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This article presents a methodology for analyzing the controllability and fault-tolerant

sizing of fixed-wing and hybrid fixed-wing vertical landing and takeoff (FW-VTOL) unmanned

aerial vehicles (UAVs). Building upon previous research focused on multirotor UAVs, the study

introduces a new control authority index, redefined dynamics models, and enhanced control

allocation techniques to address rotor failures and lock-in-place failures of control surfaces. The

methodology considers effector limitations and the unidirectional drag condition for control

surface deflection angles. These advancements are combined to assess the linear controllability

and accomplish fault-tolerant sizing of UAVs. By applying the proposed methodology to a case

study, the linear controllability of fixed-wing and hybrid FW-VTOL UAVs is evaluated in various

failure scenarios. The results demonstrate that the hybrid FW-VTOL concept exhibits higher

fault tolerance capability due to the presence of VTOL rotors that can compensate for control

surface failures. The study emphasizes the importance of oversizing VTOL rotors to ensure

sufficient control authority in double failure scenarios, revising the conventional assumption

that VTOL system sizing primarily relies on takeoff analysis. The proposed advancements

are relevant to future UAV designs intended for fault-tolerant applications such as medical

equipment transport and air taxis.
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Nomenclature

A = state matrix

B = control matrix

Bf = control effectiveness matrix

H = failure matrix

x = state vector

u = virtual control vector

f = rotor thrust vector

K = sizing factors vector

𝑚𝑎 = UAV total mass, kg

𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧 = UAV moments of inertia, kg.m2

𝑝, 𝑞, 𝑟 = roll, pitch, yaw rotational speeds, rad/s

𝑢𝑏, 𝑣𝑏, 𝑤𝑏 = longitudinal, lateral, vertical speeds, m/s

𝑋,𝑌, 𝑍 = longitudinal, lateral, vertical control forces, N

𝐿, 𝑀, 𝑁 = roll, pitch, yaw control moments, N.m

𝜙, 𝜃, 𝜓 = roll, pitch, yaw angles, rad

𝜹 = control input vector

𝜌, 𝜂, 𝜁 = aileron, elevator, rudder deflection angles, rad

𝜏 = propeller thrust setting

Superscripts
′ = failure case

Subscripts

0 = reference flight conditions

I. Introduction
For the past two decades, unmanned aerial vehicles (UAVs), also known as drones, have been intensively developed

to cover a broad spectrum of applications, including: transport, agriculture, emergency response, aerial inspection, and

urbanism, among others [1–5]. To meet these diversifying needs, designers have developed different concepts such as

multirotor, fixed-wing and hybrid fixed-wing vertical takeoff and landing (FW-VTOL) configurations. Many prospective

applications of UAV technologies are safety-critical, including flying ambulances, medical equipment transport, and air

taxis in urban environments and beyond visual lines of sight. Technical failure as the result of an uncontrollable UAV

could be catastrophic if the vehicle collides with humans, aircraft, helicopters, or infrastructures. Therefore, the design
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of such vehicles must be driven by safety considerations in addition to the classical energy efficiency considerations.

Here, safety refers to the ability of a faulty system to maintain control objectives, as the safety of a UAV largely depends

on this control in the event of failure. Hence, the emergence of UAVs for safety-critical applications will depend on the

ability to investigate and compare various design concepts and optimize their sizing for different mission and safety

specifications.

Accordingly, our objective is to develop a new methodology combining a controllability assessment and fault-tolerant

sizing of UAVs to evaluate and explore various designs for safety-critical applications. The article’s scope involves

the design of a fixed-wing and hybrid FW-VTOL UAV with fixed rotor thrust directions. The proposed methodology

provides a framework for further adaptations to other types of propulsion, such as vectoring control or articulated rotor

systems.

In previous research, the authors believe they captured a gap in sizing methodologies for high-reliability multicopters

[6, 7]. To cover this gap, a new conceptual design methodology was introduced [8]. This methodology includes a

systematic reliability calculation and sizing based on failure cases. For this purpose, linear controllability and reliability

analysis methods are linked to an analytical sizing methodology. The controllability analysis and the sizing methodology

are interconnected through the introduction of failure case sizing factors. The sizing process is based on a modern

analytical approach that does not require a database and incorporates multidisciplinary design optimization, enabling

design customization and computational efficiency. However, this methodology is limited to multirotor designs.

The multirotor design methodology introduced in reference [8] needs to be adapted and advanced to other concepts,

such as concepts of fixed-wing and hybrid FW-VTOL. Specifically, the sizing methodology and controllability analysis

must be further advanced. The focus of this article is the development of new linear controllability analysis and

fault-tolerant sizing.

Based on the controllability matrix rank check, the classical controllability theory is limited to linear time-invariant

systems with unconstrained inputs. It does not consider specific characteristics of drone designs, such as unidirectional

rotors and nonlinear dynamics. Several alternative approaches have been developed to address these limitations and

assess the controllability of multirotor and fixed-wing aircraft. Du et al. [9] introduced a method that evaluates the

attainable control set to assess the controllability of linearized multicopter models around hover, considering input

constraints and vehicle weight. Hassan [10] developed a method based on the Lie algebraic rank condition for assessing

the controllability of nonlinear fixed-wing aircraft, but without considering constrained inputs. Other methods such as

null controllability [11, 12], empirical gramian [13], and local strong accessibility [14, 15] offer interesting alternatives

for evaluating the controllability of constrained-input nonlinear systems like multirotor UAVs. However, these methods

have not been adapted and applied to fixed-wing aircraft or hybrid FW-VTOL UAVs. Building upon previous work

[8], this paper extends a linear approach to address the specific challenges posed by constrained inputs and efforts

symmetric around a neutral position governed by even functions, such as control surface drag, within the context of
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hybrid FW-VTOL UAVs. Although the presented study does not delve into the alternative nonlinear approaches, it is

worth exploring their application and adaptation to hybrid FW-VTOL designs in future research.

Fault-tolerant sizing cannot be achieved without control allocation for failure cases. Previous work of the authors [8]

introduced sizing factors to cover the power demand of the propulsion system for failure cases. Yet, the methodology

relied on a pseudo-inverse control allocation approach, which does not allow for systematic handling of constraints

on the flight controls [16]. In addition, it does not accommodate nonlinearities, such as control surface drag, making

it unsuitable for extending to control surface sizing. Alternative control allocation methods based on optimization

overcome these limitations [16, 17]. However, these methods do not provide any degree of freedom in the effectors

sizing to reach the effort demand, as discussed in Section V. Hence, the state-of-the-art lacks a consistent controllability

analysis and fault-tolerant sizing for fixed-wing and FW-VTOL designs.

The present work introduces a new control authority index and an approach for defining UAV dynamics models

and control allocation by addressing rotor and control surface nonlinearities and different failure conditions. These

novelties are combined into a methodology for controllability assessment and fault-tolerant sizing. More specifically, a

linearized UAV model is derived and modified for failure cases. Lock-in-place failures are introduced into the state-space

model and reflected in the controllability matrix. A new control authority index called the extended available control

authority index (XACAI) is proposed to evaluate the linear controllability of the UAV around trimmed states. This index

considers nonlinear factors like control surface drag and applies to loss-of-effectiveness and lock-in-place failures. The

UAV’s trimmed state is calculated with a new control allocation problem formulation addressing effector limitations and

failure cases. The resulting state-space model enables the verification of the controllability matrix rank to complete

the local controllability assessment. The control analysis and effector sizing are interconnected by introducing sizing

factors in the control allocation problem formulation. The effectiveness of the proposed linear controllability analysis

and fault-tolerant sizing methodology is validated and demonstrated with a case study evaluating and comparing two

equivalent fixed-wing and hybrid FW-VTOL UAVs.

This article is organized as follows: the scope of the controllability assessment is discussed in Section II. A linear

flight dynamics model and its adaptation to critical failure cases are introduced in Section III. A new control authority

index, the XACAI, is presented in Section ??. The control re-allocation problem for failure cases is presented in Section

V. The overall methodology for control analysis is described in Section VI and applied to two equivalent fixed-wing and

hybrid FW-VTOL UAVs in Section VII. Section VIII concludes the article.

II. Scope of the controllability assessment
This section aims to discuss the controllability analysis of multirotor, fixed-wing and FW-VTOL UAVs and highlight

the theoretical gap addressed by the introduction of the extended available control authority index (XACAI) in Section

??.
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For safety-critical systems, fault tolerance is defined as the possibility of achieving control objectives in the

presence of faults [18]. Various strategies, including adaptive control, reliable control, and reconfigurable control, can

achieve fault tolerance with or without explicit fault diagnosis [19]. The success of these strategies presupposes the

existence of a solution to the control problem. In this sense, the possibility of finding a controller that satisfies the

control objectives for the faulty UAV is a property of the system, which is called reconfigurability [20]. Inadequate

reconfigurability, for example, insufficient redundancy, prevents effective fault tolerance, regardless of the control

strategy [21]. Reconfigurability can be evaluated through controllability and observability analyses. The present research

focuses on the controllability analysis of UAVs in the presence of one or multiple effector failures. Observability, and

thereby sensor failures, are outside the scope of this study.

The proposed approach, described in Section VI, involves conducting a linear controllability analysis by examining

a linear model of the drone in its trimmed states. It is important to note that the non-controllability of the linear model

does not necessarily imply non-controllability in a nonlinear sense or in practical scenarios. An illustration of this

concept can be seen in the geometric control strategy, which allows the accomplishment of linearly uncontrollable

maneuvers by breaking them down into locally controllable segments [10, 22]. Other applications enable sacrificing yaw

control to achieve specific maneuvers such as emergency landing [23–26]. In the specific case under study, it is crucial

for the control scheme to bring the speeding vehicle to a complete stop and transition to a hover mode before initiating a

controlled descent in the event of a failure occurring during a cruise flight. This procedure necessitates sufficient control

over all virtual control axes, including heave and attitude controls [6]. Therefore, in this study, controllability analysis is

based on the principle that the UAV must have the capability to maintain complete or reduced control over all virtual

control axes, thus preventing any potential catastrophic failures. Consequently, it is essential for the drone to exhibit

linear controllability in the vicinity of the trimmed state after a failure.

The classical controllability theory, which relies on the controllability matrix rank check, deals with linear time-

invariant systems. While it assesses the inherent controllability of linear models and serves as a necessary condition for

linear controllability, it is inadequate for multirotor and fixed-wing designs. This is due to its inability to account for

the limitations imposed by the bounded and unidirectional nature of rotors [27]. To overcome this limitation, Du et al.

[9] expanded upon the positive controllability theory applied to linear autonomous systems introduced by Brammer

[28]. They introduced the concept of ACAI [9], which quantifies the available control capabilities by measuring

the remaining attainable control set, considering factors such as constrained rotor thrusts and vehicle weight. The

controllability of the linear model is assessed by combining the controllability rank check and the ACAI, which serve as

necessary and sufficient conditions [9]. This way, the ACAI provides an effective approach to address the controllability

challenges associated with multirotor designs subject to constrained control efforts. However, fixed-wing and FW-VTOL

designs involve additional nonlinearities in control efforts during operation and under specific failure conditions, such

as control surface jamming and control surface drag, as outlined in Section III and ?? respectively. When a control
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surface jamming occurs, it can be considered as the introduction of a new disturbance while fixing the associated

control variable. Furthermore, The surface drag results in symmetric efforts around a neutral position governed by

even functions, leading to a nonlinear control effectiveness matrix incompatible with ACAI computation. Therefore,

a new approach is required to address these challenges. In this study, the XACAI is introduced to extend the ACAI

calculations to a nonlinear control effectiveness matrix and is combined with control allocation optimization to address

the introduction of disturbances caused by failures. The XACAI calculations are detailed in Section ??, while the

controllability conditions and their applicability are summarized in Table 1.

Table 1 Controllability conditions of linear time-invariant models and their applicability.

Assumptions on control inputs
Necessary and sufficient conditions
for linear controllability

Examples of applications

Unconstrained linear control inputs Controllability matrix is full rank • Multirotor UAVs with pitch-controlled propellers

Bounded unidirectional control inputs Controllability matrix is full rank
and ACAI is stricly positive

• Multirotor UAVs with fixed propellers
• Multirotor UAVs with pitch-controlled propellers

Bounded unidirectional control inputs
and efforts governed by even functions
(nonlinear control effectiveness matrix)

Controllability matrix is full rank
and XACAI is strictly positive

• Fixed-wing and FW-VTOL UAVs
• Multirotor UAVs with fixed propellers
• Multirotor UAVs with pitch-controlled propellers

III. UAV dynamics model
This section introduces the UAV dynamics state space model linearized and reformulated to represent rotor and

control surface loss of effectiveness and lock-in-place failures. The dynamics model is illutrated with a FW-VTOL UAV

concept.

A. Non-linear state-space model

The UAV model is obtained following a standard approach based on Newton’s second law of motion. The rotation

speed vector 𝛀 = [𝑝 𝑞 𝑟]𝑇 and the translation speed vector V = [𝑢𝑏 𝑣𝑏 𝑤𝑏]𝑇 are expressed in the UAV body

frame of reference. Deriving the dynamic equations in an inertial frame of reference provides the following dynamic

model: 
𝑚𝑎 ( ¤V +𝛀 × V) = F

I. ¤𝛀 +𝛀 × I.𝛀 = M
(1)

where 𝑚𝑎 denotes the mass of the UAV and I denotes the inertia matrix. The external forces F [N] and external moments

M [N.m] are due to the propulsive, aerodynamic and gravitational efforts acting on the UAV. The external efforts are

either control or perturbation efforts. The propulsion system and the control surfaces generate the control efforts. The

perturbation efforts come from the gravity effect and the aerodynamics of fixed surfaces (e.g., fuselage drag). The
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external forces and moments are divided accordingly:


F

M

 =

Fu

Mu

 +

Fpert

Mpert

 , (2)

where subscripts .u and .pert refer to the control efforts and perturbation efforts, respectively. The force and moment

components of the control efforts are denoted as 𝑋 , 𝑌 , 𝑍 and 𝐿, 𝑀 , 𝑁 , respectively, and are represented by the virtual

control vector u ∈ R6:

u = [𝑋 𝑌 𝑍 𝐿 𝑀 𝑁]𝑇 (3)

The virtual control vector components are functions of the control effector states and control effectiveness matrix

Bf ∈ R6×𝑚, with 𝑚 being the number of effectors, as follows:

u = Bf𝜹, (4)

The control effectiveness matrix, which reflects the configuration and geometry of the UAV design, is further developed

in Section ??. The control input vector 𝜹 ∈ R𝑚 in Equation 4 contains the effectors’ inputs such as the propeller thrust

settings 𝜏 ∈ [0, 1] and the deflection angles [rad] of the elevators (𝜂), ailerons (𝜌), and rudders (𝜁) [29]:

𝜹 = [𝜌1, · · · , 𝜌𝑖 , 𝜂1, · · · , 𝜂 𝑗 , 𝜁1, · · · , 𝜁𝑘 , 𝜏1, · · · , 𝜏𝑙]𝑇 (5)

The detailed scalar equations of motions, derived from the above equalities, can be found in VIII. The motion variables

and control notations introduced above are visually summarized in Figure 1, where 𝚽 = [𝜙 𝜃 𝜓]𝑇 represents the

Euler angles (i.e., roll, pitch and yaw).

B. Linearized state-space model

The equations of motion are linearized using the small-disturbance theory applied to a reference flight condition.

For example, the longitudinal speed becomes 𝑢𝑏 = 𝑢𝑏0 + Δ𝑢𝑏, where Δ represents a deviation from the referenced value.

For simplicity, the flight condition of reference consists of a steady, straight and level flight, which implies:

𝑣𝑏0 = 𝑤𝑏0 = 𝑝0 = 𝑞0 = 𝑟0 = 𝜙0 = 𝜓0 = 0. (6)
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𝜏2

𝜏3

𝜏1

𝜏4

𝑢𝑏, 𝑋

𝑣𝑏 , 𝑌

𝜙, 𝑝, 𝐿

𝜃, 𝑞,𝑀𝜌1

𝜂2𝜁

𝑤𝑏 , 𝑍
𝜓, 𝑟, 𝑁

𝜏𝑝

𝜂1

𝜌2

Fig. 1 Motion variables and control notations of a FW-VTOL UAV concept.

The equations of motion are reduced to a linear form by applying a first-order approximation, which yields the following

flight dynamics model:

Δ¤x = AΔx + BΔu (7)

A = 𝑓 (V0,𝛀0,𝚽0, 𝜹0) (8)

B =


Jf

−1

03×6

 , Jf = diag
(
𝑚𝑎, 𝑚𝑎, 𝑚𝑎, 𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧

)
(9)

where Δx = [Δ𝑢𝑏 Δ𝑣𝑏 Δ𝑤𝑏 Δ𝑝 Δ𝑞 Δ𝑟 Δ𝜙 Δ𝜃 Δ𝜓]𝑇 ∈ R9 is the state vector, A ∈ R9×9 is the state

matrix, and B ∈ R9×6 is the control matrix.

The state matrix reflects the UAV’s configuration and aerodynamics around the reference flight conditions. For a
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perfectly trimmed fixed-wing UAV in symmetrical level flight, A is given by [29]:

A =



¤𝑋𝑢 0 ¤𝑋𝑤 0 0 0 0 −𝑔 cos 𝜃0 0

0 ¤𝑌𝑣 0 ¤𝑌𝑝 0 ¤𝑌𝑟 − 𝑢𝑏0 𝑔 cos 𝜃0 0 0

¤𝑍𝑢 0 ¤𝑍𝑤 0 ¤𝑍𝑞 + 𝑢𝑏0 0 0 −𝑔 sin 𝜃0 0

0 ¤𝐿𝑣 0 ¤𝐿𝑝 0 ¤𝐿𝑟 0 0 0

¤𝑀𝑢 0 ¤𝑀𝑤 0 ¤𝑀𝑞 0 0 −𝑔 ¤𝑀𝑤 sin 𝜃0 0

0 ¤𝑁𝑣 0 ¤𝑁𝑝 0 ¤𝑁𝑟 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0



(10)

The parameters ¤𝑋 , ¤𝑌 , ¤𝑍 , ¤𝐿, ¤𝑀 and ¤𝑁 are aerodynamic stability derivatives [30]. Their expressions can be found in [29].

The detailed set of linearized scalar equations can be found in VIII.

The deviation of the virtual control vector in Equation 7, Δu, is further developed to include the contributions of the

effectors:

Δu = u − u0 = Bf𝜹 − u0, (11)

where u0 is obtained from the reference equilibrium condition and is representative of the perturbation efforts to be

compensated. Finally, the state-space model is re-arranged as follows:

Δ¤x = AΔx + B (Bf𝜹 − u0)︸       ︷︷       ︸
Δu

(12)

C. Failure cases

This subsection introduces a new flight dynamics model to address failure cases. The considered effectors (control

surfaces and propellers) have two distinct failure modes: loss of effectiveness and lock-in-place. Both cases are discussed

below.

Loss of effectiveness

A loss of effectiveness is characterized by a reduction of the effectiveness of one or more effectors with respect to a
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nominal value. Practically, one or more effectors achieve a fraction of or no control command (i.e., complete failure).

This failure mode is modeled by introducing a failure matrix, as described in [8, 9]:

H = diag (𝜂1, · · · , 𝜂𝑚) , (13)

where the parameter 𝜂𝑖 ∈ [0, 1] accounts for the loss of effectiveness of the 𝑖-th effector. A complete failure is

characterized by 𝜂𝑖 = 0. The control effectiveness matrix from Equation 4 becomes:

B′
f = BfH, (14)

with superscript ′ representing the failure case.

Lock-in-place

Following an actuator’s failure, for example, through a run-away or jamming, a control surface may be stuck in a fixed

position that is usually different from zero. When a lock-in-place failure occurs, the control authority over the jammed

surface is lost. Additionally, unwanted aerodynamic efforts, which have to be balanced by the remaining effectors, are

introduced. This leads to a revision of the state-space model.

The state-space model is linearized about the same initial conditions (e.g., steady level flight) but with different reference

inputs representing the new trimmed state. As for the loss of effectiveness, the contributions of the failed surfaces in the

virtual control vector are set to zero (apply 𝜂𝑖 = 0 for each jammed surface in Equation 13 to define H). In addition, the

efforts of the jammed surfaces are shifted to the perturbation efforts. In other words, the efforts of the jammed effectors

are now part of the effort demand that must be satisfied by the remaining controls. This translates to:

u′ = B′
f𝜹 (15)

u′
0 = u0 − Bf (Im − H)𝜹′0, (16)

where Im ∈ R𝑚 is the identity matrix. The second term in Equation 16 represents the additional efforts to be compensated.

The vector 𝜹′0 contains the control inputs derived from the reference equilibrium condition, which are revised to reflect

the modified trimmed state. Its full determination, the control allocation, is covered in Section V. Finally, the state

matrix is updated to reflect the new reference condition:

A′ = 𝑓 (V0,𝛀0,𝚽0, 𝜹
′
0) = A + A𝛿′0

, (17)

where A𝛿′0
represents the couplings introduced by the non-zero angles of the control surfaces in the trimmed state. For a
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steady, straight, and level reference flight, A𝛿′0
is expressed as follows:

A𝛿′0
=

2
𝑢𝑏0

[
BBf𝜹

′
0 09×8

]
(18)

The demonstration of Equation (18) is provided in VIII.

IV. Controllability assessment
This section synthesizes the calculation of the ACAI before proposing a new index encompassing VTOL, FW, and

hybrid FW-VTOL designs.

A. Available Control Authority Index (ACAI)

The ACAI computation introduced by Du et al. [9] is based on a linear state-space model of multirotor drones in

hovering conditions, such as:

¤x = Ax + B(u − u0) (19)

where x is the state vector, A is the state matrix, B represents the control matrix, u = [𝑍 𝐿 𝑀 𝑁]𝑇 ∈ R4 represents

the virtual control vector, and u0 represents the control vector derived at the reference state x0.

The main component of the control authority is the previously defined virtual control vector u, which results from the

rotor thrust vector f as follows [9]:

u = Bff (20)

where Bf ∈ R4×𝑚 is the control effectiveness matrix, f ∈ R𝑚 is the rotor thrust vector, and 𝑚 is the number of rotors.

Each rotor provides a purely positive and limited thrust, leading to the following constraint set for the rotor thrust vector

[9]:

F =
{
f
��f = [ 𝑓1, · · · , 𝑓𝑚]𝑇 , 0 ≤ 𝑓𝑖 ≤ 𝑓𝑚𝑎𝑥,𝑖

}
(21)

where 𝑓𝑖 is the thrust of 𝑖-th rotor and 𝑓𝑚𝑎𝑥,𝑖 is the maximum thrust [N] of the 𝑖-th rotor. Equations (21) and (22)

provide the virtual control vector constraint set [9]:

Ω = {u|u = Bff, f ∈ F } (22)
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The ACAI quantifies the maximum effort achievable in all control directions (specifically, 𝑍 , 𝐿, 𝑀 , and 𝑁), taking into

account the impact of constrained rotor thrusts and the influence of a disturbance, such as the weight of the vehicle.

More specifically, if u0 is contained within Ω, then the ACAI is the radius of the largest enclosed four-dimensional

sphere centered at u0 in Ω. If u0 is not contained within Ω, then the ACAI is the radius of the largest enclosed sphere

centered at u0 in the complementary set of Ω, denoted as Ω𝑐 [9]:

𝜌 (u0, 𝜕Ω)
Δ
=


min{| |u0 − u| | : u0 ∈ Ω, u ∈ 𝜕Ω}

−min{| |u0 − u| | : u0 ∈ Ω𝑐, u ∈ 𝜕Ω}
(23)

where 𝜕Ω is the boundary of Ω.

As demonstrated in [31], 𝜕Ω is a polytope of parallel hyper-plane segments. In an 𝑛-dimensional space, these hyper-plane

segments have a dimension of 𝑛 − 1. The ACAI is based on calculating the minimum distance between each parallel

hyper-plane segment and projecting u0 on the axis of each of these minimum distances. Evaluating whether each

projection of u0 lies between the hyper-plane segments or not determines if u0 is contained within Ω. We define the

hyper-plane segment matrices Bf1,k ∈ R𝑛×(𝑛−1) with 𝑛 as the dimension of the virtual control vector (here, 𝑛 = 4) by

isolating the column vectors of the set of 𝑛 − 1 effectors defining the 𝑘-th hyper-plane segments in Bf . In addition,

Bf2,k ∈ R𝑛×(𝑚−𝑛+1) represents the complementary matrix of Bf1,k. It comprises the column vectors of Bf , which are

excluded from Bf1,k. Accordingly, f and Bf are partitioned as follows:

u = Bff =
[
Bf1,k Bf2,k

] 
f1,k

f2,k

 = Bf1,kf1,k + Bf2,kf2,k, (24)

where f1,k ∈ R𝑛−1 and f2,k ∈ R𝑚−𝑛+1 are the corresponding partitions of f. 𝑘 = [1, · · · , 𝑝] indexes the sets of

hyper-plane segments of 𝛿Ω, where 𝑝 is the number of combinations of 𝑛 − 1 effectors out of 𝑚. The axis of the

minimum distance between the 𝑘-th parallel hyper-plane segments is defined by a unit vector, 𝝃𝑘 ∈ R𝑛, orthogonal to

these segments. By definition, 𝝃𝑘 belongs to the null space of the column space of Bf1, k. Hence, 𝝃𝑘 satisfies [9]:

Bf1,k
𝑇𝝃𝑘 = 0 and | |𝝃𝑘 | | = 1 (25)

The following ACAI calculation, initially introduced by Du et al. [9], is modified for bidirectional effectors and

simplicity. The hyperplane-segment center is expressed as:

Fc = Bf [𝑐1 · · · 𝑐𝑚]𝑇 (26)
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With 𝑐𝑖 being the center of the i-th control variable’s range:

𝑐𝑖 =
𝑓𝑚𝑎𝑥,𝑖 + 𝑓𝑚𝑖𝑛,𝑖

2
(27)

where 𝑓𝑚𝑎𝑥,𝑖 and 𝑓𝑚𝑖𝑛,𝑖 are the maximum and minimum thrust [N] of the i-th rotor, respectively. The distance between

the 𝑘-th hyper-plane segments and their center of symmetry Fc is obtained by fixing the values of f2,k at their extrema

and allowing the remaining 𝑛 − 1 elements of f1,k to vary between their limits [31]. This distance is obtained as [9]:

𝑑 =
1
2
��𝝃𝑘𝑇Bf2,k

�� |𝚫𝑘 | (28)

The vector of the effector magnitudes is defined as:

𝚫𝑘 = [𝛼𝑘1 · · · 𝛼𝑘𝑝 ] (29)

where 𝛼𝑘𝑖 represents the magnitude of the 𝑖-th effector of the 𝑘-th hyperplane-segment set: 𝛼𝑘𝑖 = 𝑓𝑚𝑎𝑥,𝑘𝑖 − 𝑓𝑚𝑖𝑛,𝑘𝑖 .

To evaluate whether u0 resides between or outside the hyperplane segments, we compare distances as follows:

𝑑𝑘 =
1
2
��𝝃𝑘𝑇Bf2, k

�� |𝚫𝑘 |︸                ︷︷                ︸
distance between 𝑘-th

hyperplane-segment and Fc

−
��𝝃𝒌𝑇 (Fc − u0)

��︸             ︷︷             ︸
distance between

u0 and Fc

(30)

According to Equation (23), the ACAI is given by:

𝜌(u0, 𝜕Ω) = min (𝑑1, · · · , 𝑑𝑝) (31)

Finally, as demonstrated by Du et al. [9], a configuration is locally controllable in all directions of u (i.e., 𝑍 , 𝐿, 𝑀 , and

𝑁) only if

C(A,B) has full rank and 𝜌 (u0, 𝜕Ω) > 0 (32)

where C(A,B) is the system’s controllability matrix.

B. Hybrid FW-VTOL UAV Control Effectiveness Model

In the case of hybrid FW-VTOL UAVs, we assume level flight under steady conditions. This implies negligible

angles of attack, bank angle, side-slip angle, and a constant air velocity along the flight direction. Control along the

y-axis of the UAV is primarily achieved through fixed surfaces such as the wing and horizontal stabilizer. Moreover,
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there exists a coupling between the y-axis and the other axes, enabling control of the UAV’s vertical motion by acting on

these other axes. Therefore, we consider a four-dimensional virtual control vector, denoted as u = [𝑋 𝐿 𝑀 𝑁]𝑇 .

The effector control vector, represented as 𝜹 =
[
𝜌1 𝜌2 𝜂1 𝜂2 𝜁 𝜏𝑝 𝜏1 𝜏2 𝜏3 𝜏4

]𝑇 , corresponds to the

configuration illustrated in Figure 1. For consistency with the notations introduced in Section 2, the effector control

vector 𝜹 replaces the rotor thrust vector notation f used in the ACAI computation presented in Section IV.A.

Drag forces are essential aerodynamic components that introduce cross-coupling effects between control axes in the

control surfaces. The drag forces must therefore be included in the assessment of control authority, specifically in the

calculation of the control effectiveness matrix. These forces exhibit symmetric behavior governed by even functions,

which can be approximated as absolute functions. As a result, the control effectiveness equations become highly

nonlinear:
𝑋 = ¤𝑋𝜌1 |𝜌1 | + ¤𝑋𝜌2 |𝜌2 | + ¤𝑋𝜂1 |𝜂1 | + ¤𝑋𝜂2 |𝜂2 | + ¤𝑋𝜁 |𝜁 | + ¤𝑋𝜏𝑝𝜏𝑝

𝐿 = ¤𝐿𝜌1𝜌1 + ¤𝐿𝜌2𝜌2 + ¤𝐿𝜂1𝜂1 + ¤𝐿𝜂2𝜂2 + ¤𝐿𝜁 𝜁 + ¤𝐿𝜏𝑝𝜏𝑝 + ¤𝐿𝜏1𝜏1 + ¤𝐿𝜏2𝜏2 + ¤𝐿𝜏3𝜏3 + ¤𝐿𝜏4𝜏4

𝑀 = ¤𝑀𝜌1𝜌1 + ¤𝑀𝜌2𝜌2 + ¤𝑀𝜂1𝜂1 + ¤𝑀𝜂2𝜂2 + ¤𝑀𝜁 |𝜁 | + ¤𝑀𝜏1𝜏1 + ¤𝑀𝜏2𝜏2 + ¤𝑀𝜏3𝜏3 + ¤𝑀𝜏4𝜏4

𝑁 = ¤𝑁𝜌1 |𝜌1 | + ¤𝑁𝜌2 |𝜌2 | + ¤𝑁𝜂1 |𝜂1 | + ¤𝑁𝜂2 |𝜂2 | + ¤𝑁𝜁 𝜁 + ¤𝑁𝜏1𝜏1 + ¤𝑁𝜏2𝜏2 + ¤𝑁𝜏3𝜏3 + ¤𝑁𝜏4𝜏4

(33)

where ¤𝑋𝑖 , ¤𝐿𝑖 , ¤𝑀𝑖 , ¤𝑁𝑖 [N] are the control derivatives of the 𝑖-th effector on each axis. The control derivatives for the 𝑖-th

propeller result from its maximum thrust 𝑓𝑚𝑎𝑥 and positions 𝑥𝜏𝑖 , 𝑦𝜏𝑖 along the x-axis and y-axis, respectively:

¤𝐿𝜏𝑖 = 𝐶𝑇 𝜌𝑎𝑖𝑟𝑛
2
𝑚𝑎𝑥𝐷

4𝑦𝜏𝑖 = 𝑓𝑚𝑎𝑥𝑦𝜏𝑖 (34)

¤𝑀𝜏𝑖 = 𝐶𝑇 𝜌𝑎𝑖𝑟𝑛
2
𝑚𝑎𝑥𝐷

4𝑥𝜏𝑖 = 𝑓𝑚𝑎𝑥𝑥𝜏𝑖 (35)

¤𝑁𝜏𝑖 = 𝜔𝜏𝑖𝐶𝑄𝜌𝑎𝑖𝑟𝑛
2
𝑚𝑎𝑥𝐷

5 (36)

where 𝜌𝑎𝑖𝑟 [kg/m3] is the air density, 𝑛𝑚𝑎𝑥 is the propeller speed for maximum thrust, 𝐷 is the propeller diameter, and

𝐶𝑇 [-] and 𝐶𝑄 [-] are the thrust and torque coefficients, respectively. The sense of rotation of the propeller is represented

by 𝜔𝜏𝑝 , which is equal to 1 for a clockwise rotation and -1 for a counterclockwise rotation. The control derivatives of

the control surfaces reflect the aerodynamic effects due to their deflections. For example, on the x-axis:

¤𝑋𝑖 =
1
2
𝜌𝑎𝑖𝑟𝑣

2
𝑎𝑖𝑟𝑆𝑖𝐶𝑥,𝑖 (37)

where 𝑣𝑎𝑖𝑟 [m/s] is the relative air velocity, 𝑆𝑖 [m2] the 𝑖-th control surface area, and 𝐶𝑥,𝑖 [-] is the aerodynamic

coefficient specific to the 𝑖-th control surface geometry, profile, kinematics, and x-axis.

The presence of non-linearities, particularly the absolute functions in Equation (33), prevents the calculation of

ACAI as presented in Section IV.A. To address this limitation, the following section introduces a new index to handle
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these non-linearities.

C. Extended Available Control Authority Index (XACAI)

The proposed XACAI extends the computation of ACAI to accommodate nonlinear control effectiveness matrices,

including the one resulting from Equation (33).

Step 1: Calculate the unit vectors 𝝃 𝑓 𝑤,𝑘 .

To begin, the nonlinear control effectiveness matrix is linearized to calculate the unit vectors, 𝝃 𝑓 𝑤,𝑘 , which are orthogonal

to the hyper-plane segments forming the boundary of the attainable control set:

Bfw,lin =



¤𝑋𝜌1
¤𝑋𝜌2

¤𝑋𝜂1
¤𝑋𝜂2

¤𝑋𝜁
¤𝑋𝜏𝑝 0 0 0 0

¤𝐿𝜌1
¤𝐿𝜌2

¤𝐿𝜂1
¤𝐿𝜂2

¤𝐿𝜁
¤𝐿𝜏𝑝

¤𝐿𝜏1
¤𝐿𝜏2

¤𝐿𝜏3
¤𝐿𝜏4

¤𝑀𝜌1
¤𝑀𝜌2

¤𝑀𝜂1
¤𝑀𝜂2

¤𝑀𝜁 0 ¤𝑀𝜏1
¤𝑀𝜏2

¤𝑀𝜏3
¤𝑀𝜏4

¤𝑁𝜌1
¤𝑁𝜌2

¤𝑁𝜂1
¤𝑁𝜂2

¤𝑁𝜁 0 ¤𝑁𝜏1
¤𝑁𝜏2

¤𝑁𝜏3
¤𝑁𝜏4


(38)

We define each hyper-plane segment matrix, Bfw1,lin,k ∈ R𝑛×(𝑛−1) , by isolating the column vectors of the effectors of

the k-th hyper-plane segments in Bfw,lin, and 𝝃 𝑓 𝑤,𝑘 is obtained by applying Bfw1,lin,k to Equation (25):

Bfw1,lin,k
𝑇𝝃 𝑓 𝑤,𝑘 = 0 and | |𝝃 𝑓 𝑤,𝑘 | | = 1 (39)

Step 2: Partition the control effectiveness matrix between linear and absolute control inputs.

ACAI calculation based on a linearized control effectiveness matrix such as Equation (38) would incorrectly assume

that the drag forces can become propulsive and lead to an incorrect controllability assessment. Therefore, the nonlinear

control effectiveness matrix Bfw is divided into linear matrices relative to linear and nonlinear control input vectors:

u =

[
Bfw,l Bfw,nl

] 
𝜹

|𝜹 |

 = Bfw,l𝜹 + Bfw,nl |𝜹 | (40)
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With Bfw,l, the linear-term matrix, expressed as follows:

Bfw,l =



0 0 0 0 0 ¤𝑋𝜏𝑝 0 0 0 0

¤𝐿𝜌1
¤𝐿𝜌2

¤𝐿𝜂1
¤𝐿𝜂2

¤𝐿𝜁
¤𝐿𝜏𝑝

¤𝐿𝜏1
¤𝐿𝜏2

¤𝐿𝜏3
¤𝐿𝜏4

¤𝑀𝜌1
¤𝑀𝜌2

¤𝑀𝜂1
¤𝑀𝜂2 0 0 ¤𝑀𝜏1

¤𝑀𝜏2
¤𝑀𝜏3

¤𝑀𝜏4

0 0 0 0 ¤𝑁𝜁 0 ¤𝑁𝜏1
¤𝑁𝜏2

¤𝑁𝜏3
¤𝑁𝜏4


(41)

And Bfw,nl the nonlinear term matrix:

Bfw,nl =



¤𝑋𝜌1
¤𝑋𝜌2

¤𝑋𝜂1
¤𝑋𝜂2

¤𝑋𝜁 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 ¤𝑀𝜁 0 0 0 0 0

¤𝑁𝜌1
¤𝑁𝜌2

¤𝑁𝜂1
¤𝑁𝜂2 0 0 0 0 0 0


(42)

The subsequent partitions
[
Bfw1,l,k Bfw2,l,k

]
and

[
Bfw1,nl,k Bfw2,nl,k

]
are obtained by isolating the column vectors

of the set of effectors of the k-th hyper-plane segments in Bfw,l and Bfw,nl respectively.

Step 3: Compute the distances 𝑑𝑘 from the linear and absolute terms.

𝚫𝑘 , the effector magnitude vector applied to Bfw2,l,k, is provided by Equation (29). The effector magnitude vector of

Bfw2,nl,k, 𝚫𝑘,𝑛𝑙 , is obtained by applying the absolute function to 𝛿𝑖 to determine 𝑓𝑚𝑖𝑛,𝑖 and 𝑓𝑚𝑎𝑥,𝑖 in Equation (27)

before applying Equation (29). The minimum distance between the hyper-plane segment and u0 is then expressed as

follows:
𝑑 𝑓 𝑤,𝑘 =

1
2

(��𝝃 𝑓 𝑤,𝑘
𝑇Bfw2,l,k

�� |𝚫𝑘 | +
��𝝃 𝑓 𝑤,𝑘

𝑇Bfw2,nl,k
�� ��𝚫𝑘,𝑛𝑙

��)
−
��𝝃 𝑓 𝑤,𝑘

𝑇 (Fc − u0)
�� (43)

Finally, equations (31) and (32) are applied to assess the controllability of the UAV.

The controllability in failure conditions is assessed by applying the failure matrix H to the control effectiveness

matrices defined above, and replacing u0 by u′
0 as per Equation (16). In addition, the rank check of the controllability

matrix is verified with the updated state matrix A′ from Equation (17).

V. Effector sizing for failure cases
Failure case sizing aims to size the control effectors such that the UAV will have sufficient control authority following

any failure assessed as controllable. This sizing is achieved with sizing factors, as per previous work [8]. Therefore, this
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section introduces the control allocation problem and a method to derive sizing factors associated with the failure cases.

A. Control allocation problem formulation

Consider the system defined in Equation 12. Control allocation aims to determine a control input vector 𝜹 to achieve

a desired virtual control effort u:

Bf𝜹 = u (44)

For redundant systems, Equation 44 is generally underdetermined, and an infinite number of vectors 𝜹 can be the

solution, assuming the control allocation is feasible. A common way to deal with the non-uniqueness of solutions is to

introduce a secondary objective, namely to minimize the energy cost of control allocation:

min
𝜹

𝐽 = | |𝜹 | |

s.t. Bf𝜹 = u,
(45)

where | |.| | is the 𝑙2-norm. This formulation admits an explicit solution given by the Moore-Penrose pseudo-inverse [16]:

𝜹 = B+
f u, with B+

f = Bf
𝑇 (BfBf

𝑇 )−1 (46)

However, the above solution does not account for constraints on the effectors’ inputs. Consequently, the solution

might be physically unfeasible. In addition, the pseudo-inverse method does not handle non-linearities in the control

effectivenesses, as introduced in Section IV.B.

Among the alternative allocation methods, the optimization-based approaches allow for more complex problems to be

solved, including constraints and non-linearities [16]. We propose to address the control allocation problem using the

mixed optimization formulation, which consists of combining the allocation objective and energy objective as follows

[17]:
min
𝜹

𝐽 = | |Bf𝜹 − u| |2 + 𝜆 | |𝜹 | |2

s.t. 𝜹𝒎𝒊𝒏 ≤ 𝜹 ≤ 𝜹𝒎𝒂𝒙,

(47)

where 𝜆 ∈ [0, +∞] represents the priority of the allocation objective (𝜆 = 0) over the energy objective (𝜆 = +∞) and is

usually chosen close to zero.

Finally, the problem formulation is combined with Equation 39 to include the non-linearities in the effectors’ controls:

min
𝜹

𝐽 = | |Bf,l𝜹 + Bf,nl |𝜹 | − u| |2 + 𝜆 | |𝜹 | |2

s.t. 𝜹𝒎𝒊𝒏 ≤ 𝜹 ≤ 𝜹𝒎𝒂𝒙,

(48)
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B. Proposed sizing control allocation

The control allocation problem introduced above aims at finding the optimal control inputs to achieve a virtual

effort at the UAV level, given a pre-defined design of the control effectors. However, there is no guarantee that an

exact solution to the allocation objective (Bf𝜹 = u) exists. Indeed, the set of attainable virtual efforts u is limited by

the effectors’ design, reflected by the control effectiveness matrix and the saturation constraints. In particular, the

unfeasibility of control allocation in the presence of effector failures is a direct consequence of poorly sized controls. To

address this issue, we propose a new formulation of the problem described in 47 that enables a fault-tolerant sizing of

the effectors while solving the control allocation problem.

Consider a predetermined sizing of the control effectors obtained by considering normal operations only. The initial

sizing, such as the rudder area and propeller diameter, is not within the scope of this paper and is typically derived

from effort specifications (e.g., rudder hinge moment, propeller thrust) or empirical data. The proposed methodology

introduces sizing factors, which are multiplier factors applied to the specifications of the effectors, to incorporate failure

scenarios within a resizing process [8]. Specifically, for a given failure case, a sizing factor represents an increase in the

effectiveness of an effector relative to its initial sizing:

B̃′
f = B′

fK = BfHK (49)

K = diag(𝑘1, · · · , 𝑘𝑚) ∈ [1, +∞]𝑚 (50)

where Bf is the control effectiveness matrix obtained from initial sizing, B̃′
f is the revised control effectiveness matrix,

H is the failure matrix representative of the failure case, 𝑘𝑖 is the sizing factor applied to the 𝑖-th effector, and K is the

sizing factor vector. The effectiveness of an effector is directly related to its sizing, as shown in Equation (37). For

instance, doubling the surface area of an aileron leads to a doubling of its effectiveness (𝑘𝑖 = 2). Similarly, doubling the

maximum thrust of a rotor results in a twofold increase in its effectiveness.

The sizing factors must ensure that the allocation objective is achievable and that the resized system preserves a certain

level of control authority. The preservation of control authority can be expressed by the following inequality:

𝜌(u′
0, 𝜕Ω̃

′) ≥ 𝛼𝜌(u0, 𝜕Ω), (51)

where 𝜌(u′
0, 𝜕Ω̃

′) represents the control authority index, specifically the XACAI, of the fault-tolerant sizing in the

presence of failures. The required control authority can be alleviated in cases of failure based on the probability of

occurrence. In this context, the parameter 𝛼 ∈ [0, 1] quantifies the acceptable reduction in control authority under

failure compared to the initial sizing during normal operating conditions.

The sizing factor vector and the control authority requirement are added to the control allocation problem expressed by
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Equation (47), which leads to the following formulation:

min
𝜹,K

𝐽 = | |BfHK𝜹 − u| |2︸             ︷︷             ︸
allocation
objective

+𝜆 | |K𝜹 | |2︸  ︷︷  ︸
energy

objective

+𝜖 | |K − Im | |2︸       ︷︷       ︸
sizing

objective

s.t. 𝜹𝒎𝒊𝒏 ≤ 𝜹 ≤ 𝜹𝒎𝒂𝒙,

K ∈ [1, +∞]𝑚,

𝜌(u′
0, 𝜕Ω̃

′) ≥ 𝛼𝜌(u0, 𝜕Ω),

(52)

where the last term in the function 𝐽 represents the sizing minimization objective to minimize deviations from the initial

sizing (K = Im). Additional constraints can be imposed on the sizing factor vector, for example, to disable resizing of a

specific effector or to restrict its oversizing. The parameters 𝜆 and 𝜖 are chosen to prioritize either allocation, energy, or

sizing objectives. In practice, 𝜆 ≪ 𝜖 ≪ 1. Finally, the allocation objective is to maintain the equilibrium condition, that

is u = u′
0.

The nonlinear least-square problem described above can be solved using various optimization methods. This study

utilizes a trust region algorithm [32] implemented in the Python library SciPy [33]. To ensure the robustness of the

results, a multi-start strategy was adopted.

Finally, resolving this problem for all failure cases provides not only the trimmed positions of the effectors but also the

maximum sizing factors vector Kmax ∈ [1, +∞]𝑚

Kmax =
[
max(𝑘1,1, · · · , 𝑘1, 𝑝), · · · ,max(𝑘𝑚,1, · · · , 𝑘𝑚,𝑝))

]
(53)

=
[
𝑘1,𝑚𝑎𝑥 , · · · , 𝑘𝑚,𝑚𝑎𝑥

]
, (54)

where 𝑘𝑖, 𝑗 is the optimal sizing factor for effector 𝑖 ∈ [1, 𝑚] and failure case 𝑗 ∈ [1, 𝑝], obtained by solving Equation

52. 𝑘𝑖,𝑚𝑎𝑥 is the maximum sizing factor for control effector 𝑖, considering all possible failures. Applying 𝐾𝑚𝑎𝑥 to the

initial effectors’ sizing leads to a new design that is robust to failures.

VI. Controllability assessment and fault-tolerant sizing methodology
Figure 2 represents the overall methodology for a systematic local controllability assessment and fault-tolerant

sizing of UAVs under effector failures, using the extended design structure matrix (XDSM) notation [34]. Generic

processes are depicted as green boxes, while parallelograms represent data inputs and outputs. Data connections are

represented by vertical lines for inputs and horizontal lines for outputs. Thin black arrows indicate process connections.

Stacked boxes indicate multiple executions corresponding to each failure case. The diagram shows a six-step procedure:

concept definition, sizing optimization, XACAI calculation, control allocation, model revision for failure cases, and
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rank check of the controllability matrix. The paper’s scope is limited to the XACAI calculation, control allocation,

model revision, and rank check.
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Fig. 2 Diagram of the proposed methodology using the extended design structure matrix (XDSM) notation [34].

The methodology starts by defining a concept of operation, which describes the characteristics of the unmanned

aerial system from a user’s perspective [35]. From the concept of operation, one or several candidate configurations of
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UAVs are proposed, along with design specifications and failure case definitions. Specifications include performance

requirements and technology assumptions to assist in the design process. Also included in the specifications is a

parametric state-space model representative of the UAV configuration. From the specifications, the UAV is optimally

sized. A methodology for the efficient sizing and optimization of multirotor drones is presented by the authors in

[36, 37] and extended to fixed-wing and hybrid configurations in [38]. By effectively sizing the UAV, this process

provides actual values representative of the design and flight conditions for the state-space model. In parallel, the

controllability assessment for failure cases is initiated. The XACAI presented in Section IV.C is calculated for each

failure case with non-restrictive effectiveness values for the effectors. This enables the identification of potentially

controllable failure cases before the initiation of a fault-tolerant sizing. The actual sizing of the effectors is achieved

via the sizing control allocation presented in Section V.B. The process takes the state-space model provided by the

sizing optimization as inputs. The sizing factors required to ensure fault-tolerance are computed for each potentially

controllable failure case. The resulting maximum sizing factors are then fed back into the sizing optimization so that

the failure cases are included in the sizing process [8]. This procedure is repeated until convergence to an optimal,

fault-tolerant sizing of the UAV. Once the sizing has converged, the state-space model of the UAV is revised for each

failure case. This process requires knowledge of the trimmed controls derived from the control allocation. Finally, the

full rank condition is verified on each linearized state-space model. Together with the previously calculated XACAI,

this concludes the overall fault-tolerance assessment.

Supplemental material includes a Python script with functions implementing the controllability assessment and

fault-tolerant sizing methodology.

VII. Case study
The case study detailed in this section illustrates the application of the methodology proposed in Section VI on two

different concepts of UAVs and compares their fault-tolerance levels. Although the methodology may apply to any

flight conditions by adjusting the linearized state-space model presented in Section III, for the purpose of simplicity and

conciseness, this case study focuses on failures occurring in cruise flight conditions. The controllability analysis is

separated into two parts. In the first part, only the loss of effectiveness failures are considered. Any single failure or

combination of two failures is covered. The study does not extend to triple failures, as their probability of occurrence is

too remote. Then, the lock-in-place failures of the control surfaces are evaluated to demonstrate the contribution of

the methodology. Any single or double failure of the control surfaces is covered, and only the worst cases regarding

aerodynamic efforts (i.e., full deflection of the control surfaces) are assessed. Additionally, this section covers any

combination of a control surface lock-in-place failure with a propeller loss of effectiveness. Finally, the maximum sizing

factors obtained from the worst cases are provided to ensure consistency between the effectors’ sizing and controllability

analysis.
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A. Concepts definition

The first concept consists of a fixed-wing UAV with two ailerons, two elevators, one rudder and a single rotor located

at the nose-tip, as illustrated in Figure 3. Its design reflects the E-flite Ultra Stick 25e [39], whose dynamics model,

linearized around cruise flight conditions without failures, is provided in [40]. Expressly, this model assumes that

the longitudinal and lateral dynamics are decoupled. The second concept consists of a hybrid FW-VTOL UAV with

Fig. 3 E-flite Ultra Stick 25e [39]

similar design specifications, except four VTOL rotors have been added. This concept is representative of the UAV

depicted in Figure 1. On the y-axis, the VTOL rotors are centered on the right and left wings. On the x-axis, they are

positioned on either side of the aerodynamic center, with a distance equal to twice the wing’s mean aerodynamic chord.

The thrust-to-weight ratios for the propulsion and the VTOL rotors are based on market trends. Furthermore, the total

masses of both concepts are assumed to be equal. The additional mass introduced by the VTOL propulsion is assumed

to be balanced by a lower battery capacity. The VTOL rotors are typically inactive in nominal cruise flight conditions.

However, their activation in the event of a failure adds a layer of redundancy to the flight controls.

The specifications of both concepts are summarized in Table 2.

B. Controllability results

Loss of effectiveness

The results for loss of effectiveness failures are provided in Table 3. The controllability assessment indicates that

the fixed-wing concept remains controllable after a complete loss of effectiveness of one aileron and/or one elevator.

However, if both ailerons fail, the fixed-wing UAV is linearly uncontrollable. In fact, the XACAI is calculated as equal
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Table 2 Specifications of the UAVs. Adapted from [40].

Parameter Fixed-wing Hybrid FW-VTOL
Mass 1.959 kg 1.959 kg
Wing span 1.27 m 1.27 m
Mean aerodynamic chord: 0.25 m 0.25 m
Moment of inertia 𝐼𝑥 0.089 kg.m2 0.089 kg.m2

Moment of inertia 𝐼𝑦 0.144 kg.m2 0.144 kg.m2

Moment of inertia 𝐼𝑧 0.162 kg.m2 0.162 kg.m2

Max. deflection angles ±25 deg ±25 deg
Thrust-to-weight ratio (forward propulsion) 0.35 0.35
Thrust-to-weight ratio (VTOL) N/A 1.25

to zero, which reflects the absence of authority on the roll axis. In the absence of additional effectors for controlling the

longitudinal axis, the fixed-wing UAV does not withstand the simultaneous failure of both elevators, as the controllability

matrix is not full rank. Additionally, the fixed-wing concept is linearly uncontrollable if the rudder losses its effectiveness.

The hybrid FW-VTOL remains controllable for any single or double failure thanks to its VTOL rotors.

Table 3 Results of the controllability assessment for loss of effectiveness failures.

Failures Linear Controllability
Fixed-wing Hybrid FW-VTOL

𝜌1 or 𝜌2 Controllable Controllable
𝜂1 or 𝜂2 Controllable Controllable
𝜁 Uncontrollable Controllable
𝜌1&𝜌2 Uncontrollable Controllable
𝜂1&𝜂2 Uncontrollable Controllable
𝜌1&𝜂1 or 𝜌1&𝜂2 or 𝜌2&𝜂1 or 𝜌2&𝜂2 Controllable Controllable
𝜌1&𝜏1 or 𝜌1&𝜏2 or 𝜌1&𝜏3 or 𝜌1&𝜏4 N/A Controllable
𝜌2&𝜏1 or 𝜌2&𝜏2 or 𝜌2&𝜏3 or 𝜌2&𝜏4 N/A Controllable

Note: "𝜌1 or 𝜌2" represents the failure of either aileron 1 or aileron 2.

"𝜌1&𝜌2" represents the failure of both aileron 1 and aileron 2.

Lock-in-place

The results for lock-in-place failures are provided in Table 4. The fixed-wing concept is not capable of withstanding any

single lock-in-place failure, whereas the hybrid FW-VTOL concept maintains controllability in the presence of single or

double lock-in-place failures, except for the rudder. To address a stuck rudder, the ailerons and VTOL rotors would need

to be oversized by a factor greater than 3. However, this level of oversizing is impractical as it would significantly impact

the UAV’s initial design. Without considering triple failures, the controllability assessment clearly demonstrates the

advantage of the hybrid FW-VTOL concept. Additionally, in the event of a jammed aileron or elevator, the activation of

the VTOL rotors offers an advantageous control mechanism for maintaining balance in the roll and pitch axes. This
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assumption relies on the prompt detection of the fault and the high responsiveness of the rotors.

Table 4 Results of the controllability assessment for lock-in-place failures.

Failures Linear Controllability
Fixed-wing Hybrid FW-VTOL

𝜌1 or 𝜌2 Uncontrollable Controllable
𝜂1 or 𝜂2 Uncontrollable Controllable
𝜁 Uncontrollable Uncontrollable(1)

𝜌1&𝜌2 Uncontrollable Controllable
𝜂1&𝜂2 Uncontrollable Controllable
𝜌1&𝜂1 or 𝜌1&𝜂2 or 𝜌2&𝜂1 or 𝜌2&𝜂2 Uncontrollable Controllable
𝜌1&𝜏1 or 𝜌1&𝜏2 or 𝜌1&𝜏3 or 𝜌1&𝜏4 N/A Controllable
𝜌2&𝜏1 or 𝜌2&𝜏2 or 𝜌2&𝜏3 or 𝜌2&𝜏4 N/A Controllable
(1) Controllability would require increasing the control effectiveness of the ailerons and VTOL rotors

by a factor greater than 3.

C. Sizing factors

The controllability assessment has shown that the fixed-wing concept does not withstand any lock-in-place failure.

This statement is valid regardless of the effectors’ sizing. There exists no sizing factor that would result in a linearly

controllable fixed-wing UAV. For the hybrid FW-VTOL concept, the sizing control allocation presented in Section V is

applied to the failure scenarios assessed as controllable.

Several cases are analyzed, each corresponding to a distinct level of required control authority, as specified by

Equation (51). The reference value for the XACAI is determined based on the initial sizing under normal operating

conditions, without considering the involvement of the VTOL rotors. Subsequently, the sizing control allocation for

failure cases includes the active VTOL rotors to ensure adequate control authority. The controllability results clearly

demonstrated that relying solely on the control surfaces is insufficient to maintain controllability in the event of a

lock-in-place failure. Table 5 presents a summary of the sizing control allocation cases, indicating the required control

authority of the UAV in different failure cases relative to the reference XACAI value.

Table 5 Summary of the sizing control allocation cases and associated required control authorities after failure.

Case Requirement on control authority XACAI value
1 Control authority fully preserved 1.76
2 25% deterioration of control authority 1.32
3 50% deterioration of control authority 0.88
4 75% deterioration of control authority 0.44

Figure 4 presents the maximum sizing factors obtained when the UAV is subject to single and double lock-in-place

failures. Table 6 provides an extract of the detailed results for three specific failure scenarios. It should be noted that,
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given an aileron (or elevator) failure, an oversizing of the symmetrical aileron (or elevator) has been disabled to ensure

design consistency. The results show that satisfaction of the allocation and control authority targets is achieved primarily

by oversizing the VTOL rotors rather than the control surfaces. Low-speed flight conditions such as approach or landing

generally drive the control surface sizing rather than the cruise flight scenario under study. Another reason for favouring

the oversizing of the VTOL rotors is that controllability in failure scenarios is mainly made possible by the presence of

VTOL rotors. The control authority is more sensitive to the sizing of the latter than that of any other effectors. In the

most restrictive cases regarding control authority, oversizing of the rudder is essential.

The simultaneous jamming of both ailerons is the most critical failure for the VTOL rotors sizing, although the

simultaneous failure of both elevators results in sizing factors that are only slightly lower. When the control authority

must be fully preserved (case 1), the concurrent failure of an aileron and a VTOL rotor is critical for sizing the rudder.

Similar results are found when a 25% alleviation of the required control authority is allowed (case 2).

The sizing factors for the VTOL rotors highlight the importance of considering double failure scenarios during

high-speed conditions in the sizing process, revising the conventional assumption that the takeoff scenario is the main

driver for sizing the VTOL propulsion system. To conduct a more comprehensive comparison of the maximum thrusts

during cruise flight and takeoff, it is necessary to consider the variation in the thrust coefficient that occurs between

these two flight phases [41].

The results indicate that in the case of single failures, no significant oversizing of the control surfaces and VTOL

rotors is necessary. Only the most critical scenario for control authority, referred to as case 1, requires a minor oversizing

of the rudder by 3%.

Table 6 Three examples of sizing control allocation results for fully preserved control authority (case 1).

Failure scenario 1 out of 67
𝜌1 𝜌2 𝜂1 𝜂2 𝜁 𝜏𝑝 𝜏1 𝜏2 𝜏3 𝜏4

Failures × ×
Control inputs 𝜹′0 25 deg -25 deg 2.0 deg 2.0 deg 0.1 deg 0.31 0.83 0.01 0.03 0.69
Sizing factors 1.0 1.0 1.0 1.0 1.0 1.0 1.89 1.0 1.0 1.89

Failure scenario 2 out of 67
𝜌1 𝜌2 𝜂1 𝜂2 𝜁 𝜏𝑝 𝜏1 𝜏2 𝜏3 𝜏4

Failures × ×
Control inputs 𝜹′0 3.4 deg 6.6 deg 25 deg 25 deg -1.1 deg 0.35 0.87 0.93 0.15 0.09
Sizing factors 1.0 1.0 1.0 1.0 1.0 1.0 1.77 1.77 1.0 1.0

Failure scenario 3 out of 67
𝜌1 𝜌2 𝜂1 𝜂2 𝜁 𝜏𝑝 𝜏1 𝜏2 𝜏3 𝜏4

Failures × ×
Control inputs 𝜹′0 -25 deg -11.0 deg -7.4 deg -7.4 deg 3.8 deg 0.32 0.04 0 0.83 0.03
Sizing factors 1.0 1.0 1.0 1.0 1.27 1.0 1.0 1.0 1.05 1.0
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Fig. 4 Maximum sizing factors obtained for the hybrid FW-VTOL concept subject to single and double
lock-in-place failures, for different control authority requirements.

Finally, a comparison between the XACAI and ACAI approaches highlights the methodological improvement. Figure

5 illustrates the maximum sizing factors for the most restrictive case of control authority, considering the inclusion

(XACAI) and exclusion (ACAI) of control surface drag. The sizing of the VTOL rotors remains unchanged, as it is

determined by the forces acting on the roll. However, the sizing of the rudder is influenced by the forces acting on the

yaw, which include the rudder itself, drag forces from the deflection of other control surfaces, and to a lesser extent, the

VTOL rotors. Therefore, accounting for the yaw moment generated by drag forces is crucial for accurately sizing the

rudder. The ACAI approach, which neglects drag forces, fails to recognize the need for oversizing the rudder.
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Fig. 5 Comparison of the maximum sizing factors for the hybrid FW-VTOL concept under single and double
lock-in-place failures, considering fully preserved control authority (case 1), using the ACAI and XACAI
approaches.
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VIII. Conclusion
The present article introduces and combines a new control authority index and approach for defining UAV dynamics

models and control allocations by addressing rotor and control-surface non-linearities and failure conditions. In doing

so, it adapts and advances previously introduced controllability analyses and fault-tolerant sizing methods for multirotor

UAVs [8] to other concepts such as fixed-wing and hybrid FW-VTOL concepts. The contributions of this methodology

are twofold. First, it enables the linear controllability analysis of fixed-wing and hybrid FW-VTOL UAVs equipped with

control surfaces and rotors. Second, it fills the gap between controllability, failure scenarios, and the sizing of effectors.

To this end, a linearized UAV model is derived and modified for failure cases. Specifically, lock-in-place failures

(e.g., control surface jamming or run-away) are introduced into the state-space model and reflected in the controllability

matrix. Another significant contribution of this article is the development of a new control authority index, the XACAI,

which addresses non-linearities such as control surface drag and lock-in-place failures in the control efforts. The UAV

is linearly controllable only if the XACAI is positive and the controllability matrix is full rank. Verifying the second

condition requires calculating the UAV’s trimmed state, which is obtained by solving a control allocation problem. The

control analysis and the effectors’ sizing are linked by introducing sizing factors in a new formulation of the control

allocation problem.

The case study demonstrates the effectiveness of the proposed methodology, evaluating the linear controllability of

a fixed-wing UAV and a hybrid FW-VTOL concept in various failure scenarios. The study focuses on a steady-level

flight condition for simplicity and conciseness. The results highlight the higher fault tolerance of the hybrid FW-VTOL

concept due to the presence of additional effectors (VTOL rotors) that can be utilized in case of failures. However, the

study also reveals the need for oversizing the VTOL rotors to ensure sufficient control authority during double failure

scenarios, revising the conventional assumption of basing VTOL system sizing solely on takeoff analysis. Furthermore,

the comparison between the ACAI and XACAI approaches reveals that the ACAI method underestimates the necessary

oversizing of the rudder by overlooking the impact of incorporating control surface drag into the sizing analysis. This

discrepancy underscores the significance of the proposed XACAI approach.

Further research should address the following limitations of the presented work. The methodology proposed in

this study supports the evaluation of the intrinsic reconfigurability of UAVs through a linear controllability analysis.

The controllability assessment is applied to a linearized system model and offers a sufficient condition for preserving

or restoring control authority on the virtual control axes. It is important to note that this controllability assessment

does not exclude the possibility of nonlinear controllability in the system, as discussed in Section II. In addition, the

methodology is time-independent and does not capture the dynamics of the effectors, which limits the accuracy of

the assessment. Including or adding constraints to control response times could significantly increase this accuracy.

The link between controllability and sizing could be further consolidated by integrating the proposed methodology

into a multidisciplinary design framework and introducing new penalties on the sizing factors to reflect economic and
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design limitations. With these improvements, the proposed methodology will provide a novel and effective means to

explore and evaluate UAV design alternatives at the conceptual and preliminary development stages for safety-critical

applications requiring fault tolerance.

Appendix

Equations of motion
Scalar equations of motion

𝑋 + 𝑞𝑑𝑆𝐶𝑥0 − 𝑚𝑎𝑔 sin 𝜃 = 𝑚𝑎 ( ¤𝑢𝑏 + 𝑞𝑤𝑏 − 𝑟𝑣𝑏) (55)

𝑌 + 𝑞𝑑𝑆𝐶𝑦0 + 𝑚𝑎𝑔 cos 𝜃 sin 𝜙 = 𝑚𝑎 ( ¤𝑣𝑏 + 𝑟𝑢𝑏 − 𝑝𝑤𝑏) (56)

𝑍 + 𝑞𝑑𝑆𝐶𝑧0 + 𝑚𝑎𝑔 cos 𝜃 cos 𝜙 = 𝑚𝑎 ( ¤𝑤𝑏 + 𝑝𝑣𝑏 − 𝑞𝑢𝑏) (57)

𝐿 + 𝑞𝑑𝑆𝐶𝑙0 = 𝐼𝑥 ¤𝑝 − 𝐼𝑥𝑧 ¤𝑟 + 𝑞𝑟 (𝐼𝑧 − 𝐼𝑦) − 𝐼𝑥𝑧 𝑝𝑞 (58)

𝑀 + 𝑞𝑑𝑆𝐶𝑚0 = 𝐼𝑦 ¤𝑞 + 𝑟 𝑝(𝐼𝑥 − 𝐼𝑧) + 𝐼𝑥𝑧 (𝑝2 − 𝑟2) (59)

𝑁 + 𝑞𝑑𝑆𝐶𝑛0 = −𝐼𝑥𝑧 ¤𝑝 + 𝐼𝑧 ¤𝑟 + 𝑝𝑞(𝐼𝑦 − 𝐼𝑥) + 𝐼𝑥𝑧𝑞𝑟 (60)

𝑞𝑑 is the dynamic pressure [Pa], 𝑆 is the UAV reference area [m2], 𝐶𝑎𝑥𝑖𝑠 are the aerodynamic coefficients of the fixed

surfaces (e.g., wing and fuselage), and 𝐼 are the moments of inertia [kg.m2]. 𝜙, 𝜃 and 𝜓 are the roll [rad], pitch [rad], and

yaw [rad] angles. 𝑋 ,𝑌 , 𝑍 , 𝐿, 𝑀 , and 𝑁 are the control efforts [N] originating from the propellers and the control surfaces.

Linearized equations of motion in steady, straight, and level flight The linearized set of equations is obtained using

the small-disturbance notation and neglecting the products of deviations (first order approximation), according to [29].

Δ𝑋

𝑚𝑎

+ ¤𝑋𝑢Δ𝑢𝑏 + ¤𝑋𝑤Δ𝑤𝑏 − 𝑔 cos 𝜃0Δ𝜃 = Δ ¤𝑢𝑏 (61)

Δ𝑌

𝑚𝑎

+ ¤𝑌𝑣Δ𝑣𝑏 + ¤𝑌𝑝Δ𝑝 + ( ¤𝑌𝑟 − 𝑢𝑏0 )Δ𝑟 + 𝑔 cos 𝜃0Δ𝜙 = Δ ¤𝑣𝑏 (62)

Δ𝑍

𝑚𝑎

+ ¤𝑍𝑢Δ𝑢𝑏 + ¤𝑍𝑤Δ𝑤𝑏 + ( ¤𝑍𝑞 + 𝑢𝑏0 )Δ𝑞 − 𝑔 sin 𝜃0Δ𝜃 = ¤𝑤𝑏 (63)

Δ𝐿

𝐼𝑥
+ ¤𝐿𝑣Δ𝑣𝑏 + ¤𝐿𝑝Δ𝑝 + ¤𝐿𝑟Δ𝑟 = 𝐼𝑥 ¤𝑝 (64)

Δ𝑀

𝐼𝑦
+ ¤𝑀𝑢Δ𝑢𝑏 + ¤𝑀𝑤Δ𝑤𝑏 + ¤𝑀𝑞Δ𝑞 − 𝑔 ¤𝑀𝑤 sin 𝜃0 = 𝐼𝑦 ¤𝑞 (65)

Δ𝑁

𝐼𝑧
+ ¤𝑁𝑣Δ𝑣𝑏 + ¤𝑁𝑝Δ𝑝 + ¤𝑁𝑟Δ𝑟 = 𝐼𝑧 ¤𝑟, (66)

where the parameters ¤𝑋 , ¤𝑌 , ¤𝑍 , ¤𝐿, ¤𝑀, ¤𝑁 are aerodynamic stability coefficients obtained by a Taylor series expansion
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applied to the efforts’ variation about the reference equilibrium condition [29]. For instance,

¤𝑋𝑢 ≈
𝜌𝑎𝑖𝑟𝑣

2
𝑎𝑖𝑟
𝑆𝐶𝐷0

𝑚𝑎𝑢𝑏0

, (67)

where 𝐶𝐷0 [-] is the parasitic drag coefficient of the airframe, 𝜌𝑎𝑖𝑟 [kg.m−3] is the air density, and 𝑆 [m2] is the reference

area.

The insignificant aerodynamic derivatives in Equations 61 have been neglected.

State-space model for failure cases
For better understanding, the modification of the state-space model for failures cases is demonstrated in a first place

on the x-axis, and focusing on an elevator. The scalar equation of motion on the x-axis, provided in VIII, is re-written

with a focus on the effort originating from the elevator, for clarity:

𝑋𝜂 + 𝑋𝑜𝑡ℎ𝑒𝑟𝑠 = 𝑚𝑎 ( ¤𝑢𝑏 + 𝑞𝑤𝑏 − 𝑟𝑣𝑏), (68)

where 𝑋𝑜𝑡ℎ𝑒𝑟𝑠 are the efforts originating from the fixed surfaces, gravity, and control effectors, excluding the failed

elevator. The effort from the elevator, 𝑋𝜂 , is expressed as follows:

𝑋𝜂 =
1
2
𝜌𝑎𝑖𝑟𝑣

2
𝑎𝑖𝑟𝑆𝜂𝐶𝑥,𝜂𝜂 (69)

With 𝑆𝜂 [m2] the elevator’s area and 𝐶𝑥,𝜂 [-] its aerodynamic coefficient specific to the x-axis, assumed to be constant.

The above equation is linearized around straight and level flight conditions, that is 𝑢𝑏 = 𝑢𝑏0 + Δ𝑢𝑏, 𝑣𝑏 = Δ𝑣𝑏 and

𝑤𝑏 = Δ𝑤𝑏. The air velocity is expressed from a first order approximation as:

𝑣𝑎𝑖𝑟 =

√︃
𝑢2
𝑏
+ 𝑣2

𝑏
+ 𝑤2

𝑏
(70)

=

√︃
𝑢2
𝑏0

+ 2𝑢𝑏0Δ𝑢𝑏 + Δ𝑢2
𝑏
+ Δ𝑣2

𝑏
+ Δ𝑤2

𝑏
(71)

≈
√︃
𝑢2
𝑏0

+ 2𝑢𝑏0Δ𝑢𝑏, (72)

The elevator’s effort on the x-axis becomes:

𝑋𝜂 =
1
2
𝜌𝑎𝑖𝑟 (𝑢2

𝑏0
+ 2𝑢𝑏0Δ𝑢𝑏)𝑆𝜂𝐶𝑥,𝜂 (𝜂0 + Δ𝜂) (73)

=
1
2
𝜌𝑎𝑖𝑟𝑢

2
𝑏0
𝑆𝜂𝐶𝑥,𝜂Δ𝜂 +

1
2
𝜌𝑎𝑖𝑟𝑢

2
𝑏0
𝑆𝜂𝐶𝑥,𝜂𝜂0 + 𝜌𝑎𝑖𝑟𝑢𝑏0𝑆𝜂𝐶𝑥,𝜂𝜂0Δ𝑢𝑏 (74)
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Introducing the elevator’s control derivative, ¤𝑋𝜂 = 1
2 𝜌𝑎𝑖𝑟𝑢

2
𝑏0
𝑆𝜂𝐶𝑥,𝜂 , one obtains:

𝑋𝜂 = ¤𝑋𝜂Δ𝜂 + ¤𝑋𝜂𝜂0 +
2
𝑢𝑏0

¤𝑋𝜂𝜂0Δ𝑢𝑏 (75)

= ¤𝑋𝜂𝜂 +
2
𝑢𝑏0

¤𝑋𝜂𝜂0Δ𝑢𝑏 (76)

Generalizing to all effectors’ controls and efforts yields the following virtual control vector:

u = Bf𝜹 + 2
𝑢𝑏0

Bf𝜹0Δ𝑢𝑏 (77)

The state-space model becomes

Δ¤x = AΔx + B
(
Bf𝜹 + 2

𝑢𝑏0

Bf𝜹0Δ𝑢𝑏 − u0

)
(78)

=

(
A + 2

𝑢𝑏0

[
BBf𝜹0 09×8

] )
Δx + B(Bf𝜹 − u0) (79)

Finally, taking into account the failures yields:

Δ¤x = (A + 2
𝑢𝑏0

[
BBf𝜹

′
0 09×8

]
︸                    ︷︷                    ︸

A𝛿′0

)Δx + B[ BfH︸︷︷︸
B′

f

𝜹 − (u0 − Bf (Im − H)𝜹′0)︸                     ︷︷                     ︸
u′

0

] (80)

Study case
State-space matrices of the Hybrid FW-VTOL concept.

The full-order state matrix, control matrix and control effectiveness matrix for the hybrid FW-VTOL UAV described

in the case study (Section VII) are provided below. The system is linearized around cruise flight conditions, without

failures, with a longitudinal speed 𝑢𝑏0 = 19𝑚/𝑠 [40].
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A0 =



−0.38 0 0.60 0 0 0 0 −9.80 0

0 −0.64 0 0.46 0 −18.21 9.50 0 0

−0.98 0 −10.65 0 16.74 0 0 −0.21 0

0 −2.02 0 −12.47 0 4.05 0 0 0

0.18 0 −5.39 0 −16.55 0 0 0 0

0 1.30 0 0.86 0 −3.09 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0



(81)

B =


Jf

−1

03×6

 , Jf = diag(1.959, 1.959, 1.959, 0.089, 0.144, 0.162) (82)

Bf =



0. 0. −0.35 −0.35 0. 6.73 0. 0. 0. 0.

0. 0. 0. 0. 5.84 0. 0. 0. 0. 0.

0. 0. −3.55 −3.55 0. 0. 6.01 6.01 6.01 6.01

−6.19 6.19 0. 0. 0.58 0.02 1.91 −1.91 −1.91 1.91

0. 0. −10.19 −10.19 0. 0. 3.00 3.00 −3.00 −3.00

1.39 −1.39 0. 0. −4.28 0. 0.03 −0.03 0.03 −0.03



(83)
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