Γ, ∆, that we usually126

write Γ ⊢ ∆. We call Γ the antecedent of the sequent and ∆ the succedent of it. We also127

refer to the formulas of Γ (resp. ∆) as the hypotheses (resp. conclusions) of the sequent.128

▶ Remark 1 (Derivation rules & ancestor relation). In the structural proof theory literature,129

inference rules are usually given together with an ancestor relation (or sub-occurrence relation)130

between formulas of the conclusion and formulas of the hypotheses. While this relation is131

often overlooked we provide some details here. Sequent being lists, we define the ancestor132

relation, to be a relation from the positions of the formula in the conclusion, to the positions133

of the formula in the hypotheses.134

Those ancestor relations will be dealt graphically, by drawing the ancestor relation on135

sequents when needed and leaving it implicit when unambiguous.136

We define inference rules for LK□ in figure 1. Rules for LK will be the □,♢-free rules of137

LK□. We add rules of figure 2 to LK, (resp. LK□) to get the fixed-point version µLK∞ (resp.138

µLK∞
□ ) of this system. The exchange rule (ex) from figures 1 and 3 allows one to derive139

the rule ⊢ σ(Γ)
ex(σ)⊢ Γ

for any permutation σ of J1, #(Γ)K, where σ(Γ) designates the140

action of σ on the list Γ, with the induced ancestor relation. In the rest of the article, we141

will intentionally treat the exchange rule implicitly: the reader can consider that each of our142

rules are preceded and followed by a finite number of rule (ex).143

Proofs of non fixed-point systems, LK, LK□ are the trees inductively generated by the144

corresponding set of rules of each of these systems. We can define a first notion of infinite145

derivations, pre-proofs, that will soon be refined:146

▶ Definition 4 (Pre-proofs). Given a set of derivation rules, we define pre-proofs to be the147

trees co-inductively generated by rules of each of these systems.148

▶ Example 1 (Regular pre-proof). Regular pre-proofs are those pre-proofs having a finite149

number of sub-proofs. We represent them with back-edges. Taking F := νX.♢X, we give an150
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example of regular proof:
F ⊢ F □p
♢F ⊢ ♢F νl, νr

F ⊢ F

F ⊢ F □p
♢F ⊢ ♢F νl, νr

F ⊢ F cut
F ⊢ F

151

▶ Remark 2. The pre-proofs define an inconsistent system. In fact, any sequent is provable:

Γ ⊢ νX.X νrΓ ⊢ νX.X
νX.X ⊢ ∆ νl
νX.X ⊢ ∆ cutΓ ⊢ ∆

152

To define a sound non-wellfounded proof system, we need a last definition:153

▶ Definition 5 (Active & Principal occurrence of a rule). We define active occurrences (resp.154

principal formula) of the rules of figures 1, 2, 3 and 4 to be the first occurrence (resp. formula)155

of each conclusion sequent of that rule except for:156

(ex) which does not contain any active occurrences nor principal formulas;157

(cut) which does not contain any active occurrences but has F as principal formula;158

the modal rule (□) where all the occurrences are active and □F is the principal formula.159

From that, we define the proofs as a subset of the pre-proofs:160

▶ Definition 6 (Validity and proofs). Let b = (si)i∈ω be a sequence of sequents defining an161

infinite branch in a pre-proof π. A thread of b is a sequence (Fi ∈ si)i>n of occurrences such162

that for each j, Fj and Fj+1 are satisfying the ancestor relation. We say that a thread of b is163

valid if the minimal recurring formula of this sequence, for sub-formula ordering, exists and164

is (i) either a ν-formula and appearing on the succedent of its sequent or is a µ-formula and165

appearing in the antecedent of its sequent and (ii) the thread is infinitely often active (there166

are an infinite number of active formulas in it). A branch b is valid if there is a valid thread167

of b. A pre-proof is valid and is a proof if each of its infinite branches are valid.168

▶ Remark 3. The least (µ) and greatest (ν) fixed-point constructors have the same derivation169

rules: they will be distinguished thanks to the validity condition which is a parity condition170

akin to parity games for the µ-calculus.171

▶ Example 1. The pre-proofs of Example 1 and Remark 2 are respectively valid and invalid.172

▶ Example 2 (Valid and not valid pre-proofs). Here, we give some examples of infinite proof,
we use a notation Nat := µX.1 ∨ X, representing the type of natural numbers. We can
represent any natural number n by a finite proof πn:

π0 :=
1⊢ 1 ∨1

r⊢ 1 ∨ Nat µr⊢ Nat
πn+1 :=

πn

⊢ Nat
µr, ∨2

r⊢ Nat

There also exists an infinite pre-proof on ⊢ Nat which is not valid: ⊢ Nat
µr, ∨2

r⊢ Nat
. The173

infinite branch here is supported by one only thread which is not valid as the minimal formula174

is a µ-formula appearing on the right of the proof. Which is coherent with the interpretation175

that µ is a least fixed-point, we want to reject an infinite natural number. Note that the same176

kind of proof with Nat := νX.1 ∨ X would have given a valid proof. The following pre-proof177

(representing the double function) is valid:

ax
1 ⊢ 1 ∨1

r1 ⊢ 1 ∨ Nat µr1 ⊢ Nat

Nat ⊢ Nat
µr, ∨2

rNat ⊢ Nat ∨2
rNat ⊢ 1 ∨ Nat µrNat ⊢ Nat ∨l1 ∨ Nat ⊢ Nat µlNat ⊢ Nat

The178
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ax
F ⊢ F

Γ1 ⊢ F, ∆1 Γ2 ⊢ F ⊥, ∆2 cutΓ1, Γ2 ⊢ ∆1, ∆2

Γ ⊢ ∆1, G, F , ∆2 exrΓ ⊢ ∆1, F, G, ∆2

Γ1, G, F , Γ2 ⊢ ∆ exlΓ1, F, G, Γ2 ⊢ ∆

Γ ⊢ F, G, ∆ `rΓ ⊢ F ` G, ∆
Γ1, F ⊢ ∆1 Γ2, G ⊢ ∆2 `lΓ1, Γ2, F ` G ⊢ ∆1, ∆2

Γ, F, G ⊢ ∆ ⊗lΓ, F ⊗ G ⊢ ∆
Γ1 ⊢ F, ∆1 Γ2 ⊢ G, ∆2 ⊗rΓ1, Γ2 ⊢ F ⊗ G, ∆1, ∆2

Γ, A ⊢ B, ∆
⊸rΓ ⊢ A⊸ B, ∆

Γ1, B ⊢ ∆1 Γ2 ⊢ A, ∆2 ⊸lΓ1, Γ2, A⊸ B ⊢ ∆1, ∆2

Γ, A ⊢ ∆
(−)⊥

rΓ ⊢ A⊥, ∆
Γ ⊢ A, ∆

(−)⊥
lΓ, A⊥ ⊢ ∆

Γ ⊢ F1, ∆
⊕1

rΓ ⊢ F1 ⊕ F2, ∆
Γ ⊢ F2, ∆

⊕2
rΓ ⊢ F1 ⊕ F2, ∆

Γ, F1 ⊢ ∆ Γ, F2 ⊢ ∆ ⊕lΓ, F1 ⊕ F2 ⊢ ∆

Γ, F1 ⊢ ∆ &1
lΓ, F1 & F2 ⊢ ∆

Γ, F2 ⊢ ∆ &2
lΓ, F1 & F2 ⊢ ∆

Γ ⊢ F1, ∆ Γ ⊢ F2, ∆ &rΓ ⊢ F1 & F2, ∆

1r⊢ 1
Γ ⊢ ∆ 1lΓ, 1 ⊢ ∆

⊥l⊥ ⊢
Γ ⊢ ∆ ⊥rΓ ⊢ ⊥, ∆

⊤Γ ⊢ ⊤, ∆ 0Γ, 0 ⊢ ∆

Figure 3 Rules of multiplicative and additive linear logic

only infinite branch is the branch going infinitely on the right at the application of (∨l)-rule.179

This branch is supported by the infinite thread in the antecedent of each sequents which has a180

µ-formula as its minimal formula.181

2.2 Linear Logic182

The main difference between LK (or LJ) and LL lies in the fact that formulas are not always183

erasable nor duplicable. Hence, the sequent A, B ⊢ A is not always provable, neither is184

A ⊢ A ⊗ A (a sequent similar to A ⊢ A ∧ A in LK). This restriction allows LL to interpret185

programs with finer resource control than LK (or LJ). Here we recall the usual definitions of186

both the wellfounded and non-wellfounded systems of LL, following the definitions of the187

previous section. (We are less colloquial: complete definitions can be found in appendices.)188

Formulas. The pre-formulas of the non-wellfounded linear logic, µLL∞ are:

F, G ::= a ∈ A | X ∈ V | µX.F | νX.F | F ⊥ | F ⊸ G |

F ` G | F ⊗ G | ⊥ | 1 | F ⊕ G | F & G | 0 | ⊤ | ?F | !F.

Positivity of those pre-formulas are defined the same way as for µLK∞
□ formulas, identifying189

⊸ to → (see details in appendix A.1). Formulas are defined similarly to µLK∞
□ .190

The !, ?-free formulas of µLL∞ are the formulas of µMALL∞, the multiplicative and191

additive fragment of non-wellfounded linear logic. The µ, ν, X-free fragment of formulas of192

µLL∞ are the formulas of linear logic LL. The !, ?-free formulas of µLL∞ are the formulas193

of µMALL∞, the multiplicative and additive fragment of non-wellfounded linear logic. The194

µ, ν, X-free fragment of formulas of µLL∞ are the formulas of linear logic LL. The intersection195

of these two fragment is MALL, the multiplicative and additive fragment of linear logic.196

Sequent calculus. The definition of sequent is the same as for µLK∞
□ . The rules of MALL197

are given by figure 3, the rules of LL are the rules of MALL together with the rules of figure 4.198

We add rules of figure 2 to MALL (resp. LL) obtain µMALL∞ (resp. µLL∞). Pre-proofs,199

active & principal occurrence as well as validity are defined as in the previous section.200

In linear logic, the property of being duplicable or erasable can be obtained via ? (read201

why not) and ! (read of course) modalities. If a hypothesis is preceded by an ! modality, one202
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Γ ⊢ ∆ ?wΓ ⊢ ?F, ∆
Γ ⊢ ∆ !wΓ, !F ⊢ ∆

Γ ⊢ ?F, ?F, ∆
?cΓ ⊢ ?F, ∆

Γ, !F, !F ⊢ ∆ !cΓ, !F ⊢ ∆
Γ ⊢ F, ∆

?dΓ ⊢ ?F, ∆
Γ, F ⊢ ∆

!dΓ, !F ⊢ ∆
!Γ ⊢ F, ?∆ !p!Γ ⊢ !F, ?∆

!Γ, F ⊢ ?∆ ?p!Γ, ?F ⊢ ?∆

Figure 4 Exponential fragment of LL

can duplicate or erase it via the (!c) (contraction) and the (!w) (weakening) rules, respectively.203

Additionally, the (!d) (dereliction) rule allows to use the hypothesis inside the !. Finally, the204

(!p) (promotion) rule is the only right-rule on the ! modality and allows one to use a conclusion205

formula preceded by an ! if and only if each hypothesis in the sequent is preceded by an !.206

Therefore, a formula !A can be produced if each hypotheses producing it are duplicable207

and erasable. Therefore, in linear logic, contractions and weakenings are possible but in a208

more controlled way, especially when it comes to cut-reduction sequences: having modalities209

for contractions and weakening sequentializes certain reductions. This gives the property210

of strong normalization to LL [19], which can not be obtained from LK (see section 5.4.4211

in [18]). However, the good normalization properties of LL can be recovered by using a linear212

translation from LK to LL, similar to the double negation translations from LK to LJ. Indeed,213

every formula, every sequent and every proof of LK can be translated into a proof in LL by214

adding ? and ! modalities, for instance:215

▶ Example 3 (Linear translation example). We translate each connectives c(A1, . . . , An) by
!(c(?A1, . . . , ?An)) and add a ? on the succedents (the additionnal rules are shown in red):

ax
A ⊢ A (−)⊥

r⊢ A⊥, A
ax

A ⊢ A →l
A⊥ → A ⊢ A, A c

A⊥ → A ⊢ A

⇝

ax
A ⊢ A ?p, ?d?A ⊢ ?A (−)⊥

r⊢ (?A)⊥, ?A ?d, !p
⊢ ?!(?A)⊥, ?A

ax
A ⊢ A ?p, ?d?A ⊢ ?A

⊸l
?!(?A)⊥ ⊸ ?A ⊢ ?A, ?A

!d!(?!(?A)⊥ ⊸ ?A) ⊢ ?A, ?A
?c!(?!(?A)⊥ ⊸ ?A) ⊢ ?A

By taking any maximal sequence of cut reduction on such proofs in LL and using the strong216

normalization property, we find a cut-free proof of the same sequent in LL. This projects to217

an LK proof of the original sequent, by simply forgetting superfluous modalities. In Section 5,218

we will use this technique to prove the cut elimination of the modal µ-calculus.219

3 A linear-logical modal mu-calculus220

In the present section, we introduce an extension of µLL∞ with modalities akin to the modal221

mu-calculus. The term logical emphasizes the fact that the logic is linear in the use of222

resources, not in the structures of its models as in LTL or linear-time µ-calculus [21].223

To motivate a linear-logical modal µ-calculus, we need to understand what problem will224

be encountered by the translation of µLK∞
□ into a linear logic system extended with □ and ♢225

modalities (the aim of this linear-logical modal µ-calculus is ultimately to refine µLK∞
□ ). Let226

us add them in the system as well as the modal rule, and let us extend the (−)• translation227

on modalities the same way as in Example 3: (♢A)• := !♢?A• (□A)• := !□?A•.228

Let us consider the modal rule □p, Γ ⊢ A, ∆
□p

□Γ ⊢ □A,♢∆
, with an instance of the rule229

where Γ = [] and ∆ = [B]: ⊢ A, B
□p⊢ □A,♢B

. Following the usual LK to LL sequent translation,230
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Γ ⊢ A, ∆
□p

□Γ ⊢ □A,♢∆
,

Γ ⊢ ♢A,♢A, ∆
♢cΓ ⊢ ♢A, ∆

,
Γ ⊢ ∆ ♢wΓ ⊢ ♢A, ∆ ,

□Γ′, !Γ ⊢ A, ?∆,♢∆′
!♢p□Γ′, !Γ ⊢ !A, ?∆,♢∆′

Γ ⊢ A, ∆
♢p

□Γ,♢A ⊢ ♢∆
,

Γ,□A,□A ⊢ ∆
□cΓ,□A ⊢ ∆

,
Γ ⊢ ∆ ♢wΓ,□A ⊢ ∆ ,

□Γ′, !Γ, A ⊢ ?∆,♢∆′
?□p□Γ′, !Γ, ?A ⊢ ?∆,♢∆′

Figure 5 Rules involving modalities for µLL∞
□

we should start with the sequent (from bottom to top) ⊢ ?!□?A•, ?!♢?B• and end up with231

⊢ ?A•, ?B•.232

To get to ⊢ ?A•, ?B•, we will have to remove both the ♢ and the □ with a modal rule.233

However, whatever sequence of rule that we use, we always get to a sequent containing an !234

and a modality □ or ♢. Here is an example of such a derivation:

⊢ !□?A•,♢?B•
?d⊢ ?!□?A•,♢?B•
!p⊢ ?!□?A•, !♢?B•
?d⊢ ?!□?A•, ?!♢?B•

. We235

are stuck at this point: the top sequent is conclusion of no rule of the system (except for the236

cut and exchange of course).237

In our attempt to translate this rule we are left with an unprovable sequent where a238

!-formula is in a context with a ♢-formula, not ?-formulas. It would therefore be convenient239

to have promotion with right contexts possibly prefixed with ♢, dually with left contexts240

prefixed with □: □Γ′, !Γ ⊢ A, ?∆,♢∆′
!♢p□Γ′, !Γ ⊢ !A, ?∆,♢∆′ . Considering such a promotion rule allows us to241

finish the derivation of our (□p) instance:

⊢ ?A•, ?B•
□p⊢ □?A•,♢?B•
!♢p⊢ !□?A•,♢?B•
?d⊢ ?!□?A•,♢?B•
!♢p⊢ ?!□?A•, !♢?B•
?d⊢ ?!□?A•, ?!♢?B•

. Note that this translation242

does not work when there are two or more □-formulas at the left of the sequent. We will243

give the correct translation for a non-empty antecedent later.244

Allowing ♢-formulas in the succedent and □-formulas in the antecedent of the sequent of245

a promotion has implications for the system’s robustness to cut-elimination.246

For instance, taking the (?p/?w) principal case and adding modal-formulas to the context,
naturally requires to be able to weaken ♢/□-formulas (this corresponds to the reason for the
design of the promotion rule in LL):

Γ1 ⊢ ∆1 ?wΓ1 ⊢ ?C, ∆1

!Γ2,□Γ3, C ⊢ ?∆2,♢∆3 ?p!Γ2,□Γ3,?C ⊢ ?∆2,♢∆3 cutΓ1, !Γ2,□Γ3 ⊢ ∆2, ?∆2,♢∆3

⇝
Γ1 ⊢ ∆1 ?w, !w,□w,♢wΓ1, !Γ2,□Γ3 ⊢ ∆2, ?∆2,♢∆3

Similarly, the (?c/?p) key-case naturally asks to be able to contract ♢-formulas. More details247

can be found in appendix B.1.248

We now give a formal definition of the linear-logical modal µ-calculus: µLL∞
□ . Pre-formulas249

of µLL∞
□ are defined as: F, G ::= a ∈ A | X ∈ V | µX.F | νX.F | F ⊥ | F ⊸ G | F ` G250

| F ⊗ G | ⊥ | 1 | F ⊕ G | F & G | 0 | ⊤ | ?F | !F | ♢F | □F.251

We get positivity of an occurrence and the definition of formulas of µLL∞
□ in the same252

way as for µLL∞ and µLK∞
□ . Rules for µLL∞

□ are the rules for µLL∞ together with rules253

depicted in figure 5. Note that (!p) (resp. (?p)) is a special case of (!♢p ) (resp. (?□p )). From254

these rules, we define the sequents, pre-proofs and proofs similarly to systems of Section 2.255
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4 Cut-elimination for µLL∞
□256

In order to eliminate cuts for µLL∞
□ we shall use a generalization of the cut inference,257

multicuts, as done in previous works on similar non-wellfounded proof systems [8, 4, 3]. The258

multicut is extensively defined in appendix C.1.259

▶ Definition 7 (Multicut rule). The multicut rule is a rule with an arbitrary number of
hypotheses:

Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n mcut(ι, ⊥⊥)Γ ⊢ ∆
The ancestor relation ι sends one formula of the conclusion to exactly one formula of the260

hypotheses; whereas the ⊥⊥-relation links cut-formulas together.261

▶ Remark 4. The idea of the multicut is to abstract a finite tree of binary cuts quotiented by
cut-commutation rule. We give an example of a multicut rule and represent graphically ι in
red and ⊥⊥ in blue.

⊢ A, B B ⊢ C C ⊢ D mcut(ι, ⊥⊥)⊢ A, D

We can understand the multicut rule as a tree of binary cuts through the (cut/mcut)-
principal case:

C
Γ1 ⊢ F, ∆1 Γ2, F ⊢ ∆2 cutΓ1, Γ2 ⊢ ∆1, ∆2 mcut(ι, ⊥⊥)Γ ⊢ ∆

⇝
C Γ1 ⊢ F, ∆1 Γ2, F ⊢ ∆2 mcut(ι′, ⊥⊥′)Γ ⊢ ∆

262

Here, ι′ sends on C formulas that were sent on C by ι, either it uses the ancestor relation of263

the cut-rule that has been merged. The relation ⊥⊥′ is obtained from ⊥⊥ by adding F ⊥⊥′ F ⊥.264

4.1 The (mcut) reduction steps265

We will use a multicut reduction strategy. We first describe the steps of reduction. To266

describe these mcut-steps of reduction, we will use a notation and a definition:267

▶ Notation 1 ((!)-contexts). C!/□ denotes a list of µLL∞
□ -proofs, all concluded by a (!♢p ), a268

(?□p ), a (□p) or a (♢p)-rule.269

C□ denotes a list of µLL∞
□ -proofs which are all concluded either by a (□p)-rule or a270

(♢p)-rule.271

In the latter case, C denotes the list of µLL∞
□ -proofs formed by gathering the immediate272

subproofs of the last (□p) or (♢p)-rule.273

▶ Definition 8 (Restriction of a multicut context). Let C mcut(ι, ⊥⊥)s be a multicut occurrence274

such that C = s1 . . . sn and let si :=⊢ F1, . . . , Fki , we define CFj to be the sequents linked275

to the formula Fj with the ⊥⊥-relation. We extend this definition to contexts of formulas.276

(More details are provided in Appendix C.2.)277

We give the reduction steps of the exponential fragment of µLL∞
□ in figures 6 and 7. For278

commutative steps, we only describe steps where the principal formula of the rule that will279

be commuted is in the succedent of the sequent. For principal steps, we only describe steps280

where the cut-formula on which the step is applied is a ? or ♢-formula. The rest of the281

cases can be retrieved by duality or can be found in Appendix C.3 as well as rules for the282

non-exponential fragment.283
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π
!Γ1,□Γ2 ⊢ A, ?∆1,♢∆2 !♢p!Γ1,□Γ2 ⊢ !A, ?∆1,♢∆2 C!/□

mcut(ι, ⊥⊥)
!Γ′,□Γ′′ ⊢ !A, ?∆,♢∆′

⇝

π
!Γ1,□Γ2 ⊢ A, ?∆1,♢∆2 C!/□

mcut(ι, ⊥⊥)
!Γ′,□Γ′′ ⊢ A, ?∆,♢∆′

!♢p!Γ′,□Γ′′ ⊢ !A, ?∆,♢∆′

π

Γ ⊢ A, ∆
□p

□Γ ⊢ □A, ♢∆ C□

mcut(ι, ⊥⊥)
□Γ′ ⊢ □A, ♢∆′

⇝

π

Γ ⊢ A, ∆ C
mcut(ι, ⊥⊥)

Γ′ ⊢ A, ∆′
□p

□Γ′ ⊢ □A, ♢∆′

π

Γ ⊢ ∆
δwΓ ⊢ δA, ∆ C

mcut(ι, ⊥⊥)
Γ′ ⊢ δA, ∆′

⇝

π

Γ ⊢ ∆ C mcut(ι′, ⊥⊥′)
Γ′ ⊢ ∆′

δw
Γ′ ⊢ δA, ∆′

π

Γ ⊢ δA, δA, ∆
δcΓ ⊢ δA, ∆ C

mcut(ι, ⊥⊥)
Γ′ ⊢ δA, ∆′

⇝

π

Γ ⊢ δA, δA, ∆ C
mcut(ι′, ⊥⊥′)

Γ′ ⊢ δA, δA, ∆′
δc

Γ′ ⊢ δA, ∆′

π

Γ ⊢ A, ∆
?dΓ ⊢ ?A, ∆ C

mcut(ι, ⊥⊥)
Γ′ ⊢ ?A, ∆′

⇝

π

Γ ⊢ A, ∆ C
mcut(ι′, ⊥⊥′)

Γ′ ⊢ A, ∆′
?d

Γ′ ⊢ ?A, ∆′

Figure 6 µLL∞
□ commutative cut-elimination steps (commutation with right rules) – δ ∈ {?,♢}

CΓ,∆

π

Γ ⊢ δA, δA, ∆
δcΓ ⊢ δA, ∆ C!/□

δA mcut(ι, ⊥⊥)
!Γ1,□Γ2, Γ3 ⊢ ∆1, ?∆2,♢∆3

⇝

CΓ,∆

π

Γ ⊢ δA, δA, ∆ C!/□
δA C!/□

δA mcut(ι′, ⊥⊥′)!Γ1,□Γ2, !Γ1,□Γ2, Γ3 ⊢ ∆3, ?∆1,♢∆2, ?∆1,♢∆2 ?c, !c
!Γ1,□Γ2,□Γ2, Γ3 ⊢ ∆3, ?Γ1,♢Γ2,♢Γ2

♢c,□c
!Γ1,□Γ2, Γ3 ⊢ ∆3, ?Γ1,♢Γ2

CΓ,∆

Γ ⊢ ∆
δwΓ ⊢ δA, ∆ C!/□

δA mcut(ι, ⊥⊥)
!Γ1,□Γ2, Γ3 ⊢ ∆1, ?∆2,♢∆3

⇝

CΓ,∆ Γ ⊢ ∆
mcut(ι′, ⊥⊥′)Γ3 ⊢ ∆3 ?w, !w

!Γ1, Γ3 ⊢ ∆1, ?∆2
♢w,□w

!Γ1,□Γ2, Γ3 ⊢ ∆1, ?∆2,♢∆3

Γ1 ⊢ A, ∆1 ?dΓ1 ⊢ ?A, ∆1

!Γ2,□Γ3, A ⊢ ?∆2,♢∆3 ?□p!Γ2,□Γ3, ?A ⊢ ?∆2,♢∆3 C mcut(ι, ⊥⊥)
Γ ⊢ ∆

⇝
Γ1 ⊢ A, ∆1 !Γ2,□Γ3, A ⊢ ?∆2,♢∆3 C

mcut(ι′, ⊥⊥′)Γ ⊢ ∆

Figure 7 One side of the µLL∞
□ principal cut-elimination steps – in all these proofs, δ ∈ {?,♢}

▶ Definition 9 (Reduction sequence). A reduction sequence (πi)i∈1+λ (λ ∈ ω + 1) is a ⇝284

sequence such that π0 does not contain more than one (mcut) rule per branches.285

We want to prove that each reduction sequence converges to a cut-free proof. However,286

the theorem is certainly not true as such, even for infinite reduction sequences: one can287

well apply infinitely many reductions only on some part of the proof, without reducing288

some cuts in another part of the proof. Therefore, we need to be finer, motivating the289

following definition, directly borrowed from [4, 3] (the notion of residual is the usual one290

from rewriting):291

▶ Definition 10 (Fair reduction sequences [4, 3]). A reduction sequence (πi)i∈ω is fair, if for292

each πi such that there is a reduction R to a proof π′, there exist a j > i such that πj does293

not contain any residual of R.294

We can now state our cut-elimination theorem:295

▶ Theorem 1 (Cut-elimination for µLL∞
□ ). Every fair (mcut)-reduction sequence of µLL∞

□296

valid proofs converges to a cut-free valid proof.297
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To prove it, we will translate formulas, proofs and (mcut)-steps of µLL∞
□ into µLL∞ and use298

the following cut-elimination result from [20]:299

▶ Theorem 2 (Cut-elimination for µLL∞). Every fair (mcut)-reduction sequence of µLL∞
300

valid proofs converges to a cut-free valid proof.301

In [20], exponential formulas, proofs and cut-steps are encoded into µMALL∞.We could have302

made the choice to encode the modalities of µLL∞
□ directly into µMALL∞, replaying the303

proof of [20] to get cut-elimination. However, using the µLL∞ cut-elimination theorem as304

such, makes our approach more modular and more easy to adapt to future extensions of305

µLL∞ validity condition or variants of its cut-elimination proof.306

4.2 Translation of µLL∞
□ into µLL∞

307

We give a translation of µLL∞
□ into µLL∞ (more details can be found in appendix C.4):308

▶ Definition 11 (Translation of µLL∞
□ into µLL∞). Translation of formula is defined309

inductively on the formula:310

Translations of ♢ and □-formulas: (♢A)◦ := ?A◦ and (□A)◦ := !A◦.311

Translations of atomic and unit formulas and variables f : f◦ := f.312

Translations of other non-fixed-point connectives: c(A1, . . . , An)◦ := c(A◦
1, . . . , A◦

n).313

Translations of fixed-point connectives are given by: (δX.F )◦ := δX.F ◦ (with δ ∈ {µ, ν}).314

Translation of structural rules for modalities, (♢c), (♢w), (□c) and (□w) are respectively
(?c), (?w), (!c) and (!w). Translation for the promotions (!♢p ) and (?□p ) are respectively (!p)
and (?p). Translation of the modal rules are given by:

Γ ⊢ A, ∆
□p

□Γ ⊢ □A,♢∆
⇝

Γ◦ ⊢ A◦, ∆◦
!d, ?d!Γ◦ ⊢ A◦, ?∆◦
!p!Γ◦ ⊢ !A◦, ?∆◦

!Γ1,□Γ2, A ⊢ ?∆1,♢∆2 !♢p!Γ1,□Γ2, ?A ⊢ ?∆1,♢∆2
⇝

!Γ◦
1, !Γ◦

2, A◦ ⊢ ?∆◦
1, ?∆◦

2 !p!Γ◦
1, !Γ◦

2, !A◦ ⊢ ?∆◦
1, ?∆◦

2

Translation of other inference rules (r) are (r) themselves.315

Translation of pre-proofs are defined co-inductively using translations of rules.316

The translation preserves validity both ways:317

▶ Lemma 1 (Validity robusteness to (−)◦ translation). Let π be a µLL∞
□ pre-proof, then π is318

valid if and only if π◦ is.319

Proof. Let B a branch of π, we have that B is validated by a thread (Ai) if and only if B◦
320

is validated by (A◦
i ) as the minimal recurring fixed point formula is a ν on the right (resp. µ321

on the left) in (Ai) if it is in (A◦
i ). ◀322

Finally, we have to make sure (mcut)-reduction sequences are robust under this translation.323

In our proof of the final theorem, we also need one-step reduction-rules to be simulated by a324

finite number of reduction steps in the translation.325

▶ Lemma 2. Consider a µLL∞
□ reduction step π0 ⇝ π1, there exist a finite number of µLL∞

326

proofs θ0, . . . , θn such that: π◦
0 = θ0 → θ1 → . . . → θn−1 → θn = π◦

1 .327

Proof. We only give a sketch of the proof, full proof can be found in appendix C.5. Reductions
from the non-exponential part of µLL∞

□ translates easily to one step of reduction in µLL∞.
The same is true for the exponential part except for the commutation of the modal rule.
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The translation of the left proof of this step is of the form (we only do the case of ♢p, □p is
similar):

π◦
1

!Γ◦
1 ⊢ A◦

1, ∆◦
1 !d, ?d

!Γ◦
1 ⊢ A◦

1, ?∆◦
1 !p!Γ◦

1 ⊢ !A◦
1, ?∆◦

1

. . .

π◦
n

Γ◦
n ⊢ A◦

n, ∆◦
n !d, ?d

!Γ◦
n ⊢ A◦

n, ?∆◦
n !p!Γ◦

n ⊢ !A◦
n, ?∆◦

n

π◦
n+1

!Γ◦
n+1, A◦

n+1 ⊢ ∆◦
n+1

!d, ?d
!Γ◦

n+1, A◦
n+1 ⊢ ?∆◦

n+1 ?p!Γ◦
n+1, ?A◦

n+1 ⊢ ?∆◦
n+1

. . .

π◦
n+m

!Γ◦
n+m, A◦

n+m ⊢ ∆◦
n+m

!d, ?d
!Γ◦

n+m, A◦
n+m ⊢ ?∆◦

n+m ?p!Γ◦
n+m, ?A◦

n+m ⊢ ?∆◦
n+m mcut(ι, ⊥⊥)

⊢ !A◦, ?Γ◦

Here, we notice that for each dereliction on a cut-formula there exists a corresponding328

promotion that will be erased by a dereliction/promotion key-case. The first promotion will329

therefore commute under the cut and then each dereliction on formula of the conclusion will330

commute as well and each dereliction and each promotion on cut-formulas will be erased,331

finally we commute the translation of the modal rule under the multicut. ◀332

Now that we know a step of (mcut)-reduction in µLL∞
□ translates to one or more µLL∞

333

(mcut)-reduction steps, it is easy to translate each reduction sequence of µLL∞
□ into reduction334

sequence of µLL∞. However, to use the cut-elimination theorem of µLL∞, we need the335

reduction sequence to be fair. The purpose of the following lemma is to control the fairness336

of the translated reduction sequence:337

▶ Lemma 3 (Completeness of the (mcut)-reduction system). Let π and π′ be two µLL∞
□ proofs.338

If there is a µLL∞-redex R sending π◦ to π′◦ then there is also a µLL∞
□ -redex R′ sending π339

to a proof π′′, such that in the translation of R′, R is reduced.340

Proof. We only prove the exponential cases, the non-exponential cases being immediate. We341

have several cases:342

If the case is the commutative step of a weakening (resp. a contraction, resp. a dereliction)343

(r), as it is on top of a (mcut), it necessarily means that (r) comes from a rule (r′) being344

the translation of a contraction (resp. a weakening, resp. a dereliction) which is also on345

top of an (mcut) in π, we can take R′ as the step commutating (r′) under the cut.346

If it is a principal case again on a contraction or a weakening (r) on a formula ?A (resp.347

!A), it means that each proofs cut-connected to ?A (resp. !A) ends with a promotion. As348

π◦ is the translation of a µLL∞
□ -proof, it means that (r) is the translation of a weakening349

or contraction rule (r′) on a formula ?A′ (resp. !A′) or ♢A′ (resp. □A′)on top of a350

(mcut). It also means that all the proofs cut-connected to these formulas are promotions351

or modal rules (no other rules than a modal rule nor a promotion in µLL∞
□ translates to352

a derivation ending with a promotion). Therefore, the principal case on (r′) is possible,353

we define R′ to be this principal case.354

If it’s a principal case on a dereliction, we have that it comes from a dereliction and a355

promotion in the original proof, and we can take R′ to be this redex.356

If it is the commutative step of a promotion (r), it means that all the proofs of the357

contexts of the (mcut) are promotions or modal rules. Meaning that (r) is contained in358

the translation of a promotion (r′) on top of the (mcut). We also have that the context359

of this (mcut) are only proofs ending with promotions. We therefore need to make sure360

that each (mcut) with a context full of promotions or modal rules are covered by the361

⇝-relation. Looking back at figure 6 together with conditions given by each corresponding362

lemmas, we have that:363

The commutation of (!♢p ) (or (?□p )) is covered by the first commutative case in 6.364

If it is a modal rule that is ready to be commuted, then other rules are necessarily365

modal rules and therefore is covered by the second commutative case in 6.366
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◀367

We use the two previous lemma, to prove the following:368

▶ Corollary 1. For every fair µLL∞
□ reduction sequence (πi)i∈1+λ (λ ∈ ω + 1), we have:369

a fair µLL∞ reduction sequence (θi)i∈1+λ′ (λ′ ∈ ω + 1);370

a sequence of strictly increasing (φ(i))i∈1+λ of elements of 1 + λ′;371

for each i, θφ(i) ∈ π◦
i .372

Proof. We construct the sequence by induction on the steps of reductions of (πi)i∈1+λ.373

For i = 0: θ0 = π◦
0 , φ(0) = 0 and k0 = 0:374

For i + 1, suppose we constructed everything up to rank i. We use lemma 2 on the step375

πi ⇝ πi+1 to get a finite sequence of reduction πi = θ′
0 ⇝ · · · ⇝ θ′

n = πi+1. We then376

construct both sequences by setting φ(i + 1) := φ(i) + n, θφ(i)+j := θ′
j (for j ∈ J0, nK).377

We get fairness of (θi)i∈1+λ′ from lemma 3 and from the fact that after the translation of an378

(mcut)-step, π◦ ⇝ π′◦, each residual of a redex R of π◦, is contained in the translations of379

residuals of the associated redex R′ of lemma 3. ◀380

4.3 Cut-elimination for µLL∞
□381

Finally, we can prove the main theorem of the section:382

Proof of Theorem 1. Let (πi)i∈1+λ be a µLL∞
□ reduction sequence. We use corollary 1 and383

get a fair µLL∞ reduction sequence (θi)i∈1+λ′ and a sequence (φ(i))i∈1+λ of natural numbers.384

By theorem 2, we know that (θi)i∈ω converges to a cut-free proof θ of µLL∞. Now suppose385

for the sake of contradiction that (πi) does not converge to a (mcut)-free pre-proof, meaning386

that there is a j and a path p such that for each proof πj′ , with j′ ≥ j, there is an (mcut)-rule387

at the end of path p. This means that the translation of p leads to an (mcut) for each proof388

θj′ with j′ ≥ φ(j), contradicting the convergence of (θj) to a cut-free proof. We also have389

that (πi) converges to a pre-proof π such that π◦ = θ, as θφ(j) is equal to π◦
j under the390

multicuts. Moreover by lemma 1, π is valid. It is also cut-free, by cut-freeness of θ. ◀391

5 Cut-elimination of µLK∞
□392

We extend the translation from [20] of µLK∞ to µLK∞
□ to obtain a translation into µLL∞

□ . We
already gave a translation at the beginning of Section 3. However, this translation only worked
when there was an empty antecedent. Taking back our example and adding the left side to it:

Γ ⊢ F, ∆
□p

□Γ ⊢ □F,♢∆
would end up on something like this:

?Γ• ⊢ ?A•, ?∆•
□p

□?Γ• ⊢ □?A•,♢?∆•
?d, !♢p□?Γ• ⊢ ?!□?A•,♢?∆•
?d, !♢p , !d!□?Γ• ⊢ ?!□?A•, ?!♢?∆•

Now, if Γ contains more than two formulas, we are not able to apply (?p) on it. By adding
an !-connective in the translation of □-formulas: □A• := !□!?A•, we can conclude:

Γ• ⊢ ?A•, ?∆•
!d, ?p!?Γ• ⊢ ?A•, ?∆•
!♢p!?Γ• ⊢ !?A•, ?∆•
□p

□!?Γ• ⊢ □!?A•,♢?∆•
?d, !♢p□!?Γ• ⊢ ?!□!?A•,♢?∆•
?d, !♢p , !d!□!?Γ• ⊢ ?!□!?A•, ?!♢?∆•

Based on this, we define a translation from µLK∞
□ into µLL∞

□ :393
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∆ ⊢ F, Γ
□p

□∆ ⊢ □F,♢Γ
⇝

∆• ⊢ ?F •, ?Γ•
!d, ?p!?∆• ⊢ ?F •, ?Γ•
!p!?∆• ⊢ !?F •, ?Γ•
□p

□!?∆• ⊢ □!?F •,♢?Γ•
!d!□!?∆• ⊢ □!?F •,♢?Γ•

?d, !♢p!□!?∆• ⊢ ?!□!?F •, ?!♢?Γ•

∆, F ⊢ Γ
♢p

□∆,♢F ⊢ ♢Γ
⇝

∆•, F • ⊢ ?Γ•
!d, ?p!?∆•, F • ⊢ ?Γ•
?p!?∆•, ?F • ⊢ ?Γ•
♢p

□!?∆•,♢?F • ⊢ ♢?Γ•
!d!□!?∆•, !♢?F • ⊢ ♢?Γ•
?d, !♢p!□!?∆•, !♢?F • ⊢ ?!♢?Γ•

Figure 8 Linear translation of the modal rules

▶ Definition 12 (Linear translation of µLK∞
□ ). We define the translation (−)• from formulas394

of µLK∞
□ to formulas of µLL∞

□ by induction on these formulas in the following way:395

(A1 → A2)• := !(?A1
• ⊸ ?A2

•) X• := !X (µX.A)• := !µX.?A•
396

(A1 ∧ A2)• := !(?A1
• & ?A2

•) T• := !⊤ (νX.A)• := !νX.?A•
397

(A1 ∨ A2)• := !(?A1
• ⊕ ?A2

•) F• := !0 (♢A)• := !♢?A•
398

(A⊥)• := !(?A•)⊥ a• := !a (□A)• := !□!?A•
399

We also have a translation for sequents: (Γ ⊢ ∆)• := Γ• ⊢ ?∆•.400

We have the following property that must be kept in mind when defining rule translations:401

▶ Proposition 1. Let A be a µLK∞
□ formula, then A• is an !-formula.402

We give the translation of modal rules in figure 8 and the rest in the appendix D.1. We then403

define translations of proofs coinductively on the proofs using the translation of each rule.404

As the smallest formula (for inclusion ordering) of a totally ordered set of translations is the405

translation of the smallest formula, and that a branch of π• contains all the translations of406

threads from π and vice-versa, we have the following:407

▶ Lemma 4 (Robustness of (−)• to validity). If π is a valid pre-proof iff π• is valid.408

We define a translation SK(−) going from µLL∞
□ formulas and pre-proofs to µLK∞

□409

formulas and pre-proofs, by forgetting linear information from formulas and pre-proofs410

(ie erasing exponential modalities, as well as dereliction and promotion, and projecting411

other connectives or inferences to the corresponding µLK∞
□ connectives and inferences):412

SK(!A) := SK(A) SK(?A) := SK(A). As our goal is to come back to µLK∞
□ from a413

translation into µLL∞
□ , we can restrict our translation to the ⊗,`, ⊥, 1-free fragment of414

µLL∞
□ . The full definition of SK((−)) translation and proofs of the two following lemmas415

can be found in appendix D.2.416

▶ Lemma 5 (Robustness of the skeleton to validity). If π is a µLL∞
□ valid pre-proof then417

SK(π) is a µLK∞
□ valid pre-proof, and vice-versa.418

▶ Lemma 6 (Composition of SK(−) and of (−)•). Let π be a µLK∞
□ pre-proof. We have that419

SK(π•) is equal to π.420

We define our rewriting system using the SK() translation:421

▶ Definition 13 ((mcut)-rewriting system of µLK∞
□ ). We define (mcut)-rewriting system of422

µLK∞
□ to be the (mcut)-system obtained from µLL∞

□ (mcut)-system by forgetting the linear423

information of proofs of this system.424
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Finally, we have the following theorem:425

▶ Theorem 3. The (mcut)-reduction system of µLK∞
□ is an infinitary weakly-normalizing.426

Proof. Consider a µLK∞
□ proof π and a fair reduction sequence σL from π•. By theorem 1,427

σL converges to a cut-free µLL∞
□ proof. By applying SK(−) to each proof in the sequence,428

we obtain a sequence of µLK∞
□ valid proofs which are all valid and such that either SK(πi) =429

SK(πi+1) or SK(πi) reduces to SK(πi+1) with one step of µLK∞
□ mcut-reduction. By430

dropping the equality cases, we obtain a µLK∞
□ cut-reduction sequence σK that is infinite431

and converges to a valid, cut-free µLK∞
□ proof. ◀432

6 Conclusion433

We have introduced µLL∞
□ a linear version of the modal µ-calculus as well as its circular434

and non-wellfounded system, and we proved a cut-elimination theorem with respect to435

the call of fair cut-elimination reduction sequences, generalizing previous results on the436

non-wellfounded proof theory of linear logic. By means of a linear translation of the circular437

and non-wellfounded proof systems for the modal µ-calculus, µLK∞
□ , to µLL∞

□ , we obtained438

a cut-elimination theorem the non-wellfounded sequent calculus for the modal µ-calculus.439

In our opinion, this work presents a new and interesting application of linear logic to440

modal µ-calculus, developing proof theories in both domains and highlighting the potential441

for cross-fertilization for the two communities. Indeed, this constitutes the first full syntactic442

cut-elimination theorem for a proof system modelling the full modal µ-calculus.443

Moreover, due to the fine-grained cut-elimination inherited from linear logic, one can444

hope to have a non-trivial cut-elimination equivalence on µLK∞
□ proofs and therefore to be445

able to design a denotational semantics for proofs of modal µ; such a question was, till now,446

beyond reach not only due to the lack of a syntactic cut-elimination theorem, but also due447

to the lack of structure in proofs of the modal µ-calculus.448

From the linear logic-theoretic point of view, our system µLL∞
□ can be viewed as a449

linear logic with two sets of exponential modalities satisfying different structural rules450

and exponential. This is akin to so-called light logics [10, 13], that are variants of linear451

logics developed by taming the power of exponential modalities in order to control the452

complexity of cut-elimination (for instance constraining the ?-context of a promotion to453

be immediately derelicted after a promotion ensures that typable programs have at most454

elementary complexity [10]). Still, our calculus is new in this respect as, to our knowledge, it455

has never been considered in the realm of light logics. We are pursuing a detailed investigation456

of those light logics in presence of fixed-points in order to generalize the above cut-elimination457

results in a uniform way.458

Another important direction for future work is whether our linear-logical modal mu-459

calculus can be adapted to the wellfounded proof-systems of linear logic with fixed-points in460

a µLL□ sequent calculus and whether one can adapt our methodology to obtain, via a linear461

translation from µLK□ to µLL□ a cut-elimination theorem for the finitary sequent calculus462

for modal µ. This question is highly challenging due to the complex structure of the rules463

for fixed-points in finitary µLL. While the skeletons obtaing by forgetting linear information464

from µLL□ proofs should readily provide µLK□ proofs and simulates the cut-elimination, is465

a far less obvious whether one can design a linear translation from µLK□ to µLL□ which466

commutes with cut-elimination as in the present paper.467
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A Appendix on the section 2527

A.1 Details of definitions of Linear Logic528

▶ Definition 14 (Positive and negative occurrence of a fixed-point variable). Let X ∈ V be a529

fixed-point variable, one defines the fact, for X, to occur positively (resp. negatively) in a530

pre-formula by induction on the structure of pre-formulas:531

The variable X occurs positively in X.532

The variable X occurs positively (resp. negatively) in c(F1, . . . , Fn), if there is some533

1 ≤ i ≤ n such that X occurs positively (resp. negatively) in Fi for c ∈ {⊗,`, &, ⊕, !, ?}.534

The variable X occurs positively (resp. negatively) in F ⊥ if X occurs negatively (resp.535

positively) in F .536

The variable X occurs positively (resp. negatively) in F ⊸ G if X occurs either positively537

(resp. negatively) in G or negatively (resp. positively) in F .538

The variable X occurs positively (resp. negatively) in δY.G (with Y ̸= X) if it occurs539

positively (resp. negatively) in G (for δ ∈ {µ, ν}).540

B Appendix on the section 3541

B.1 Details on the discussion about robustness of µLL∞
□542

As said in the core of the paper, taking the (?p/?w) principal case:

Γ1 ⊢ ∆1 ?wΓ1 ⊢ ?C, ∆1

!Γ2, C ⊢ ?∆2 ?p!Γ2?C ⊢ ?∆2 cutΓ1, !Γ2 ⊢ ∆1, ?∆2

⇝
Γ1 ⊢ ∆1 ?w, !wΓ1, !Γ2 ⊢ ∆2, ?∆2

and adding modal-formulas to the context, naturally requires to be able to weaken ♢/□-
formulas (this corresponds to the reason for the design of the promotion rule in LL):

Γ1 ⊢ ∆1 ?wΓ1 ⊢ ?C, ∆1

!Γ2,□Γ3, C ⊢ ?∆2,♢∆3 ?p!Γ2,□Γ3,?C ⊢ ?∆2,♢∆3 cutΓ1, !Γ2,□Γ3 ⊢ ∆2, ?∆2,♢∆3

⇝
Γ1 ⊢ ∆1 ?w, !w,□w,♢wΓ1, !Γ2,□Γ3 ⊢ ∆2, ?∆2,♢∆3

Moreover, the weakening on ♢ (and dually on □) is necessary to preserve the cut-elimination
property, as the sequent ⊢ ♢⊥, 1 is provable with (cut) and without (♢w):

1⊢ 1 ?w⊢ 1, ?♢⊥

ax
♢⊥ ⊢ ♢⊥ ?p?♢⊥ ⊢ ♢⊥

cut⊢ ♢⊥, 1

but is unprovable without (cut) and without (♢w) as we cannot apply any rules on such a
sequent. Similarly, the (?c/?p) key-case naturally asks to be able to contract ♢-formulas.

Γ1 ⊢ ?C, ?C, ∆1 ?cΓ1 ⊢ ?C, ∆1

!Γ2,□Γ3, C ⊢ ?∆2,♢∆3 ?p!Γ2,□Γ3, ?C ⊢ ?∆2,♢∆3 cutΓ1, !Γ2,□Γ3 ⊢ ∆1, ?∆2,♢∆3

⇝

Γ1 ⊢ ?C, ?C, ∆1

!Γ2,□Γ3, C ⊢ ?∆2,♢∆3 ?p!Γ2,□Γ3, ?C ⊢ ?∆2,♢∆3 cutΓ1, !Γ2,□Γ3 ⊢ ?C, ∆1, ?∆2,♢∆3

!Γ2,□Γ3, C ⊢ ?∆2,♢∆3 ?p!Γ2,□Γ3, ?C ⊢ ?∆2,♢∆3 cutΓ1, !Γ2, !Γ2,□Γ3,□Γ3 ⊢ ∆1, ?∆2, ?∆2,♢∆3,♢∆3 ♢cΓ1, !Γ2, !Γ2,□Γ3 ⊢ ∆1, ?∆2, ?∆2,♢∆3 ?c, !cΓ1, !Γ2,□Γ3 ⊢ ∆1, ?∆2,♢∆3

.
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By examining the following proof, one can once again see the necessity of (♢c) for preserving
cut-elimination in such a system:

ax
♢1 ⊢ ♢1 ?p?♢1 ⊢ ♢1

ax
⊢ ♢1,□⊥ ?d⊢ ?♢1,□⊥

ax
⊢ ♢1,□⊥ ?d⊢ ?♢1,□⊥ ⊗⊢ ?♢1, ?♢1,□⊥ ⊗□⊥ ?c⊢ ?♢1,□⊥ ⊗□⊥

cut⊢ ♢1,□⊥ ⊗□⊥

.

The conclusion sequent is unprovable, as the only rule that can be applied on it is a (⊗),
leaving us with an unprovable sequent:

ax
⊢ □⊥,♢1

unprovable
⊢ ⊥⊢ ⊥ □p⊢ □⊥ ⊗⊢ ♢1,□⊥ ⊗□⊥

.

C Appendix on the section 4543

C.1 Details on the multicut rule (Definition 7)544

The multi-cut rule is a rule with an arbitrary number of hypotheses:

Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n mcut(ι, ⊥⊥)Γ ⊢ ∆

Let C1 := {(1, i, j) | i ∈ J1, nK, j ∈ J1, #ΓiK},C2 := {(2, i, j) | i ∈ J1, nK, j ∈ J1, #∆iK}, ι is a545

map from (1, J1, #ΓK) ∪ (2, J1, #∆K) to C = C1 ∪ C2 and ⊥⊥ is a relation on C:546

Elements of (k, n) are sent on Ck;547

The map ι is injective;548

If (k, i, j) ⊥⊥ (k′, i′, j′) then k ̸= k′;549

The relation ⊥⊥ is defined for C \ ι, and is total for this set;550

The relation ⊥⊥ is symmetric;551

Each index can be related at most once to another one;552

If (1, i, j) ⊥⊥ (2, i′, j′), then the Γi[j] = ∆i′ [j′];553

The projection of ⊥⊥ on the second element is acyclic and connected.554

C.2 Details on the restriction of a multicut context (Definition 8)555

▶ Definition 15 (Restriction of a multicut context). Let C mcut(ι, ⊥⊥)s be a multicut-556

occurrence such that C = s1 . . . sn and let si := F1, . . . , Fki
⊢ G1, . . . , Gri

, we define CFj
557

(resp. CGj
) with Fj ∈ si (resp. Gj ∈ si) to be the least sub-context of C such that:558

The sequent si is in CFj
(resp. CGj

);559

If there exists l such that (1, i, j) ⊥⊥ (2, k, l) or (2, i, j) ⊥⊥ (1, k, l) then sk ∈ CFj (resp.560

sk ∈ CGj
);561

For any k ̸= i, if there exists l such that (1, k, l) ⊥⊥ (2, k′, l′) or (2, k, l) ⊥⊥ (1, k′, l′) and562

that sk ∈ CFj
(resp. sk ∈ CGj

) then sk′ ∈ CFj
(sk′ ∈ CGj

).563

We then extend the notation to contexts, setting C∅ := ∅ and CF,Γ := CF ∪ CΓ.564
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C.3 Full (mcut)-reduction steps565

▶ Definition 16 (µMALL∞ & µLL∞ (mcut)-reduction steps). Reduction steps of µMALL∞
566

are given in figures 9, 10 and 11.567

Reduction steps of µLL∞ are the reduction steps of µMALL∞ together with the steps of568

figures 12, 13, 14, 15.569

C.4 Details on (−)◦-translation570

▶ Definition 17 (Translation of µLL∞
□ into µLL∞). Translation of formula is defined571

inductively on the formula:572

Translations of ♢ and □-formulas: (♢A)◦ := ?A◦ and (□A)◦ := !A◦.573

Translations of atomic and unit formulas and variables f : f◦ := f.574

Translations of other non-fixed-point connectives: c(A1, . . . , An)◦ := c(A◦
1, . . . , A◦

n).575

Translations of fixed-point connectives are given by: (δX.F )◦ := δX.F ◦ (with δ ∈ {µ, ν}).576

Translation of structural rules for modalities, (♢c), (♢w), (□c) and (□w) are respectively
(?c), (?w), (!c) and (!w):

Γ ⊢ ∆ ♢wΓ ⊢ ♢A, ∆ ⇝◦ Γ◦ ⊢ ∆◦
?wΓ◦ ⊢ ?A◦, ∆◦

Γ ⊢ ♢A,♢A, ∆
♢cΓ ⊢ ♢A, ∆

⇝◦ Γ◦ ⊢ ?A◦, ?A◦, ∆◦
?cΓ◦ ⊢ ?A◦, ∆◦

Γ ⊢ ∆ □wΓ,□A ⊢ ∆ ⇝◦ Γ◦ ⊢ ∆◦
!wΓ◦, !A◦ ⊢ ∆◦

Γ,□A,□A ⊢ ∆
□cΓ,□A ⊢ ∆

⇝◦ Γ◦, !A◦, !A◦ ⊢ ∆◦
!cΓ◦, !A◦ ⊢ ∆◦

Translation of the modal rules and promotion rules are given by:

Γ ⊢ A, ∆
□p

□Γ ⊢ □A,♢∆
⇝

Γ◦ ⊢ A◦, ∆◦
!d, ?d!Γ◦ ⊢ A◦, ?∆◦
!p!Γ◦ ⊢ !A◦, ?∆◦

!Γ1,□Γ2 ⊢ A, ?∆1,♢∆2 !♢p!Γ1,□Γ2 ⊢ !A, ?∆1,♢∆2
⇝

!Γ◦
1, !Γ◦

2 ⊢ A◦, ?∆◦
1, ?∆◦

2 !p!Γ◦
1, !Γ◦

2 ⊢ !A◦, ?∆◦
1, ?∆◦

2

Γ, A ⊢ ∆
♢p

□Γ,♢A ⊢ ♢∆
⇝

Γ◦, A◦ ⊢ ∆◦
!d, ?d!Γ◦, A◦ ⊢ ?∆◦
!p!Γ◦, ?A◦ ⊢ ?∆◦

!Γ1,□Γ2, A ⊢ ?∆1,♢∆2 !♢p!Γ1,□Γ2, ?A ⊢ ?∆1,♢∆2
⇝

!Γ◦
1, !Γ◦

2, A◦ ⊢ ?∆◦
1, ?∆◦

2 !p!Γ◦
1, !Γ◦

2, !A◦ ⊢ ?∆◦
1, ?∆◦

2

Translation of other inference rules (r) are (r) themselves.577

Translation of pre-proofs are defined co-inductively using translations of rules.578

C.5 Proof of lemma 2579

▶ Lemma 7. Consider a µLL∞
□ reduction step π0 ⇝ π1, there exist a finite number of µLL∞

proofs θ0, . . . , θn such that:

π◦
0 = θ0 → θ1 → . . . → θn−1 → θn = π◦

1 .

Proof. Reductions from the non-exponential part of µLL∞
□ (E , ≤g, ≤f, ≤u) translates easily

to one step of reduction in µLL∞. The same is true for the exponential part except for the
commutation of the modal rule. The translation of the left proof of it is of the form (we only
do the case of ♢p, □p is similar):

π◦
1

!Γ◦
1 ⊢ A◦

1, ∆◦
1 !d, ?d

!Γ◦
1 ⊢ A◦

1, ?∆◦
1 !p!Γ◦

1 ⊢ !A◦
1, ?∆◦

1

. . .

π◦
n

Γ◦
n ⊢ A◦

n, ∆◦
n !d, ?d

!Γ◦
n ⊢ A◦

n, ?∆◦
n !p!Γ◦

n ⊢ !A◦
n, ?∆◦

n

π◦
n+1

!Γ◦
n+1, A◦

n+1 ⊢ ∆◦
n+1

!d, ?d
!Γ◦

n+1, A◦
n+1 ⊢ ?∆◦

n+1 ?p!Γ◦
n+1, ?A◦

n+1 ⊢ ?∆◦
n+1

. . .

π◦
n+m

!Γ◦
n+m, A◦

n+m ⊢ ∆◦
n+m

!d, ?d
!Γ◦

n+m, A◦
n+m ⊢ ?∆◦

n+m ?p!Γ◦
n+m, ?A◦

n+m ⊢ ?∆◦
n+m mcut(ι, ⊥⊥)

⊢ !A◦, ?Γ◦

We use a more general lemma:580
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Γ1 ⊢ A1, ∆1 Γ2 ⊢ A2, ∆2 ⊗rΓ1, Γ2 ⊢ A1 ⊗ A2, ∆1, ∆2

Γ3, A1, A2 ⊢ ∆3 ⊗lΓ3, A1 ⊗ A2 ⊢ ∆3 C mcut(ι, ⊥⊥)Γ ⊢ ∆
⇝

Γ1 ⊢ A1, ∆1 Γ2 ⊢ A2, ∆2 Γ3, A1, A2 ⊢ ∆3 C mcut(ι′, ⊥⊥′)Γ ⊢ ∆
Γ1, A1 ⊢ ∆1 Γ2, A2 ⊢ ∆2 `lΓ1, Γ2, A1 ` A2 ⊢ ∆1, ∆2

Γ3 ⊢ A1, A2, ∆3 `rΓ3 ⊢ A1 ` A2, ∆3 C mcut(ι, ⊥⊥)Γ ⊢ ∆
⇝

Γ1, A1 ⊢ ∆1 Γ2, A2 ⊢ ∆2 Γ3 ⊢ A1, A2, ∆3 C mcut(ι′, ⊥⊥′)Γ ⊢ ∆
Γ1 ⊢ A1, ∆1 Γ2, A2 ⊢ ∆2 ⊸lΓ1, Γ2, A1 ⊸ A2 ⊢ ∆1, ∆2

Γ3, A1 ⊢ A2, ∆3 ⊸rΓ3 ⊢ A1 ⊸ A2, ∆3 C mcut(ι, ⊥⊥)Γ ⊢ ∆
⇝

Γ1 ⊢ A1, ∆1 Γ2, A2 ⊢ ∆2 Γ3, A1 ⊢ A2, ∆3 C mcut(ι′, ⊥⊥′)Γ ⊢ ∆
Γ1 ⊢ ∆1 1lΓ1, 1 ⊢ ∆1

1r⊢ 1 C mcut(ι, ⊥⊥)Γ ⊢ ∆
⇝

Γ1 ⊢ ∆1 C mcut(ι′, ⊥⊥′)Γ ⊢ ∆

Γ1 ⊢ ∆1 ⊥rΓ1 ⊢ ⊥, ∆1
⊥l⊥ ⊢ C mcut(ι, ⊥⊥)Γ ⊢ ∆

⇝
Γ1 ⊢ ∆1 C mcut(ι′, ⊥⊥′)Γ ⊢ ∆

Γ1 ⊢ Fi, ∆1 ⊕i
rΓ1 ⊢ F1 ⊕ F2, ∆1

Γ2, F1 ⊢ ∆2 Γ2, F2 ⊢ ∆2 ⊕lΓ2, F1 ⊕ F2 ⊢ ∆2 C mcut(ι, ⊥⊥)Γ ⊢ ∆
⇝

Γ1 ⊢ Fi, ∆1 Γ2, Fi ⊢ ∆2 C mcut(ι′, ⊥⊥′)Γ ⊢ ∆
Γ1, Fi ⊢ ∆1 &i

lΓ1, F1 & F2 ⊢ ∆1

Γ2 ⊢ F1, ∆2 Γ2 ⊢ F2, ∆2 &rΓ2 ⊢ F1 & F2, ∆2 C mcut(ι, ⊥⊥)Γ ⊢ ∆
⇝

Γ1, Fi ⊢ ∆1 Γ2 ⊢ Fi, ∆2 C mcut(ι′, ⊥⊥′)Γ ⊢ ∆
Γ1, A ⊢ ∆1 (−)⊥

rΓ1 ⊢ A⊥, ∆1

Γ2 ⊢ A, ∆2 (−)⊥
lΓ2, A⊥ ⊢ ∆2 C mcut(ι, ⊥⊥)Γ ⊢ ∆

⇝

Γ1, A ⊢ ∆1 Γ2 ⊢ A, ∆2 C mcut(ι′, ⊥⊥′)Γ ⊢ ∆
ax

A ⊢ A C mcut(ι, ⊥⊥)Γ ⊢ ∆
⇝ C mcut(ι′, ⊥⊥′)Γ ⊢ ∆

Γ1 ⊢ F, ∆1 Γ2, F ⊢ ∆2 cutΓ1, Γ2 ⊢ ∆1, ∆2 C mcut(ι, ⊥⊥)Γ ⊢ ∆
⇝

Γ1 ⊢ F, ∆1 Γ2, F ⊢ ∆2 C mcut(ι′, ⊥⊥′)Γ ⊢ ∆
Γ1, F [X := δX.F ] ⊢ ∆1

δlΓ1, δX.F ⊢ ∆1

Γ2 ⊢ F [X := δX.F ], ∆2
δrΓ1 ⊢ δX.F, ∆1 mcut(ι, ⊥⊥)Γ ⊢ ∆

⇝

Γ1, F [X := δX.F ] ⊢ ∆1
δlΓ1, δX.F ⊢ ∆1

Γ2 ⊢ F [X := δX.F ], ∆2
δrΓ1 ⊢ δX.F, ∆1 mcut(ι′, ⊥⊥′)Γ ⊢ ∆

δ ∈ {µ, ν}

Figure 9 Principal (mcut)-step of µMALL∞
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ax
A ⊢ A mcut(ι, ⊥⊥)
A ⊢ A

⇝ ax
A ⊢ A

1r⊢ 1 mcut(ι, ⊥⊥)⊢ 1
⇝ 1r⊢ 1

⊥l⊥ ⊢ mcut(ι, ⊥⊥)⊥ ⊢
⇝ ⊥l⊥ ⊢

Γ ⊢ A1, A2, ∆ `rΓ ⊢ A1 ` A2, ∆ C mcut(ι, ⊥⊥)
Γ′ ⊢ A1 ` A2, ∆′

⇝
Γ ⊢ A1, A2, ∆ C mcut(ι′, ⊥⊥′)

Γ′ ⊢ A1, A2, ∆′ `rΓ′ ⊢ A1 ` A2, ∆′

Γ, A1, A2 ⊢ ∆ ⊗lΓ, A1 ⊗ A2 ⊢ ∆ C mcut(ι, ⊥⊥)
Γ′, A1 ⊗ A2 ⊢ ∆′

⇝
Γ, A1, A2 ⊢ ∆ C mcut(ι′, ⊥⊥′)

Γ′, A1, A2 ⊢ ∆′
⊗lΓ′, A1 ⊗ A2 ⊢ ∆′

Γ, A1 ⊢ A2, ∆
⊸rΓ ⊢ A1 ⊸ A2, ∆ C mcut(ι, ⊥⊥)

Γ′ ⊢ A1 ⊸ A2, ∆′
⇝

Γ, A1 ⊢ A2, ∆ C mcut(ι′, ⊥⊥′)
Γ′, A1 ⊢ A2, ∆′

⊸rΓ′ ⊢ A1 ⊸ A2, ∆′

Γ′, A ⊢ ∆′
(−)⊥

rΓ′ ⊢ A⊥, ∆′ C mcut(ι, ⊥⊥)
Γ ⊢ A⊥, ∆

⇝
Γ′, A ⊢ ∆′ C mcut(ι′, ⊥⊥′)Γ, A ⊢ ∆

(−)⊥
rΓ ⊢ A⊥, ∆

Γ′ ⊢ A, ∆′
(−)⊥

lΓ′, A⊥ ⊢ ∆′ C mcut(ι, ⊥⊥)
Γ, A⊥ ⊢ ∆

⇝
Γ′ ⊢ A, ∆′ C mcut(ι′, ⊥⊥′)Γ ⊢ A, ∆

(−)⊥
lΓ, A⊥ ⊢ ∆

Γ′
1 ⊢ A1, ∆′

1 Γ′
2 ⊢ A2, ∆′

2 ⊗rΓ′
1, Γ′

2 ⊢ A1 ⊗ A2, ∆′
1, ∆′

2 CΓ′
1,∆′

1
CΓ′

2,∆′
2 mcut(ι, ⊥⊥)Γ1, Γ2 ⊢ A1 ⊗ A2, ∆1, ∆2

⇝

Γ′
1 ⊢ A1, ∆′

1 CΓ′
1,∆′

1 mcut(ι′, ⊥⊥′)Γ1 ⊢ A1, ∆1

Γ′
2 ⊢ A2, ∆′

2 CΓ′
2,∆′

2 mcut(ι′′, ⊥⊥′′)Γ2 ⊢ A2, ∆2 ⊗rΓ1, Γ2 ⊢ A1 ⊗ A2, ∆1, ∆2
Γ′

1, A1 ⊢ ∆′
1 Γ′

2, A2 ⊢ ∆′
2 `lΓ′

1, Γ′
2, A1 ` A2 ⊢ ∆′

1, ∆′
2 CΓ′

1,∆′
1

CΓ′
2,∆′

2 mcut(ι, ⊥⊥)Γ1, Γ2, A1 ` A2 ⊢ ∆1, ∆2

⇝

Γ′
1, A1 ⊢ ∆′

1 CΓ′
1,∆′

1 mcut(ι′, ⊥⊥′)Γ1, A1 ⊢ ∆1

Γ′
2, A2 ⊢ ∆′

2 CΓ′
2,∆′

2 mcut(ι′′, ⊥⊥′′)Γ2, A2 ⊢ ∆2 `lΓ1, Γ2, A1 ` A2 ⊢ ∆1, ∆2
Γ′

1 ⊢ A1, ∆′
1 Γ′

2, A2 ⊢ ∆′
2 ⊸lΓ′

1, Γ′
2, A1 ⊸ A2 ⊢ ∆′

1, ∆′
2 CΓ′

1,∆′
1

CΓ′
2,∆′

2 mcut(ι, ⊥⊥)Γ1, Γ2, A1 ⊸ A2 ⊢ ∆1, ∆2

⇝

Γ′
1 ⊢ A1, ∆′

1 CΓ′
1,∆′

1 mcut(ι′, ⊥⊥′)Γ1 ⊢ A1, ∆1

Γ′
2, A2 ⊢ ∆′

2 CΓ′
2,∆′

2 mcut(ι′′, ⊥⊥′′)Γ2, A2 ⊢ ∆2 ⊸lΓ1, Γ2, A1 ` A2 ⊢ ∆1, ∆2

Figure 10 Commutative (mcut)-step of the multiplicative fragment of MALL
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⊤rΓ′ ⊢ ⊤, ∆′ C mcut(ι, ⊥⊥)Γ ⊢ ⊤, ∆
⇝ ⊤rΓ ⊢ ⊤, ∆

0lΓ′, 0 ⊢ ∆′ C mcut(ι, ⊥⊥)Γ, 0 ⊢ ∆
⇝ 0lΓ, 0 ⊢ ∆

Γ ⊢ F ′, ∆
r

Γ ⊢ F, ∆ C mcut(ι, ⊥⊥)
Γ′ ⊢ F, ∆′

⇝
Γ ⊢ F ′, ∆ C mcut(ι, ⊥⊥)

Γ′ ⊢ F ′, ∆′
r

Γ′ ⊢ F, ∆′
( r ∈ {⊕i

r, µr, νr})

Γ, F ′ ⊢ ∆
r

Γ, F ⊢ ∆ C mcut(ι, ⊥⊥)
Γ′, F ⊢ ∆′

⇝
Γ, F ′ ⊢ ∆ C mcut(ι, ⊥⊥)

Γ′, F ′ ⊢ ∆′
r

Γ′, F ⊢ ∆′
( r ∈ {⊕i

l, µl, νl})

Γ′ ⊢ A1, ∆′ Γ′ ⊢ A2, ∆′
&rΓ′ ⊢ A1 & A2, ∆′ C mcut(ι, ⊥⊥)Γ ⊢ A1 & A2, ∆

⇝

Γ′ ⊢ A1, ∆′ C mcut(ι′, ⊥⊥′)Γ ⊢ A1, ∆
Γ′ ⊢ A2, ∆′ C mcut(ι′′, ⊥⊥′′)Γ ⊢ A2, ∆ &rΓ ⊢ A1 & A2, ∆

Γ′, A1 ⊢ ∆′ Γ′, A2 ⊢ ∆′
⊕lΓ′, A1 ⊕ A2 ⊢ ∆′ C mcut(ι, ⊥⊥)Γ, A1 ⊕ A2 ⊢ ∆

⇝

Γ′, A1 ⊢ ∆′ C mcut(ι′, ⊥⊥′)Γ, A1 ⊢ ∆
Γ′, A2 ⊢ ∆′ C mcut(ι′′, ⊥⊥′′)Γ, A2 ⊢ ∆ ⊕lΓ, A1 ⊕ A2 ⊢ ∆

Figure 11 Commutative (mcut)-step of the additive fragment of µMALL∞
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π
!Γ1,□Γ2 ⊢ A, ?∆1,♢∆2 !♢p!Γ1,□Γ2 ⊢ !A, ?∆1,♢∆2 C!/□

mcut(ι, ⊥⊥)
!Γ′,□Γ′′ ⊢ !A, ?∆,♢∆′

⇝

π
!Γ1,□Γ2 ⊢ A, ?∆1,♢∆2 C!/□

mcut(ι, ⊥⊥)
!Γ′,□Γ′′ ⊢ A, ?∆,♢∆′

!♢p!Γ′,□Γ′′ ⊢ !A, ?∆,♢∆′

π
Γ ⊢ A, ∆

□p
□Γ ⊢ □A,♢∆ C□

mcut(ι, ⊥⊥)
□Γ′ ⊢ □A,♢∆′

⇝

π
Γ ⊢ A, ∆ C mcut(ι, ⊥⊥)

Γ′ ⊢ A, ∆′
□p

□Γ′ ⊢ □A,♢∆′

π
Γ ⊢ ∆ δwΓ ⊢ δA, ∆ C mcut(ι, ⊥⊥)

Γ′ ⊢ δA, ∆′

⇝

π
Γ ⊢ ∆ C mcut(ι′, ⊥⊥′)

Γ′ ⊢ ∆′
δwΓ′ ⊢ δA, ∆′

π
Γ ⊢ δA, δA, ∆

δcΓ ⊢ δA, ∆ C mcut(ι, ⊥⊥)
Γ′ ⊢ δA, ∆′

⇝

π
Γ ⊢ δA, δA, ∆ C mcut(ι′, ⊥⊥′)

Γ′ ⊢ δA, δA, ∆′
δcΓ′ ⊢ δA, ∆′

π
Γ ⊢ A, ∆ ?dΓ ⊢ ?A, ∆ C mcut(ι, ⊥⊥)

Γ′ ⊢ ?A, ∆′

⇝

π
Γ ⊢ A, ∆ C mcut(ι′, ⊥⊥′)

Γ′ ⊢ A, ∆′
?dΓ′ ⊢ ?A, ∆′

δ ∈ {?,♢}

Figure 12 First side of commutative cut-elimination steps of µLL∞
□

π
!Γ1,□Γ2, A ⊢ ?∆1,♢∆2 ?□p!Γ1,□Γ2, ?A ⊢ ?∆1,♢∆2 C!/□

mcut(ι, ⊥⊥)
!Γ′,□Γ′′, ?A ⊢ ?∆,♢∆′

⇝

π
!Γ1,□Γ2, A ⊢ ?∆1,♢∆2 C!/□

mcut(ι, ⊥⊥)
!Γ′,□Γ′′, A ⊢ ?∆,♢∆′

?□p!Γ′,□Γ′′, ?A ⊢ ?∆,♢∆′

π
Γ, a ⊢ ∆

♢p
□Γ,♢A ⊢ ♢∆ C□

mcut(ι, ⊥⊥)
□Γ′,♢A ⊢ ♢∆′

⇝

π
Γ, A ⊢ ∆ C mcut(ι, ⊥⊥)

Γ′, A ⊢ ∆′
♢p

□Γ′,♢A ⊢ ♢∆′

π
Γ ⊢ ∆ δwΓ, δA ⊢ ∆ C mcut(ι, ⊥⊥)

Γ′, δA ⊢ ∆′

⇝

π
Γ ⊢ ∆ C mcut(ι′, ⊥⊥′)

Γ′ ⊢ ∆′
δwΓ′, δA ⊢ ∆′

π
Γ, δA, δA ⊢ ∆

δcΓ, δA ⊢ ∆ C mcut(ι, ⊥⊥)
Γ′, δA ⊢ ∆′

⇝

π
Γ, δA, δA ⊢ ∆ C mcut(ι′, ⊥⊥′)

Γ′, δA, δA ⊢ ∆′
δcΓ′, δA ⊢ ∆′

π
Γ ⊢ A, ∆ !dΓ, !A ⊢ ∆ C mcut(ι, ⊥⊥)

Γ′, !A ⊢ ∆′

⇝

π
Γ, A ⊢ ∆ C mcut(ι′, ⊥⊥′)

Γ′, A ⊢ ∆′
!dΓ′, !A ⊢ ∆′

δ ∈ {!,□}

Figure 13 Second side of commutative cut-elimination steps of µLL∞
□
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CΓ,∆

π

Γ ⊢ δA, δA, ∆
δcΓ ⊢ δA, ∆ C!/□

δA mcut(ι, ⊥⊥)
!Γ1,□Γ2, Γ3 ⊢ ∆1, ?∆2,♢∆3

⇝

CΓ,∆

π

Γ ⊢ δA, δA, ∆ C!/□
δA C!/□

δA mcut(ι′, ⊥⊥′)!Γ1,□Γ2, !Γ1,□Γ2, Γ3 ⊢ ∆3, ?∆1,♢∆2, ?∆1,♢∆2 ?c, !c
!Γ1,□Γ2,□Γ2, Γ3 ⊢ ∆3, ?Γ1,♢Γ2,♢Γ2

♢c,□c
!Γ1,□Γ2, Γ3 ⊢ ∆3, ?Γ1,♢Γ2

CΓ,∆

Γ ⊢ ∆
δwΓ ⊢ δA, ∆ C!/□

δA mcut(ι, ⊥⊥)
!Γ1,□Γ2, Γ3 ⊢ ∆1, ?∆2,♢∆3

⇝

CΓ,∆ Γ ⊢ ∆
mcut(ι′, ⊥⊥′)Γ3 ⊢ ∆3 ?w, !w

!Γ1, Γ3 ⊢ ∆1, ?∆2
♢w,□w

!Γ1,□Γ2, Γ3 ⊢ ∆1, ?∆2,♢∆3

Γ1 ⊢ A, ∆1 ?dΓ1 ⊢ ?A, ∆1

!Γ2,□Γ3, A ⊢ ?∆2,♢∆3 ?□p!Γ2,□Γ3, ?A ⊢ ?∆2,♢∆3 C mcut(ι, ⊥⊥)
Γ ⊢ ∆

⇝
Γ1 ⊢ A, ∆1 !Γ2,□Γ3, A ⊢ ?∆2,♢∆3 C

mcut(ι′, ⊥⊥′)Γ ⊢ ∆

in all these proofs, δ ∈ {?,♢}

Figure 14 First side of the principal cut-elimination steps of µLL∞
□

CΓ,∆

π

Γ, δA, δA ⊢ ∆
δcΓ, δA ⊢ ∆ C!/□

δA mcut(ι, ⊥⊥)
!Γ1,□Γ2, Γ3 ⊢ ∆1, ?∆2,♢∆3

⇝

CΓ,∆

π

Γ, δA, δA ⊢ ∆ C!/□
δA C!/□

δA mcut(ι′, ⊥⊥′)!Γ1,□Γ2, !Γ1,□Γ2, Γ3 ⊢ ∆3, ?∆1,♢∆2, ?∆1,♢∆2 ?c, !c
!Γ1,□Γ2,□Γ2, Γ3 ⊢ ∆3, ?Γ1,♢Γ2,♢Γ2

♢c,□c
!Γ1,□Γ2, Γ3 ⊢ ∆3, ?Γ1,♢Γ2

CΓ,∆

Γ ⊢ ∆
δwΓ, δA ⊢ ∆ C!/□

δA mcut(ι, ⊥⊥)
!Γ1,□Γ2, Γ3 ⊢ ∆1, ?∆2,♢∆3

⇝

CΓ,∆ Γ ⊢ ∆
mcut(ι′, ⊥⊥′)Γ3 ⊢ ∆3 ?w, !w

!Γ1, Γ3 ⊢ ∆1, ?∆2
♢w,□w

!Γ1,□Γ2, Γ3 ⊢ ∆1, ?∆2,♢∆3

Γ1, A ⊢ ∆1 !dΓ1, !A ⊢ ∆1

!Γ2,□Γ3 ⊢ A, ?∆2,♢∆3 !♢p!Γ2,□Γ3 ⊢ !A, ?∆2,♢∆3 C mcut(ι, ⊥⊥)
Γ ⊢ ∆

⇝
Γ1 ⊢ A, ∆1 !Γ2,□Γ3, A ⊢ ?∆2,♢∆3 C

mcut(ι′, ⊥⊥′)Γ ⊢ ∆

in all these proofs, δ ∈ {!,□}

Figure 15 Second side of the principal cut-elimination steps of µLL∞
□
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▶ Lemma 8. Let n ∈ N, let d1, . . . , dn ∈ N and let p1, . . . , pn ∈ {0, 1}. Let π be a µLL∞-proof581

concluded by an (mcut)-rule, on top of which there is a list of n proofs π1, . . . , πn. We ask582

for each πi to be of one of the following forms depending on pi:583

If pi = 1, the di + 1 last rules of πi are di derelictions ((?d) or (!d)) and then a promotion584

rule ((!p) or (?p)). We ask for the principal formula of this promotion to be either a585

formula of the conclusion, or to be cut with a formula being principal in a proof πj on586

one of the last dj + pj rules.587

If pi = 0, the di last rules of πi are di derelictions.588

In each of these two cases, we ask for πi that each principal formulas of the di derelictions to589

be either a formula of the conclusion of the multicut, either a cut-formula being cut with a590

formula appearing in πj such that pj = 1. We prove that π reduces through a finite number591

of mcut-reductions to a proof where each of the last di + pi rules either were eliminated by a592

(!p/!d)-principal case, a (?p/wnde)-principal case or were commuted below the cut.593

Proof. We prove the property by induction on the sum of all the di and of all the pi:594

(Initialization). As the sum of the di and pi is 0, all di and pi are equal to 0, meaning595

that our statement is vacuously true.596

(Heredity). We have several cases:597

If the last rule of a proof πi is a promotion or a dereliction for which the principal598

formula is in the conclusion of the (mcut), we do a commutation step on this rule599

obtaining π′. We apply our induction hypothesis on the proof ending with the (mcut);600

and with parameters d′
1, . . . , d′

n as well as p′
1, . . . , p′

n and proofs π′
1, . . . , π′

n. To describe601

these parameters we have two cases:602

∗ If the rule is a promotion. We take for each j ∈ J1, nK, d′
j = dj ; p′

j = pj if j ≠ i,603

p′
i = 0; π′

j = πj if j ̸= i.604

∗ If the rule is a dereliction. We take for each j ∈ J1, nK, d′
j = dj if j ̸= i, d′

i = di − 1;605

p′
j = pj .606

The π′
j will be the hypotheses of the (mcut) of π′′. Note that

∑
d′

j +
∑

p′
j =607 ∑

dj +
∑

pj − 1 meaning that we can apply our induction hypothesis. Combining our608

reduction step with the reduction steps of the induction hypothesis, we obtain the609

desired result.610

If there are no rules from the conclusion but that one πi ends with di > 0 and611

pi = 0, meaning that the proof ends by a dereliction on a formula F . This means that612

there is proof πj such that pj = 1 and such that F is cut with one of the formula613

of πj . As pj = 1, F is the principal formula of the last rule applied on πj . We614

therefore can perform an promotion/dereliction principal case on the last rules from615

πi and πj , leaving us with a proof π′ with an (mcut) as conclusion. We apply the616

induction hypothesis on this proof with parameters d′
1 = d1, . . . d′

i = d′
i −1 . . . , d′

n = d′
n,617

p′
1 = p1, . . . , p′

j = p′
j − 1, . . . , p′

n = pn and with the proofs being the hypotheses of618

the multicut. Combining our steps with the steps from the induction hypotheses, we619

obtain the desired result.620

We will show that the case where there are no rules from the conclusion and that no πi621

are such that di > 0 and pi = 0, is impossible. Supposing, for the sake of contradiction,622

that this case is possible. We will construct an infinite sequence of proofs (θi)i∈N all623

different and all being hypotheses of the multi-cut, which is impossible. We know624

that there exist a proof θ0 := πj ending with a promotion on a formula F and that625

this formula is not a formula from the conclusion. This proof is in relation by the626

⊥⊥-relation to another proof θ1 := πj′ . We know that this proof cannot be πj because627

the ⊥⊥-relation extended to sequents is acyclic. This proof also ends with a promotion628
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∆ ⊢ F, Γ
□p

□∆ ⊢ □F,♢Γ
⇝

∆• ⊢ ?F •, ?Γ•
!d, ?p!?∆• ⊢ ?F •, ?Γ•
!p!?∆• ⊢ !?F •, ?Γ•
□p

□!?∆• ⊢ □!?F •,♢?Γ•
!d!□!?∆• ⊢ □!?F •,♢?Γ•

?d, !♢p!□!?∆• ⊢ ?!□!?F •, ?!♢?Γ•

∆, F ⊢ Γ
♢p

□∆,♢F ⊢ ♢Γ
⇝

∆•, F • ⊢ ?Γ•
!d, ?p!?∆•, F • ⊢ ?Γ•
?p!?∆•, ?F • ⊢ ?Γ•
♢p

□!?∆•,♢?F • ⊢ ♢?Γ•
!d!□!?∆•, !♢?F • ⊢ ♢?Γ•
?d, !♢p!□!?∆•, !♢?F • ⊢ ?!♢?Γ•

π

Γ ⊢ F [X := δX.F ], ∆
δrΓ ⊢ δX.F, ∆

⇝

π•

Γ• ⊢ ?F •[X := δX.?F •], ?∆•
δrΓ• ⊢ δX.?F •, ?∆•

?d, !pΓ• ⊢ ?!(δX.?F •), ?∆•

π

Γ, F [X := δX.F ] ⊢ ∆
δlΓ, δX.F ⊢ ∆

⇝

π•

Γ•, F •[X := δX.?F •] ⊢ ?∆•
?pΓ•, ?F •[X := δX.?F •] ⊢ ?∆•
δlΓ•, δX.?F • ⊢ ?∆•

!dΓ•, !(δX.?F •) ⊢ ?∆•

with δ ∈ {µ, ν}

Figure 16 Translation of the fixed-point and modal fragment of rules of µLK∞
□ into µLL∞

□

on a principal formula which is not from the conclusion. By repeating this process, we629

obtain the desired sequence (θi)i∈N, giving us a contradiction.630

The statement is therefore true by induction ◀631

We apply this result on this proof with all the pi being equal to 1 and with di = #(∆i)+#(Γi).632

We can easily check that the conditions of the lemma are satisfied. Moreover, we notice that633

there will be only one promotion rule commuting under the cut and that it commutes before634

any dereliction, giving us one translation of the functorial promotion. ◀635

D Appendix on the section 5636

D.1 Linear translation of rules637

▶ Definition 18 ((−)•-translation of rules). The translation into µLL∞
□ of rules of µLK∞

□ are638

depicted in figure 16, 17 and 18.639

D.2 Details on SK(-)-translation640

▶ Definition 19 (µLK∞
□ -Skeleton). We define µLK∞

□ -skeleton on the ⊗,`, ⊥, 1-free fragment641

of µLL∞
□ formula. We define this translation inductively as follows (δ ∈ {µ, ν}):642
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π
Γ, F1 ⊢ F2, ∆ →rΓ ⊢ F1 → F2, ∆

⇝

π•

Γ•, F1
• ⊢ F2

•, ?∆•
?p, ?dΓ•, ?F1

• ⊢ ?F2
•, ?∆•

⊸rΓ• ⊢ ?F1
• ⊸ ?F2

•, ?∆•
?d, !pΓ• ⊢ ?!(?F1

• ⊸ ?F2
•), ?∆•

π1

Γ1 ⊢ F1, ∆1

π2

Γ2, F2 ⊢ ∆2 →rΓ1, Γ2, F1 → F2 ⊢ ∆1, ∆2

⇝

π1
•

Γ1
• ⊢ ?F1

•, ?∆2
•

π2
•

Γ2
•, F2

• ⊢ ?∆2
•

?pΓ2
•, ?F2

• ⊢ ?∆2
•
⊸lΓ1

•, Γ2
•, ?F1

• ⊸ ?F2
• ⊢ ?∆1

•, ?∆2
•

!dΓ1
•, Γ2

•, !(?F1
• ⊸ ?F2

•) ⊢ ?∆1
•, ?∆2

•

π1

Γ ⊢ F1, ∆
π2

Γ ⊢ F2, ∆ ∧rΓ ⊢ F1 ∧ F2, ∆
⇝

π1
•

Γ• ⊢ ?F1
•, ?∆•

π2
•

Γ• ⊢ ?F2
•, ?∆•

&rΓ• ⊢ ?F1
• & ?F2

•, ?∆•
?d, !pΓ• ⊢ ?!(?F1

• & ?F2
•), ?∆•

π
Γ, Fi ⊢ ∆

∧i
lΓ, F1 ∧ F2 ⊢ ∆
⇝

π•

Γ•, Fi
• ⊢ ?∆•

?pΓ•, ?Fi
• ⊢ ?∆•

&i
lΓ•, ?F1

• & ?F2
• ⊢ ?∆•

!dΓ•, !(?F1
• & ?F2

•) ⊢ ?∆•

π1

Γ, F1 ⊢ ∆
π2

Γ, F2 ⊢ ∆ ∨lΓ, F1 ∨ F2 ⊢ ∆
⇝

π1
•

Γ•, F1
• ⊢ ?∆•

?pΓ•, ?F1
• ⊢ ?∆•

π2
•

Γ•, F2
• ⊢ ?∆•

?pΓ•, ?F2
• ⊢ ?∆•

⊕lΓ•, ?F1
• ⊕ ?F2

• ⊢ ?∆•
!dΓ•, !(?F1

• ⊕ ?F2
•) ⊢ ?∆•

π
Γ ⊢ Fi, ∆

∨i
rΓ ⊢ F1 ∨ F2, ∆
⇝

π•

Γ• ⊢ ?Fi
•, ?∆•

⊕i
rΓ• ⊢ ?F1

• ⊕ ?F2
•, ?∆•

?d, !pΓ• ⊢ ?!(?F1
• ⊕ ?F2

•), ?∆•

Figure 17 Translation of LK connective-rules of µLK∞
□ into µLL∞

□
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ax
F ⊢ F ⇝

ax
F • ⊢ F •

?dF • ⊢ ?F •

π1

Γ1 ⊢ F, ∆1

π2

Γ2, F ⊢ ∆2 cutΓ1, Γ2 ⊢ ∆1, ∆2

⇝
π1

•

Γ1
• ⊢ ?F •, ?∆1

•

π2
•

Γ2
•, F • ⊢ ?∆2

•
?pΓ2

•, ?F • ⊢ ?∆2
•

cut
Γ1

•, Γ2
• ⊢ ∆1

•, ∆2
•

TrΓ ⊢ T, ∆ ⇝
⊤rΓ• ⊢ ⊤, ?∆•
?d, !pΓ• ⊢ ?!⊤, ?∆•

FlΓ, F ⊢ ∆ ⇝
0lΓ•, 0 ⊢ ?∆•
!dΓ•, !0 ⊢ ?∆•

π
Γ1, G, F, Γ2 ⊢ ∆ exlΓ1, F, G, Γ2 ⊢ ∆

⇝
π•

Γ1
•, G•, F •, Γ2

• ⊢ ?∆•
exl

Γ1
•, F •, G•, Γ2

• ⊢ ?∆•

π
Γ ⊢ ∆1, G, F, ∆2 exrΓ ⊢ ∆1, F, G, ∆2

⇝
π•

Γ• ⊢ ?∆1
•, ?G•, ?F •, ?∆2

•
exr

Γ• ⊢ ?∆1
•, ?F •, ?G•, ?∆2

•

π
Γ ⊢ ∆ wlΓ, F ⊢ ∆

⇝
π•

Γ• ⊢ ?∆•
!wΓ•, F • ⊢ ?∆•

π
Γ ⊢ ∆ wrΓ ⊢ F, ∆

⇝
π•

Γ• ⊢ ?∆•
?wΓ• ⊢ ?F •, ?∆•

π
Γ, F, F ⊢ ∆ clΓ, F ⊢ ∆

⇝
π•

Γ•, F •, F • ⊢ ?∆•
!cΓ•, F • ⊢ ?∆•

π
Γ ⊢ F, F, ∆ crΓ ⊢ F, ∆

⇝
π•

Γ• ⊢ ?F •, ?F •, ?∆•
?cΓ• ⊢ ?F •, ?∆•

π
Γ ⊢ F, ∆

⊥lΓ, F ⊥ ⊢ ∆
⇝

π•

Γ• ⊢ ?F •, ?∆•
⊥lΓ•, (?F •)⊥ ⊢ ?∆•
!dΓ•, !((?F •)⊥) ⊢ ?∆•

π
Γ, F ⊢ ∆

⊥rΓ ⊢ F ⊥, ∆
⇝

π•

Γ•, F • ⊢ ?∆•
?pΓ•, ?F • ⊢ ?∆•

⊥rΓ• ⊢ (?F •)⊥, ?∆•
?d, !p

Γ• ⊢ ?!((?F •)⊥), ?∆•

Figure 18 Translation of structural & unit fragment of µLK∞
□ into µLL∞

□
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SK(F & G) = SK(F ) ∧ SK(G) SK(F ⊕ G) = SK(F ) ∨ SK(G) SK(F ⊥) = SK(F )⊥

SK(F ⊸ G) = SK(F ) → SK(G) SK(□F ) = □SK(F ) SK(♢F ) = ♢SK(F )
SK(a) = a SK(⊤) = T SK(0) = F

SK(?F ) = SK(F ) SK(!F ) = SK(F )
SK(µX.F ) = µX.SK(F ) SK(νX.F ) = νX.SK(F ) SK(X) = X

643

µLL∞
□ sequents are translated to sequent of skeletons of these formulas. Rules are translated644

straightforwardly by forgetting the linear information, translation are given in figures 19 and645

20..646

Translations of pre-proofs are obtained co-inductively by applying rule translations.647

D.3 Details on proofs of lemma 5 and 6648

▶ Lemma 9 (Robustness of the skeleton to validity). If π is a µLL∞
□ valid pre-proof then649

SK(π) is a µLK∞
□ valid pre-proof, and vice-versa.650

Proof. This comes from the fact that (i) minimal formula of a set of translated formulas651

is the translation of the minimal formula of the set of initial formulas; (ii) translations of652

branches contains all the translations of formulas of the initial branch and vice-versa. ◀653

▶ Lemma 10 (Composition of SK(−) and of (−)•). Let π be a µLK∞
□ pre-proof. We have654

that SK(π•) is equal to π.655

Proof. This comes from the fact that (−)•-translation translates each rules (r) of µLK∞
□ to656

a derivation containing the pre-image of (r) by the translation SK(), adding only exponential657

rules. As exponential rules disappears from the proof by SK(), we get that SK(r•) is equal658

to (r). We coinductively apply this result on pre-proofs. ◀659
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ax
F ⊢ F ⇝ ax

SK(F ) ⊢ SK(F )
Γ1 ⊢ F, ∆1 Γ2, F ⊢ ∆2 cutΓ1, Γ2 ⊢ ∆1, ∆2

⇝
SK(Γ1) ⊢ SK(F ), SK(∆1) SK(Γ2), SK(F ) ⊢ SK(∆2)

cutSK(Γ1), SK(Γ2) ⊢ SK(∆1), SK(∆2)
Γ ⊢ F, ∆ Γ ⊢ G, ∆ &rΓ ⊢ F & G, ∆

⇝
SK(Γ) ⊢ SK(F ), SK(∆) SK(Γ) ⊢ SK(G), SK(∆) ∧rSK(Γ) ⊢ SK(F ) ∧ SK(G), SK(∆)

Γ, F ⊢ ∆ &1
lΓ, F & G ⊢ ∆
⇝

SK(Γ), SK(F ) ⊢ SK(∆)
∧1

lSK(Γ), SK(F ) ∧ SK(G) ⊢ SK(∆)
Γ, G ⊢ ∆ &2

lΓ, F & G ⊢ ∆
⇝

SK(Γ), SK(G) ⊢ SK(∆)
∧2

lSK(Γ), SK(F ) ∧ SK(G) ⊢ SK(∆)
⊤rΓ ⊢ ⊤, ∆ ⇝ TrSK(Γ) ⊢ T, SK(∆)

Γ, F ⊢ ∆ Γ, G ⊢ ∆ ⊕lΓ, F ⊕ G ⊢ ∆
⇝

SK(Γ), SK(F ) ⊢ SK(∆) SK(Γ), SK(G) ⊢ SK(∆) ∨lSK(Γ), SK(F ) ∨ SK(G) ⊢ SK(∆)
Γ ⊢ F, ∆

⊕1
rΓ ⊢ F ⊕ G, ∆
⇝

SK(Γ) ⊢ SK(F ), SK(∆)
∨1

rSK(Γ) ⊢ SK(F ) ∨ SK(G), SK(∆)
Γ ⊢ G, ∆

⊕2
rΓ ⊢ F ⊕ G, ∆
⇝

SK(Γ) ⊢ SK(G), SK(∆)
∨2

rSK(Γ) ⊢ SK(F ) ∨ SK(G), SK(∆)
0lΓ, 0 ⊢ ∆ ⇝ FlSK(Γ), F ⊢ SK(∆)

Γ, F ⊢ G, ∆
⊸rΓ ⊢ F ⊸ G, ∆

⇝
SK(Γ), SK(F ) ⊢ SK(G), SK(∆) →r

SK(Γ) ⊢ SK(F ) → SK(G), SK(∆)
Γ1 ⊢ F, ∆1 Γ2, G ⊢ ∆2 ⊸lΓ1, Γ2, F ⊸ G ⊢ ∆1, ∆2

⇝
SK(Γ1) ⊢ SK(F ), SK(∆1) SK(Γ2), SK(G) ⊢ SK(∆2) →l

SK(Γ1), SK(Γ2), SK(F ) → SK(G) ⊢ SK(∆1), SK(∆2)
Γ, A ⊢ ∆

⊥lΓ ⊢ A⊥, ∆
⇝

SK(Γ) ⊢ SK(A), SK(∆)
⊥lSK(Γ), SK(A)⊥ ⊢ SK(∆)

Γ, A ⊢ ∆
⊥rΓ ⊢ A⊥, ∆

⇝
SK(Γ), SK(A) ⊢ SK(∆)

⊥rSK(Γ) ⊢ SK(A)⊥, SK(∆)
Γ, F [µX.F/X] ⊢ ∆

µlΓ, µX.F ⊢ ∆
⇝

SK(Γ), SK(F )[µX.SK(F )/X] ⊢ SK(∆)
µl

SK(Γ), µX.SK(F ) ⊢ SK(∆)
Γ ⊢ F [µX.F/X], ∆

µrΓ ⊢ µX.F, ∆
⇝

SK(Γ) ⊢ SK(F )[µX.SK(F )/X], SK(∆)
µr

SK(Γ) ⊢ µX.SK(F ), SK(∆)
Γ, F [νX.F/X] ⊢ ∆

νlΓ, νX.F ⊢ ∆
⇝

SK(Γ), SK(F )[νX.SK(F )/X] ⊢ SK(∆)
νlSK(Γ), νX.SK(F ) ⊢ SK(∆)

Γ ⊢ F [νX.F/X], ∆
νrΓ ⊢ νX.F, ∆

⇝
SK(Γ) ⊢ SK(F )[νX.SK(F )/X], SK(∆)

νrSK(Γ) ⊢ νX.SK(F ), SK(∆)

Figure 19 SK(−)-translation of non-modal rules
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Γ ⊢ ∆ !wΓ, !F ⊢ ∆ ⇝
SK(Γ) ⊢ SK(∆) wlSK(Γ), SK(F ) ⊢ SK(∆)

Γ, !F, !F ⊢ ∆ !cΓ, !F ⊢ ∆
⇝

SK(Γ), SK(F ), SK(F ) ⊢ SK(∆) clSK(Γ), SK(F ) ⊢ SK(∆)
Γ, F ⊢ ∆ !dΓ, !F ⊢ ∆

⇝ SK(Γ), SK(F ) ⊢ SK(∆)

!Γ ⊢ F, ?∆ !p!Γ ⊢ !F, ?∆
⇝ SK(Γ) ⊢ SK(F ), SK(∆)

Γ ⊢ ∆ ?wΓ ⊢ ?F, ∆ ⇝
SK(Γ) ⊢ SK(∆) wrSK(Γ), SK(F ) ⊢ SK(∆)

Γ ⊢ ?F, ?F, ∆ ?cΓ ⊢ ?F, ∆
⇝

SK(Γ) ⊢ SK(F ), SK(F ), SK(∆) crSK(Γ) ⊢ SK(F ), SK(∆)
Γ ⊢ F, ∆ ?dΓ ⊢ ?F, ∆

⇝ SK(Γ), SK(F ) ⊢ SK(∆)

!Γ, F ⊢ ?∆ ?p!Γ, ?F ⊢ ?∆
⇝ SK(Γ), SK(F ) ⊢ SK(∆)

Γ ⊢ A, ∆
□p

□Γ ⊢ □A,♢∆
⇝

SK(Γ) ⊢ SK(A), SK(∆)
□p

□SK(Γ) ⊢ □SK(A),♢SK(∆)
Γ, A ⊢ ∆

♢p
□Γ,♢A ⊢ ♢∆

⇝
SK(Γ), SK(A) ⊢ SK(∆)

♢p
□SK(Γ),♢SK(A) ⊢ ♢SK(∆)

Figure 20 SK(−)-translation of modal rules of µLL∞
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