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ABSTRACT1
Vehicles equipped with adaptive cruise control (ACC) systems are expected to improve traffic2
safety and decrease fuel consumption. Recent studies have shown that ACC leads to string in-3
stability in the case of platooning and can therefore result in higher energy needs compared to a4
platoon of human-driven vehicles (HDV). However, the impact of the ACC on fuel consumption5
in the case of platooning and the global impact of ACC overconsumption in traffic is not known6
yet. This study examines the impact of ACC systems on traffic consumption using experimental7
data and traffic records. In this study, we inject the speed profiles of ACC and HDV platoons that8
follow a similar leader trajectory into an engine bench. Then we identify the event that leads to9
an overconsumption in the case of platooning. Using HighD and ExiD records, we detect if the10
events leading to overconsumption often happen in traffic. The results of the engine bench show11
that only ACC platoons of six or more vehicles with a short time-gap setting consume more than12
HDV platoons. The results on HighD and ExiD show that such an event happens£ once out of 125013
if we divide the time into steps of 15 seconds. This shows that even if overconsumption exists in14
specific cases, it is too rare in traffic to impact global fuel consumption.15

Keywords: adaptive cruise control, fuel consumption, engine bench, traffic dataset.16
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INTRODUCTION1
Adaptive cruise control (ACC) is defined as level one out of five levels of vehicle automation by2
SAE International (1). These systems are more and more prevalent on both US and EU roads, and3
their market penetration rates should approach 25 % in 2030 (2). Penetration rates could even grow4
faster as a company has developed software that equips any compatible vehicle with an SAE level5
2 system (3). The software is open source on GitHub (4) and is expected to become widely used6
(5, 6).7

Some recent studies have collected ACC platooning trajectories during experiments (7,8
8). Further studies based on these data have analyzed the impact of ACC on road capacity by9
creating fundamental diagrams (9, 10) and have found that ACC can decrease road capacity up10
to 25% for a 100 ACC penetration rate (10). Other studies (8, 11–13) have shown that ACC11
vehicles in a platoon tend to create string instability (14). The system generates a deceleration12
overshooting followed by an acceleration overshooting that propagates to the other vehicles in the13
platoon, increasing in magnitude. This deceleration-acceleration overshooting is not observed in14
human-driven vehicles (HDV) platoons following the same trajectory (13) and might harm both15
traffic safety and fuel consumption.16

ACC fuel consumption has been studied since the beginning of ACC commercialization.17
Some early studies determined that ACC, depending on its algorithm and the chosen setting, would18
consume between 8 and 28 % less fuel (15). However, the models used were based on assumptions,19
not on experimental data with ACC vehicles. Other studies have been focusing on developing eco-20
driving algorithms for ACC systems to reduce fuel consumption (16). Some models (13, 17) were21
developed based on data collected in ACC platoon experiments (7), and have found a link between22
the string instability produced by ACC platoons and an increase of the energy that the car needs to23
progress compared with HDV platoons (18).24

String instability can appear only when vehicles are in a platooning formation. In any other25
situation, the time gap is large enough for at least one ACC vehicle to switch back to cruise control26
mode. This would cut the wave of overshooting and then limit the extent of string instability. This27
means that if the ACC vehicles are not in platooning formations, they will drive at a constant speed.28
The constant speed is the situation where the vehicle consumes the least (19). This suggests that29
ACC vehicles have a negative impact on fuel consumption if and only if they are in a platooning30
formation.31

In summary, previous studies have shown that ACC vehicles, in case of platooning, tend32
to overaccelerate and that it is correlated with string instability. As they are doing so, their need33
for energy increases. However, the issue of fuel consumption of ACC platoons, which is not34
necessarily a linear function of energy need, has never been addressed.35

This paper aims to experimentally determine the consumption differences between ACC36
vehicles and HDV at a global traffic scale. First, this will be done using platoon trajectories as it37
is the only situation where we could observe significant differences with a regular cruise control38
vehicle. Then, a large-scale traffic dataset will be analyzed to identify how often speed fluctuations39
like the ones observed in platoons happen in real traffic.40

Figure 1 shows a global overview of the framework. First, we select trajectories of ACC41
and HDV in a platooning experiment on a test track to pick up the platoons with the most similar42
leader profiles. To do so we use OpenACC data (7). Second, we inject the trajectories in an engine43
test bench to determine the impact of automation on consumption in the case of platooning. Those44
two steps 1 and 2 are described in the next part. Third, we identify the specific events that might45
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trigger a difference in consumption within a trajectory. Finally, we examine how often these events1
might happen in real-life traffic based on traffic datasets. This part is done using HighD and ExiD2
datasets (20, 21). Steps 3 and 4 are described in the third section.3

FIGURE 1: Flowchart of the study. Blue indicates the step used to determine the consumption of
ACC platoons. Green represents the step to determine if the used trajectories injected in the bench
during the part step are frequent or not.

FUEL CONSUMPTION IN AN ENGINE BENCH EXPERIMENT4
Data selection5
Speed and acceleration profile, road gradient, vehicle characteristics, and local weather influence6
fuel consumption. As we don’t expect ACC and HDV vehicles to show the same response to a7
similar event, we have to analyze vehicles following a platoon leader with a similar speed profile8
in the same environment.9

These two prerequisites are met by datasets collected in the experiment on the Astrazero10
test track during the OpenACC campaign by the JRC team (7, 11). The goal was to analyze the11
impact of long platoons of ACC vehicles (i.e., 10 to 12 vehicles). Several ACC vehicles and12
HDV settings were tested with the same leader trajectories. Vehicles were following each other13
in a platoon formation. The data were collected at a 10Hz rate through sensors placed inside the14
vehicles. The vehicles were driven either manually or with the ACC activated. When the ACC15
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system was activated, several time gap settings were tested (short, long, and medium time gaps).1
The shorter the time gap, the more reactive the response of the following vehicle. Two different2
experimental conditions were tested as follows (Figure 2):3

• Condition A: the leader drove at a constant speed except for short periods when he/she4
brutally decelerated and accelerated to get back to its initial speed;5

• Condition B: all vehicles started at a standstill, and the leader imposed a speed profile.6
The leader speed variations are only based on the leader driver’s reactions to the road7
geometry. In this condition, as the leader was not present in the data, we used the speed8
profile of the first follower as our reference.9

FIGURE 2: The two experimental conditions that exist within the OpenACC dataset

The comparison of the two experimental conditions has shown that condition A leads to10
emergency braking, which rarely happens in real traffic on freeways. We decided to focus on the11
trajectories in experimental condition B as their deceleration-acceleration phases are more likely12
to be observed in real traffic. The goal is to select the HDV and ACC trajectories with the most13
similar leader speed profile.14

We first separated the platoons into groups based on their mean speed (8m/s, 11m/s,15
14.5m/s, and 17.5m/s) and their setting (HDV, ACC with short time gap setting, ACC with long16
time gap setting or ACC platoons with different settings from one vehicle to another). For each17
group (same mean speed and setting), we compared all the first recorded trajectories and selected18
the platoon with the most similar first-recorded trajectories. This first recorded trajectory corre-19
sponds to the first follower, as the leader’s trajectory is not included in OpenACC.20

To do so, we compute for each first-recorded trajectory the distance with every other first-21
recorded trajectory that does not belong to the same platoon group1 using the dynamic time-22
wrapping algorithm (22). This allowed us to identify a platoon for each ACC setting with the23
closest first-recorded trajectory, leading to the selection of four platoons. Figure 3 presents the24
speed profiles. In all ACC trajectories, we notice two large deceleration-acceleration patterns.25
These events are always followed by string instability according to Li and al. (12) and Ciuffo and26
al. (13). In the case of short time gap platoons, the string instability is more important and leads to27

1e.g., if the trajectory belongs to a short time gap platoon, we compare it with either long time gap, mixed time gap
or HDV platoons
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harsher decelerations and accelerations compared to the other trajectories. This shows that short1
time gap ACC platoons tend to accelerate more than other ACC platoons or HDV platoons.2

Given that the obtained data were partially incomplete (less than 1 % of the points were3
missing), we interpolated the missing points using a linear interpolation scheme. Then, we applied4
the kernel regression on the data to smoothen it before the testing into the engine bench. In the5
test bench, we used only the follower’s trajectories because the leader’s trajectory was recorded at6
a 1Hz rate instead of a 10Hz rate due to technical limitations and this sampling rate is too low for7
the engine bench.8

FIGURE 3: Selected platoons for the engine experiment. In the case of the short time gap platoon,
events that occur after t=300s are not used.

Engine bench experiment9
The principle of the real-time experiment consists in controlling a real engine in the bench while10
simulating the driveline and the resistive force of the vehicle. The engine is from a Renault Kadjar11
TCE130, and its characteristics are presented in table 1.12

The engine follows the indicated instructions computed by the VEHLIB model, a Simulink13
package created by the Université Gustave Eiffel (23). In detail, the models work in power hard-14
ware in the loop mode: a simulated vehicle controller follows the desired speed by choosing the15
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Component Characteristics Value
Vehicle weight 1350 kg
engine displacement 1197 cc

max power 96 kW @ 5500 rpm

TABLE 1: Hardware in the loop engine characteristics

correct gear number at each time step and sending a throttle value to the real engine controller. An1
energetic vehicle model runs in the real-time processor and interacts with the bench. The VEHLIB2
library is also used to interface data and the engine. Sensors placed all over the engine allow one to3
record indicators such as engine torque, temperature, fuel consumption, and fuel density. Engine4
torque is then re-injected in real-time into the VEHLIB model, which estimates the speed of the5
vehicle. This system is presented in detail in (24, 25). Figure 3.2 presents a global overview of the6
process.7

FIGURE 4: Protocol used to obtain consumption data using the engine

Before launching the experiment and after each break, a warm-up cycle was imposed on8
the engine. The goal was to avoid a situation where the engine would consume more due to cold9
components. Before each measurement, the system was set in control mode so that speed profiles10
could be imposed. Then we started the engine and ensured that it was not cold. When the engine11
stabilized at its idle speed of around 750 rotations per minute2, we launched the measurement12
system, and immediately after, we imposed the speed profile. After each experiment, we saved the13
following measurements: time, speed, gearbox position, fuel rate, and fuel density. Each output14
was saved at a 10 Hz rate3. To ensure that the results are not dependent on the engine conditions,15
each trajectory was tested three times in the engine.16

After experimenting with all the trajectories in the engine, we compared the global speed17
profiles of the initial data and the speed generated by the engine. As an example, Figure 5 shows18
the speed profile from the original data in comparison with the speed generated by the engine for19
the 6th vehicle of the long time gap ACC platoon.20

Experimental results21
Verifying that the engine produces consistent results22
Before examining the physical meaning of our results, we first checked that the engine results23
from one repetition to another are the same. Small fluctuations from one experiment to another are24
expected because the value of the engine speed at stabilized idle speed can slightly change between25

2values of this stabilization speed range from 730 to 780 rotations per minute
3the real-time loop runs at 1kHz
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FIGURE 5: Comparison of the engine generated speed and the OpenACC recorded speed. The
trajectory corresponds to the 6th vehicle of the long time gap ACC platoon. The results are similar
for all reproduced trajectories.

repetitions. To study these fluctuations, we calculated the mean consumption per 100 km during1
the entire cycle for each recorded experiment using the following conservation law:2

consumption100 km = 100∗
∫ tmax

t0
Fr(t)dt∫ tmax

t0
v(t)dt

. 1
Fd

(1)3

where Fr(t) is the fuel rate a time t, Fd is the mean value of the fuel density during the measure-4
ment, and v(t) is the vehicle speed at time t. We then compare this consumption with the mean5
consumption for the three repetitions for the same trajectory. Figure 6 presents the histogram of6
the difference in consumption for each measurement compared with the mean. To create it, we7
computed the relative distance between the mean value of the three repetitions and the individual8
value of each repetition.9

The mean difference of the absolute value between measurements is 0.84 % (median = 0.6710
%). The maximal distance between one individual measurement and the corresponding mean is11
0.17L/100km, which corresponds to a 3 % difference. The results show that the differences from12
one measurement to another are small enough to use all repetitions.13

Consumption results14
Figure 7 shows the consumption results in liters per 100 km for each repetition versus the position15
in the platoon. A different color represents each platoon type.16

The first observation is that the consumption increases with the position in the platoon, no17
matter the platoon type. However, the increment seems higher for the short time gap platoon than18
the other platoons.19
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FIGURE 6: Histogram of the distance between the observed consumption of one repetition and
the mean consumption of the three repetitions for every trajectory.

FIGURE 7: Scatter plot of the consumption results. The color indicates the platoon type.

Before the 6th vehicle position, there is no clear overconsumption from one platoon to1
another as the vehicle that consumes the most is either the short time gap platoon vehicle (positions2
2 and 3) or the long time gap platoon vehicle (positions 4 and 5). From the 2nd to 4th position in3
the platoon, the consumption difference between the measurement with the highest consumption4
and the one with the lowest consumption is lower than or equal to 0.5L/100km.5

However, after the 6th vehicle position, the vehicles belonging to the short time-gap pla-6
toon consume at least 0.5 L/100km more than the vehicles belonging to any other platoon. The7
consumption difference between the measurement with the highest consumption and the one with8
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the smallest consumption is equal to or higher than 0.7L/100 km.1
We observe two outliers in those results: the 9th vehicle in the short time gap platoon and2

the 11th in the long time gap platoon. They tend to consume less than the previous vehicle even3
if they are at the end of the platoon. This is the consequence of the specific speed profiles of4
those two vehicles, showing no overreaction compared to their respective previous vehicles (see5
the corresponding vehicles’ trajectories in figure 3).6

The results show that, in the case of five vehicles or less, we cannot identify any difference7
in consumption between platoon types. However, as far as their position in the platoon is equal8
to or larger than six, then the short time gap ACC vehicles tend to consume more than the HDV.9
For the vehicles belonging to the other types, there is no clear correlation between the position in10
the platoon and the difference in consumption compared with the HDV. The study of the scatter11
plot indicates a potential linear relation between consumption and the position in the platoon. This12
linear relation rate differs from one type of platoon to another.13

Linear mixed-effect model14
We then test the hypothesis of a linear relation between the position within the platoon and the15
consumption for each platoon type. We are interested in detecting differences in impact across16
platoons. For each trajectory, we collected three repetitions in the test-bench experiment. To17
capture potential correlations between repetitions, we estimated a linear mixed-effect model. The18
linear mixed-effect model equation is as follows:19

Y = α +αlong +αmixed +αshort +β ·position+βlong ·positionlong +βmixed ·positionmixed
+ βshort ·positionshort + γ + ε (2)20

αi is the intercept for one platoon, βi is the slope for one platoon, γ captures the impact21
of the trajectory-specific error term taken from a normal distribution with mean zero and standard22
deviation µ , ε captures the impact of the observation-specific error term taken from a normal23
distribution with mean zero and standard deviation κ .24

We perform a likelihood ratio test to understand if the trajectory-specific error term had25
a significant effect. Obtained p-value is 4.5× 10−24. The result shows that the observations are26
significantly correlated across repetitions for the same trajectory (see table 2).27

The long time gap platoon is used as a reference category. If we compare the HDV results28
of the confidence interval of the β values with the mixed platoon and the HDV platoon, we obtain29
that they overlap. This shows that the HDV is not significantly different compared to the mixed30
platoon or the long time gap platoon regressions. The confidence interval of those two parameters31
overlaps. This shows that they are not significantly different.32

On the other side, the confidence interval of the short time gap β does not overlap with any33
of the other regressions. This shows that the parameter is significantly different compared to the34
three others.35

Figure 8 presents the four regressions and their confidence interval estimated with the boot-36
strap method. It shows that after the fifth vehicle in the platoon, the confidence interval for the short37
time gap platoon does not overlap with the confidence intervals of any other platoon type.38

In conclusion, a platoon that only contains only ACC vehicles with short time gap of at least39
five vehicles consumes significantly more than any other type of platoon of the same size. This40
finding agrees with previous studies that highlighted the relation between short time gap setting41
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Model statistics
No. Observations: 99
No. Groups: 33
Group size: 3
Final log-likelihood: 72.16
Parameter value Std. Err. z P>|z| [0.025 0.975]
Slope [β ] (reference HDV platoon) 0.101 0.031 3.211 0.001 0.039 0.162
Slope long platoon [βlong] -0.007 0.040 -0.166 0.869 -0.086 0.073
Slope mixed platoon [βmixed] 0.008 0.043 0.174 0.862 -0.077 0.092
Slope short platoon[βshort] 0.198 0.042 4.670 0.000 0.115 0.281
Intercept [α](reference HDV platoon) 4.478 0.193 23.192 0.000 4.100 4.857
Intercept long platoon [αlong] 0.281 0.261 1.079 0.281 -0.230 0.792
Intercept mixed platoon [αmixed] 0.089 0.270 0.330 0.741 -0.439 0.617
Intercept short platoon [αshort] -0.370 0.269 -1.377 0.169 -0.897 0.157
Group Var [µ] 0.048 0.236
residuals [κ] 0.0048

TABLE 2: Results of the linear mixed effect model that links the consumption as a function of the
position in the platoon for each different platoon type. The final log-likelihood is obtained using
the ML estimation method. The parameters are estimated using the REML method. The lHDV
platoon is used as a reference category for both the intercept and the slope.

FIGURE 8: Regressions created out of the linear mixed effect model that links the consumption
as a function of the position in the platoon for each different platoon type. The confidence interval
was computed using the bootstrap method.

and the magnitude of string instability (26). Indeed, vehicles in a short time gap setting ACC1
platoons tend to accelerate more due to a larger instability. As a consequence, the amount of fuel2
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needed increases. These findings are based on data collected in a test-track experiment, where1
string instability was triggered by a large deceleration of the leader. To have a global overview2
of the overconsumption of ACC, we need to analyze how often such events might happen in real3
traffic conditions.4

EVENT OCCURRENCE BASED ON TRAJECTORY DATASET5
Selection of the event6
The results in the test bench experiment showed that, in the case of platooning, short time gap7
ACC vehicles lead to significant overconsumption when they are the only type of vehicle in the8
platoon. In short time-gap platoon trajectories, two deceleration-acceleration events by the leader9
lead to a string instability as the one described by Wilson (14). The deceleration-acceleration events10
between the first and the ninth follower lead to an 8 m/s minimal speed difference in the first event11
and a 10 m/s speed difference in the second event. Such deceleration-acceleration events are not12
seen in any other trajectory. This leads some authors to suppose that the deceleration-acceleration13
patterns that produce the string instability are also the event producing the overconsumption (13).14
The objective is to identify whether the events that we studied with the engine bench test are15
frequent in real-world traffic.16

In the OpenACC data, used in the previous part, the leader trajectory was recorded at a 1Hz17
rate and is, due to the sampling rate, noisy. Therefore, we decided to use the first follower speed18
profile for the definition of the event leading to string instability and overconsumption. Looking19
at the speed profiles, we noticed that the string instability is always preceded by a deceleration-20
acceleration with a ∆v > 2.5m /s of the first follower. We define this pattern as the triggering21
event that leads to string instability and overconsumption as shown in (13). The triggering event is22
defined when three conditions are met:23

• The follower shows a higher acceleration and deceleration compared to the leader;24
• The deceleration leads to a reduction of the first follower speed of 2.5 m/s over a period25

of a few seconds, immediately followed by an acceleration of 100 % to 150 % more26
important than the deceleration;27

• This pattern is then followed by a string instability that involves the entire platoon.28
For each first follower trajectory in each ACC platoon within the OpenACC subset that we29

used, we observe two events that correspond to the above definition.30

Mathematically, we can define the above triggering event as follows. Let E be a deceleration-31

acceleration event and E∗ be the set of the triggering events that correspond to the description32

underneath 4:33

E ∈ E∗ ⇔∃ t0, t1, t2 (3)34

where35
• t2 − t0 < 15s36
• v(t1) = min(v(t))∀t ∈ [t0, t0 +100]37
• v(t2) = max(v(t))∀t ∈ [t0, t0 +100]38

Figure 9 shows an example of such a triggering event and illustrates the mathematical definition.39
We selected the events that correspond to the above definition in the three ACC platoons’40

first follower trajectories that we used in the engine bench. On average, we have a triggering41

4numerical values are based on the observation of the data
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FIGURE 9: triggering event

event with a deceleration phase that leads to a ∆v1 = −2.4m/s speed difference followed by an1
acceleration phase with a ∆v2 = 3.5m/s speed difference, and a total duration of ∆T = 11.6s.2

Trajectory dataset description3
We use the trajectories contained in the HighD (20) and ExiD datasets (21) to determine how often4
the triggering events described in the above section happen in real traffic. These two datasets were5
collected in German Autobahns using drones by a team from Ika and the University of Aachen. The6
trajectories were extracted from the video recordings using a neural network. In total 9.63× 1087
hours of trajectories were collected. The datasets include records of both free-flow and congested8
traffic conditions. The data contain each vehicle’s timestep, position, speed, acceleration, current9
lane, time and distance gap, and time to collision. Trajectories were recorded on motorway sections10
near Koln and Dusseldorf. While HighD trajectories were recorded in highway straight sections,11
ExiD trajectories were collected in highway merging and diverging geometries. Figure 10 presents12
the mean speed distribution of each vehicle record of the two datasets.13

As large acceleration and deceleration are very uncommon in the case of free-flow traf-14
fic records, we decided to limit our comparison to the congested traffic conditions in these two15
datasets. We define a traffic condition as congested if the mean speed is under 20 m/s, which cor-16
responds to a 45 % speed reduction compared to the recommended speed limit. After applying17
the condition on the mean speed, we are left with two HighD records to explore out of 59 and 2018
ExiD records out of 54. The mean speed of the selected scenes varies from 4.6m/s to 17m/s. These19
scenes record 1.59×108h of total travel time. Using these records, we determined the percentage20
of time when a triggering event occurred.21
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FIGURE 10: Speed histogram of the mean recorded speed for each vehicle in HighD and ExiD
datasets.

Event identification result1
We determined how often such deceleration-acceleration like the ones in the OpenACC triggering2
events happens in congested traffic by analyzing the speed profiles in the selected scenes. For each3
speed profile, we compare on a period of [t0, t0 +15 s] the dynamic time warping (DTW) distance4
(22) between each triggering event and the speed profile during the period. We then compare the5
mean DTW distance between the HighD speed profile and each of the six triggering events (as6
presented in 4.1) to the reference distance, calculated based on the mean distance between the six7
triggering events as presented in section 4.1. If the DTW distance is at most five times higher8
than the reference, we consider that the two-speed profiles are comparable during the [t0, t0 +9
15s] period. The time window is then moved forward by 2s and we repeated the DTW distance10
computation using the speed profile in the [t0 +2, t0 +17s] interval. This method is used to obtain11
the ratio between the temporal periods when a triggering event happens and the total travel time.12
We apply the above method to the 22 records corresponding to the congested situations. We found13
a total of 12,686 h out of 1.59×108h corresponding to triggering events. This means that for each14
1250s we have a 15s interval corresponding to a triggering event.15

To understand the impacts on global traffic consumption, we compared the findings to16
previous studies. According to a study (27) that used original NGSIM data (28), the mean con-17
sumption in congestion in a motorway with only HDV is 14.7 L/100km 5. We supposed that the18
mean consumption value corresponds to the consumption of the first follower6. We extrapolated19
the consumption of an ACC platoon supposing that from one vehicle in a platoon to another ve-20

5the values are taken from a 2008 study and might be lower nowadays
6this is an overestimation. The first vehicle of a platoon will necessarily consume less than the average consumption

as it is not subject to triggering.
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hicle the ratio
Consumptionvehi

Consumptionvehi−1
is the same as in our engine bench experimentation results. We1

then supposed that each vehicle is part of a 10-vehicle ACC platoon and that each vehicle has a2
short time-gap setting, a very pessimistic hypothesis in terms of consumption. Even with such a3
pessimistic hypothesis, the percentage of fuel consumption increase is equal to 1.7×10−5%.4

DISCUSSION AND CONCLUSION5
In this paper, we studied the impact of ACC vehicles on consumption. To do so, we used a two-6
step framework. First, we studied ACC overconsumption in the case of platooning using OpenACC7
data (7) in an engine bench. Second, we determined what event could cause such overconsumption8
and computed how often such an event happens in real traffic using HighD and ExiD datasets.9

The results of the engine bench show that ACC vehicles with a short time gap setting10
consume more than HDV in the case of platoons with five or more vehicles. The difference in11
consumption increases with the length of the platoon. However, the event we identified as the12
origin of overconsumption (i.e., an acceleration-deceleration triggering event) is too rare to produce13
any noteworthy overconsumption at a global level as it occurs 0.08 % of the time. If the platoon14
consumption results are observed in real traffic, the global overconsumption will be only 1.7×10−515
%.16

Notably, the impact of the position in the platoon on consumption is similar between ACC17
with long or mixed time gaps platoons and HDV. The mixed platoon is composed of three short18
time gap ACC vehicles, followed by two long time gap ACC, followed by three short time gap19
ACC. We could have expected, given this composition, that the consumption of the vehicles within20
this platoon would have been higher than the ones of the long time gap platoon. Yet it is not the21
case. The addition of two long time gap ACC in a platoon mainly composed of short time gap ACC22
is sufficient to reduce the consumption to the one of a platoon entirely composed of long time gap23
ACC.24

The findings in this study must be interpreted with caution. We assumed that ACC vehicles25
only consume more when platooning and that they consume the same as HDV vehicles in any other26
situation. However, there might exist other situations where the ACC leads to overconsumption27
that did not analyze due to a lack of data. The engine in the test bench experiment was far less28
powerful compared to the engines in the vehicles used to collect the speed profiles in the test track29
(11). This means that the engine in the test bench needed to produce more energy to reach the same30
torque, leading to an overestimation of the consumption values. However, the comparison across31
experimental conditions is expected to be similar with a different engine.32

The results have important implications for practice and future research. Given that ACC33
platoons consume more than HDV only when all ACC vehicles use a short time gap setting, a34
specific regulation could be introduced to increase the minimal time gap one can choose in certain35
traffic situations.36

Moreover, the string instability observed in this study is a potential issue for traffic safety.37
Such an event, producing harsher and harsher deceleration within the platoon, can trigger in ex-38
treme cases a rear-end collision.Some studies that analyzed trajectories right before crashes in39
motorways (29) have shown that a deceleration harsher than −2.7m/s2 in a congested section led40
to an increase in the crash probability (1 crash every 88 extreme breaking recording during a 1h41
period in the same kilometer). In the OpenACC data, we observed three vehicles that execute such42
a deceleration in the short time gap and mixed time gap platoon, and one vehicle in the long time43
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gap platoon. In the case of mainly HDV traffic, we have a 1/1250 probability (by steps of 15s) of1
an acceleration-deceleration overshooting. This means that each vehicle in a congested situation2
for a period of 15 minutes has a 1/20 probability of overreacting and executing a triggering event.3
However, with the increase in ACC penetration rate, this value might increase and result in a higher4
crash probability. Future work will focus on assessing the impact of ACC on traffic safety.5
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