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Abstract: We investigate the performance of algorithms for sparse tensor-sparse tensor multipli-
cation (SpGETT). This operation, also called sparse tensor contraction, is a higher order analogue
of the sparse matrix-sparse matrix multiplication (SpGEMM) operation. Therefore, SpGETT can
be performed by first converting the input tensors into matrices, then invoking high performance
variants of SpGEMM, and finally reconverting the resultant matrix into a tensor. Alternatively,
one can carry out the scalar operations underlying SpGETT in the realm of tensors without matrix
formulation. We discuss the building blocks in both approaches and formulate a hashing-based
method to avoid costly search or redirection operations. We present performance results with the
current state-of-the-art SpGEMM-based approaches, existing SpGETT approaches, and a care-
fully implemented SpGETT approach with a new fine-tuned hashing method, proposed in this
paper. We evaluate the methods on real world tensors, contracting a tensor with itself along var-
ious dimensions. Our proposed hashing-based method for SpGETT consistently outperforms the
state-of-the-art method, achieving a 25% reduction in sequential execution time on average and a
21% reduction in parallel execution time on average across a variety of input instances.
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Contraction efficace et parallèle des tenseurs creux
Résumé : Nous étudions les performances des algorithmes de multiplication de ten-
seurs creux à creux (SpGETT). Cette opération, également appelée contraction, est
un analogue d’ordre supérieur à la multiplication de matrices creuses (SpGEMM). En
conséquence, SpGETT peut être réalisé en convertissant d’abord les tenseurs d’entrée
en matrices, puis en invoquant des variantes hautes performances de SpGEMM, et
enfin en reconvertissant la matrice résultante en tenseur. Alternativement, il est pos-
sible de réaliser les opérations scalaires sous-jacentes à SpGETT directement dans
le domaine des tenseurs, sans formulation matricielle. Nous discutons des éléments
constitutifs des deux approches et proposons une méthode basée sur le hachage pour
éviter les opérations coûteuses de recherche ou de redirection. Nous présentons les ré-
sultats de performances en utilisant les approches actuelles basées sur SpGEMM, les
approches SpGETT existantes, ainsi qu’une approche SpGETT soigneusement mise
en œuvre avec une nouvelle méthode de hachage améliorée, proposée dans cet article.
Nous évaluons ces méthodes sur des tenseurs réels, en contractant un tenseur avec
lui-même selon différentes dimensions. La méthode basée sur le hachage proposée
pour SpGETT surpasse systématiquement l’état de l’art, atteignant une réduction
moyenne de 25% du temps d’exécution séquentielle et une réduction moyenne de 21%
du temps d’exécution parallèle sur une variété d’instances d’entrée.

Mots-clés : contraction des tenseurs, hachage
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4 Singh & Uçar

1 Introduction

Tensors, or multidimensional arrays, are widely used in modeling and analyzing multidimensional
data [8, 21, 34]. The breadth of the applications and their importance has led to the development
of libraries covering different application needs. A common operation provided by those libraries
is tensor-tensor multiplication, also called tensor contraction, see for example Tensor Toolbox [4],
Cyclops [38], and also others in a recent survey [33]. This operation takes two tensors and a
set of indices along which to carry out the multiplication and produces another tensor. Suppose
for example that A is a 4-dimensional tensor of size I × J × P × Q, and B is a 3-dimensional
tensor of size P × Q × L. Two dimensions of A and B have the lengths P and Q, and hence
one can contract A and B in either or both of those dimensions. If we contract A and B on the
dimension of length P , we will obtain C of size I × J × Q × L, where cijql =

∑p=P
p=1 aijpq · bpql,

where the individual elements of the tensors are shown with the corresponding lower-case letters.
Similarly, we obtain C of size I × J ×L, if we contract along the two agreeing dimensions, where
cijl =

∑P
p=1

∑Q
q=1 aijpq · bpql.

Tensor contraction is a higher order analogue of the ubiquitous matrix-matrix multipli-
cation (GEMM). In fact, tensor contraction can be cast as matrix-matrix multiplication af-
ter suitably rearranging the tensors. For example, using the same tensors above, the results
cijl =

∑P
p=1

∑Q
q=1 aijpq ·bpql, can be computed by rearranging A into a matrix A of size IJ×PQ

and B into a matrix B of size PQ × L so that the matrix C is of size IJ × L, where C = AB
contains the resulting elements of C in a matrix. Given this relation with the GEMM, tensor
contraction is dubbed GETT [40].

We investigate the GETT operation on large sparse tensors. This operation, called SpGETT,
takes two sparse tensors and a set of contraction indices and performs the scalar multiply and
add operations as summarized above. Much like the sparse variant of GEMM, called SpGEMM,
SpGETT has many challenges due to low arithmetic intensity. We target efficient execution of
SpGETT on shared memory parallel systems. Since the SpGETT operation can be performed
along different dimensions depending on the use case, an SpGETT library should provide a
simple interface. As argued in previous work [3, 18], none of the dimensions should be favored or
preferred in the interface. This is doable by adopting the well-known coordinate format, which
stores all indices of a nonzero explicitly along with its value.

A first approach to implement SpGETT of two tensors A and B converts them to matrices
A and B such that the contraction indices are in the columns of A and in the rows of B. Then
an SpGEMM will compute the nonzeros of the output tensor. As the tensors can have multiple
dimensions, each in the orders of millions, putting all possible tuples of contraction indices in
the columns of A and the rows of B is not advisable. Instead one should use those tuples of
contraction indices in which A and B have nonzeros. Finding the nonempty tuples of contraction
indices for two tensors and numbering them consistently so that A×B computes the nonzeros
of the desired tensor is a problem that does not appear in dense GETT nor in SpGEMM. We
investigate two ways to tackle this problem in Section 3, where one is based on sorting, and the
other is based on hashing.

A more direct approach to implement SpGETT of two tensors A and B keeps them as
tensors and carries out the necessary multiply-add operations. Two key problems here are to
know which entries to multiply and where to add the result, which can again be tackled with a
sorting or a hashing scheme. These two problems are raised by the multi-dimensional nature of
both input and output tensors. While the first approach to SpGETT can rely on the existing
high performance SpGEMM libraries, this second approach needs efficient implementation. We
investigate SpGETT natively on tensors in Section 4 and propose a hashing scheme (Section 5)
to store tensor nonzeros to avoid costly search and redirection operations. Parallelization of the
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Sparse tensor contraction 5

multiply-add operations is achieved by taking the hashing data structure into account.
Hashing arises in both types of algorithms for SpGETT. The hashing scheme should allow

fast construction, and have low memory overhead and lookup time. When all elements to be
hashed are unique and known beforehand, static hashing approaches with expected linear time
construction, linear memory overhead, and worst case constant time lookup are possible, see for
example earlier work [7], references therein and its predecessor [15]. In the SpGETT operation
though the elements to hash are not known without preprocessing and have key duplicates. For
example, different nonzeros of the tensor A can be in the same column of A; or the nonzero
positions of the output tensor C are not available. As the static hashing methods are not
applicable, we introduce a parallel dynamic hashing method in Section 5 which works natively
on tensors and enables fast SpGETT. The proposed hashing scheme is also effective and usable
in converting tensors to matrices for the SpGETT via SpGEMM approach.

After presenting a brief background in Section 2, we investigate the SpGEMM-based approach
to sparse tensor contraction in Section 3. We then describe in Section 4 an adaptation of a well-
known SpGEMM algorithm to the SpGETT case, which is the main contribution of this paper.
A parallel fast hashing scheme to be used in this approach is proposed in a separate Section 5,
as it is of independent interest. We then compare the proposed SpGETT algorithm with two
current state of the art SpGETT implementations in Section 6, one using SpGEMM routines
and the other natively working in tensors. Section 7 concludes the paper.

2 Background and Related Work
We briefly describe the terms and notations used in this paper. We denote tensors using boldface
script letters as in A, matrices using boldface capital letters as in A, vectors using boldface lower
case letters as in a and scalars using lower case letters, as in a.

A tensor A ∈ Rn1×n2×···×nd has d modes and is of order d. For an order d tensor A, one needs
d indices to index into A. For example aijkl is a nonzero of a 4D tensor A ∈ RnI×nJ×nK×nL . We
refer to a subtensor obtained by fixing all except m indices of the tensor as a m-order subtensor
of the tensor [43]. For example, in tensor A ∈ RnI×nJ×nK×nL , A::k: ∈ RnI×nJ×nL is a 3-order
subtensor of A.

We use Einstein notation to represent tensor contractions whereby the indices (and modes)
that appear in both input tensors are the contraction indices (and modes), and a summation
over these indices is implied. The contraction indices (and modes) do not appear in the output
tensor. The remaining indices (and modes) appear in the output tensor and are called the
external indices. For example, consider the contraction of two 4D tensors, A ∈ RnI×nJ×nP×nQ ,
B ∈ RnP×nQ×nK×nL , along two modes, P and Q, to produce a 4D output tensor C. This
operation is written as

Cijkl = AijpqBpqkl indicating

cijkl =

nP∑
p=1

nQ∑
q=1

aijpq · bpqkl (1)

Indices {p,q} are the contraction indices and {P,Q} are the contraction modes, while {i,j,k,l}
are the external indices and {I,J,K,L} are the external modes. More generally, we denote an
ordered set of contraction modes of a tensor A using cA and specific indices in the set cA of
contraction modes using boldface cA. Similarly, we denote an ordered set of external modes of
a tensor A using eA and specific indices in the set eA of external modes using boldface eA.

A d-mode tensor with d > 2 can be matricized, or reshaped into a matrix. Consider a
tensor A ∈ Rn1×n2×···×nd . The modes S = {1,2, . . . , d} can be partitioned into two disjoint sets
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6 Singh & Uçar

SR = {r1,r2, . . . , rp} and SC = {c1,c2, . . . , cd−p}, and mapped, respectively, to the rows and to
the columns of a matrix A ∈ R{nr1

×nr2
×···×nrp}×{nc1

×nc2
×···×ncd−p

}. We use A = ASR×SC
to

denote that the matrix A is obtained by matricizing the tensor A with the partition SR and SC

of the modes. Here it is convenient to refer to the rows and the columns of A, respectively, by a
p-tuple r and a (d − p)-tuple c. In this case, a tensor nonzero ai1,i2,...,id is mapped to a matrix
nonzero arc, where r corresponds to the indices in SR and c corresponds to the remaining indices
SC . While convenient, it is not necessary to have the first p modes of A in SR. When the tensor
A is sparse, many rows and columns in A = ASR×SC

will have only zeros, if all p-tuples from
SR and (d− p)-tuples from SC are used as indices in A.

The contraction of two tensors A and B, along specified contraction modes, can be formulated
as matrix-matrix multiplication by matricizing A and B suitably. The external indices of A map
to the rows of A, and hence the contraction indices map to the columns of A. Similarly, the
contraction indices of B map to the rows of B, and the remaining indices map to the columns of
B. By slightly abusing the index notation, the sample contraction (1) can be written as

cij,kl =
∑
p,q

aij,pq · bpq,kl ,

where the two matrices can be recognized, and the whole computation can be succinctly written
as C = A × B. When A and B are sparse, many cij,kl can be zero, as the nonzeros in the 2-
order subtensors Aij:: do not necessarily share common indices with the nonzeros in the 2-order
subtensors B::kl.

There are a number of popular storage formats for sparse tensors, such as COO, F-COO [24],
HiCOO [22], CSF [36] and its variant [29]. These formats each have certain advantages for
certain operations, or for memory use [41]. The format COO corresponds to the well-known
sparse matrix storage format called the coordinate format. In this format, each nonzero element
is represented by storing its indices in all dimensions and its value separately. We use COO as
the input and output format, as it is the easiest one for a user.

2.1 Gustavson’s algorithm for SpGEMM
Gustavson’s algorithm [17] is widely used for SpGEMM. Several multi-threaded CPU implemen-
tations of SpGEMM follow Gustavson’s algorithm [2, 28] since it has less synchronization, lower
memory traffic and simpler operations compared to the inner product and outer product formula-
tions of SpGEMM. Gustavson’s algorithm also underlies the algorithms for SpGETT investigated
in this paper. We therefore summarize a parallel version of this algorithm in Algorithm 1.

Algorithm 1: Row-wise Gustavson’s algorithm for SpGEMM C = A×B

1 parfor nonempty Ai,: do
2 for nonzero aik in Ai,: do
3 for nonzero bkj in Bk,: do
4 v ← aik. bkj
5 if cij ∈ Ci,: then
6 cij ← cij + v

7 else
8 insert cij in Ci,:

9 cij ← v

As can be seen in Algorithm 1, Gustavson’s algorithm proceeds row-wise on matrix A. For
each nonzero aik in a row of A, the kth row of matrix B is read and is scaled by aik. When
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Sparse tensor contraction 7

the ith row of A is processed, the sum of the scaled rows of B generates the ith row of the
output matrix C. Since the rows of the output matrix C can be constructed independent of each
other, Gustavson’s algorithm exposes sufficient parallelism. Despite the highly parallel nature
of Gustavson’s algorithm, its efficient parallelization is challenging. This is so because neither
the sparsity pattern of the output matrix, nor the number of nonzeros in the output matrix
can be known without inspecting the input matrices. This may lead to load imbalance among
the threads, since rows of the output matrix are assigned to threads, and different rows can
necessitate a varying number of operation counts. Accumulating the scaled rows of B in order to
compute a row of C requires a method to quickly lookup for a scalar multiplication to be added
to an existing entry in C (Line 6 of Algorithm1), or creating a new entry in C (Line 8). This is
often implemented with a sparse accumulator (SPA) per row of the output matrix. SPA aids in
efficient accumulation of intermediate products, which can be written back to the output matrix
after all the nonzeros in the row of the output matrix have been computed. The design choice of
the sparse accumulator depends on the sparsity of the inputs and output, and there are mainly
four variants: using heap [2, 27], hashing [1, 11], sorting [6], and dense arrays [16, 31].

2.2 Related work on tensor contractions

A large body of prior work has tackled the problem of efficient tensor contractions. We primar-
ily focus on the previous work targeting parallel sparse tensor contraction on shared memory
systems.

TACO [20] and COMET [42] are compilers for dense and sparse tensor computations, includ-
ing tensor contractions. Given a tensor algebra expression and the preferred storage format, these
automatically generate a tensor algebra kernel. Mosaic [5] is a sparse tensor algebra compiler
that extends TACO. The Sparse Polyhedral Framework [44] generates code for sparse tensor
contractions. The Cyclops Tensor Framework [39] enables automatic parallelization of sparse
tensor computations, including sparse tensor contractions, expressed algebraically.

The Tensor Toolbox [4] provides a suite of tools in MATLAB for computations on tensors. It
includes a method for sparse tensor contractions. ITensor [14] and Libtensor [19] are frameworks
that support multithreaded, block-sparse tensor contractions. Sparta [26] is the current state-of-
the-art for parallel element-wise sparse tensor contractions, using the order-agnostic coordinate
(COO) format. It uses a hash-based representation for input sparse tensors and implements
a hash-based sparse accumulator. Furthermore, it proposes data placement strategies for opti-
mizing sparse tensor contractions on tiered memory systems with DRAM and the Intel Optane
DC Persistent Memory Module (PMM). We compare our proposed methods against Sparta on
homogeneous DRAM memory in Section 6. Our tensor contraction method uses a novel dynamic
hashing method for representing the input tensors as well as the sparse accumulator, which com-
plements the Gustavson’s-like formulation of sparse tensor contractions. Athena [25] extends
Sparta to efficiently perform a sequence of sparse tensor contractions on tiered memory systems.

2.3 Related work on hashing

As discussed before, hashing methods are used in SpGETT via SpGEMM and also in the
SpGETT approach working on tensors. We review some key concepts in the hashing meth-
ods suitable for our use case. Hashing is used to store and retrieve a set of items. A hash
function maps the items, called keys, to a set of values which are then used for indexing the
location of the keys in a table. In static hashing , one is given a set of distinct items in advance,
and this set does not change. Once a static hashing structure has been constructed, it is only
queried for the existence of items and retrieving them. In dynamic hashing, the set of items
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8 Singh & Uçar

is not known in advance; they arrive throughout the execution of a program. In the typical
use cases, the newly arrived items that are not present in the hash table are inserted into the
table, and those that are present are retrieved. The static case allows one to develop worst case
constant time lookups. Such hashing methods which enable worst case constant time lookups
are referred to as perfect hashing methods. In this paper, the items will be the coordinates of
tensor nonzeros, which are d-tuples for a d-dimensional tensor. The worst case time of O(d) for
a lookup is therefore asymptotically optimal.

There are several static [7, 13, 23, 32, 35] and dynamic [12, 30] perfect hashing methods
proposed in the literature. Cuckoo hashing [30] is a well-known dynamic hashing method. It uses
a set of ℓ hash functions. We describe the well-known case of ℓ = 2, which has been extensively
studied and is well-understood. For each arriving item, two hash values are computed, giving
the two possible locations for the item. The item is placed in one of the locations. For lookup,
one has to check then only two locations. Assuming that the hash functions take O(1)-time to
compute, the lookups are thus asymptotically optimal. Insertion of an item in Cuckoo hashing is
O(1)-time in the average case. If both the possible locations for an incoming item x are already
occupied then one of the locations is picked randomly, and the item y at that location is replaced
with x, and y is moved to its alternate location. If the other location for y is occupied, we
replace the item z there with y and try to find a position for the displaced element z in the same
fashion. This is continued until a free location is found or a rehash is necessary (in the case
of cycles). Rehashing takes O(n) in the average case, where n is the number of items. For the
above complexity bounds to hold, one needs to maintain the invariant that no more than half of
the total locations are occupied.

We introduce a dynamic perfect hashing method supporting the insertion of items one by one,
and performing worst-case constant time lookups on the updated hash data structure. This is
imperative to support operations involved in sparse tensor contractions. The previous algorithms
for sparse tensor contractions that employ hashing do not use perfect hashing methods. To the
best of our knowledge, our proposed tensor contraction method is the first to use a perfect
hashing method for sparse tensor contractions.

3 SpGETT via reduction to SpGEMM

Consider the tensor contraction operation CeA,eB = AeA,cABcB ,eB , with external modes eA and
eB corresponding to, respectively, the external modes of A and B. The contraction modes cA
and cB of A and B have necessarily the same size, and are ordered consistently. We discuss
here how to process the tensors so that the contraction can be computed first by invoking a high
performance SpGEMM library and then by converting the resultant matrix to a tensor.

In order to use SpGEMM routines to compute C = AB instead of the SpGETT above, the
matrices should be defined according to matricizations A = AeA×cA and B = BcB×eB . As
discussed before, many tuples of indices in external or contraction modes may be zero in A or B.
Typically, the number of empty rows or columns in A and B can be much more than the number
of nonzeros in the matrices, if all tuples in external or contraction modes are created as rows or
columns in these matrices. As this sparsity will cause slowdowns in SpGEMM software, either
special SpGEMM libraries should be developed [18] or A and B should contain only nonempty
rows and columns. We discuss the latter approach so that one can invoke any high performance
SpGEMM library.

The nonempty subtensors AeA,: define the nonzero columns of A, and the nonempty subten-
sors B:,eB define the nonzero rows of B. In this case, to compute C = AB, the columns of A
and the rows of B should be numbered consistently. That is, if an integer j is assigned to the

Inria



Sparse tensor contraction 9

column index j of a nonzero ai,j in A where i are the indices in the external modes and j are the
indices in the contraction modes, then each nonzero bj,k in B should necessarily be assigned j as
the row index. We refer to this requirement as the consistency condition on the matricization of
two tensors. Furthermore, the rows of A should correspond to nonempty subtensors A:,cA , and
the columns of B should correspond to nonempty subtensors BcB ,:. After the multiplication,
the resultant matrix C should be converted to the tensor C by mapping each nonempty row
index i of C to the corresponding |eA|-tuple i, and each nonempty column index j of C to the
corresponding |eB |-tuple j. Converting the indices of the nonzeros of the matrix C to those of
the tensor C is referred to as tensorization.

The matricizations of A and B and the tensorization of C are coupled, as the nonzero rows of
A and the nonzero columns of B define, respectively, the rows and the columns of C. Therefore,
we need to map an |eA|-tuple i to an integer i, where Ai,: is a nonempty subtensor, and also
need the inverse of this map for the tensorization of C. A similar discussion holds for |eB |-tuples
defining nonempty subtensors B:,eB and the columns of C.

Typically, sorting or hashing is used for operations similar to consistent matricizations of
A and B, and the coupled tensorization of C. We therefore discuss two schemes SB-Smat,
which uses sorting, and SB-Hmat, which uses hashing, to perform SpGETT via a reduction to
SpGEMM.

3.1 SB-Smat: Sorting for SpGETT-via-SpGEMM

The key steps in matricizing A and B for computing CeA,eB = AeA,cABcB ,eB via SpGEMM
C = AB are shown in Algorithm 2. This algorithm sorts the indices of the nonzeros of A and
B in the contraction modes together in order to obtain a consistent numbering of the columns of
A and the rows of B. Then, the indices of the nonzeros of each tensor in the external modes are
sorted to obtain integer ids for each unique |eA|-tuple and each unique |eB |-tuple. It is necessary
to keep a reverse map for the row and column ids of C for obtaining a tensor after SpGEMM.

Algorithm 2: Consistent matricization and coupled tensorization with sorting
1 Let LA(i) contain the cA indices of the ith nonzero of A and LB(j) contain the cB indices of the jth

nonzero of B
2 Sort LA and LB together, by increasing index, into L using contraction indices as key, while keeping a

reference to the original nonzero as auxiliary data
3 Scan L (in the sorted order) to generate a unique integer id for each unique cA-tuple, while keeping that

integer id for the corresponding nonzero in A or B
/* the column ids in the matrix A and the row ids in the matrix B are ready */

4 Let L′
A(i) contain the eA indices of the ith nonzero of A and the integer id of the cA indices of the same

nonzero computed in Step 3
5 Sort L′

A with respect to the eA indices to obtain a unique integer id for each unique eA-tuple, combine
it with the integer id of the corresponding cA indices for building A in the coordinate format. While
doing so, keep a map from the unique integer id to a nonzero having the corresponding eA indices for
translating the row indices of the nonzeros of C to eA indices in C

6 Perform Steps 4 and 5 for the external indices of B to obtain B and a map for translating the column
indices of the nonzeros of C to eB indices in C

Algorithm 2 creates A and B in the coordinate format, which are then converted to the CSC
or CSR formats for invoking an existing SpGEMM library. The resulting matrix C is again in
the CSC or CSR formats. A pass over the nonzeros is needed to translate the indices of the
nonzeros of C to that of C by using the maps created in Steps 5 and 6 of Algorithm 2. Note that
when a cA is nonzero and the corresponding |cB |-tuple is zero, B will have an empty row. When
A is processed in an SpGEMM row-by-row as in Algorithm 1, this do not create much overhead.
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10 Singh & Uçar

Similarly, when a |cA|-tuple is zero and the corresponding |cB |-tuple is nonzero, A will have an
empty column. This does not create an overhead for a row-by-row SpGEMM.

3.2 SB-Hmat: Hashing for SpGETT-via-SpGEMM

This method uses hashing for effecting consistent matricization of A and B and for assigning
ids to their external indices, eA and eB. The aim is to take advantage of fast hashing methods
when available. As arbitrary hashing methods cannot in general be competitive with the sorting
approach, we propose an efficient hashing method later in the paper.

The key idea for the consistent matricization is to hash the contraction indices of the nonzeros
in A and B together into a single hash table. We do this by inserting all contraction indices of A
and B in a single batch. Note that duplicates are likely in this batch, and hence static hashing
methods are not well suited. Thus, we use a dynamic hashing approach as summarized below.

We maintain a counter to assign consecutive ids to unique contraction indices, cA. We also
maintain an indirection array for all nonzeros in A and B combined, to store the id of contraction
indices, cA for every nonzero in both input tensors. We use the contraction indices as key for
hashing. We scan the nonzeros of A and B. For each nonzero in A and B, we check if the
contraction indices, cA, is present in the hash table. If it is not present, we insert cA into the
hash table, along with the new id that we assign to cA using the counter, which is stored in the
indirection array. If cA for a nonzero is already present in the hash table, we retrieve its id from
the hash table and write it to the index of the nonzero in the indirection array.

Next, in order to obtain the ids for the external indices of each nonzero, we process A and B
separately. We create separate hash tables for A and B using the external indices of the nonzeros
as the hash key. As in the sorting-based algorithm, we create A and B in the coordinate format,
which we call COOA and COOB respectively. Again, we maintain a global counter to assign
consecutive ids to the distinct external indices, eA, of A. We first scan the nonzeros of A. For
each nonzero in A we check if the external indices, eA, is present in the hash table by performing
a lookup. If it is not present, we insert eA into the hash table, along with the new id that we
assign to eA using the counter. If eA for a nonzero is already present in the hash table, we
retrieve its id from the hash table and write it to the index of the nonzero as row-id in COOA.
Furthermore, we write the id of contraction indices of the nonzero, cA, as the column-id in
COOA by accessing the indirection array previously populated. We also create a reverse map of
external indices to their ids in order to be able to tensorize C.

We follow the same procedure, as for A, for assigning ids to the external indices of B and for
creating the B by populating COOB appropriately.

As in the sorting-based algorithm, A and B are converted to the CSC or CSR formats for
invoking an existing SpGEMM library. After that, the indices of the nonzeros of C are translated
to |eA|- and |eB |-tuples for populating the nonzeros of C.

4 SB-TC: SpGETT natively on input tensors

We present SB-TC to carry out parallel SpGETT CeA,eB = AeA,cABcB ,eB natively on tensors.
Recall that for this tensor contraction to be feasible, the contraction modes cA and cB of A and
B, respectively, must be the same size and ordered consistently. Recall also that for nonzeros
aeA,cA

and bcB,eB
, the indices cA and cB refer to the indices in the contraction modes cA of

A and cB of B, respectively. SB-TC closely follows Gustavson’s algorithm without explicitly
matricizing the input tensors, and builds the output tensor subtensor by subtensor. The method
is empowered by a novel parallel perfect hashing method to avoid expensive searching and sorting.
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Sparse tensor contraction 11

We present the proposed SpGETT method in Algorithm 3. This method can in principle
use any dynamic hashing scheme. We therefore discuss this algorithm independent from the
hashing approach, and defer the presentation of the proposed dynamic hashing scheme to the
next section.

Algorithm 3: SB-TC: SpGETT using Gustavson’s algorithm-like formulation
Input : A ∈ RI1×I2×···×IdA , B ∈ RJ1×J2×···×JdB

eA, cA partitioning the modes {1, 2, . . . , dA} of A and cB ,eB partitioning the modes
{1, 2, . . . , dB} of B

Output: CeA,eB = AeA,cABcB ,eB
1 Create a hash data structure for A using the indices in the eA modes as the key
2 Create a hash data structure for B using the indices in the cB modes as the key
3 parfor nonempty eA subtensor AeA,: do
4 Initialize SPA // Hash for the nonzeros in CeA,:

5 for nonzero aeA,cA in AeA,: do
6 for nonzero bcB,eB in BcB,: do
7 v ← aeA,cA . bcB,eB
8 if SPA.lookup(eB) = True then
9 add v to SPA(eB)

10 else
11 SPA.insert(eB, v)

12 for each tuple eB in SPA with value v do // v ̸= 0
13 set ceA,eB = v

At a high level, SB-TC performs SpGETT such that the subtensors CeA,: of the resultant
tensor are constructed independent from each other, in parallel, indicated by the parallel parfor
loop at Line 3 in Algorithm 3. In order to construct an output subtensor CeA,:, every nonzero in
the subtensor AeA,: is to be multiplied (Line 7 in Algorithm 3) by all nonzeros in an appropriate
subtensor BcB,:. in BcB,:. The additive contributions from the product of pairs of nonzeros
are assembled in a sparse accumulator (Lines 9 and 11). Finally, the contents of the sparse
accumulator are written to output subtensor CeA,: (Line 13). The details of this algorithm are
described below.

A parallel parfor loop goes over all the nonempty subtensors AeA,: of A (Line 3 in Algo-
rithm 3). In order to populate a subtensor CeA,: of the output tensor C, the algorithm loops
over all the nonzeros in a subtensor AeA,: of A (Line 5 in Algorithm 3). Doing so efficiently
requires all nonzeros of A having external indices eA to be gathered. To accomplish this, we
build a hash data structure HA for A using the external indices of its nonzeros as the key (Line 1
in Algorithm 3). In this hash data structure, each unique external index of eA of A maps to
a distinct location. Furthermore, a location in the hash data structure points to a contiguous
array storing the nonzeros of A that share the external indices eA. Note that all nonzeros in this
array will have different indices in the contraction modes. Such a location in HA corresponds to
a row of the matrix A without explicit conversion. Looping over the nonzeros in AeA,: reduces
to going over the contiguous array pointed to by the location of eA in HA.

Furthermore, for each nonzero aeA,cA
in the subtensor AeA,: of A, the algorithm goes over all

the nonzeros in the corresponding subtensor BcB,: of B (Line 6 in Algorithm 3), and multiplies
aeA,cA

with every nonzero bcB,eB
in BcB,: (Line 7 in Algorithm 3). Recall that for every nonzero

aeA,cA
in AeA,:, its contraction indices cA must be equal to the contraction indices cB in the

nonzeros in BcB,:. To facilitate accessing the nonzeros in a subtensor BcB,: of B efficiently, it is
required that all nonzeros in BcB,: be gathered. We thus build another hash data structure, HB
for B using the contraction indices of its nonzeros as the key (Line 2 in Algorithm 3). In HB,
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12 Singh & Uçar

each unique tuple cB of contraction indices maps to a distinct location. Furthermore, a location
in the hash data structure points to a contiguous array storing the nonzeros of B that share the
same contraction indices cB. Note that all nonzeros in this array will have different indices in
the external modes, eB . Such a location in HB corresponds to a row of the matrix B without
explicit conversion. Looping over the nonzeros in BcB,: reduces to going over the contiguous
array pointed to by the location of cB in HB.

As the algorithm proceeds, in order to assemble the product of pairs of nonzeros, aeA,cA
and

bcB,eB
in the output subtensor CeA,:, we need to perform lookup (Line 8) and insert (Line 11)

operations. In order to construct the subtensor CeA,: efficiently, we accumulate the results in a
sparse accumulator (SPA) (Line 4, Algorithm 3). The efficiency of the algorithm is contingent
on the efficiency of the lookup and insert operations. Therefore, we maintain the SPA as a
dynamic hash structure which supports constant time lookup and efficient insertion, while also
being space efficient. SPA uses the indices of the nonzeros of B in the external modes as the
hash key. Once the entire output subtensor CeA,: is ready in the SPA, the contents of the SPA
are written out to C at Line 13. Since different threads write a chunk of nonzeros in C, a global
counter is accessed atomically to reserve the positions of nonzeros produced by a thread—this
can be implemented with light-weight atomic fetch-and-add instructions.

4.1 Preprocessing

After creating the hash data structures HA and HB, we perform two preprocessing operations
before the start of the SpGETT computation (Line 3 in Algorithm 3), which aid in efficient
computation of SpGETT with our proposed scheme.

4.1.1 Estimating the memory requirement of the output tensor

In the tensor contraction CeA,eB = AeA,cABcB ,eB , in order to estimate the total number of
nonzeros in the output tensor C and the number of nonzeros per subtensor CeA,:, we apply the
probabilistic estimation method proposed by Cohen [9]. While the method is originally proposed
for SpGEMM involving sparse matrices, we apply it for tensors. We use the hash data structures
HA and HB of the input tensors, which have been already built, to conceptually matricize them
and estimate the number of nonzeros in their multiplication. Cohen’s estimator does multiple
rounds r to obtain a good estimate, where each round takes O(nnz(A) + nnz(B)) time. For
our use case, we empirically determined r = 2 to produce a good estimate as an upper bound
for the number of nonzeros C and in subtensors CeA,:. This estimation of the nonzeros is thus
very practical and has a time complexity much less than computing C or its nonzero pattern.
Furthermore, its parallelization requires no communication among threads.

4.1.2 Load balancing

Like Gustavson’s algorithm for SpGEMM, the parallel Gustavson’s-like formulation of SpGETT
suffers from load imbalance among threads due to disparity in the number of operations per
subtensor CeA,: of the output tensor C. In order to mitigate the work load imbalance among
threads, we make the assignment of subtensors to threads such that each thread gets assigned a
nearly equal operation count. We apply a parallel light-weight, load-balancing thread scheduling
scheme proposed for Gustavson’s algorithm for SpGEMM [28] to our formulation of SpGETT.
This is made possible by the hash tables HA and HB already created, as a location corresponds
to a row in the corresponding matricized view of the tensor. We count flops for each nonempty
subtensor AeA,: of A. For determining the flops of a subtensor AeA,:, we sweep over the nonzeros
in the subtensor and sum the number of nonzeros in the appropriate subtensor BcB,:. After
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Sparse tensor contraction 13

collating the flops of all the subtensors AeA,: in an array, we perform a prefix sum. We then
determine the starting subtensor (and the number of subtensors implicitly) of A for each of
the threads such that each thread is assigned a close to average number of flops per thread, as
outlined in the original scheme.

4.2 Optimizations for SpGETT in SB-TC

We make two observations in our proposed algorithm for SpGETT and apply optimizations that
exploit these observations to enhance the performance of SB-TC. We discuss the two optimiza-
tions below.

4.2.1 Handling subtensors AeA,: of A with a single nonzero

Consider subtensors AeA,: of A, having exactly one nonzero element. We observe that for such a
subtensor of A, each product can be written directly to the output tensor at its unique position
in the corresponding subtensor CeA,:. This is because there is no accumulation and thus there
is no need for a sparse accumulator. As a result, we avoid maintaining a hash-based sparse
accumulator for such subtensors of the output tensor. This optimization is performed on the fly,
as the algorithm proceeds, and does not require any preprocessing.

4.2.2 Reducing the number of lookups to the sparse accumulator

For a subtensor AeA,: of A having more than one nonzero, we note that for the first nonzero
in the subtensor its product with the nonzeros in subtensor BcB ,: can be written directly to the
output tensor at its unique position in the corresponding subtensor CeA,: This is so as there are
no prior entries in the sparse accumulator and each of the products all have unique positions in
the sparse accumulator. So, all the partial products can be safely inserted. We make use of this
observation to reduce the number of lookups to the sparse accumulator. In each subtensor AeA,:

of A, we determine the nonzero having the highest number of nonzeros in the corresponding
subtensor BcB,: and make it the first nonzero in that subtensor of A. This requires performing
preprocessing, which takes time O(nnz(A)).

5 SBhash: A dynamic perfect hashing method

We present a novel dynamic hashing method which we call SBhash. It is a perfect hashing
method, that is, lookups to the hash data structure are answered in the worst case constant time
per item size; as our data have d indices, the worst case constant time refers to O(d) operations.
The proposed hashing scheme allows fast insertion operations on a stream of d-tuples, using a
given set H of nh = |H| indices, where 1 ≤ nh ≤ d, and one or more input items can have
the same nh-tuple. SBhash supports sequential insertions as well as batch insertions. Batch
insertions can happen in parallel.

5.1 Design of SBhash

SBhash, as shown in Figure 1, has a two-level structure for perfectly hashing the nonzeros of a
given tensor using a given set H of nh indices. The first level is a set of buckets, to which each
of the nh-tuples of indices are mapped. Then, each bucket Bi has a set of slots, each of which
uniquely corresponds to an nh-tuple mapped to Bi. When nh < d, there can be more than one
nonzero whose nh-tuple maps to a given slot in a bucket. A slot points to a collection of nonzeros
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Figure 1: SBhash data structure. A nh-tuple k is used as key for the first level of hashing. Two
types of buckets are shown, a bucket with bi ≤ 4 and a bucket with bi > 4. For a bucket with
bi > 4, indices of two nh-tuples from k0 to kr in K are stored. Empty buckets and slots are
denoted by a �. In SB-TC, an item is {⟨indices⟩, val}. In SB-Hmat, an item is the id of nonzero
in coordinate representation of tensor.
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that all map to that slot. We maintain this collection as a contiguous array and it stores relevant
information about each of the nonzeros. We refer to it as the auxiliary list of the slot.

For the first level, the hash function is defined as h(k,x, p, n) := (kTxH mod p) mod n, to
find a bucket for a given nonzero x. Here, n is the number of buckets, p is a prime number
greater than n, the vector k is an nh-tuple, and xH is the indices of x in the hashing dimensions
H. This function has been used before [7, 15].

Furthermore, consider that to a bucket Bi, bi distinct nh-tuples are mapped as a result of the
first-level hashing. If bi = 0, then nothing is to be stored at that bucket. For nonempty buckets
having bi up to 4, we maintain the slots in the bucket as a contiguous array which store the
distinct nh-tuples mapped to the bucket along with their auxiliary list. As shown in Figure 1,
we maintain a pre-populated set of random nh-tuples, K, of size 32. For buckets having bi > 4,
for mapping the nh-tuples to slots we perform a second level of hashing. We use a variant of
the standard Cuckoo hashing [30] adapted to the needs of the SpGETT operation. At each such
bucket, we store ids of two random keys in K, which we use for hashing the items mapped to the
bucket. The number of slots of such a bucket is maintained at the smallest power of 2 greater
than twice bi. As this Cuckoo hashing variant is at the core of the proposed dynamic hashing
scheme we discuss it in detail. This second level hashing needs to provide insert and lookup
operations. As discussed before in Section 4, the lookup operations need to be performed one by
one during the contraction operation. The insertions on the other hand can either be one by one,
or in a batch as needed. Therefore, we detail the insertion, lookup, and parallel batch insertion
below. While this hashing data structure can be used in other contexts and is of independent
interest, we do not discuss its generality.

5.2 Cuckoo hashing specifications

We use a variant of the standard Cuckoo hashing. Given Ns slots and m items, each item has
to be placed in one of the k slots chosen by ℓ random hash functions. This implicitly defines
a bipartite graph where there are m vertices on one side, and Ns vertices on the other. Each
item chooses ℓ slots by applying the ℓ hash functions. A perfect hashing will be obtained if
we can perfectly match each item to a unique slot. While the standard Cuckoo hashing uses a
random walk for insertions, we carefully implement a deterministic method for insertion, which
is described below. We have ℓ = 2.

5.2.1 Insertion

In order to obtain two different hash functions, we pick two keys by selecting two distinct nh-
tuples from the pre-populated set K of random nh-tuples. In the bucket, we store the ids of
the two nh-tuples that we pick from K. Consider a bucket Bi with Ns slots having bi distinct
nh-tuples mapped to it as a result of first level hashing. Let ki

1 and ki
2 be the two random hash

keys for the bucket. Then the two hash functions defined for the bucket are: h1(k
i
1,x, p,Ns) :=

(ki
1
T
xH mod p) mod Ns and h2(k

i
2,x, p,Ns) := (ki

2
T
xH mod p) mod Ns, where Ns ≥ 2bi. For

an item x in bucket Bi, the evaluation of the two hash functions, h1(x) and h2(x) gives its two
possible locations in the bucket.

The standard random walk-based insertion method for Cuckoo hashing can be used in our
setting with two possible locations per item. With this method, if both the possible locations of
an item are occupied, we randomly pick one of the two locations, and displace the item at that
location and move it to its alternate location choice. We continue this until a free location is
found or a rehash is necessary. This approach has the advantage that it does not use any extra
storage; however it can visit certain items multiple times.
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As stated above, insertion in Cuckoo hashing can be reduced to finding a matching on a
bipartite graph, where the items are vertices on the left and their possible locations are vertices
on the right. There is an edge from an item to each of its possible locations. Every item, on
the left, must be matched to exactly one location, on the right. Our deterministic approach for
insertion efficiently solves this underlying matching problem in order to assign a unique location
to every item in a bucket. Since for an item x, its possible locations can be determined by
evaluating the hash functions h1(x) and h2(x), so we do not store the edges of the underlying
graph explicitly but evaluate the hash functions on the fly on demand.

For inserting a new item x, its two possible locations are computed. If one of the locations
is free, the item is assigned to that location. If both the possible locations, h1(x) and h2(x)
are occupied, then the location h1(x) is picked to displace the item at that location. Note that
since every item has only two possible location choices, so there are no further choices to be
made as we walk through the underlying graph to find an augmenting path to augment the
current matching. If we fail to find an augmenting path, then the location h2(x) is picked to
displace the item at that location and find the augmenting path. The traversal of the graph can
be performed using either breadth-first or depth-first traversal since both are equivalent in this
scenario. In order to make the algorithm efficient and to avoid additional overheads, we maintain
a single visited array of size number of slots, Ns only once across different BFS/DFS traversals
for augmentations, and use it multiple times. We only access the locations that are required
during the current traversal. We use a marking scheme so as to tell apart the visited/unvisited
flags at an array index, across different traversals. Furthermore, we also need to maintain the
augmenting path for every augmentation. We again maintain a single array of size number of
items, nI , to store the items in the augmenting path, and reuse it across different augmentations;
we do not reinitialize the array. This is akin to a stack in a DFS traversal. Thus, our scheme
avoids additional computational overhead in exchange for additional storage for bookkeeping,
which is O(Ns + nI). We only spend the time in finding the augmenting path. Thus, the worst-
case complexity of finding a location for a new item is proportional to the sum of the cost of
traversing the paths corresponding to its two possible location choices, since ℓ = 2.

If we do not find a free location for an item, then we need to rehash the items in the bucket.
In order to perform a rehash, we update the hash function. To update the hash function, we first
update the number of slots to be the smallest power of 2 greater than twice the number of items,
in order to create sufficient slots to perform Cuckoo hashing, and also to reduce the frequency
of updating the number of slots. We then pick a pair of keys from the pool of keys in K. The
items are then inserted one by one as discussed above.

5.2.2 Lookup

The lookup to test if a given item is present is done straightforwardly. The two hash functions
are evaluated for the item to find its potential slots. If both slots are empty, then the item is not
present. Otherwise, if a slot contains an element it is compared with the given item.

5.3 Parallel batch insertion in SBhash

SBhash can perform a batch insertion of the items when they are available at the outset.
As a first step, it computes the bucket id for each item by applying the first level hash function

to each item independently, in parallel. We populate an array, of size number of items, with the
bucket ids of the items. Next, we insert the items into the SBhash data structure, in parallel.
We parallelize the loop over the items—assigning items to threads and every thread handling an
equal number of items. For each item, we determine its bucket id by performing a lookup on the
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array we populated in the first step. We then insert the item into its assigned bucket following
the procedure described in Section 5.1. Now, more than one item, handled by different threads,
can potentially map to the same slot of a bucket. To ensure thread-safe behavior, when adding
an item into a slot, we determine its position in the auxiliary list by atomically incrementing the
number of items already present in the list. The auxiliary list is maintained as a dynamic array
which is resized by doubling its size when full. The resizing of the list involves allocating a new
list double the size, copying all of the existing items over to the new list, and inserting the new
item in the next available position. This needs to be done as one atomic operation. To resize the
list, a thread acquires a lock on the concerned slot. Thanks to the use of doubling resizing, the
resizing is not frequent. Furthermore, if the insertion of an item invokes rehashing of the items of
the bucket using Cuckoo hashing, a thread acquires a lock on the bucket, performs the rehashing
and then releases the lock. This is because rehashing needs to be performed sequentially by one
thread. Note that rehashing of the items of a bucket is infrequent and is required to be done
only for a few buckets.

5.4 Memory requirement of SBhash in SpGETT-via-SpGEMM and SB-
TC

As discussed in Sections 3.2 and 4, SBhash is used in SpGETT-via-SpGEMM and SB-TC. We
describe the memory requirements of SBhash in both the methods.

In SB-Hmat, we use SBhash for assigning ids to distinct contraction indices. For this, SBhash
uses (nnz(A) + nnz(B)) buckets for the first level hashing. The number of buckets is an upper
bound on the number of unique contraction indices that are inserted into the hash data structure.
At a bucket, the total number of locations, used for Cuckoo hashing, are upper bounded by twice
the number of occupied locations. Thus, the total number of locations, across all buckets is upper
bounded by twice the total number of occupied locations, which is much less than the number of
nonzeros, which we call NTOS . Furthermore, at each occupied location, an auxiliary list stores
an integer id of the nonzeros in the coordinate format of tensors A and B. The total size of
all the auxiliary lists is equal to the total number of items inserted in the hash data structure,
which is equal to (nnz(A) + nnz(B)). Thus, the total space requirement is upper bounded by
2 × (nnz(A) + nnz(B)) + NTOS integers. Next, in SB-Hmat, we also use SBhash for assigning
ids to the distinct external indices of A and B separately. Following the same analysis as above,
the total space requirements of the hash data structures for the external indices of A and B are
upper bounded by 2×nnz(A)+NTOS integers, and by 2×nnz(B)+NTOS integers respectively.

For SB-TC, we use SBhash to create hash data structures HA and HB for tensors A and B,
respectively. HA uses nnz(A) buckets for the first level hashing. The number of buckets is an
upper bound on the number of distinct external indices of A. At a bucket, the total number of
locations used for Cuckoo hashing are upper bounded by twice the number of occupied locations.
Thus, the total number of locations across all buckets is upper bounded by twice the total number
NTOS of occupied locations. Furthermore, in order to improve locality, at each occupied location
the auxiliary list stores the indices and the values of the nonzeros of A. The total size of all the
auxiliary lists is equal to the total number of items inserted in the hash data structure, which
is equal to nnz(A). Therefore, the total space requirement of all auxiliary lists combined is
d × nnz(A) integers and nnz(A) double-type nonzero values. Putting it all together, the total
space requirement of HA is upper bounded by (d + 1) × nnz(A) +NTOS integers and nnz(A)
double-type values. Performing a similar analysis for HB, the total space requirement of HB is
upper bounded by (d+ 1)× nnz(B) +NTOS integers and nnz(B) double-type values.

Furthermore, we also use SBhash for maintaining the sparse accumulator per subtensor, CeA,:

of C. For this, the number of buckets in SBhash, for the first level hashing, is set to the estimated
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Tensor name Order Dimensions nnz
nell-1 3 2,902,330 × 2,143,368

× 25,495,389
143,599,552

nell-2 3 12,092 × 9,184 ×
28,818

76,879,419

delicious-4d 4 532,924 × 17,262,471
× 2,480,308 × 1,443

140,126,181

flickr-4d 4 319,686 × 28,153,045
× 1,607,191 × 731

112,890,310

enron 4 6,066 × 5,699 ×
244,268 × 1,176

54,202,099

chicago_crime 4 6,186 × 24 × 77 × 32 5,330,673
uber 4 183 ×24 × 1,140 ×

1,717
3,309,490

nips 4 2,482 × 2,862 × 14,036
× 17

3,101,609

vast-2015-mc1-5d 5 165,427 × 11,374 × 2
× 100 × 89

26,021,945

lbnl-network 5 1,605 × 4,198 × 1,631
× 4,209 × 868,131

1,698,825

Table 1: Real-life sparse tensors in our test-suite, their order, the size in each dimension, and
the number of nonzeros.

number of nonzeros ñnz(CeA,:), which is an upper bound on the number of nonzeros in CeA,:. At
a bucket, the total number of locations, used for Cuckoo hashing, are upper bounded by twice the
number of occupied locations. Thus, the total number of locations, across all buckets is upper
bounded by twice the total number of occupied locations, NTOS . In order to improve locality,
at each occupied location the auxiliary list stores the external indices eC (= eB) of the nonzero
along with the value of the nonzero. Thus, the total space requirement of all the auxiliary lists
combined is |eB | × nnz(CeA,:) integers and nnz(CeA,:) double-type nonzero values. Putting it
together, the total space requirement is upper bounded by |eB |×nnz(CeA,:)+ñnz(CeA,:)+NTOS

integers and nnz(CeA,:) double-type values.

6 Evaluation

We carry out the experiments on a machine having Intel Xeon E7-8890 v4 CPU with 96 cores (four
sockets, 24 cores each), clock-speed 2.20GHz, 240 MB L3 cache and 1.5 TB memory. The machine
runs Debian GNU/Linux 11 (64-bit). The codes are compiled with g++ version 13.2.0 with the
flags -O3, -std=c++17 and -fopenmp for OpenMP parallelization. We present experiments on
real-life tensors from FROSTT [37]. Table 1 summarizes the characteristics of the real-life tensors
in our test-suite. All our codes are available at https://github.com/ssomesh/parTC.

We perform a comparative study of the performance of different methods for SpGETT: SB-
Smat, SB-Hmat, SB-TC, and the existing state-of-the-art method for sparse tensor contraction,
Sparta [26]. We evaluate all methods on the SpGETT operation CeA,eA = AeA,cAAcA,eA , where
A is a sparse tensor and C is the resultant tensor obtained by contracting A with itself along
the specified contraction modes, cA. Recall that this operation can be viewed as an SpGEMM
operation C = AAT , where A is a sparse matrix obtained by matricizing A, such that eA indexes
the rows and cA indexes the columns of A; C is the resultant square matrix of size |eA| × |eA|.
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Figure 2: Geometric mean of the ratio of the time for matricization in SB-Hmat to that in SB-
Smat, across all 85 input instances, with {1, 16, 32, 48, 64, 80, 96} threads. Lower value on the
y-axis depicts better relative performance of matricization in SB-Hmat.

A d-dimensional input tensor can be contracted with itself along any combination of k modes,
for 1 ≤ k < d. Thus, there are

∑d−1
k=1

(
d
k

)
= 2d − 2 distinct possible contractions. We refer to

each of these contractions as an input instance. For example, for the five dimensional tensor lbnl-
network, all 1-mode, 2-mode, 3-mode and 4-mode contractions with itself give rise to 25− 2 = 30
input instances. Across all tensors in Table 1, there are a total of 156 input instances. The time
taken for SpGETT is contingent on the number and distribution of nonzeros in the input tensors
and the resultant tensor, the contraction modes, and the number of floating point operations.
Testing SpGETT on the tensors from Table 1 with different contraction modes thus helps us
cover various scenarios.

For all methods, we evaluate the performance of their parallel and sequential execution.
For parallel execution, we consider thread counts of {16, 32, 48, 64, 80, 96}. For performance
comparison, we only consider the input instances for which Sparta’s sequential execution takes
between one second and one hour to compute the tensor contraction. There are 85 such input
instances, out of the total 156, which we use for parallel execution as well. For all methods, on
every instance that we consider, we report the geometric mean of the execution time of three
independent runs.

We begin the evaluation by first comparing the performance of SB-Smat and SB-Hmat in
Section 6.1. We then study the performance of the better of the two methods, SB-TC and Sparta
in sequential and parallel settings in Section 6.2.

6.1 Comparison of SB-Smat and SB-Hmat

We compare SB-Smat and SB-Hmat to identify the best performing variant of the method
SpGETT via SpGEMM. These two methods differ only in their approach to matricization. The
subsequent steps, sparse matrix–sparse matrix multiplication using a SpGEMM library, and the
conversion of the resultant matrix to a tensor are common to both the methods. We use CXS-
parse [10] library for SpGEMM. Thus, it suffices to compare the performance of the matricization
step alone in the two methods to study which of the two has a superior performance. SB-Smat
uses an implementation of quicksort available in the Sparta library [26].

Figure 2 compares the performance of matricization in SB-Hmat and SB-Smat, across all input
instances for different numbers of threads (on the x-axis). In the figure, the ratio of the run time
of matricization in SB-Hmat to that in SB-Smat is computed for each of the 85 input instances
at a given thread count, and the geometric mean of those 85 ratios is plotted. As seen here,
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Figure 3: The run time of SB-Hmat and SB-TC normalized by that of Sparta for sequential
execution.

the ratio is less than 1 for all thread counts, thus the matricization in SB-Hmat is consistently
faster than that in SB-Smat. In order to give further insight into the performance, we note that
the geometric mean of the time for matricization in sequential SB-Smat is 39.21 s, while that in
sequential SB-Hmat is 34.89 s. Furthermore, across all input instances, the geometric mean of the
time for matricization in parallel SB-Smat with 96 threads is 5.87 s and that in parallel SB-Hmat
with 96 threads is 2.70 s. Thus, we conclude that SB-Hmat is more suitable for SpGETT via
SpGEMM.

6.2 Comparison of SB-Hmat, SB-TC and Sparta

We start by comparing the sequential run time of all three methods. Figure 3 shows the relative
performance of sequential execution of SB-TC and SB-Hmat with respect to Sparta on all input
instances. In the y-axis we see the total run time of SB-TC, SB-Hmat, and Sparta normalized
by the total run time of Sparta for all instances. On the x-axis, the instances are arranged in
nondecreasing order by the ratio of the run time of SB-TC to Sparta from left to right. The figure
also shows the geometric mean of the ratio of SB-TC’s run time to that of Sparta (dashed line)
and the geometric mean of the ratio of SB-Hmat’s run time to that of Sparta (dot-dashed line).
Lower values on the y-axis for SB-TC and SB-Hmat thus depict better performance with respect
to Sparta. We see from the figure that for all input instances the performance of SB-TC is always
better than the other two methods. SB-TC is 25% faster on average compared to Sparta across
all instances, enjoying up to 38% better run time (flickr-4d with contraction modes {0,2}). We
observe that SB-Hmat is faster than Sparta on 65 input instances out of the 85. SB-Hmat is up
to 20% faster than Sparta (on delicious-4d with contraction modes {0,1}) and up to 12% slower
than Sparta (on enron with contraction modes {1,2}). Overall, SB-Hmat is 7% faster than Sparta
across all input instances.

We further note that across all the input instances, the time for the multiply-add operations
takes a majority of the total execution time. For Sparta, the preprocessing time accounts for
7.58% of the total time on average. For SB-TC, the preprocessing time accounts for 6.13% of the
total time on average. For SB-Hmat, the time for preprocessing and postprocessing combined
accounts for 13.44% of the total time on average. Therefore, the performance difference between
Sparta and SB-TC in the run time is due mostly to the efficiency in the data access method
during the multiply-add operations. On the other hand, SB-Hmat has a less involved data access
pattern than Sparta as it works on the CSR representation of matrices. All methods can benefit
from ordering of matrices and tensors in the preprocessing step to improve data locality.
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Tensor name Contraction #flops output nnz Preprocessing SpGETT
modes ×109 ×109 (s) (s)

enron {1,3} 47.13 6.93 23.41 6383.67
chicago_crime {2,3} 72.81 16.93 2.18 20424.06

Table 2: Run time (in s) of Sparta on two representative instances for which Sparta computed
the tensor contraction in more than one hour.

We present in Table 2 the breakdown of sequential execution time of Sparta on two instances
that are representative of cases for which Sparta takes over an hour. The tensor enron contains
54.20 million nonzeros, while the tensor contraction requires 47.13 billion flops and the resultant
tensor has 6.93 billion nonzeros. As we can observe, the preprocessing time is 23.41 s and
the time for SpGETT is 6383.67 s. Similarly, chicago_crime contains 5.33 million nonzeros,
while the tensor contraction requires 72.81 billion flops and the resultant tensor has 16.93 billion
nonzeros. For this input instance, the preprocessing time of Sparta is 2.18 s and the SpGETT
time is 20424.06 s. We also ran SB-TC on the two instances in order to demonstrate the relative
performance of Sparta and SB-TC in extreme settings. On enron with contraction modes {1,3},
SB-TC completed in 4644.81 s, and on chicago_crime with contraction modes {2,3}, SB-TC
completed in 16694.36 s. Here again, we observe that SB-TC is faster than Sparta.

Next, we present the performance of parallel execution of SB-Hmat, SB-TC and Sparta. Fig-
ure 4 shows the relative performance of parallel execution of SB-TC and SB-Hmat with respect
to Sparta on all 85 input instances, for different thread counts. For each of the plots, y-axis
shows the run time of SB-TC, SB-Hmat and Sparta normalized by the run time of Sparta for
all instances. On the x-axis, the instances are arranged in nondecreasing order by the ratio of
the run time of SB-TC to Sparta from left to right. The geometric mean of the ratio of SB-TC
to Sparta (dashed line) and the geometric mean of the ratio of SB-Hmat to Sparta (dot-dashed
line) are also shown in the figure. Lower values on the y-axis for SB-TC and SB-Hmat depict
better performance with respect to Sparta. We observe from the figure that for parallel execution,
SB-TC is consistently faster than Sparta for all instances, for all thread counts. With 16, 32,
48, 64, 80 and 96 threads (Figure 4a–4f), SB-TC is on average 21%, 22%, 22%, 23%, 20%, 21%
faster, respectively than Sparta across all input instances. Over all instances across all thread
counts, SB-TC is on average 21.48% faster than Sparta. SB-TC demonstrates best performance
w.r.t. Sparta for 64 threads (Figure 4d). Furthermore, we observe that across all thread counts,
SB-Hmat is on average faster than Sparta on 53 input instances out of the 85. SB-Hmat is on
average 2.67% faster than Sparta across all input instances for all thread counts. We see from
these figures that SB-TC is consistently faster than the other two approaches in all thread counts.

Last, we study the scalability of parallel execution of SB-TC, SB-Hmat and Sparta with respect
to their respective sequential versions. Figure 5 presents the parallel scaling of SB-TC, SB-Hmat
and Sparta over all the instances. We observe from the plot that all the three methods show
similar parallel scaling, while the absolute run time of SB-TC is on average less than that of
Sparta and SB-Hmat (combining the inference from Figure 3 and Figure 5), since SB-TC is faster
than Sparta and SB-Hmat in sequential execution. This is because the total time is in general
dominated by the multiplication step. Furthermore, the performance of multiplication is limited
by the memory access latency, due to limited data locality particularly in the output tensor.
Note that we run our experiments on a machine having 4 NUMA nodes having 24 cores each.
The overall performance as well as the scalability is also affected by NUMA effects. None of
the methods SB-Hmat, SB-TC, or Sparta implements optimizations for NUMA systems. To give
further insight we note that for the sequential execution, across all input instances, Sparta takes
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(a) #threads = 16
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(b) #threads = 32
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(c) #threads = 48
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(d) #threads = 64
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(e) #threads = 80
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(f) #threads = 96

Figure 4: The run time of SB-TC and SB-Hmat normalized by that of Sparta for parallel execution
with {16, 32, 48, 64, 80, 96} threads. The geometric mean of the ratio of SB-TC to Sparta is
shown with the green dashed line and the geometric mean of the ratio of SB-Hmat to Sparta is
shown with the dot-dashed magenta line.
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Figure 5: Overall scalability of Sparta, SB-Hmat and SB-TC on all the instances. Speedup of
SB-TC, SB-Hmat and Sparta is with respect to their respective sequential run time.

175.08 s on average, SB-Hmat takes 162.64 s on average and SB-TC takes 132.44 s on average.
For parallel execution with 96 threads, across all input instances, Sparta takes 5.66 s, SB-Hmat
takes 5.71 s and SB-TC takes 4.13 s on average.

7 Conclusion

We have investigated two approaches to performing parallel sparse tensor-sparse tensor multi-
plication (SpGETT) on shared memory systems: i) SpGETT via reduction to SpGEMM and ii)
SpGETT natively on the input tensors. We have identified that a hashing scheme is needed in
both approaches for efficiency and proposed SBhash, a parallel dynamic hashing method. We
have used this hashing method to implement SB-Hmat, a state-of-the-art method to compute
SpGETT via reduction to SpGEMM, and have shown through experiments that SB-Hmat is more
efficient than a more readily available approach SB-Smat. We have also used SBhash to propose
SB-TC, an efficient parallel hashing-based method to perform SpGETT natively on the input
tensors. We demonstrate the efficacy of SB-Hmat and SB-TC through a systematic evaluation
and comparison with the existing state-of-the-art parallel method for SpGETT. Overall, SB-TC
obtains about 21% better run time than the current state-of-the art methods on a machine with
96 cores.

The methods SB-Hmat and SB-TC can benefit from preprocessing, in which matrices or
tensors are reordered for better data locality. A suitable reordering method should have a low
overhead and should be amenable to parallelization. Much work remains to be done on algorithms
for such reordering methods.
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