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Abstract

Motivated by recent examples, this study proposes a dynamic multistage optimal
control problem to explain the instability of International Fishery Agreements (IFAs). We
model two heterogeneous countries that exploit shared fishery resources, and investigate
the conditions that lead to a shift from cooperation to competition. We assume
that countries differ in their time preferences, initially behave as if the coalition will
last indefinitely, use fixed sharing rules during cooperation, and adopt Markovian
strategies after withdrawal. Our findings reveal that, for any sharing rule, coalitions of
heterogeneous players always break down in finite time. We use the dynamic Shapley
Value to decompose the coalition’s aggregate worth over time, thereby eliminating the
incentive to leave the agreement. Additionally, we show that a fishing moratorium policy
accelerates the recovery of near-extinct fish stocks; however, fishing should resume under
a cooperative regime once sustainable levels are achieved.
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1 Introduction

The 1982 establishment of Exclusive Economic Zones (EEZs) has redefined the property rights
of marine fisheries by transitioning fish resources from a common pool to coastal state assets.
A fish stock is internationally shared if the species’ habitat is located between several EEZs
or if the fish migrate between EEZs. These stocks constitute up to one-third of the global
marine-capture fishery yield (Munro et al., 2004). This requires multinational management
strategies to prevent resource depletion induced by noncooperative use. Fish management is
generally a regional issue among nations exploiting stocks in a specific location, which led to
the establishment of Regional Fishery Management Organizations (RFMOs) as the principal
tool for international fishery governance. However, recent challenges, including coalition
breakdowns among RFMOs, highlight the fragility of International Fishery Agreements (IFAs).
This paper propose a dynamic model of endogenous exit that explains coalition breakdowns,
and suggests a time-consistent sharing mechanism to stabilize IFAs. Furthermore, we propose
an optimal exploitation strategy under international cooperation based on the stock of fish
resources.

The strategic nature of managing straddling fish stocks among countries requires game-
theoretic models to better understand and solve issues related to the exploitation of fish
resources. Munro (1979) was the first to revisit the standard fishery model of Gordon (1954)
and its dynamic version proposed by Clark and Munro (1975) by introducing strategic
components. The game-theoretic literature addresses two main issues: the economic and
ecological impacts of noncooperative behaviors among countries sharing a fish stock (see
Mirman (1979), Levhari and Mirman (1980), and their followers) and the conditions enabling
the stability of IFAs over time. In this study, we are more interested in the latter issue, which
has been analyzed through both non-cooperative and cooperative game approaches.

The coalition formation approach using a partition function game is mainly noncooperative
and was first developed by Bloch (2003) and applied to fisheries by Pintassilgo and Lindroos
(2008). This part of the literature provides the conditions for the endogenous formation of
a coalition, as shown in Long and Flaaten (2011) and Breton and Keoula (2012)1. On the
contrary, the stability of coalitions has mainly been explored using cooperative game theory
through characteristic function games (see Kaitala and Lindroos (1998) and Kronbak and
Lindroos (2007), among others). The goal is to determine the ex-ante sharing mechanism

1A number of empirical applications of the partition function game has been developed such as Ekerhovd
(2010) who applied p-games to the blue withing fishery in the Northeast Atlantic, or even Kulmala et al.
(2013), who explored the management of Atlantic salmon stocks in the Baltic Sea.
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between members that satisfies some optimality criterion2. We follow this strand of the
literature by assuming coalition formation and focusing on the impact of sharing mechanisms
on IFA stability. We argue that time-invariant sharing mechanisms, even if optimally
established during coalition formation, fail to maintain stability because of the strong
economic incentives for members to exit as time passes. Essentially, regardless of the initial
sharing arrangement among the coalition members, a point in time arises when the future
benefits of exiting the coalition surpass those of the remaining members. This rigidity implies
coalition breakdowns due to dynamic time inconsistency.

Recent decades witnessed a growing focus on time inconsistency in resource management.
In fisheries, Ekeland et al. (2015) investigated the dynamic time inconsistency resulting
from policymakers’ inability to commit, manifested by the constant discounting of future
utilities between both current and not-yet-born individuals. We argue that heterogeneous
discounting can induce dynamic inconsistencies in coalitions. Motivated by the growing focus
on discounting in environmental economics (see Gollier (2010) and Scarborough (2011)),
we examine how the time preference diversity among fishing nations affects the dynamic
stability of IFAs. In the fishery context, such differences in discounting are usually interpreted
as divergence between management objectives. The observed diversity in the discounting
of countries within a coalition can be attributed to the political parties’ preferences for
resource conservation and economic activity. An additional motivation for heterogeneous
time preferences is the link between different zonal attachments or fish runs among countries
(Munro, 1990). More advantageous migratory patterns within the fish stock are usually
associated with a lower discount rate, and therefore, a higher preference for future rewards.
An example of coalition breakdown induced by divergence in fish runs is the management of
Atlanto-Scandian Herring stock by the North East Atlantic Fisheries Commission (NEAFC).
In 2002, following the fish run changes after stock recovery, Norway exited the coalition due
to disagreements over the initial quota allocations set when stocks were low, transitioning
from cooperation to competition in fish stock management. This example motivated our
analysis in this study. Additional examples are available in the recent book by Grønbæk et al.
(2020).

The main contribution of this study is that it explores the dynamic aspects of coalition
stability, allowing for time-varying decisions regarding coalition membership. As Pintassilgo
et al. (2015) point out, this has not been studied much in the fishery literature, partly because
of its theoretical complexity. This is a major contribution to the literature on the stability of

2Some applications that empirically derives different sharing imputations includes Arnason et al. (2000)
for the Norwegian spring-spawning herring fishery or Duarte et al. (2000) for the Northern Atlantic Bluefin
tuna fishery.
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a coalition and can be applied to current IFA issues.
An example that we have in mind is the EU/UK post-Brexit fishing-related problem,

where EU fishers will be gradually excluded from UK waters until 2026, when the share of
quotas will be decided every year. While the EU favoring a permanent deal, the UK expects
an annual renewal of quota shares. Within a dynamic framework, our study investigates
whether these renegotiations in catch share could enhance cooperation stability over adjacent
EU and UK fish stocks. An additional element that influences coalition (in)stability is the
health status of fish stocks before coalition formation. Considering that many internationally
shared fish stocks are still overexploited (FAO 2005), we argue that more depleted stocks
prior to cooperation may help stabilize and reduce the cost of sustaining such cooperation for
members over time.

A time-consistent sharing rule is required to promote IFAs. We build on insights from
cooperative dynamic game literature. The main theoretical contributions of Petrosyan (1995)
and Zaccour (2008) offer a framework for developing imputation rules that sustain cooperation
over time using dynamic individual rationality as a key concept. Our analysis draws on
these theoretical results to derive efficient catch sharing over time, especially in applying
the Shapley value Petrosjan and Zaccour (2003)’s application of the Shapley value (Shapley,
1953) for time-based pollution cost allocation.

We develop a theoretical framework in which two asymmetric countries characterized
by distinct discount rates form a coalition at t = 0. Within a coalition, it is assumed that
a group’s time preference lies within the range of its individual time preferences (Breton
and Keoula, 2014). Despite potential objections, it seems unlikely that the collective time
preference exceeds the individual ranges, particularly as it may be subject to negotiations
during coalition formation3. Once part of the coalition, countries believe that it will last
indefinitely and share the aggregate lifetime utility derived from cooperative management
using a time-invariant, possibly optimal, sharing rule.

To examine the conditions under which the coalition may split, we consider withdrawing
an endogenous variable allowing countries to leave the coalition at any time. When a potential
split arises, both countries engage in a noncooperative game, considering their respective
individual time preferences. Our analysis focuses on Markovian equilibria post-split, although
extending it to non-Markovian strategies, as in Zou (2016), remains feasible.

The contributions of Hannesson (1997); Ekerhovd et al. (2021); Laukkanen (2003); Bediako
and Nkuiya (2022) investigate cooperation, defection, and full competition in fishery games
under different scenarios; however, all of them remain silent on regime (or game) changes.

3The aggregation of time preference when agents are heterogeneous is studied in Gollier and Zeckhauser
(2005).
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Our regime-switch model is essentially a two-stage optimal control problem, where the second
stage is a standard non-cooperative differential game (Dockner et al., 2000). Recent studies,
including Boucekkine et al. (2013) and Moser et al. (2014), developed multistage optimal
control models, but few integrated dynamic games. Boucekkine et al. (2024) addressed this
by examining a linear-quadratic framework for managing public bads, such as pollution. We
adapt their approach with two key modifications: (i) we use a capital asset accumulation
model to represent fish growth within a fisheries context, and (ii) we introduce a time-varying
sharing mechanism to mitigate the coalition breakdown induced by player heterogeneity.

The principal findings of this study are as follows. Sustaining the coalition over time
with a static (optimal) sharing rule established at the beginning of the coalition is impossible.
This outcome is directly linked to the disparity in discount rates among the participating
countries. Specifically, a more patient country is incentivized to remain longer for increased
cooperative benefits but will leave once sufficient stock recovery is achieved. Conversely,
the less-patient country leaves the coalition earlier as its proportion of aggregate lifetime
utility from cooperation increases. Finally, it was shown that a dynamic welfare allocation
mechanism using the time-dependent Shapley value as a tool can foster cooperative stability
over time. Additionally, we demonstrated that a moratorium is an optimal cooperative
strategy when the fish stock is nearing extinction. However, the moratorium should end once
the fish stock reaches a minimum sustainable level.

The remainder of this paper is organized as follows. In Section 2, we introduce the model,
and in Section 3, we compute both the cooperative and non-cooperative regimes as a function
of the splitting time. The optimal splitting time is derived in Section 4. In Section 5, we
propose a time-consistent payoff imputation rule to maintain cooperation. Furthermore,
when the fish stock is severely depleted as part of cooperative management, we introduce the
possibility of a harvest moratorium in Section 6 and provide the optimal moratorium duration,
if any. Section 7 offers a discussion with alternative or relaxed assumptions compared to the
previous sections, and Section 8 concludes the paper.

2 The Model

We analyze a shared resource, specifically, a fish stock harvested by two heterogeneous players
or countries, differentiated by their time preference rates, ρl, for the more patient and ρh for
the less patient. Initially, at t = 0, these countries created a Regional Fishery Management
Organization (RFMO) designed to manage fish stocks. Within the coalition, players aim to
maximize their joint payoff by exploiting the fish population at a common (and agreed-upon)
discount rate, ρ. They share the payoff according to a fixed sharing rule, where γ is the share
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of the joint payoff received by player l, which could be the result of prior negations when the
coalition has been formed. When players decide on the coalition’s catch quota allocation,
they are assumed to believe that the coalition will persist. However, if at some future date
0 ≤ T ≤ ∞, one of them realizes that they would be better off quitting the coalition, then
the coalition breaks down and the resulting situation is a standard Markovian competition
under the individual’s rates of time preferences. Motivated by the recent coalition breakdown
in the fishery context, such a withdrawal is expected to occur due to the asymmetry in time
preferences (or management objectives), in addition to the fixed sharing from which players
could disagree as time passes.

To obtain an explicit formula, we consider a parametric example in which the dynamics
of the fish population subject to consumption ck(t) ∀k = l, h are as follows:

ẋ(t) = Ax(t)θ − δx(t)− cl(t)− ch(t), x(0) > 0, (1)

where A > 0 and δ > 0 denote the intrinsic growth and natural mortality rates of the fish,
respectively. Parameter 0 < θ < 1 scales the production function relative to population
size, making the growth function Ax(t)θ − δx(t) concave with an inverted U-shaped curve.
Importantly, the growth rate becomes infinite as the stock level approaches zero, excluding
the Allee effect. Nevertheless, for given x(0) > 0 this framework ensures positive steady-state
stocks. Without fishing, that is, ch(t) = cl(t) = 0, Equation (1) is a Bernoulli equation and
the explicit solution can be obtained by letting X(t) = x(t)1−θ:

Xn(t) = (X(0)−Xn)e
−(1−θ)δt +Xn, (2)

where the initial condition satisfies X(0) = x(0)1−θ > 0 and the natural steady state without
consumption is Xn = A

δ
> 0, which is also referred to as the maximum sustainable yield (see

Clark (2010)).

We now introduce the economic activities. The two asymmetric players enjoy consuming
fish according to the following utility function, which has constant marginal utility elasticity:

Uk

(
ck(·)

)
k=l,h

=

∫ ∞

0

ck(t)
1−ν

1− ν
exp−ρt dt, (3)

where ν denotes the constant elasticity of marginal utility. The following parametric restriction
is imposed.

Assumption 1 Suppose that ν = θ ∀ θ ∈ (0, 1).

This assumption links the shape of the species growth function with the utility function.
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Despite the lack of empirical justification, it facilitates analytical solutions, and thus, clear
economic intuitions. Given that the results are not driven by this assumption, relaxing it is
unlikely to alter the outcomes, but will imply loose tractability. Hence, θ and ν are embodied
in a single parameter for the subsequent analyses.

Suppose that when the players are embodied in a coalition, the common discount factor
of coalition ρ satisfies ρl < ρ < ρh. Cooperation includes the joint choice of the optimal catch
and sharing strategy, but the discounting rate ρ could also be a result of negotiation, which
could be the reason for the coalition breakdown. Therefore, it is unlikely that this rate was
outside the range of individual time preferences. The objective of the players within the
coalition is to jointly choose their consumption paths for the fish stock to maximize the sum
of their intertemporal utility flows. Because they believe that the coalition is everlasting, the
joint optimal control is

W(x(0)) = max
cl(·),ch(·)

∫ ∞

0

[
cl(t)

1−θ

1− θ
+

ch(t)
1−θ

1− θ

]
e−ρtdt,

subject to the dynamics constraint in Equation (1).
Suppose either player l or player h decides to quit the coalition at time 0 ≤ T ≤ ∞. The

regime changes from cooperative management to full competition. Following Van Long (2010)
and Gaudet and Lohoues (2008), we search for stationary linear Markovian strategies in the
following form:

∀k = l, h ck(t) = ωkx(t). (4)

Therefore, the problem of a specific player k = l, h can be written as

Vk(x(T )) = max
ck(·)

∫ ∞

T

ck(t)
1−θ

1− θ
exp−ρkt dt

s.t. ẋ(t) = Ax(t)θ − δx(t)− ck(t)− ω−kx(t), t ≥ T, (5)

x(T ) > 0,

where ck(x) is the catch of player k and ω−kx(t) represents the Markovian strategy of the
other player. Our model employs a forward-looking approach with anticipations. Players
make decisions at t = 0, and in the non-cooperative regime, they discount payoff over the
entire time period.

In this context, the choice of splitting time T depends on the sharing strategy chosen by
the coalition members, γ, the optimal payoff at a given time W(T ) and the payoffs flow after
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breaking, Vk(x(T )). In particular, the optimal switching times for players l and h are

max
T

[
γW(T ) + Vl(x(T ))

]
, and max

T

[
(1− γ)W(T ) + Vh(x(T ))

]
. (6)

Arguably, W(T ) should be increasing in T , meaning that the longer the coalition, the
higher the joint payoff and, therefore, the higher the payoff after splitting; otherwise, splitting
occurs immediately. Conversely, we expect that as the cooperative becomes longer, the
non-cooperative equilibrium payoff, Vk(x(T )), after withdrawal decreases. The first-order
conditions for (6) are

γ
dW(T )

dT
+

dVl(x(T ))

dT
= 0, and (1− γ)

dW(T )

dT
+

dVh(x(T ))

dT
= 0. (7)

Therefore, the optimal splitting time is the lowest time T solving one of the two first
conditions above, provided that the second-order sufficient conditions

γ
d2W(T )

dT 2
+

d2Vl(x(T ))

dT 2
< 0, or (1− γ)

d2W(T )

dT 2
+

d2Vh(x(T ))

dT 2
< 0 (8)

are satisfied. This suggests that T is indeed a global optimum characterized more precisely
by diminishing marginal cooperative gains and decreasing marginal non-cooperative losses
associated with an extended cooperative stage. We can now characterize the cooperative and
noncooperative outcomes before computing the optimal splitting time.

3 Cooperative and non-cooperative outcomes

First, we proceed with the characterization of the equilibrium under the cooperative regime,
followed by an analysis of the non-cooperative Markovian strategies post-splitting, and finally
conclude with a comparison of the outcomes under both regimes.

3.1 Cooperative stage

The optimal control problem in (4) is standard and can be solved using dynamic programming
with the typical Hamilton-Jacobi-Bellman (HJB thereafter) equation. Denoting the optimal
value function as W , the HJB is

ρW(x) = max
cl,ch≥0

{
c1−θ
l

1− θ
+

c1−θ
h

1− θ
+W(x)′

(
Axθ − δx− cl − ch

)}
, (9)

at state x.
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The first-order necessary conditions on the right side are

c−θ
l = W(x)′ and c−θ

h = W(x)′. (10)

Considering the Bernoulli transformation x(t)1−θ = X(t), we assume that the optimal
value function is linear in the transformed state variable

W(x) = α
x1−θ

1− θ
+ β = α

X

1− θ
+ β, (11)

where α and β are coefficients identified using (9), (10), and (11). The following proposition
summarizes the cooperative management regime under an everlasting coalition.

Proposition 1 There exists a unique set of coefficients β, α that satisfy Equation (9), where
the optimal choices of players k = l, h are

cl = ch = α−1/θx = ωcx, (12)

where
β =

A

ρ
α, α−1/θ = ωc =

1− θ

2θ

(
ρ

1− θ
+ δ

)
(> 0). (13)

Given that x(t)1−θ = X(t), the trajectory of the fish stock is

Xc(t) = e−at
(
X(0)− X̄c

)
+ X̄c, (14)

where a = (1− θ)(δ + 2ωc) > 0, and the long-run steady state is X̄c =
A

δ+2ωc
.

Proof. The proof is straightforward and is based on the identification of (9).

As expected, the long-run steady state stock X̄c is lower than the maximum sustainable
yield X̄n. The convergence speed to the steady state, that is, a, is significantly influenced by
the group’s time preference ρ through fishing intensity ωc but not by the intrinsic growth
rate of the fish, A. Thus, fish recovery is slower because of ongoing exploitation.

3.2 Non-cooperative stage after the split T

Thus far, we characterized cooperative equilibrium outcomes for the coalition over the entire
timeframe. Suppose a player decides to exit the coalition at date T and adopts purely egoistic
behavior. When only two players are involved, one player’s departure leads to a scenario of
pure competition. Our focus shifts to Markovian strategies after withdrawal, considering
that players differ in their time preferences. Among the potentially infinite Markovian Nash
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equilibria (Dockner and Van Long, 1993), we aim to identify a pair of linear Markovian
strategies {cl(t), ch(t)} = {ωlx(t), ωhx(t)} that are the best responses to each other. For each
player k = h, l, the individual value function is denoted by Vk(x), and the maximization
problem in (5) is formulated recursively, as follows:

ρkVk(x) = max
ck≥0

{
c1−θ
k

1− θ
+ Vk(x)

′
(
Axθ − δx− ck − ω−kx

)}
, ∀k = l, h and − k ̸= k. (15)

The first-order conditions on the right-hand side of (15) yield

c−θ
k = V(x)′ ∀k = l, h. (16)

Supposing that the individual value function is linear in the transformed state variable
for all players,

Vk(x) = αk
x1−θ

1− θ
+ βk = αk

X

1− θ
+ βk ∀k = l, h, (17)

where αk, βk are the coefficients that must be identified using (15) and (16), respectively. The
following proposition provides the results for the non-cooperative stage with linear Markovian
strategies after potential withdrawal.

Proposition 2 Let player k = h, l exit the coalition at time T and adopt linear Markovian
strategies after withdrawal. There exists a unique set of coefficients αk and βk satisfying
Equation (15). The strategies are

ck = α
−1/θ
k x = ωkx, (18)

where

βk =
A

ρk
αk, α

−1/θ
k = ωk =

(
ρk

1− θ
+

δ + ρ−k

θ

)
(1− θ)θ

θ2 − (1− θ)2
, −k ̸= k (19)

which are positive if 1 > θ > 1
2
. Given the fish stock value after the first cooperative stage,

Xc(T ), the fish stock trajectory under Markovian strategies in the second stage is

Xnc(t) = e−b(t−T )(Xc(T )− X̄nc) + X̄nc, ∀t ≥ T, (20)

where b = (1− θ)(δ + ωh + ωl) > 0 and X̄nc =
A

δ+ωh+ωl
is the long-run steady state.

Proof. The proof is straightforward and is based on the identification of (15).
Not surprisingly, condition (19) states that the patient player exploits the stock at a

lower rate than the impatient player does; that is, ρh > ρl ⇐⇒ ωh > ωl. In other words, more
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patient players can more effectively postpone their current consumption to future consumption.
Similarly, comparing the aggregate catch rates in the cooperative and non-cooperative regimes
yields the expected results. Specifically, comparing 2ωc in (13) with ωl + ωh in (19) shows
that

2ωc =
ρ

θ
+

δ(1− θ)

θ
<

ρl + ρh
θ2 − (1− θ)2

+
2δ(1− θ)

θ2 − (1− θ)2
= ωl + ωh (21)

Thus, for any fish stock x, the cooperative catch rate 2ωc is always lower than the
competitive catch rate ωl + ωh. Consequently, in the long-run steady state, the fish stock
under cooperation is larger than that under competition; that is, X̄c > X̄nc.

4 The optimal splitting time

To determine the optimal coalition splitting time, we first compute the individual payoffs
in both stages for a given splitting time, T . Then, using (7) and a given sharing rule γ, we
identify the conditions under which player k ∈ h, l will withdraw in finite time.

4.1 The cooperative payoff

Suppose that γ, the share of the cooperative payoff allocated to player l, is constant over
time. The aggregate payoff flow from time zero to time T is then

W(T ) =

∫ T

0

[
2
ω1−θ
c Xc(t)

1− θ

]
e−ρtdt, (22)

where ωc and Xc(t) are given by (13) and (14), respectively. Welfare (22) can be rewritten as

W(T ) = 2
ω1−θ
c

1− θ

[
(X(0)− X̄c)

a+ ρ

(
1− e−(a+ρ)T

)
+

X̄c

ρ

(
1− e−ρT

)]
, (23)

where a = (1 − θ)(δ + 2ωc) > 0. Therefore, player l receives γW(T ) and player h receives
(1− γ)W(T ). To assess how the splitting time affects each individual’s cooperative payoff,
we compute the partial derivative of the total payoff with respect to T in (23), given that the
sharing rule is time independent.

∂W(T )

∂T
= 2

ω1−θ
c

1− θ

[
(X(0)−X̄c)e

−(a+ρ)T +X̄ce
−ρT

]
= 2

ω1−θ
c

1− θ
e−ρT

[
(X(0)−X̄c)e

−aT +X̄c

]
> 0

(24)
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using the trajectory of the fish stock (14). However, the second-order conditions with respect
to the splitting time hold:

∂2W(T )

∂T 2
= −2

ω1−θ
c

1− θ
e−ρT

[
(ρ+ a)(X(0)− X̄c)e

−aT + ρX̄c

]
< 0. (25)

As expected, the longer the cooperative stage, the larger the individual payoffs, although
the marginal returns decrease over time.

4.2 Non-cooperative payoff

To determine the optimal splitting time, we also need to compute the payoff flows for each
player after splitting. Using the second-stage results from Proposition 2, the payoff for player
k = l, h is

Vk(Xc(T )) =

∫ ∞

T

ω1−θ
k

1− θ
Xnc(t)e

−ρktdt, (26)

where Xc(T ) is the stock value at the end of the cooperative period. Computing (26) using
(20) yields

Vk(Xc(T )) =
ω1−θ
k

1− θ

[
(Xc(T )− X̄nc)

b+ ρk
e−ρkT +

X̄nc

ρk
e−ρkT

]
, (27)

where b = (1− θ)(δ + ωl + ωh) > 0. Taking the derivative with respect to T yields:

∂Vk(x(T ))

∂T
=

ω1−θ
k e−ρkT

1− θ

[
−
(
ρk(Xc(T )−Xnc)

b+ ρk
+Xnc

)
+

1

b+ ρk

dXc

dT

]
(28)

where dXc(T )
dT

= −a(X(0)−Xc)e
−aT (> 0) denotes the instantaneous stock gain at T . This

term is positive if the initial stock is below the potential long-run steady state, X(0)−Xc < 0,
which is generally true given the aim of increasing the long-run fish stock under cooperation.
The first part of (28),

(
ρk(Xc(T )−Xnc)

b+ρk
+Xnc

)
, measures the instantaneous loss in the value

function at T because this delays the end of cooperation. Therefore, the sign of (28) depends
on the dominant factor. Combining the two parts, rewriting, and using the fact that
aXc = bXnc = A(1− θ), it follows that

∂Vk(x(T ))

∂T
=

ω1−θ
k e−ρkT (a+ ρk)

(1− θ)(b+ ρk)

[
(Xc −X(0))e−aT −Xc

]
< 0, ∀T > 0. (29)
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Additionally, we can readily verify that ∂2Vk(x(T ))
∂T 2 < 0, which, combined with (29),

indicates that a longer cooperation period decreases the individual payoff post-withdrawal,
with losses becoming increasingly significant over time.

4.3 Optimal splitting time

The optimal splitting time must satisfy the first-order conditions in Equation (7). By
substituting Equations (29) and (24) into Equation (7), the optimal switching time Tk for
player k = l, h is

e(ρl−ρ)Tl =
1

2γ

(
ωl

ωc

)1−θ (
a+ ρl
b+ ρl

)
, and e(ρh−ρ)Th =

1

2(1− γ)

(
ωh

ωc

)1−θ (
a+ ρh
b+ ρh

)
. (30)

We directly obtain the following results.

Proposition 3 Given that ρl < ρ < ρh and parameters A, θ, ρl, ρh, and δ,

(a) For Player l: If γ ≥ γ = 1
2

(
ωl

ωc

)1−θ (
a+ρl
b+ρl

)
(∈ (0, 1)), then Player l exits the coalition

at

Tl =
1

ρl − ρ
ln

(
1

2γ

(
ωl

ωc

)1−θ (
a+ ρl
b+ ρl

))
≥ 0, (31)

which increases with player l’s share γ for γ ≥ γ due to ρl − ρ < 0. The latest exit time
is

Tmax
l =

1

ρl − ρ
ln

(
1

2

(
ωl

ωc

)1−θ (
a+ ρl
b+ ρl

))
> 0.

(b) For Player h: If γ ≥ γ = 1− 1
2

(
ωh

ωc

)1−θ (
a+ρh
b+ρh

)
(∈ (0, 1)); that is, the share of player

h checks 1− γ < 1− γ, then Player h exits the coalition at

Th =
1

ρh − ρ
ln

(
1

2(1− γ)

(
ωh

ωc

)1−θ (
a+ ρh
b+ ρh

))
≥ 0, (32)

which decreases with share 1− γ for γ ≥ γ given ρh − ρ > 0.

Proof. The proof is straightforward, from (30).
The equality condition aXc = bXnc = A(1−θ) is crucial for proving the above proposition.

This result reveals key insights into the decision-making process when a player decides
to stop the coalition. Recalling the definitions of a and b in Equations (14) and (20),
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respectively, they can be considered effective discounting factors. Consequently, the equality
aXc = bXnc = A(1 − θ) implies that the instantaneous long-run steady state is identical
under both cooperation and competition conditions. Therefore, maintaining the coalition
offers no further benefit when competition can yield better results despite the fact that the
long-run fish stock is higher under cooperation (Xc > Xnc).

The comparative statics of the splitting time Tk with respect to the sharing rule γ provide
valuable insights. Player l, the more patient player, exits later as the share obtained from
cooperation increases; that is, ∂Tl

∂γ
> 0, and always exits in finite time regardless of the share

received from the cooperative stage. By contrast, player h, the more impatient player, exits
sooner as the share obtained from cooperation increases; that is, ∂Th

∂(1−γ)
< 0. The intuition

is that the more player h receives from the cooperative stage, the sooner they will exit the
coalition and enter competition.

The above proposition provides insights into the players’ individual optimal exit times.
However, to determine who is the first to dissolve the coalition, we must compare Tl and Th

in (31) and (32). Specifically, we define γe as the share of player l that leads to simultaneous
existence; that is, Tl = Th:

γe =
e

1
ρl−ρωl

1−θ
(

a+ρl
b+ρl

)
e

1
ρl−ρωl

1−θ
(

a+ρl
b+ρl

)
+ e

1
ρh−ρωh

1−θ
(

a+ρh
b+ρh

) ∈ (0, 1). (33)

Thus, we should consider four cases, depending on the range of values for γ. This leads
to the following conclusions:

Proposition 4 For given parameters A, θ, ρl, ρh, and δ,

(1) If the share of player l satisfies γ > γ > γ, player l quits the coalition first at the time
defined in (31).

(2) If the share of player l satisfies γ < γ < γ, then player h quits the coalition first at the
time defined in (32).

(3) If the share of player l satisfies γ ≤ min{γ; γ}, then the coalition breaks immediately,
T = 0.

(4) If the share of player l satisfies γ > max{γ; γ}, then the coalition breaks in finite time
either by player l if γ < γe or by player h if γ > γe.

In contrast to the cases above where the joint time preference is located between the low
and high time preferences (ρl < ρ < ρh), if the two players are identical, that is, ρl = ρh = ρ,
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then equality (30) provides no solution. 4 We thus conclude the following.

Corollary 1 For any given parameters, A, θ, and δ, the coalition, if it exists, will last forever;
that is, T = +∞, if and only if the players are identical; that is, ρl = ρh = ρ.

5 Time-consistent sharing to prevent breakdowns

The analysis above highlights some disappointing results for any fishery coalition. As long as
the players are not identical, the coalition will eventually break in a finite time. Nonetheless,
some cooperation does persist for a long time. One powerful tool to ensure successful
cooperation is side payments, that is, sharing extra fishing resources and benefits fairly. The
time-variant sharing rule between the UK and the EU mentioned in the introduction is an
example. Other examples include the Pacific Salmon Treaty between the United States and
Canada, and the North Pacific Fur Seal Treaty among Canada, Japan, Russia, and the US.
More detailed descriptions of these cases are provided in Sections 4.4.2 and 4.4.3 of Grønbæk
et al. (2020).

Recently, Bergantiños et al. (2023) applied Shapley values to study a sharing strategy for
tuna fisheries among different vessels belonging to the same firm. They noted that although
the Shapley value is standard in the game theory literature, its application to fisheries is rather
limited. Both Grønbæk et al. (2020) and Bergantiños et al. (2023) apply a time-invariant
Shapley value. However, as showed above, a fair Shapley value at one point in time may
become unfair as time passes. In this section, we present a time-dependent Shapley value
tailored to the current fishery cooperation situation.

5.1 Time-variant Shapley values

Let Φl (X) and Φh (X) be the Shapley values for players l and h, respectively. Following
Petrosjan and Zaccour (2003), these Shapley values are

Φk(X(t)) =
V(X(t)) + Vk(X(t))− V−k(X(t))

2
for k = l, h and − k ̸= k. (34)

4The reason is straightforward. It is easy to check that ωl = ωh = ρ+(1−θ)δ
2θ−1 > ρ+(1−θ)δ

2θ = ωc and
a+ρ
b+ρ = 2θ−1

2θ . Thus, the first-order condition for player l in Equation (30) becomes 1 = 1
2γ

(
2θ−1
2θ

)θ
, which

holds, if and only if 2γ =
(
2θ−1
2θ

)θ
> 1. This is impossible given that the two players are identical and there

is no particular reason one player shares more of the fish stock while the other players share less. Thus, there
is no solution to (30).
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The allocation of welfare to player k(= l, h) at time t ∈ [T,∞) is

Γk(t) = ρΦk(X(t))− dΦk(X(t))

dt
. (35)

In other words, at time t, player k is allocated welfare corresponding to the interest payment
(i.e., the social discount rate (= interest rate) times their welfare-to-gain under cooperation
given by her Shapley value) minus the variation over time of this welfare-to-gain (Petrosjan
and Zaccour, 2003).

From Proposition 1 of Petrosjan and Zaccour (2003, p. 388), the allocation (Γl(t),Γh(t))

is a time-consistent imputation distribution process; that is, it decomposes over time the total
welfare of player k as given by the Shapley value component for the whole game. Furthermore,
the relationship between the dynamic Shapley value and the Nash Bargaining solution can
be established as follows:

Proposition 5 In this asymmetric two-player setting with a transferable payoff, the Shapley
Values Φk(X(t)), k = l, andh, coincide with the Nash bargaining solution that maximizes the
Nash Product.

Proof. The proof is straightforward. We define ΦNB
k (X) as the Nash Bargaining solution for

player k = h, l that maximizes the Nash Product:

max NB =
(
ΦNB

h (X)− Vh(X)
) (

ΦNB
l (X)− Vl(X)

)
(36)

s.t ΦNB
h (X) + ΦNB

l (X) = V(X) (37)

The solution is ΦNB
k (X) = V(X)+Vk(X)−V−k(X)

2
for k = l, h and − k ̸= k.

5.2 Comparing the Shapley values

Because of the fairness property of the Shapley values, and given that the players have
different rates of time preferences, the value of the coalition is likely not shared equally.
Comparing Equation (34), we obtain

Φk(X(t)) > Φ−k(X(t)) ⇔ Vk(X(t)) > V−k(X(t)), for k = l, h and − k ̸= k. (38)

In other words, the asymmetry in the Shapley values is mainly due to the asymmetry in
payoffs along the non-cooperative trajectory. Using Equation (17), we obtain
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Vh(X(t))− Vl(X(t)) = X(t)
1−θ

(
αh − αl

)
+ A

(
αh

ρh
− αl

ρl

)
,

= αh

(
X(t)
1−θ

+ A
ρh

)
− αl

(
X(t)
1−θ

+ A
ρl

)
.

(39)

Thus, Player l’s non-cooperative payoff exceeds that of player h if and only if

αh

αl

<

X(t)
1−θ

+ A
ρl

X(t)
1−θ

+ A
ρh

, (40)

which always holds because αh < αl and ρh > ρl. Therefore, Vl(X(t)) > Vh(X(t)). We thus
conclude:

Corollary 2 The Shapley values, defined in (34), check

Φl(X(t)) > Φh(X(t)).

The Shapley value allocates a larger share of the cooperative payoff to the patient player,
reflecting her relatively higher marginal contribution to the aggregate payoff. This aligns
with Proposition 3, which explains that a larger share of player l (and a lower share of player
h) implies a longer coalition, even though it breaks in finite time.

5.3 Splitting under Shapley

With the above-defined Shapley value and sharing rule, in the rest of this subsection, we
demonstrate that the coalition can provide higher welfare for both players, and there is no
incentive for any player to quit the coalition.

To complete the proof, we argue in contradiction. Suppose that even under the dynamic
Shapley sharing rule, Player k exits the coalition at T ∗ < +∞, where X∗ = X(T ∗); then

Vk(X) > Φk(X), for X∗ < X < Xnc. (41)

In other words, after the breakdown of the coalition, player k can do better.
By definition (34), it follows that regardless of which players would like to break the

coalition,

Vl(X) + Vh(X) > V(X) = Φl(X) + Φh(X), for X∗ < X < Xnc. (42)

Obviously, if the coalition continuous at X∗, the reversed inequality in (42) holds. Thus, at
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the transition point X = X∗, the two sides of the inequalities above are equal; that is,.

Vl(X
∗) + Vh(X

∗) = V(X∗). (43)

However, under cooperation, the optimal choice can be selected such that it is at least the
same the optimal choice as under competition. Therefore, aggregate welfare under cooperation
cannot be lower than the sum of welfare under competition; that is,.

Vl(X) + Vh(X) < V(X), ∀X ∈ [X0, Xnc]. (44)

The break from the previous fixed sharing rule (γ, 1 − γ) is mainly due to unfairness,
which may be fair at the beginning: γ = Γ(0); however, with time, this is no longer the case.
The Shapley value provides a dynamic, time-consistent and fair sharing rule. Thus, there is
no incentive to break a coalition. Consequently, Equation (43) has no solution. Therefore, the
previous assumption that player k breaks the coalition at X∗ does not hold true. Hence, the
players have no time to enter the competitions. In other words, the cooperating players obtain
their shares according to their Shapley values, which is always better than the competitive
case.

6 Harvest moratorium

We conducted the analysis above based on the implicit assumption that cooperation is
beneficial from the beginning. Nonetheless, cooperation among players may be triggered by
severe fish stock depletion, in which the initial stock X(0) is not only far below the optimal
long-run cooperative steady-state level, Xc, but also below the sustainability threshold, X,
defined by the International Council for the Exploration of the Sea (ICES). In this situation,
a harvest moratorium may be the optimal target for cooperation. Assuming that cooperative
management is implemented after significant fish stock depletion, recovery may be slow
despite cooperative catch agreements. Although the growth rate of the fish stock is as high
as x(t) → 0, recovery to healthy levels may take several years. A notable example is the
South Tasman Rise trawl fishery, in which Australia and New Zealand cooperatively managed
orange roughy stocks. In 1998, a memorandum was established, leading to minimal catches,
and a fishing ban from 2007 onwards, which remained in place. Motivated by these examples,
this section examines whether a harvest moratorium policy benefits the management of
severely depleted stocks, and determines the optimal duration.

Instead of continuing to fish a depleted population, we examined whether stopping fishing
for a period could lead to faster fish recovery and be welfare-beneficial for the coalition. Two
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scenarios are considered: (A) resuming fishing after reaching the sustainability threshold, X,
and (B) resuming fishing after reaching the potential long-run steady state, Xc. Case (B)
corresponds to the bang-bang choices in linear fishery problems (see Grønbæk et al. (2020)).
This allows us to complement the literature by supporting or challenging such bang-bang
policies in a nonlinear context.

Our aim is not to compare welfare with and without a moratorium, as this would involve
comparing constrained and unconstrained optimization. Instead, we focus on the welfare
effects of different moratorium lengths based on the initial stock. The moratorium is modeled
as the most rapid approach path (Noussair et al., 2015), where players agree to stop fishing
until the stock reaches either the minimum sustainable level X or the long-run optimal steady
state Xc. Subsequently, they resume fishing, quotas are distributed, and payoffs are shared
according to the dynamic Shapley values in (35). The strategy that yields the highest social
welfare is optimal.

6.1 Fishing after reaching X

Without fishing, fish stock dynamics follow Equation (1). This forms a Bernoulli equation
with initial conditions x(0) = X(0)1−θ, resulting in fish stock trajectory Xn(t) from (2), where
Xn is the long-run steady state without fishing. The sustainable threshold X is reached
in finite time tm. Players start to optimally exploit the stock from this date and the fish
population recovery time satisfies

Xn(tm) = X ⇐⇒ tm = − 1

(1− θ)δ
ln

(
Xn −X

Xn −X(0)

)
(> 0). (45)

It is straightforward that if X = X(0), then tm = 0, indicating no moratorium. Further-
more, a lower initial stock size X(0) increases the difference between X and X(0), thereby
extending the moratorium duration. Higher mortality rates also prolong recovery time.

The aggregate welfare, assuming that cooperation will last forever, is

W(tm) =

∫ ∞

tm

[
2
ω1−θ
c Xc(t)

1− θ

]
e−ρtdt. (46)

Alternatively, by using the optimal stock trajectory in Equation (14) for any t > tm,

W(tm) = 2
ω1−θ
c

1− θ

∫ ∞

tm

[
e−a(t−tm)−ρt

(
X −Xc

)
+ e−ρtXc

]
dt, (47)

where a = (1 − θ)(δ + 2ωc) > 0 and Xc = A
δ+2ωc

is the long-term optimal steady state.
Integration leads to the following joint welfare function:
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W(tm) = 2
ω1−θ
c

1− θ
e−ρtm

[
(X −Xc)

a+ ρ
+

Xc

ρ

]
= 2

ω1−θ
c

1− θ
e−ρtm [ρX + (1− θ)A] . (48)

The above results determine the minimum duration for which fishing must be prohibited
to reach the minimum sustainability level X and the corresponding welfare for this policy.
However, it remains unclear whether extending the waiting period results in higher or lower
social welfare from fishing activities. In the following subsections, we explore an alternative
approach for determining the optimal duration of the moratorium policy.

6.2 Fishing after reaching Xc

To determine whether extended waiting times enhance social welfare, we examine Case (B),
where the moratorium lasts until the stock reaches the long-run optimal steady state Xc

rather than the minimum stock level X. Seminal studies in fishery economics, such as those
by Gordon (1954) and Clark and Munro (1975), assume a linear objective function in the
controls. In such cases, an optimal policy consists of a combination of bang-bang and singular
controls (Caputo, 2005). If the initial stock differs from the optimal steady state, the optimal
policy follows a Most-Rapid Approach Path, where the stock reaches the optimal steady
state as quickly as possible using a bang-bang strategy followed by singular control (Hartl
and Feichtinger, 1987). We challenge this by exploring whether a nonlinear choice framework
still supports such a strategy, or if an interior solution is more welfare-enhancing.

Given the fish dynamics without harvesting in Equation (2), the moratorium duration
that allows the fish stock to recover from its initial state X(0) to its long-run optimal value
Xc, denoted by tc, is

Xn(tc) = Xc ⇐⇒ tc = − 1

(1− θ)δ
ln

(
Xn −Xc

Xn −X(0)

)
(> 0). (49)

The moratorium duration tc decreases with the distance between the initial and long-run
optimal states, and becomes zero if they are equal. The joint welfare in this case is

W(tc) =

∫ ∞

tc

[
2
ω1−θ
c Xc(t)

1− θ

]
e−ρtdt. (50)

Given the fish stock dynamics in Equation (14), the welfare over time is the infinite discounted
sum of utility derived from fishing at the steady state:

W(tc) = 2
ω1−θ
c

1− θ

∫ ∞

tc

[
e−ρtXc

]
dt. (51)

By integration, we obtain
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W(tc) = 2
ω1−θ
c

1− θ
e−ρtc

[
Xc

ρ

]
= 2

ω1−θ
c

1− θ
e−ρtc

[
ρXc + (1− θ)A

]
. (52)

Now, we can move on and characterize the optimal moratorium duration.

6.3 Comparison

The goal is to compare the welfare impacts of the two different types of moratorium policies,
as defined in Cases (A) and (B). Arguably, the results are not straightforward in the sense
that a longer moratorium policy could allow the exploitation of a larger fish stock, which
favors the payoff towards the optimal steady state; however, this should be balanced with
the negative effect of a longer waiting time (either tm or tc). An interesting question is,
assuming that the moratorium allowed stocks to reach the minimum level, X, is there a
welfare improvement in waiting until the stock reaches its optimal value, Xc, such that future
generations can benefit from larger initial stocks?

A comparison between (52) and (48) yields

W(tc) < W(tm) ⇐⇒ e−ρtc

[
ρXc + (1− θ)A

]
< e−ρtm

[
ρX + (1− θ)A

]
. (53)

On the one hand, players can exploit a larger fish stock Xc > X, but on the other side
the discounting weight negatively this value due to e−ρtc < e−ρtm , consequence of the no
fishing policy. Exploration of condition (53) leads to the following results:

Proposition 6 For the given parameters and for any sustainable level X ∈ [X(0), Xc],

(1) the social welfare checks W(tm) > W(tc), where W(tm), W(tc), are given by (48), (52);
(2) the length of moratorium policy, tm, given in Equation (45) is the optimal one.

Proof. From the definitions of tc and tm in (49) and (45), respectively, inequality (53) can
be rewritten as (

Xn −X

Xn −Xc

) ρ
(1−θ)δ

>
ρXc + (1− θ)A

ρX + (1− θ)A
. (54)

Taking the logarithm on both sides, it follows that inequality (54) is equivalent to

Γ(X) ≡ ρ

(1− θ)δ
ln

(
Xn −X

Xn −Xc

− ln

(
ρXc + (1− θ)A

ρX + (1− θ)A

)
> 0 ∀X ∈ [X(0), Xc]. (55)
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It is straightforward that Γ(Xc) = 0 and

Γ′(X) = − ρ((1− θ)δ + ρ)X

[ρX + (1− θ)A] (1− θ)δ (Xn −X)
< 0.

Thus, the function Γ(X) strictly decreases, with the minimum value Γ(Xc) = 0. That is,
Γ(X) > 0 for any X(0) ≤ X < Xc.

This completes the proof of the first part. The second part is straightforward from the
first part.

The intuition behind this proposition is clear: when it is necessary to stop fishing to
prevent the extinction of fish, that is, for sustainability reasons, it is optimal, from social
welfare perspective, to start fishing immediately once the stock reaches a sustainable level.
Any delay in fishing from tm decreases social welfare.

Corollary 3 If the initial stock X(0) is above the minimum level X, then a moratorium
policy only yields a social welfare loss.

This finding differs from the literature when the choice is linear, where the optimal
strategy is either no fishing when the fish stock is too low, or maximum and optimal fishing
when the fish stock reaches the optimal level, expect may be some singular case (Caputo,
2005). Here, with nonlinear choices, the optimal strategy is an interior choice, and the
maximum fishing level can only be asymptotically reached.

7 Discussion

In this section, we discuss the main results and focus on the potential extensions and
implications. The discussion is organized around the following two points: (i) is the impact
of player heterogeneity on the splitting time, (ii) is the cost of the coalition, and the Shapley
values.

7.1 Impacts of heterogeneity among players

An interesting point from Proposition 3 is whether the degree of heterogeneity among players,
specifically the difference in individual discount rates, can increase or reduce the coalition
duration. This depends on the parameter values, particularly the share of cooperative payoff
(γ, 1− γ). We propose numerical examples using explicit formulas for splitting time, showing
how Tl and Th evolve as ρh − ρl increases. Although ρh (ρl) does not directly impact Tl

(Th), it affects them through the exploitation rates in (19). We fix all the parameters and
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provide figures for the splitting time of both players as a function of ρh for three different
fixed-sharing rules: γ = 1/4, 1/2, or 3/4. Table 1 lists the parameter values for these three
examples.

Parameter θ(> 1/2) δ A ρl ρ
Value 2/3 0.3 0.5 0.4 0.5

Table 1: Parameter values

Before conducting this analysis, we recall the theoretical results of Proposition 3. The
optimal splitting time of the low discount rate players increases with the share of the
cooperative payoffs (γ), whereas the optimal splitting time of the high discount rate player
decreases as his share gets from the cooperation (1− γ). At this stage, the intuition is that
the shared greeting for players l should be sufficiently large for the coalition to last for some
time. The question is how this would depend on the heterogeneity of discount factors. The
following figures show the results for the three sharing rules: γ = 1/4, 1/2, or 3/4.

In the following examples, the blue line represents the splitting time of the more-patient
player, the red line represents the splitting time of the less-patient player, and the green
dotted line indicates the minimum of these two times, marking the moment the coalition
dissolves.

When player l receives only one-quarter of the cooperative payoff (and thus player h

receives three-quarters), both players leave the coalition simultaneously. The impatient player
receives a significant immediate share of the payoff, providing an incentive to exit promptly
because future consumption is less valued. The patient player also prefers to leave immediately
because the received payoff is insufficient and future consumption from competition is more
beneficial. This scenario exemplifies a situation in which fixed sharing is suboptimal for
coalition formation, resulting in the immediate dissolution of the coalition.

In the standard setting of cooperative games with symmetric players, most solution
concepts advocate equal sharing of cooperative payoffs during coalition formation. That
is, fixed sharing with symmetrical players is time consistent (see Corollary 1). However, as
illustrated in Figure (b), this consistency does not hold for asymmetry. In this case, the
duration of the coalition appears to increase with the degree of heterogeneity between the
players. Predictably, under fixed equal sharing, the impatient player always exits first. To
incentivize the impatient player to remain in the coalition, it is necessary to allocate a lower
share of the cooperative payoffs to them. The purpose of the final example is as follows:

The final figure illustrates a scenario in which the patient player receives three-quarters
of the cooperative payoff. The time at which a coalition breaks can be divided into two
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(a) γ = 0.25 (b) γ = 0.5

(c) γ = 0.75

Figure 1: Optimal splitting time and discounting heterogeneity
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phases. Initially, because the discount rates of both players are relatively close, the splitting
time increases with heterogeneity, with player l withdrawing first. Subsequently, when the
difference in discount rates becomes substantial, the impatient player exits first because of
strong incentives for immediate consumption and the splitting time decreases as ρh increases.

7.2 Coalition with cost and dynamic Shapley values

Beyond the profit-driven incentives to break cooperation, continuing to cooperate may
incur additional costs. These costs include, but are not limited to, the need for extensive
coordination among countries. One notable example is the Northeast Atlantic Fisheries
Commission (NEAFC), which involves multiple countries including the EU, Norway, Russia,
and the United Kingdom. This cooperation has faced significant challenges due to climate
change, which has caused fish species such as mackerel to migrate to new areas, complicating
quota agreements and leading to overfishing. Further details are provided by Kapstein
et al. (2023). Another example is the Marine Stewardship Council (MSC) certification
process, which requires international cooperation to ensure sustainable fishing practices. This
involves extensive monitoring and compliance with regulations, which can be expensive for
the participating countries (Council, 2021).

These cooperative efforts are essential for sustainably managing fish stocks, and can lead
to significant advancements and solutions for shared fishery resources. However, they are
expensive owing to the need for scientific research, monitoring, and enforcement of regulations.
Consequently, the theoretical model of a dynamic time-consistent Shapley Value may not
hold when additional costs are considered.

To achieve this, we introduce the following costs into the joint value function:

V(X) = V(X)− Λ(X) = Φl(X) + Φh(X)− Λ(X),

where Λ(X) = Λ(X;X0, ρl, ρh) is a cost function for maintaining coalition work, which may
depend on the time preferences, negotiation skills, and sacrifices of both players. The cost
also depends on the stock; when the initial stock is low, i.e., X0, it is easier for the coalition
to remain to protect the fish stock. However, when stock is high, there may no longer be a
need to make sacrifices, at least from the perspectives of some players.

Therefore, some X̂ may exist depending on the different situations and costs such that

Vl(X) + Vh(X) > V(X), for some X ∈ [X̂,Xnc]. (56)

Thus, continuing the coalition is too costly for it to continue.
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A new Shapley value that considers the benefits and costs is needed. Nonetheless, defining
a realistic cooperative cost function and its corresponding Shapley value is beyond the scope
of this study.

8 Conclusion

This study enhances the theoretical understanding of the dynamic stability of coalitions in
the context of fisheries, motivated by recent issues in IFAs, such as coalition breakdowns.
We propose a regime-switch model with two heterogeneous players who can revise their
memberships over time. Our findings demonstrate that commonly used fixed sharing rules
cannot sustain fishery coalitions. Drawing on the cooperative dynamic game literature, we
propose a time-consistent sharing mechanism among coalition members that decomposes the
payoff-to-go at any time, thereby creating incentives for players to remain in the coalition
indefinitely. Additionally, we investigate the role of the fishing moratorium policy as part of
a cooperative agreement. Our results indicate that this policy can be welfare-relevant for
highly depleted stocks; however, fishing should resume once the stock recovers to sustainable
levels.

This study had several limitations that should be addressed in future research. First,
it does not consider scenarios involving more than two players in which both grand and
partial coalitions are possible. This issue, highlighted in studies such as Breton and Keoula
(2012) and Hannesson (2011), could be a valuable extension of our model. Another significant
limitation was the definition of the dynamic Shapley Value in a continuous-time dynamic
setting. Although theoretically convenient, continuous compensation for sharing the aggregate
worth of the coalitions may be impractical for coalition members. It may be more feasible
to view this problem as a renegotiation issue occurring at specific points in time, similar
to current EU/UK post-Brexit fishery-related agreements. An intermediate approach could
involve deciding on a new (optimal) fixed-sharing arrangement among coalition members at
each coalition breakdown. This would ensure the coalition’s continuation over time, albeit
with a different distribution of the coalition’s worth compared with our dynamic Shapley
Value.

Additionally, we do not address the role of punishment strategies. Although international
environmental agreements were initially not self-enforced because of strong incentives to
free-ride, introducing a two-part punishment scheme for deviations from the cooperative
solution, as suggested by Mason et al. (2017), could provide stability. This scheme allows
one player to deviate from the cooperative strategy at any time, but they would be punished
by reducing their catch in subsequent periods, whereas the other player could increase their
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catch. Extending our model to include this approach could yield stable outcomes for fishery
coalitions.

Finally, we use the technical assumption that links θ and ν. This assumption, which
is often used implicitly in similar settings, requires the use of the numerical simulations.
However, we believe that the qualitative properties of our results are unaffected by this
assumption. Further studies could employ the finite-difference method to solve the nonlinear
HJB equations and explore this aspect in more detail.
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