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ABSTRACT 

We provide an overview of our latest advances in the application of machine learning methods to ultrafast 

nonlinear fibre optics. We establish that neural networks are capable of accurately forecasting the temporal and 

spectral properties of optical signals that are obtained after propagation in the focusing or defocusing regimes of 

nonlinearity. Machine learning is also efficient in addressing the related inverse problem as well as providing 

insights into the underlying physical process. In addition, we illustrate the use of evolutionary algorithms to 

access and optimise complex nonlinear dynamics of ultrafast fibre lasers. 
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1. INTRODUCTION 

Recent years have seen the rapid growth of the field of smart photonics where the deployment of machine-

learning strategies is the key to enhance the performance and expand the functionality of optical systems [1]. 

Ultrafast photonics areas where the promise of machine learning is being realised include the design and 

operation of pulsed lasers, and the characterisation and control of ultrafast propagation dynamics [2]. Here, we 

review our recent results in the field by providing several examples of advances enabled by machine-learning 

tools such as neural networks (NNs) and evolutionary algorithms (EAs). 

First, we describe the use of a supervised feedforward NN paradigm to solve the direct and inverse problems 

relating to nonlinear pulse shaping in optical fibres, bypassing the need for direct numerical solution of the 

governing propagation model, i.e, the nonlinear Schrödinger equation (NLSE) or its extensions. Further, we 

present the use of a NN to obtain new insights into the longitudinal temporal and spectral evolutions of periodic 

signals made of equally frequency-spaced components. Finally, we discuss the possibility of using EAs to 

perform search and optimisation of non-stationary regimes of fibre lasers. 

 

2. MACHINE LEARNING FOR NONLINEAR PULSE SHAPING 

Propagation of light in single-mode optical fibers is governed by the NLSE including dispersion and Kerr 

nonlinearity, to which it is also possible to add the effects of losses or gain. This equation, usually solved 

numerically by the split-step Fourier algorithm [3], leads to a very large panel of dynamics such as soliton pulse 

compression, self-similar temporal and spectral broadening, wave-breaking, and spectral narrowing, amongst 

others. The resulting output properties are highly dependent on the initial pulse properties (peak power, temporal 

duration, chirp and waveform) as well as the fiber parameters (value and regime of dispersion, fiber length, 

nonlinear/gain/loss coefficients) so that obtaining a full picture of the output landscape can be very demanding in 

terms of computational resources. 

In that context, we have shown that feedforward NNs, after convenient training, can offer a very efficient 

substitute to the split-step Fourier algorithm [4]. As can be seen on Fig. 1 for two initial chirped pulses, the 

network accurately predicts the temporal and spectral intensity profiles of the pulses that form upon nonlinear 

propagation in fibres with both anomalous and normal dispersion. This data-driven approach reduces the 

computational time by two orders of magnitude and the network can accommodate to and maintain high 

accuracy for a wide dynamic range of system parameters. The use of NNs is not restricted to the NLSE 

framework, and benefits have also been evidenced for the prediction of supercontinuum properties with spectral 

extent spanning several hundreds of nanometres, and with strong pulse instabilities [5, 6]. 



 

 

 

 

Figure 1. Reconstruction of the temporal and spectral properties (subpanels 1 and 2 respectively) for an initially 

chirped pulse. (a) Results for a Gaussian pulse after propagation in a normal dispersion fibre with the 

normalised length  = 2.5, normalised power N = 2.8, and normalised chirp parameter  C = -2.42, (b) Results 

obtained with  = 2.2, N = 2 and C = 2.42. The predictions of the NN (blue circles) are compared with the 

results given by the NLSE (black curves) and with the initial properties of the pulse (dashed red line). 

 

We have also applied NNs to help solve the inverse problem which is a much more complex task [7]: we 

have demonstrated the ability of the NN to determine the nonlinear propagation properties from the pulses 

observed at the fibre output, and to classify the output pulses according to the initial pulse shape [4]. We have 

also expanded our analysis to the case of pulse propagation in the presence of distributed gain or loss, with a 

special focus on the generation of self-similar parabolic pulses [8]. 

In addition to effectively solving forward and inverse mapping problems, recently developed data-science 

techniques offer new insights to understand the interaction dynamics between Kerr nonlinearity and dispersion. 

Indeed, the data‑driven dominant balance approach [9] provides convenient means to automate the identification 

of which particular physical processes drive propagation in different regimes, a task usually performed using 

intuition and comparison with asymptotic limits [10]. The technique has been successfully applied to complex 

cases such as noise‑driven spontaneous modulation instability where extreme events emerge. 

 

3. MACHINE LEARNING FOR FOUR WAVE MIXING AND SPECTRAL COMB GENERATION 

We have also explored the use of machine learning to study four-wave mixing interactions involved in the 

temporal and spectral evolutions of periodic signals made of equally frequency-spaced components. In the case 

of degenerate four-wave mixing, the dynamics can be reconstructed by taking advantage of the combination of 

experimental measurements together with supervised machine-learning strategies [11]. The training dataset 

consists of power-dependent spectral phase and amplitude recorded at the output of a short fibre segment for 

various initial conditions. A NN is shown to be able to accurately predict the nonlinear dynamics over tens of 

kilometres, and to retrieve the main features of the phase space topology including multiple Fermi–Pasta–Ulam 

recurrence cycles and the system separatrix boundary. 

Based on numerical simulations, we have also demonstrated that data-driven discovery using sparse 

regression can be used to extract the governing differential equation model of the ideal four‑wave mixing 

process [12]: sparse regression successfully recovers the underlying physical model, fully capturing the 

dynamical landscape on both sides of the system separatrix starting from a reduced set of trajectories. 

When the process of four-wave mixing cascades, the interactions between the numerous spectral lines of the 

comb spectrum become more complex. We have deployed a supervised machine-learning model based on a NN 

to predict the temporal and spectral reshaping of a simple sinusoidal modulation into a pulse train [13]. Both 

normal and anomalous second-order dispersion regimes of the fibre are studied, and the speed of the neural 

network is leveraged to probe the space of input parameters for the generation of custom combs or the 

occurrence of significant temporal or spectral focusing. Figure 2 shows some examples of the accuracy and 

ability of such a NN to find appropriate conditions to generate on-demand temporal or spectral profiles.  

 

 



 

 

 

 

Figure 2. Various examples of the use of NNs. (a) Generation of on-demand frequency combs in an anomalously 

dispersive fibre: (a1,a2) Combs composed of 9 spectral lines of equal amplitude and 6 spectral lines of equal 

amplitude, respectively, but with the center component canceled; (a3) Regions of the input parameter space for 

the formation of high flatness combs.  (b) Temporal focusing in an anomalously dispersive fibre: generation of a 

pulse train with the highest peak power relative to the average power (linear and logarithmic scales in panels 1 

and 2, respectively).  (c) Spectrum generated during spectral focusing in a normally dispersive fibre. The NN 

predictions (red circles) are compared to the results of the NLSE numerical simulations (diamonds or black 

lines). Also shown are the initial conditions (blue crosses). 

 

4. MACHINE LEARNING FOR FIBER LASERS 

Machine-learning techniques have not only been very successful in the study of passive propagation in a 

fibre segment, they have also been widely used in the context of the dynamics of fibre lasers [14]. For instance, 

NN-based algorithms have been used as surrogate model solvers to predict the output properties of the laser [15, 

16]. Another area of AI investigation stimulating great enthusiasm is the implementation of EAs to 

experimentally help automatically target the stationary pulse state of an ultrafast laser [17]. Yet, controlling non-

stationary regimes was an open issue as such regimes exhibit a fast evolutionary behavior, requiring dedicated 

real-time measurement tools for their detection. 

We have demonstrated the possibility of using EAs to perform search and optimisation of the breathing-

soliton regime in a fibre laser [18]. Through exploration of the nonlinear cavity dynamics, which can be accessed 

by automated control of the nonlinear-polarisation-evolution transfer function, we show that composite merit 

functions, derived from specific features of the radio-frequency spectrum of the laser output, permit to achieve 

various self-starting pulsating regimes in the laser, including single breathers with controllable breathing ratio 

and period, and breather molecular complexes with a controllable number of elementary constituents. Benefiting 

from this reliable tool, we have demonstrated that the generated frequency-locked pulsating states were governed 

by a Farey tree hierarchy and followed the structure of a devil’s staircase [19]. We have also experimentally 

implemented EAs to explore regimes that were even further away from stationary operation such as noise-like 

emission [20] or generation of spectral extreme events [21]. 

 

5. CONCLUSIONS 

The use of machine-learning tools has increased exponentially in recent years and continues to grow at a 

sustained pace. Here, we have provided an overview of some of our contributions made to the field over the past 

years, on the use of artificial NNs, the implementation of EAs, and the exploration of new algorithms disclosing, 

from data analysis, new perspectives on the physical understanding or modelling of the governing nonlinear 



 

 

dynamics. All these results demonstrate that suitably trained NNs can greatly help in the characterisation and 

inverse‐engineering of fiber‐based shaping systems by providing immediate and sufficiently accurate solutions. 

EAs open novel opportunities for the experimental exploration of highly dynamic, non-stationary operating 

regimes of ultrafast lasers.  
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