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Abstract

This paper presents a modal Udwadia-Kalaba formulation based on complex

modal analysis. This alternative formulation is developed in the general case

of vibro-acoustic systems with an internal cavity. In a similar manner to the

original formulation, the global response of a constrained multibody system

is expressed as a sum of its unconstrained response and a corrective term

allowing the enforcement of constraints. The use of complex modes of the

dissipative substructures has the advantage of leading to a set of ordinary

differential equations, regarding the unconstrained response, even in the case

of non-classically damped substructures. Moreover, in the frame of exper-

imental substructuring, the estimation of complex modal parameters of a

state-space representation is more straightforward than for real ones of the

equivalent second order model, hence this alternative formulation is of prac-
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tical interest in this context. An academic example with non-proportional

damping allows to validate the proposed modal formulation. Then two ex-

perimentally identified models of a guitar and a harp from Central Africa are

coupled to a stiff string whose modal parameters are known from the analytic

theory. The guitar model contains an acoustic degree of freedom and allows

to illustrate the suitability of the Udwadia-Kalaba formulation to model cou-

pled vibro-acoustic substructures. The harp model includes highly complex

modes which allows to highlight the advantage of expressing the coupled

response of the global system in terms of its complex modal coordinates.
Keywords: Udwadia-Kalaba, Substructuring, Internal vibro-acoustics,

Non-proportional damping, Complex modes

1. Introduction1

When performing the dynamical analysis of a structure, it may necessary2

to split it into substructures whose behavior is easier to characterize. Such3

situations might arise for example, in experimental configuration, when the4

complete structure is too large to be analyzed as a whole, or in a numerical5

case, when the number of degrees of freedom (dofs) leads to unreasonable6

computation time. This approach of splitting the problem into subparts is7

known as dynamic substructuring. When the global analysis presents no8

particular difficulty, dynamic substructuring may still be advantageous to9

conduct a parametric study componentwise or to build hybrid assemblies10

combining (discrete or continuous/analytical) model(s) and experimentally11

identified parts.12

Constrained multibody systems have been studied for many years and13
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multiple methods were developed to deal with rigid bodies until recent decades.14

In the last 60 years, efforts have been put to take into account the elastic15

behavior of substructures thus further increasing the list of available formu-16

lations. de Klerk et al. [1] proposed a classification of these formulations in17

a general framework in which the structural dynamics are analyzed in three18

distinct domains: the physical, modal and frequency domains.19

The physical domain includes the well known finite element method and20

others originally developed for rigid substructures, whose review was pro-21

posed by Lalausa and Bachau [2], such as Maggi’s method [3, 4] and the22

Udwadia-Kalaba [5–9] (U-K) formulation. These methods require the knowl-23

edge of physical mass, stiffness and damping matrices for each substructure.24

In the frame of experimental substructuring, identification techniques [10]25

allow to estimate physical matrices but the damping matrix remains delicate26

to obtain, due to its high sensitivity to noise and inconsistencies in the data,27

making physical domain formulations unpractical.28

On the other hand, frequency based substructuring (FBS) does not rely29

on the separate knowledge of mass, stiffness and damping properties. Instead,30

the dynamic behavior of the substructures is described by transfer functions31

which presents no particular difficulty to measure. Typical FBS methods32

are the admittance coupling [11, 12], the impedance coupling [13] and the33

Lagrange multipliers FBS (LM-FBS) coupling[14, 15]. Obviously, in order34

to transform the equations of motion from the time domain to the frequency35

domain, each substructure needs to be linear time invariant (LTI) and in36

steady-state which limits the case of applications.37

Another option lies in the class of modal domain formulations, known38
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as component-mode synthesis (CMS). Although the use of CMS is not as39

straight forward as FBS for experimental substructuring, since it requires40

to perform modal analysis (and induces truncation effects due to the order41

reduction), it remains a useful solution for analyzing non-LTI multibody sys-42

tems. Methods based on all kinds of structural modes have been proposed43

during the last 60 years to which an overview was given by Craig [16]. The44

most widespread CMS formulations are the Craig-Brampton [17] (combina-45

tion of constraint modes and fixed-interface normal modes), MacNeal [18]46

and Rubin [19] (combination of attachment modes and free-interface normal47

modes) methods. In the last decade, with a view to modeling musical instru-48

ments as constrained multibody systems, Antunes and Debut [20] adapted49

the U-K formalism to continuous flexible systems using free-interface normal50

modes. The (modal) U-K formulation offers a compact and general solution51

(allowing for redundant and non-ideal constraints). The relevance of this52

new CMS method has been illustrated in several research works involving53

geometrical string non-linearities [21–23] and intermittent contacts [24].54

Other promising approaches, developed for substructure-based system55

identification, constitute the class labeled state-space substructuring (SSS)56

which consists in assembling state-space models of substructures. Proposed57

in recent years, they can be linked to the physical or modal domain de-58

pending on the choice of state variables. Examples of such methods are the59

classical state-space substructuring (classical-SSS) method [12] and recently60

the Lagrange multipliers state-space substructuring (LM-SSS) method [25].61

The present paper deals with an alternative modal U-K formulation al-62

lowing to simplify and optimize the dynamic substructuring of constrained63
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multibody systems with non-proportional damping, especially in the case of64

experimental substructuring. The use of complex modes of unconstrained65

dissipative substructures allows to always obtain a system of uncoupled Or-66

dinary Differential Equations (ODEs) with respect to complex modal coordi-67

nates, contrary to existing CMS methods which end up with a fully populated68

modal damping matrix in case of general viscous damping. Another devel-69

opment is found in the extension of the original U-K formulation to cover70

the case of vibro-acoustic substructures with an internal cavity. Indeed this71

type of problem is frequently encountered for example in musical acoustics72

or practical engineering [26], and the U-K formalism provides an elegant so-73

lution expressed in terms of eigenmodes of the unconstrained substructures.74

The first section includes a brief recall of the original U-K formulation75

[5, 9], followed by an extension taking into account vibro-acoustic substruc-76

tures. Then, the modal domain adaptation developed by Antunes and Debut77

[20] is touched on as an intermediary step to present the novel modal U-K78

formulation based on complex modal analysis. In section 3, the validity79

of this new formulation is assessed through an application to an academic80

test case with non-proportional damping (also called non-classical damping).81

Then a practical example, from musical acoustics, based on the combination82

of analytical and experimental data allows to demonstrate the relevance of83

this formulation.84

2. Udwadia-Kalaba formalism85

In order to develop the newly proposed formulation, the original U-K86

formulation [5–9] is briefly recalled. This allows to introduce an extension87
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of the latter to subsystems involving internal vibro-acoustic problems. Then88

the recently developed modal formulation [20] based on modal bases of asso-89

ciated conservative subsystems is briefly covered for completeness. Finally,90

an alternative modal formulation based on modal bases of under-damped dis-91

sipative subsystems is presented and two solutions are proposed depending92

on the presence/absence of acoustic dofs in the subsystems.93

2.1. Physical space94

2.1.1. Original formulation95

Let ys(t) represent the response, and xs(t) the degrees of freedom, of a96

discrete structural mechanical system of mass, damping and stiffness matrices97

Ms, Cs and Ks, which consists of J constrained subsystems via constraining98

forces fc, subjected to external constraint-independent forces fnc. The U-K99

formulation derives from the second order model100

Msẍs(t) + Csẋs(t) + Ksxs(t) = DT
s (fnc(xs, ẋs, t) + fc(xs, ẋs, t))

ys(t) = Dsxs(t)
(1)

with Ds being the output (or input) shape matrix. While the original for-101

mulation was obtained with Ds being the identity matrix, thus assuming the102

number of responses equals the number of dofs, it is relevant to develop it for103

any arbitrary matrix (hence any choice of dofs) thus differentiating system104

responses and dofs.105

Constraining forces can be expressed through Lagrange multipliers [27] λ as106

fc = −ATλ (2)

where A(ẋs,xs, t) is the constraint matrix, associated with b(ẋs,xs, t) a vec-107

tor function of the motion, corresponding to the following system of P holo-108
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nomic and non-holonomic constraints in terms of accelerations109

Aÿs = b . (3)

By combining Eqs. (1–3), the following augmented differential-algebraic110

equation (DAE) may be built111  Ms (ADs)T

ADs 0


ẍs

λ

 =

DT
s fnc − Csẋs − Ksxs

b


ys = Dsxs.

(4)

Solving Eq. (4), in the least square sense [28] since A may be rank deficient,112

gives the explicit expression of Lagrange multipliers113

λ = −
(
ÃM−1

s ÃT
)† (

b − ÃM−1
s

(
DT

s fnc − Csẋs − Ksxs

))
where Ã = ADs.

(5)

Thus, the dynamic response of the constrained system verifies the following114

differential equation115

Msẍs =
(
DT

s fnc − Csẋs − Ksxs

)
+ ∆

(
b − ÃM−1

s

(
DT

s fnc − Csẋs − Ksx
))

ys = Dsxs.

(6)

with ∆ = ÃT (ÃM−1
s ÃT )†. The main result from Udwadia and Kalaba [5, 7]116

lies in the restatement of Eq. (6), in terms of the unconstrained acceleration117

ẍu = M−1
s

(
DT

s fnc − Csẋs − Ksxs

)
,118

ẍs = ẍu + M−1/2
s B†(b − Ãẍu)

ys = Dsxs.
(7)

with B† denoting the Moore-Penrose pseudo-inverse of B = ÃM−1/2
s .119

120
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2.1.2. Extension to vibro-acoustic substructures121

In the case of subsystems involving internal vibro-acoustic problems, as-122

suming lossless fluid-structure interactions, a discrete formulation may be123

provided by the following matrix system [29]124 Ms 0

LT Ma


ẍs

ẍa

+

Cs 0

0 Ca


ẋs

ẋa

+

Ks −L

0 Ka


xs

xa

 =

Ds 0

0 Da


T 

 fs

ġa

+ fc


ys

ya

 =

Ds 0

0 Da


xs

xa


(8)

where ys and ya are vectors denoting the structural and acoustic responses125

(at the displacement and pressure levels), xs and xa represent the structural126

dofs and the acoustic dofs. The output shape matrix D is composed of sub-127

matrices Ds and Da. Ms, Ma, Ks, Ka, Cs and Ca are, respectively, the128

mass, stiffness and damping matrices of the structure and the fluid domain.129

Note that Ma, Ka and Ca are not homogeneous to a mass, a stiffness and a130

damping but these notations are used by analogy with the solid domain. L is131

the vibro-acoustic coupling matrix. fs is the vector of external forces applied132

on the structural components and ġa is associated to acoustic sources in the133

cavity.134

The assembled vectors and matrices of Eq. (8) are defined135

x⋆ ≡


x1

⋆

...

xJ
⋆


, fs ≡


f1
s

...

fJ
s


,ga ≡


g1

a

...

gJ
a


,M⋆ ≡ diag(M1

⋆, ...,MJ
⋆ ) =


M1

⋆ 0
. . .

0 MJ
⋆

 ,
C⋆ ≡ diag(C1

⋆, ...,CJ
⋆ ), K⋆ ≡ diag(K1

⋆, ...,KJ
⋆ ), L ≡ diag(L1, ...,LJ)

(9)
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with ⋆ denoting either s or a.136

While Eq. (8) directly expresses the coupling between structural displace-137

ment and acoustic pressure, an alternative formulation [30] with a positive138

definite mass matrix is preferred in the following of this paper139

Ms 0

0 Ma


︸ ︷︷ ︸

M

ẍs

z̈a

︸ ︷︷ ︸
ẍ

+

Cs −L

LT Ca


︸ ︷︷ ︸

C

ẋs

ża

+

Ks 0

0 Ka


︸ ︷︷ ︸

K

xs

za

 =

Ds 0

0 Da


︸ ︷︷ ︸

D

T


fs

fa

︸ ︷︷ ︸
fnc

+f̃c


ys

ỹa

︸ ︷︷ ︸
y

=

Ds 0

0 Da


xs

za


(10)

where ỹa is (up to a multiplicative constant) the acoustic velocity poten-140

tial such that ża = xa and fa(t) = ga(t) − ga(0).141

Assuming that the constraints between vibro-acoustic subsystems may142

be expressed in the form of Eq. (3) with respect to the response vector y,143

constraining forces f̃c are expressed as in Eq. (2). Building and solving the144

augmented DAE of Eq. (4) leads to the differential equation (7) and the145

result from Udwadia and Kalaba is thus recovered.146

While the formulation of Eq. (7) is perfectly valid from a mathematical147

point of view, in practice it has the disadvantage of requesting the knowledge148

of physical matrices M, C and K and while efficient experimental methods149

have been developed to estimate mass and stiffness matrices, the experimen-150

tal estimation of the damping matrix C remains a difficult task. Moreover,151

from a computational point of view, the unconstrained acceleration ẍu in152
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Eq. (7) involves a system of coupled Ordinary Differential Equations (ODE)153

whose resolution, for subsystems containing a large amount of dofs, might be154

time consuming. This motivates the use of modal expansion techniques, cov-155

ered in section 2.2, to transform this system of coupled ODE to an uncoupled156

one.157

2.2. Modal space158

2.2.1. Normal modes159

In case of subsystems with a classical damping, Antunes & Debut [20]160

adapted the U-K formulation to continuous flexible system by means of a161

modal expansion on the modal bases of associated conservative subsystems162

(principal coordinates). In a similar manner to Eq. (7), they obtained in163

principal coordinates the following expression for the modal response qp of164

the constrained system165

q̈p = q̈p
u

+ (Mp)−1/2B†(b − Aq̈p
u
)

y = DΦqp
(11)

with A = ÃΦ being the modal constraint matrix and B = A(Mp)−1/2. q̈p
u

is166

the modal acceleration of the unconstrained system governed by the equation167

Mpq̈p
u

= ΦT DT fnc − Cpq̇p − Kpqp (12)

where Mp, Cp, Kp and Φ are block diagonal matrices containing, respec-168

tively, modal mass, stiffness, damping and shape matrices of all subsystems169

on their diagonal. As for Eq. 7, Antunes & Debut obtained Eq. 11 with D170

equal to the identity matrix, however including this matrix in the formula-171

tion explicitly shows it is actually valid for any choice of output shape matrix172
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as well as if the number of system responses does not match the number of173

dofs.174

2.2.2. Complex modes175

If the J subsystems do not verify the assumption of classical damping, the176

system of equation (12) on unconstrained modal coordinates is non-diagonal177

which may lead to significant computation time for large subsystems. Apart178

from computation time considerations, in case of experimental substructur-179

ing, the physical damping matrix estimation presents many difficulties which180

make the use of equation (12) unpractical. The development of another181

modal formulation based on complex modal analysis (CMA) is thus proposed182

in this section in order to obtain a diagonal system of unconstrained modal183

coordinates even for non-proportionally damped substructures, allowing at184

the same time to shortcut the need for physical damping matrix estimation.185

At this point it should be emphasized that the use of CMA implies that the186

J subsystems do not yield rigid body modes.187

The usual modal expansion on the basis of modal coordinates of the188

dissipative system is written189 x

ẋ

 = Υrq (13)

where, for j = 1, ..., J constrained subsystems, the vectors that assemble190

the corresponding physical responses xj(t) and modal responses qj(t), as191

well as the matrices that assemble the eigenvalues Λj and the left and right192
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eigenvectors Υj
∗ (with ∗ being either l or r), are defined193

x ≡


x1

...

xJ


,q ≡


q1

...

qJ


,Ψ∗ ≡


Ψ1

∗ 0
. . .

0 ΨJ
∗

 ,Λ ≡


Λ1 0

. . .
0 ΛJ

 ,

q ≡

q

q

 ,Ψ∗ ≡
[
Ψ∗ Ψ∗

]
,Λ ≡

Λ 0

0 Λ

 ,Υ∗ ≡

 Ψ∗

Ψ∗Λ


(14)

with, for each subsystem, the modal basis of 2N j unconstrained modes de-194

fined at Rj physical coordinates195

qj ≡


qj

1
...

qj
Nj


,Ψj

∗ ≡




ψj

∗,1

(
r⃗j

1

)
...

ψj
∗,1

(
r⃗j

Rj

)


· · ·


ψj

∗,Nj

(
r⃗j

1

)
...

ψj

∗,Nj

(
r⃗j

Rj

)


 ,Λj ≡


λj

1 0
. . .

0 λj
Nj

 ,

qj ≡


qj

qj

 ,Ψj
∗ ≡

[
Ψj

∗ Ψj

∗

]
,Λj ≡

Λj 0

0 Λj

 ,Υj
∗ ≡

 Ψj
∗

Ψj
∗Λ

j

 .
(15)

The total number of pairs of complex conjugate modes is thus Ntot = ∑J
1 N

j.196

It can be shown, following the approach of [31], that left eigenvectors Ψl of197

Eq. (10) are linked to right eigenvectors Ψr in the following manner198

Ψr =

Ψs

Ψa

 then Ψl =

 Ψs

−Ψa

 (16)

with Ψs and Ψa corresponding, respectively, to structural and acoustic dofs.199

In the frame of experimental substructuring, the formulation with respect200

to displacements and pressures is usually preferred for experimental modal201

analysis, hence it should be emphasized that right eigenvectors Ψ̃r of Eq. (8)202
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are linked to those of Eq. (10) through the relation203

Ψ̃r =

 Ψs

ΨaΛ

 . (17)

In order to develop the complex modal space version of Eq. (7), Eq. (6) is204

augmented into a first order state-space model by grouping time derivatives205

of x on the left-hand side and associating the identity Mẋ = Mẋ206

C M

M 0


︸ ︷︷ ︸

U

ẋ

ẍ

−


−K 0

0 M


︸ ︷︷ ︸

A

+

ZK ZC

0 0



x

ẋ

 =

(INdof − Z) DT fnc + ∆b

0



y =
[
D 0

]x

ẋ


(18)

with Z = ∆ÃM−1 and INdof the identity matrix of size Ndof, the total number207

of dofs of the subsystems.208

The projection of Eq. (18) on the bases of eigen modes of the dissipative209

unconstrained subsystems leads to210

Πq̇ −

Π Λ + ΥT
l

ZK ZC

0 0

Υr

︸ ︷︷ ︸
Ξ

q = ΥT
l

(INdof − Z) DT fnc + ∆b

0

︸ ︷︷ ︸
Γ

y =
[
D 0

]
Υrq

(19)
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using the orthogonality properties1 [33]211

ΥT
l UΥr = ΨT

l CΨr + ΛΨT
l MΨr + ΨT

l MΨrΛ = Π,

ΥT
l AΥr = −ΨT

l KΨr + ΛΨT
l MΨrΛ = Π Λ.

(20)

where Π is a diagonal matrix characterizing the normalization of complex212

mode shapes. From Eq. (20), it can be shown that the inverse of the physical213

mass matrix may be expressed214

M−1 = ΨrΠ
−1ΛΨT

l . (21)

The terms Ξ and Γ of Eq. (19) may be simplified in the following manner

(see Appendix B for more details)

Ξ = −ΨT
l ∆ÃΨrΛ

2 (22)

and Γ = ΨT
l (INdof − Z) DT fnc + ΨT

l ∆b. (23)

In the following, two cases are distinguished: first the subsystems are as-215

sumed to contain acoustic dofs, a general formulation is obtained for vibro-216

acoustic subsystems with internal fluid cavities, second the case of subsys-217

tems with purely structural dofs is presented and leads to a more compact218

formulation.219

2.2.2.1. Presence of acoustic dofs.220

221

1For equivalent expressions in the case of continuous subsystems, the authors recom-

mend the paper by Krenk [32].
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Developing ∆ using Eq. (21) and introducing the modal constraint Ja-222

cobian matrix A∗ =
[
A∗ A∗

]
= ÃΨ∗ (∗ being either r or l) gives223

ΨT
l ∆ = AT

l

(
ArΠ

−1ΛAT
l

)†
. (24)

and defining now B∗ = A∗

(
Π−1Λ

)1/2
,224

ΨT
l ∆ =

(
Π−1Λ

)−1/2
BT

l

(
BrBT

l

)†
. (25)

By left multiplying Eq. (19) by Π−1, the main result finally emerges225

q̇ =
(
I2Ntot − (Π Λ)−1/2 BT

l

(
BrBT

l

)†
ArΛ

)
(Λq + Π−1ΨT

l DT fnc)

+ (Π Λ)−1/2 BT
l

(
BrBT

l

)†
b

y =
[
D 0

]
Υrq

(26)

which can be restated, in terms of unconstrained modal coordinates governed226

by Πq̇
u

= Π Λq + ΨT
l DT fnc, as227

q̇ = q̇
u

+ (Π Λ)−1/2 BT
l

(
BrBT

l

)† (
b − ArΛq̇

u

)
y =

[
D 0

]
Υrq.

(27)

Eq. (27) thus allows to compute the constrained dynamic response of228

mechanical systems involving internal vibro-acoustic problems. It should229

be noted that the validity of this equation stays unchanged in absence of230

acoustic dofs. However, a more compact form can be expressed in such a231

case as presented below.232

2.2.2.2. Purely structural dofs.233

234
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If the subsystems contain only structural dofs, the problem of Eq. (1) is235

recovered, left and right eigenvectors are thus equal. Similarly to Eq. 21,236

defining a hermitian modal mass matrix M as M = ΨHMΨ, one obtains237

M−1 = ΨM−1ΨH . (28)

Note that in absence of acoustics dofs the matrix M is semi-definite positive.238

When performing the complex modal analysis of a structure, the matrix Π is239

set by prescribing the normalization of complex mode shapes. As developed240

in Appendix A the matrix M can then be obtained from Π, assuming Ψ is241

full column rank (at least as many measured responses as identified pairs of242

complex modes).243

Eq. 24 may be rewritten using Eq. (28) in the following manner244

ΨT ∆ = AT
(
AM−1AH

)†
. (29)

Defining now E =
[
E E

]
= A

M 0

0 M


−1/2

leads to245

ΨT ∆ =

M1/2 0

0 M
1/2


T

ET
(
EEH

)†
=

M
1/2E†

M1/2E†

 . (30)

By left multiplying Eq. (19) by Π−1, the main result finally emerges246

q̇ =

I2Ntot − Π−1

M
1/2E†

M1/2E†

AΛ

 (Λq + Π−1ΨT DT fnc) + Π−1

M
1/2E†

M1/2E†

b

y =
[
D 0

]
Υq.

(31)

16



Thus the constrained response verifies247

q̇ = q̇
u

+ Π−1

M
1/2E†

M1/2E†

 (b − AΛq̇
u

)

y =
[
D 0

]
Υq

(32)

which is equivalent to Eq. (27) in absence of acoustic dofs but more com-248

pact. When analyzing the dynamic behavior of multibody systems composed249

of only structural dofs with non-proportional damping, if the modal mass250

matrix M is known, the use of Eq. (32) is thus encouraged.251

Eqs. (27) and (32) are quite similar to the previously proposed formula-252

tions in Eqs. (7) and (11). Indeed, the constrained response is found to be253

equal to the unconstrained response to which a corrective term, representing254

the contribution of constraining forces, is added. However, an important dif-255

ference resides in the order of the obtained system of ODE which was 2 for256

previous formulations and is now 1. This is a direct consequence of the use257

of the complex modal space which is made of eigenmodes of the state-space258

problem of Eq. (18).259

To summarize the results of this alternative formulation, and empha-260

size on the added value with respect to the modal formulation based on261

real modes, Fig. 1 presents block diagrams of the main steps of the U-K262

substructuring, for both formulations, as well as those of the experimental263

modal analysis. It is visible that both formulations involve the same steps:264

first, input modal parameters of the unconstrained (free interface) substruc-265

tures as well as constraint-independent forces have to be prescribed, then the266

response of the subsystems to the constraint-independent forces is computed267

and finally their constrained response verifying the constraint equations is268
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determined. In the authors opinion, the main advantage of the formulation269

proposed in this paper, compared to the one based on real modes, lies in270

the necessary input modal parameters. Indeed, the experimental estimation271

of real modes (principal coordinates) of a structure results from the identi-272

fication of its complex modal basis, mostly by assuming that the structure273

verifies the hypothesis of proportional damping. Hence, using directly com-274

plex modes of the substructures in the U-K formalism removes this step of the275

experimental modal analysis and avoids resorting to this limiting assumption.276

Figure 1: Summary of the UK formalisms based on real modes (red) and complex modes

(blue). See sections 2.2.1 and 2.2.2 for details regarding mathematical notations.

3. Application cases277

Now that the modal U-K formulation based on complex modes of the278

dissipative subsystems is developed, its validity is first assessed in the case279

of a simple academic system. Then two practical examples are presented280
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and consist in the coupling of the analytical theory of vibrating strings, first,281

with an experimental 2 dofs fluid-structure guitar model to demonstrate the282

relevance of this new formulation for internal vibro-acoustic problems, and283

second, with an experimental 32 dofs structural model of a harp from Central284

Africa showing high modal complexity.285

In order to assess the benefit of taking into account the non-proportionality286

of the damping, two simulations are compared in all following examples:287

Case 1 Truly complex modes of the subsystems are used, leading to a fully288

populated modal damping matrix CP = ΦT CΦ in principal coordi-289

nates.290

Case 2 Falsely complex modes are used to render the modal damping ma-291

trix CP diagonal and equal to −2Re(Λ), obtained from the usual292

approximation[34] of real mode shapes Φ̃ = Re(Ψ
√

2jIm(Λ)) then293

converted back by Ψ̃ = Φ̃/
√

2jIm(Λ) with Ψ normalized such that294

Π is the identity matrix.295

Following simulations are obtained using a three-step Adams-Bashforth296

time integration[35, 36] scheme to solve for complex modal coordinates q297

from the knowledge of their derivative.298

3.1. Academic system299

The academic example consists in a 4 dof subsystem S1 with fixed-free300

boundary conditions coupled to a 5 dofs subsystem S2 with free-fixed bound-301

ary conditions as depicted in Fig. 2. The coupling constraint is prescribed302

as a continuity of acceleration between both free ends.303
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Figure 2: 4 dofs subsystem coupled to 5 dofs subsystem

The global system (after coupling) verifies the following differential equa-304

tion305

MAẍA + CAẋA + KAxA = fe (33)

whose solution in the frequency domain is306

x̃A =
(
−ω2MA + jωCA + KA

)−1
fe (34)

with xA the vector regrouping the displacement of masses [m1, m2, m3,307

m4+m5, m6, m7, m8,m9] and x̃A its Fourier transform.308

Physical matrices of both subsystems are presented in Eqs. (35) and (36).309

Physical matrices of the global system (after coupling) used in the reference310

solution are presented in Eq. (37).311

20



M1 =


0.1 0 0 0
0 0.2 0 0
0 0 0.2 0
0 0 0 0.1

 ,K1 =


50 −30 0 0

−30 70 −40 0
0 −40 70 −30
0 0 −30 30

 ,C1 =


0.5 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (35)

M2 =



0.1 0 0 0 0
0 0.1 0 0 0
0 0 0.3 0 0
0 0 0 0.1 0
0 0 0 0 0.2

 ,K2 =



10 −10 0 0 0
−10 40 −30 0 0

0 −30 40 −10 0
0 0 −10 30 −20
0 0 0 −20 30

 ,C2 =



0.5 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


(36)

MA =



• • • •

• M1
• 0

• •

• • • •+◦ ◦ ◦ ◦ ◦

◦

M2

◦

0
◦ ◦

◦ ◦

◦ ◦ ◦ ◦ ◦


,KA =



• • • •

• K1
• 0

• •

• • • •+◦ ◦ ◦ ◦ ◦

◦

K2

◦

0
◦ ◦

◦ ◦

◦ ◦ ◦ ◦ ◦


,CA =



• • • •

• C1
• 0

• •

• • • •+◦ ◦ ◦ ◦ ◦

◦

C2

◦

0
◦ ◦

◦ ◦

◦ ◦ ◦ ◦ ◦



(37)

The new proposed formulation is used to simulate the dynamic response312

of the discrete mass m9 of system S2 in Fig. 3. A sampling frequency of 4 kHz313

is used and the full set of complex modes are retained for both subsystems.314

The excitation consists in an impulse at the initial instant (see the bottom315

graph of Fig. 3a), applied on the discrete mass m2 of system S1, represented316

by a vector fe[n] = δ[n]
dt

where dt is the sampling time and δ[n] is the discrete317

unit sample function. The waveform of the reference solution in Fig. 3a is318

obtained by time integration of Eq. 33, using a three-step Adams-Bashforth319

scheme, and its spectra in Fig. 3b is obtained using Eq. 34.320
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Figure 3: Simulated displacement waveform and spectrum of the discrete mass m9 of S2

for damping cases 1 and 2 together with the reference solution for case 1. (a) waveforms

and excitation force, (b) spectra.

First, the complex modal U-K formulation perfectly overlaps with the321

reference solution when considering the damping case 1 thus validating the322

inclusion of non-proportional damping. Second, the influence of the propor-323

tional damping assumption is clearly visible. Indeed, the simulation relying324

on the assumption of proportional damping presents globally lower resonance325

amplitudes. More importantly, the third mode at 1.45 Hz appears to be much326

more damped than it really is in the reference solution. These differences327

come from the fact that the modal bases of S1 and S2 contain truly complex328

modes (not proportional to modes of the conservative subsystems up to a329

complex multiplicative constant) as visible on Figs. (4a-4b) and indicated330

by the Modal Phase Colinearity [37, 38] (MPC) in Tab. 1, corresponding to331

the Modal Assurance Criterion [39, 40] (MAC) between a mode shape and332

its complex conjugate333
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MPC(u) = MAC(u,u) =
(

|uHu|
||u|| ||u||

)2

.

Thus the dynamic responses of S1 and S2 cannot be exactly represented by334

a set of uncoupled equations in principal coordinates.335

fn (Hz) 0.71 2.48 3.66 4.21

MPC 1.00 0.97 0.85 0.69

(a)

fn (Hz) 0.42 1.33 1.61 3.13 3.59

MPC 0.98 0.66 0.42 1.00 0.99

(b)

Table 1: Modal phase colinearity criteria of S1 and S2 for the damping case 1. (a)

subsystem S1, (b) subsystem S2.

(a) (b)

Figure 4: Complex mode shapes of S1 and S2 for the damping case 1. (a) subsystem S1,

(b) subsystem S2.

3.2. Experimental data336

3.2.1. Guitar model337

As a second example of application, a free-fixed stiff string is coupled to338

a 2 dofs guitar model, experimentally identified in [41]. The 2 dofs corre-339
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spond respectively to the structural transverse displacement of a point on340

the soundboard, and the acoustic pressure in the middle of the sound hole.341

Physical mass, damping and stiffness matrices corresponding to the matrix342

formulation of Eq. (10) (using Eq. (8 - 9)) are343

M =

0.031 0

0 2.7 · 10−7

 ,K =

2.2 · 104 0

0 0.12

 ,C =

 1.4 −0.036

0.036 3.1 · 10−6

 .
(38)

Note that physical matrices of Eq. 38 could be prescribed on a theoretical344

basis, however the choice is made to use experimental data to ensure their345

order of magnitude.346

Following simulations are obtained using a sampling frequency of 1200347

kHz and a ramp of force of 1 s, with a maximum amplitude of 1.1 N,348

applied on the string at three-fifths of its length, represented by a vec-349

tor fe[n] =
(
H[n] −H

[
n− 1

dt

])
1.1 n dt with H[n] being the Heaviside step350

function (see the bottom graph of Fig. 5a). The string has a radius of 0.48351

mm, a length of 64 cm, a density of 1100 kg m−3, a Young’s modulus of352

7.4 GPa and a tuning frequency of 82.4 Hz. Its transverse displacement is353

described by 150 modes.354

Fig. 5 presents the dynamic response of the structural dof of the guitar355

model in terms of waveform and spectrum for the damping cases 1 and 2.356

The MPCs of the two vibro-acoustic complex modes of the system described357

by physical matrices of Eq. (38) are equal to 1, therefore there mode shapes358

are proportional to the eigenvectors of the associated conservative system.359

This means that the latter are orthogonal to the damping matrix C and no360

difference should be visible between damping cases 1 and 2. Indeed, the two361
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simulations perfectly overlap in Figs. 5a - 5c which confirms the assumption362

of proportional damping for this system.363

0 1 2 3 4 5 6
0

0.5

1

-1

0

1

D
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pl
ac

em
en

t (
m

)

10-4

case 1 case 2

(a)

(b) (c)

Figure 5: Simulated displacement waveform and spectrum of the structural dof of the gui-

tar for damping cases 1 and 2. (a) waveforms and excitation force, (b) zoom on waveforms

in the time frame [1 - 1.3] s, (c) spectra (stars indicate string partials, the square indicates

the air cavity resonance inside the soundbox and the circle indicates the soundboard res-

onance).
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3.2.2. Central Africa harp model364

As a last example, experimentally identified modal parameters of a harp365

from Central Africa, in the frequency range [100-1700] Hz, are used to demon-366

strate the interest of including the non-proportionality of the damping. In-367

deed, the making process of this harp is artisanal and involves natural ma-368

terials such as animal skin (for the soundboard). It is thus probable for369

such materials that the assumption of a uniformly distributed damping is370

not verified.371

The experimental setup, presented in Fig. 6, consists in the harp hanging372

by means of bungee cords to approximate free boundary conditions. A strip373

of felt is intertwined with the strings to dampen, at least, their transverse374

vibrations. Frequency Response Functions are then obtained using a roving375

automatic hammer (force sensor PCB 086E80) at string attachments points376

on the neck (in two perpendicular directions) and the tailpiece for three377

reference positions (accelerometers: PCB M352C65 and 356A03 (triaxial))378

placed at the 5th string/neck attachment point and at the 7th string/tailpiece379

attachment point.380

The MPCs of the 32 experimentally estimated complex modes (see Fig.381

7a) show that several modes cannot be approximated by real ones and are382

actually strongly coupled either by damping or frequency. To illustrate this,383

Fig. 7b shows the separation criterion proposed by Hasselman [42] to char-384

acterize the decoupling between modes385

2ξjωj

|ωj − ωk|
≪ 1 (39)

with ξj the loss factor of mode j, ωj and ωk the undamped natural fre-386

quencies of modes j and k. This criterion signifies that the coupling due387
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Figure 6: Experimental setup used for the modal analysis of the harp. A⃝: Automatic

hammer; B⃝: Accelerometers; C⃝: Bungee cord; D⃝: Strip of felt.

to non-proportional damping can be neglected if the cross-modal impedance388

is high. As suggested by Balmès [33], this criterion can be used to identify389

groups of modes verifying the assumption of block proportional damping and390

then, for each group, a proper basis is approximated by resolution of an alge-391

braic Riccati equation [43]. For example, Fig. 7c shows mode combinations392

(colored in black) for which this criterion crosses the threshold of 0.2 as well393

as four groups of modes (red dashed squares) whose coupling by damping394

can be considered rather negligible.395

Fig. 8 presents simulations of waveforms and spectra of the acceleration396

of the 4th string/tailpiece coupling point for damping cases 1 and 2. The397

simulations are obtained using a sampling frequency of 800 kHz and a ramp398
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(a) (b) (c)

Figure 7: Mode complexity and coupling quantification of experimental modal basis. (a)

Modal Phase Colinearity (b) Separation criterion of Eq. (39), (c) Binarized separation

criterion with a threshold of 0.2 (red dashed squares indicate uncoupled groups of modes).

of force of 1 s, with a maximum amplitude of 1.1 N, applied on the string at399

three-fifths of its length (as in section 3.2.1). The string has a radius of 0.4400

mm, a length of 52.3 cm, a density of 1100 kg m−3, a Young’s modulus of401

7.4 GPa and a tuning frequency of 247 Hz. It makes an angle of 23.6 ° with402

the soundboard and its transverse displacement is described by 150 modes.403

Noticeable differences appear on waveforms of Fig. 8a between the pro-404

portionally and non-proportionally damped models. Looking at the fre-405

quency domain representation on Fig. 8b, two explanations are found. Firstly,406

amplitude differences are visible in the vicinity of harp body modes respond-407

ing at the string attachment point and whose MPC is below 0.95 (indicated by408

colored circles placed above the curves) showing that neglecting the damping409

coupling between mode combinations not verifying the separation criterion410

of Eq. (39) leads to an erroneous dynamic response of the system. Secondly,411

and most importantly, the 3rd and 4th string partials almost coincide with412

two strongly complex body modes of the non-proportionally damped system413
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Figure 8: Simulated acceleration waveform and spectrum of the 4th string/tailpiece cou-

pling point on a harp from Central Africa for damping cases 1 and 2. Colored circles

indicate resonances of the harp body around which case 1 and case 2 show significant am-

plitude differences, numbers indicate mode orders corresponding to Fig. 7. (a) waveforms,

(b) spectra.

(n°22 and 26) and are thus underestimated, due to previously mentioned414

reasons, by approximately 2 to 5 dB in the damping case 2.415

4. Conclusion416

An alternative modal Udwadia-Kalaba formulation based on complex417

modes of the dissipative subsystems is proposed. This new formulation is418

developed in the general case of vibro-acoustic substructures with an inter-419

nal cavity, to which purely structural substructures previously addressed in420

the literature is just a particular case. This new formulation is of particular421

interest in the frame of experimental substructuring, where physical damping422

matrices of substructures are usually not well estimated, since only a diago-423

nal first order model based on eigenvectors of the state-space representation424

of each subsystem is required instead of a second order model relying on a po-425
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tentially fully populated modal damping matrix in case of non-proportional426

damping. Moreover, the assumption of proportional damping is expected427

to be less and less reasonable with the increase of modal density so that428

the modal damping matrix should be more and more populated with the429

increase of frequency, as long as a modal description of the substructures430

remains consistent.431

The new formulation developed in this paper is validated by comparing432

simulations of two coupled 4 and 5 dofs subsystems to the analytic solution433

of an equivalent academic 8 dofs system. Then an application based on434

the coupling of a string to an experimental vibro-acoustic guitar body model435

illustrates the advantage of adapting the Udwadia-Kalaba formulation to this436

type of problem. Finally, experimentally identified complex modes of a harp437

from Central Africa are coupled to a string in order to show the relevance of438

using a formulation directly based on complex modes of subsystems instead of439

relying on real modes usually obtained by assuming a proportional damping.440
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Appendix A. Inverse of the modal mass matrix445

In the case of experimentally identified modal parameters, the physical446

mass matrix M may be unknown and a direct expression of the modal mass447
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matrix M in term of the norm matrix of complex mode shapes Π would be448

useful.449

Both M and Π can be linked to M as450

M−1 = ΨM−1ΨH and M−1 = ΨΠ−1ΛΨT (A.1)

Since Ψ is full column rank , the following property is verified451

Ψ†Ψ = INtot with Ψ† =
(
ΨHΨ

)−1
ΨH . (A.2)

Thus452

Ψ†ΨM−1ΨH
(
Ψ†
)H

= M−1 (A.3)

Finally453

M−1 = Ψ†ΨΠ−1ΛΨT
(
Ψ†
)H

=
[
INtot Ψ†Ψ

]
Π−1Λ


(
Ψ†Ψ

)T

INtot

 (A.4)

Appendix B. Development of Ξ454

Ξ = ΨT ∆AM−1KΨ + ΨT ∆AM−1CΨΛ (B.1)

= ΨT ∆AM−1 (KΨ + CΨΛ) with M−1 = ΨΠ−1ΛΨT [33] (B.2)

= ΨT ∆AΨΠ−1Λ
(
ΨT KΨ + ΨT CΨΛ

)
(B.3)

= −ΨT ∆AΨΠ−1ΛΨT MΨΛ2 from Eq. (20) (B.4)

= −ΨT ∆AΨΛ2. (B.5)
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