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COMPUTING ASYMPTOTIC EIGENVECTORS AND EIGENVALUES OF
PERTURBED SYMMETRIC MATRICES∗

KONSTANTIN USEVICH† AND SIMON BARTHELMÉ‡

Abstract. Computing the eigenvectors and eigenvalues of a perturbed matrix can be remarkably difficult when the unper-
turbed matrix has repeated eigenvalues. In this work we show how the limiting eigenvectors and eigenvalues of a symmetric
matrix K(ε) as ε → 0 can be obtained relatively easily from successive Schur complements, provided that the entries scale in
different orders of ε. If the matrix does not directly exhibit this structure, we show that putting the matrix into a “generalised
kernel form” can be very informative. The resulting formulas are much simpler than classical expressions obtained from complex
integrals involving the resolvent.

We apply our results to the problem of computing the eigenvalues and eigenvectors of kernel matrices in the “flat limit”, a
problem that appears in many applications in statistics and approximation theory. In particular, we prove a conjecture from
[SIAM J. Matrix Anal. Appl., 2021, 42(1):17–57] which connects the eigenvectors of kernel matrices to multivariate orthogonal
polynomials.

Key words. matrix perturbations, kernel matrices, eigenvectors, eigenvalues, flat limit, radial basis functions, tropical
algebra

MSC codes. 15A18,15B57,15A80,47A55,47A75,47B34,65F15

1. Introduction. The original impetus for this work lies in the problem of finding the flat limit of kernel
matrices [5, 12]. A instance of that problem reads as follows: given a set {x1, . . . , xn} of points on the line, we
form a n× n matrix

(1.1) K(ε) =
[
exp

(
−(ε(xi − xj))

2
)]n

i,j=1
.

Such matrices are ubiquitous in physics, statistics, numerical analysis, and other fields. The function kε(x, y) =
exp(−ε2(x−y)2) is called a kernel, here specifically the Gaussian kernel, and the matrixK(ε) is a kernel matrix.
The parameter ε plays the role of an inverse scale parameter: the lower ε is, the slower the kernel function
decays as a function of distance. The limit ε → 0 is therefore called the “flat limit”. We are interested in
characterising the eigenvectors and eigenvalues of K(ε) in small ε (see figure 1.1 for an illustration.).

To do so, we may expand K(ε) as a power series in ε, using the expansion of exp(ε) in small ε:

(1.2) K(ε) =

[
1− (ε(xi − xj))

2 +
1

2
(ε(xi − xj))

4 − . . .

]n
i,j=1

.

Equivalently, we may write K(ε) as:

K(ε) = K0 + ε2K2 + ε4K4 + . . .

where K0 = 11⊤, and K2m =
[

1
m! (ε(xi − xj))

2m
]n
i,j=1

. We can treat K(ε) as an analytic matrix perturbation

in the sense of Kato [19], and hope to extract some information about the small ε regime by treating K(ε)
as a perturbation around K0. Unfortunately, an issue arises immediately. While K(ε) has full rank for any
ε > 0, K0 has rank one and gives us no information about the remaining n− 1 eigenvectors and eigenvalues.
K(ε) is an analytic perturbation, but it is a singular one and the eigenvectors of the limit tell us little about
the limit of the eigenvectors. The problem was tackled in [5], but for eigenvectors the most general result is
given only as a conjecture, and, in addition, the proofs are long and convoluted.

For a simpler example of the kind of questions we are trying to address, consider the following matrix in
small ε:

(1.3) K(ε) =

1
0

0

+ ε

1 1
1 1

0

+ ε2

1 1 1
1 1 1
1 1 1

 =

1 + ε+ ε2 ε+ ε2 ε2

ε+ ε2 ε+ ε2 ε2

ε2 ε2 ε2


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2 K. USEVICH AND S.BARTHELMÉ

Fig. 1.1. Eigenvalues and eigenvectors of a kernel matrix in small ε. We take 20 equispaced points x1, . . . , xn in [0, 1] and
form the matrix defined in eq. 1.1. a. The eigenvalues of K(ε) (computed numerically) as a function of ε, on log-log axes. All
eigenvalues except the largest one go to 0 as ε → 0, and they do so at increasing rate. b. The eigenvector u3(i) corresponding to
λ3(ε), plotted as a function of i. We show the eigenvector for different values of ε, going from blue to purple as ε → 0. We see
that the eigenvector converges to a well defined limit (shown as the dotted black line) even though the associated eigenvalue goes
to 0. Our goal in this paper is to analyse the asymptotic spectral behaviour of matrices that depend analytically on a parameter
ε, and are singular at ε = 0. Theorem 5.12 is applicable to the kernel matrix shown here, and provides an expansion for the
eigenvalues, as well as an expression for the limiting eigenvectors.

The limit of K(ε) as ε→ 0 has rank 1, and therefore a single nonzero eigenpair with λ = 1 and eigenvector

u =
(
1 0 0

)⊤
. On the other hand, K(ε) is the sum of three SPD matrices and clearly det(K(ε)) > 0 for

ε > 0. This implies that for all ε, K(ε) has three non-zero eigenvalues. Two of these eigenvalues must then
go to 0 as ε → 0, and cannot be recovered from A(0). In fact, as we will see (section 3), one eigenvalue goes
to zero as O(ε), the other as O(ε2).

In this work we describe a set of tools for determining the limiting eigenvectors and eigenvalues of singular
perturbations. We restrict ourselves to symmetric matrices, since they are much easier to handle.

We show the following:
1. If the matrix K(ε) has entries with a particular pattern of orders of magnitude in ε (induced by

so-called diagonal scaling), then information about the eigenvalues and eigenvectors can be easily
extracted from the Schur complements of the matrix of leading coefficients. These results have a close
kinship with the approaches in the tropical algebra literature [1, 3, 16] (in particular, the diagonal
scalings we use are strongly related to the so-called “Hungarian scalings” used in tropical algebra [17]).

2. Otherwise, there is a relatively large class of matrices that can be directly “rotated” into a diagonally
scaled form, for which all limiting eigenvectors and eigenvalues can be also found from Schur com-
plements. This class of matrices (called “generalised kernel matrices”) include kernel matrices [5] as
a special case, and in particular we prove the conjecture formulated in [5] on eigenvectors of kernel
matrices in the multivariate case (both for unisolvent and non-unisolvent case, thus also generalising
results in [25]). All the results from [5] can be obtained using the techniques from this paper, but with
simpler and much more straightforward proofs.

3. The generalised kernel form may not be sufficient to characterise all limiting eigenvectors and eigen-
values. In this case, we propose an iterative algorithm, again based on Schur complements, to extract
the relevant information at increasing orders of ε.

Compared to classical approaches in analytic perturbation theory we do not use complex integrals at all but
rely on basic linear-algebraic tools. Our results use regularised inverses (as in [6]), and Schur complements,
which show up in other works as well (for instance, see [8] on differentiability of eigenvectors).

The paper is structured as follows. In section 2 we recall the definition and main properties of analytic
matrix perturbations and introduce the notion of asymptotic spectral equivalent. The asymptotic spectral
equivalent is one of the key notions for this paper, and encodes the information on limiting eigenvalues and
eigenvectors. We show how the asymptotic spectral equivalent is linked to regularised inverses. The main
results on limiting eigenvalues and eigenvectors are contained in section 3 for diagonally-scaled matrices and
in section 4 for matrices in the generalised kernel form. Section 5 contains application of the results to the
case of kernel matrices and shows how to treat in a unified way tsmooth and finitely smooth kernels, in the
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unisolvent as well as in the non-unisolvent case (thus proving and generalising results and conjectures from
[6]). Finally, we discuss in section 6 what can be done in the case when the generalised kernel form is not
sufficiently informative.

2. Analytic eigenvalue decompositions and related tools. Matrix perturbation theory is an old
and large field, and often surprisingly intricate. Studying general perturbations of general matrices (or worse,
operators) can be very difficult. We focus on symmetric matrices, which are more tractable. We study analytic
matrix perturbations, of the form:

(2.1) K(ε) = K0 + εK1 + ε2K2 + . . . ,

a special case of which is naturally the linear “matrix pencil” K0 + εK1.
Our goal is to characterise the spectral behaviour of K(ε) as ε → 0, i.e., what are the eigenvalues and

eigenvectors like for small ε? If K0 has full rank, and simple eigenvalues, then the question is easy to answer
using regular perturbation theory [9]. If K0 has repeated eigenvalues, for instance when it is rank-deficient
(as for kernel matrices), a lot more work is involved. Fortunately, we have the following result, due to Rellich,
described in the next subsection.

2.1. Analytic eigenvalue decomposition of symmetric matrices.

Theorem 2.1 ([22], th. I.1.1). Let K(ε) = K0+εK1+ε
2K2+. . ., with K(ε) symmetric. The eigenvalues

λ1(ε) . . . λn(ε) and the corresponding normalized eigenvectors u1(ε), . . . ,un(ε) (i.e., satisfying ∥uk(ε)∥2) may
be chosen analytic in a (complex) neighbourhood of 0, and satisfy

Remark 2.2. In matrix notation, the analytic eigenvalue decomposition can be written as

K(ε) = U(ε)Λ(ε)UT(ε),

where

Λ =

λ1(ε) . . .

λn(ε)

 , U(ε) =
(
u1(ε) · · · un(ε)

)
.

The orthogonality and normalization of eigenvectors imply that the eigenvector matrix satisfies the constraints

(2.2) UT(ε)U(ε) = U(ε)UT(ε) = I.

Remark 2.3. Note (2.2) requires that the eigenvectors are of norm 1 for all ε under consideration. This
constraint can be relaxed to require that UT(ε)U(ε) is a diagonal matrix (of the form I +O(ε)), see [15] for
a related discussion.

We give an example of the analytic eigenvalue decomposition below.

Example 2.4. Let

K(ε) =

(
1 ε
ε 2ε2 + ε3

)
.

The eigenvalues of K(ε) can be found by solving det(K(ε)− λI) = 0 for z, which in this case works out to:

λ =
1

2
(1 + 2ε+ ε3 ±

√
D), where D = 1− 2ε3 + 4ε4 + 4ε5 + ε6,

Note that
√
D expands to

√
D = 1 − ε3 + O(ε4) and is analytic in a neighborhood of 0. Therefore, the

eigenvalues are also analytic with the Taylor expansions

λ0(ε) = 1 + ε2 +O(ε3), λ1(ε) = ε2 + ε3 +O(ε4).

As in the rest of this paper, we order eigenvalues such that λ0 is asymptotically larger than λ1. The eigenvectors
can be found by solving (

1− λ(ε) ε
ε 2ε2 + ε3 − λ(ε)

)
x = 0
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for x, where λ(ε) is either of the eigenvalues. For λ1, if we pick x =

(
1
u

)
and solve for u we find u = λ1(ε)−1

ε =

ε + O(ε2). For λ2(ε), if we pick x =

(
v
1

)
and solve for v, we find v = λ2(ε)

ε − 2ε + ε3 = −ε + O(ε2). After

dividing by the norm of x, we get the following system of eigenvectors:

U(ε) =

(
1 +O(ε) −ε+O(ε2)
ε+O(ε2) 1 +O(ε)

)
=

(
1 0
0 1

)
+O(ε),

which is indeed analytic near 0.

In our work we will be concerned with finding the limiting eigenvalues and eigenvectors, that is finding
U(0), as well as the leading terms in the expansion of λ(ε) (see subsection 2.3 for a precise definition). The
classical analytic perturbation theory (see e.g. the book by Kato [19]) provides an exhaustive construction
of perturbation series for U(ε) and Λ(ε), by using the tools of complex analysis and an expansion of the
the resolvent Rε(z) = (zI −K(ε))−1. However, the resulting perturbation series are often complicated and
difficult to work with. Moreover, we are dealing with rank-deficient K(0), and all the eigenvalues may have
different leading exponents in ε, as shown in the following example. The approach [19] is not well adapted to
our case, as it typically proceeds by recursion over the groups of eigenvalues.

In order to find the leading terms, we follow a different approach (related to [1, 20]), as we need only the
leading terms in the expansions. The approach consists in bringing the matrix into so-called diagonally scaled
form, and then uses regularized inverses and Schur complements, and is described in detail in section 3. To
give a preview of the results, we consider the following example, where the strategy from Example 2.4 can no
longer be applied.

Example 2.5. Let us study a 5× 5 matrix as an example:

K(ε) =


1 ε

2 ε4 0 0
ε
2

1
4ε

2 ε2

2 0 0

ε4 ε2 ε2 ε3

2 0

0 0 ε3

2
1
8ε

4 ε4

2

0 0 0 ε4

2 ε4


To compute the eigenvalues of such a matrix, the näıve approach which consists in finding the roots of the
characteristic polynomial is no longer possible, since there is no closed-form formula for the roots of a degree
5 polynomial. The tools described in section 3 are applicable however, and tell us that the eigenvalues have
expansion:

λ1(ε) = λ̃1 +O(ε),

λ2(ε) = ε2(λ̃2 +O(ε)), λ3(ε) = ε2(λ̃3 +O(ε)),

λ4(ε) = ε4(λ̃4 +O(ε)), λ5(ε) = ε4(λ̃5 +O(ε))

where λ̃1 = 1, λ̃2 = 1+
√
2

2 , λ̃3 = 1−
√
2

2 , λ̃4 = 9+
√
113

16 , λ̃5 = 9−
√
113

16 . There are thus three groups of eigenvalues:
one eigenvalue that does not go to 0 (leading exponent ε0), 2 eigenvalues that go to 0 at rate ε2 (leading
exponent ε2), and two other eigenvalues that go to 0 at rate ε4 (leading exponent ε4). The matrix U (0) of
asymptotic eigenvectors is given by:

U(ε) =


1 0 0 0 0
0 0.38 −0.92 0 0
0 0.92 0.38 0 0
0 0 0 0.41 −0.91
0 0 0 −0.91 0.41

+O(ε),

We report numerical values (up to two digits), exact expressions are available but lengthy. The vertical bars
separate the three groups of eigenvectors. The calculations are explained in Example 3.13.

2.2. Notation and assumptions. All matrix perturbations K(ε) considered here are symmetric, real
and analytic: ∀ε ∈ R,K(ε) ∈ Rn×n,K(ε)⊤ = K(ε). We do not assume that K(ε) is positive definite. Our
results can be extended to linear operators in Hilbert spaces by treating K(ε) as a ∞×∞ pseudo-matrix, but
we take n finite for simplicity.

We need some notation related to power series.
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Definition 2.6. Let p(ε) =
∑∞

i=0 aiε
i a power series in ε. Then:

• The leading term, noted lt(p) is the first non-zero term
• The leading coefficient, noted lc(p) is the coefficient of lt(p)
• The valuation, noted val(p) is the degree of lt(p)
• The leading monomial is εval(p)

• The truncation of p to degree k is the series truncεk(p) =
∑k

i=0 aiε
i.

Example 2.7. Let p(ε) = 2ε3 +3ε5 + ε7. Then lt(p) = 2ε3, lc(p) = 2, val p = 3, the leading monomial is ε3

and truncε5(p) = 2ε3 + 3ε5.

Some of the facts from [19] are essential and will let us set up notation and assumptions. We assume
throughout that K(ε) has dimension n × n and is symmetric. Its limit K(0) is rank-deficient with rank
c0 < n. In such a case results from [19] tell us that the eigenvalues of K(ε) have the following behaviour in
small ε:

• c0 eigenvalues have valuation 0 in ε, i.e. an expansion of the form λ(ε) = λ̃+O(ε), with λ̃ ̸= 0. These
go to the non-zero eigenvalues of K(0) in the limit (i.e. λ̃ is a non-zero eigenvalue of K0)

• The other eigenvalues come in groups with increasing valuation; depending on the other terms of K(ε)
as a power series, there may be a group with valuation 1, a group with valuation 2, etc.

We group eigenvalues asymptotically by valuation. We note the valuations α0, α1, . . . , αp, so that there
are p+ 1 groups of eigenvalues (generally, α0 = 0). The valuations are increasing: αi ≤ αi−1 . The number of
eigenvalues in group i is denoted ci. The eigenvalues in group i (λi,k(ε), k = 1, . . . , ci) have expansion

(2.3) λi,k = εαi

(
λ̃i,k +O(ε)

)
,

where within each group we order eigenvalues in decreasing λ̃i,k, so that for small enough ε, λi,k(ε) ≥ λi,k+1(ε).
Note that some of these eigenvalues can be negative.

The eigenvectors expand as U(ε) = U (0) + εU (1) + . . . . Here we are only interested in computing U (0),
which we partition as

(2.4) U (0) =
(
U0 U1 . . . Up

)
according to the eigenvalues they are associated with. Ui ∈ Rn×ci contains the ci limiting eigenvectors
associated with the i-th group of eigenvalues. We also use the following compact notation for the expansion
of the i-th group of eigenvalues (2.3) and their leading terms

λi(ε) = εαi

(
λ̃i +O(ε)

)
.

Example 2.8. In the 5x5 matrix of example Example 2.5, we get

(α0, c0) = (0, 1), (α1, c1) = (2, 2), (α2, c2) = (4, 2).

meaning that there is 1 eigenvalue with valuation 0, 2 eigenvalues with valuation 2, and 2 eigenvalues of
valuation 4.

The notation for the block of eigenvalues becomes

λ̃0 = 1, λ̃1 =

(
2.08
0.57

)
, λ̃2 =

(
2.18
0.77

)
,

(truncated to to 2 digits of accuracy) and the eigenvector blocks, respectively

U0 =


1
0
0
0
0

 , U1 =


0 0

0.38 −0.92
0.92 0.38
0 0
0 0

 , U2 =


0 0
0 0
0 0

0.41 −0.91
−0.91 0.41

 .
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2.3. The Asymptotic Spectral Equivalent. We now introduce an operator that preserves all the
asymptotic spectral information in a matrix K(ε). Given K(ε), we can form another matrix, noted K(ϵ),
which we call the “Asymptotic Spectral Equivalent”. K(ϵ) is also a matrix perturbation, which shares the
asymptotic spectral properties of K(ε), but whose particular form makes those properties easy to read out.

Definition 2.9 (Asymptotic Spectral Equivalent). Let K(ε) = U(ε)Λ(ε)U(ε)⊤ a (symmetric) analytic
matrix perturbation. We define the Asymptotic Spectral Equivalent of K(ε) as

(2.5) K(ϵ)
def
= U (0) lt(Λ)U (0) =

p∑
i=0

εαiUi diag(λ̃i)U
⊤
i

We often write

(2.6) K(ϵ) =

p∑
i=0

εαiKi

and the theorems given below provide ways to identify the terms K0,K1, . . . . From these terms, and eq.
(2.5) it is easy to go back to the asymptotic eigenvalues and eigenvectors of K(ε). If all the eigenvalues are
asymptotically simple (all the λ̃i distinct within each block), then there is no ambiguity in the eigenvectors
either. If the eigenvalues are not asymptotically simple, then there is an ambiguity that can only be lifted by
continuing the perturbation series to higher orders.

Let us now list a few properties of the ASE, most of which are very easy to prove.

Lemma 2.10. The ASE has the following properties.
1. Every term in K(ϵ) is symmetric, i.e. Ki = K⊤

i for all i.

2. The terms in K(ϵ) are orthogonal, K⊤
i Kj = 0 if i ̸= j.

3. If K(ε) has full rank for ε > 0, then so does K(ϵ).

4. Let Q an orthogonal matrix (Q−1 = Q⊤). Then Q⊤K(ε)Q = Q⊤K(ϵ)Q.

Proof. (1) and (2) follow directly from the definition.
For (3), if K(ϵ) is not full rank, then there is some x such that K(ϵ)x = 0. U0 is full rank by construction,

so K(ϵ)x = 0 implies that at least one of the eigenvalues is 0 for all ε, which contradicts the hypothesis that
K(ε) is invertible for ε > 0.

(4) follows from applying the change of basis to K(ε), which leaves the eigenvalues intact but changes
U (0) to QU (0)Q⊤.

Example 2.11. Consider the 2×2 matrix studied in Example 2.4, where K(ε) has eigenvalues λ0(ε) =

1 +O(ε) and λ1(ε) = ε2(1 +O(ε)), with associated eigenvectors

(
1
0

)
+O(ε) and

(
0
1

)
+O(ε).

Therefore

K(ϵ) =

(
1 0
0 1

)(
1 0
0 ε2

)(
1 0
0 1

)
=

(
1 0
0 0

)
+ ε2

(
0 0
0 1

)
.

Example 2.12. We return to the matrix treated in Examples 2.5 to 2.8. In this case we had three groups
of eigenvalues, of order 1, ε2, ε4, we get:

K(ϵ) = K0 + ε2K1 + ε4K2 = U0U
⊤
0 + ε2U1

(
2.08 0
0 0.57

)
U⊤

1 + ε4U2

(
2.18 0
0 0.77

)
U⊤

2 .

where all numerical values are truncated to two digits.

Our method consists in obtaining formulas for the ASE, from which asymptotic eigenvalues and eigenvec-
tors can then be read out. In short, for the k-th block the limiting spectral information can be retrieved from
Kk. The following example explain this process as well as the possible ambiguities that arise when there are
multiple eigenvalues.

Example 2.13 (Limiting eigenvalues and eigenvectors from ASE). Let the ASE be given by

K(ϵ) =


1 1

2
1
2 1

0
0

+ ε


0

0
2

1

 = K0 + εK1
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This tells us that K(ε) has two groups of eigenvalues, one group of two eigenvalues with valuation 0, one group
with two eigenvalues with valuation 2:

• The first group has the expansion λ0,i(ε) = λ̃0,i+O(ε) where i ∈ {0, 1} and λ̃0,0 = 3
2 , λ̃0,1 = 1

2 are the
eigenvalues of K0. The corresponding asymptotic eigenvectors are the eigenvectors of K0.

• The second group has the expansion λ1,i(ε) = ε(η1,i + O(ε)) where i ∈ {0, 1} and λ̃1,0 = 2, λ̃1,1 = 1
are the eigenvalues of K1. The corresponding asymptotic eigenvectors are the eigenvectors of K1.

In this case the asymptotic eigenvectors can be retrieved unambiguously from the ASE because there are no
eigenvalue multiplicities in K0 and K1.

If we modify the example to

K(ϵ) =


1 1

2
1
2 1

0
0

+ ε


0

0
1

1

 = K0 + εK1

then K1 has repeated eigenvalues and the individual eigenvectors at order ε cannot be resolved. We can only
obtain the asymptotic eigenprojector on the subspace spanned by u3(0),u4(0), further terms in the expansion
of the eigenprojector are necessary to disambiguate the eigenvectors themselves.

2.4. Regularised inverses and their asymptotics. One of the key tools of our proofs are regularized
inverses which serve as a probing device to obtain ASEs. The “regularised inverse” of a matrix K(ε) is the
matrix

M(z) = K(ε)(K(ε) + zI)−1 = I − (K(ε) + zI)−1,

defined for those z such that K(ε)+zI is invertible. Regularised inverses often turn up in the theory of kernel
methods in statistics [6].

As we will show later, by scaling z in ε, the regularised inverse can be used to probe eigenvalues that tend
to 0 slower than εs. The next lemma explains how.

Lemma 2.14 (Asymptotics of regularised inverses). Let K(ε) a symmetric matrix with asymptotic spectral
equivalent K(ϵ) =

∑p
i=0 ε

αiKi. Let s > 0, j = argmax i
s.t. αi≤s

. Then for any τ /∈ {−λ̃ij}, the regularised inverse

(2.7) Ms,τ (ε)
def
= M(τεs)

is well-defined for small ε and its limit at 0 is completely determined by the ASE:

(2.8) Ms,τ (ε) =

{∑j
i=0 UiU

⊤
i + o(1), if αj < s,∑j−1

i=0 UiU
⊤
i +Kj(Kj + τI)−1 + o(1), otherwise.

Proof. By Theorem 2.1 and from (2.2) we have that

(2.9) Ms,τ (ε) = U(ε)Λ(ε)(Λ(ε) + τεsI)−1U(ε)⊤ = (U (0) + o(1))Λ(ε)(Λ(ε) + τεsI)−1(U (0) + o(1)),

so we can focus on the limit of the middle term. The matrix Λ(ε)(Λ(ε) + τεsI)−1 is diagonal, and we are
going to find the limits of its diagonal elements. Consider an eigenvalue λi,k(ε) in the i-th group (2.3) . Then,

if τ ̸= −λ̃i,k, the corresponding diagonal element of Λ(ε)(Λ(ε) + τεsI)−1 is equal to

(2.10)
λi,k(ε)

λi,k(ε) + τεs
=


1 + o(1), if s > α,
λ̃i,k

τ+λ̃i,k
+ o(1), if s = α,

0 + o(1), otherwise,

where these three cases follow from the power series expansion of 1
1+x at 0.

Injecting eq. (2.10) into eq. (2.9), we find the following:
• if s does not match any of the valuations (αj ̸= s),

Ms,τ (ε) =

j∑
i=0

Ui(Ici + diag(o(1)))U⊤
i + o(1),

where ci is the size of the block of eigenvalues with valuation αi;
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• if αj = s, then by denoting

Λ̂j = diag

(
λ̃j,1

λ̃j,1 + τ
, . . . ,

λ̃j,cj

λ̃j,cj + τ

)
,

we have that

Ms,τ (ε) =

j−1∑
i=0

Ui(Ici + diag(o(1)))U⊤
i +Uj(Λ̂j + o(1))U⊤

j .

Elementary calculations show that UjΛ̂jU
⊤
j = Kj(Kj + τI)−1, which concludes the proof.

Remark 2.15. Lemma 2.14 shows that regularised inverses have a well-defined limit, and importantly that
the scaling in ε can be used as a probing device for finding blocks of eigenvalues of order s. Consider the
function

(2.11) r(s) = rank lim
ε→0

Ms(ε)

for s > 0. The above lemma implies that r(s) is a piecewise constant function, with jumps at ν0, ν1, . . . , νp.
Indeed,

r(s) =
∑

i,αi≤s

ci(2.12)

so that r(s) counts the number of eigenvalues with valuation ≤ s.

Example 2.16. Take

K(ε) =

(
1 ε
ε 2ε2 + ε3

)
,

as in example 2.4. Let us pretend for now that we do not know what the eigenvalues of K(ε) are. We will see
that asymptotic eigenvalues and eigenvectors can be recovered using regularised inverses.

Using the standard formulas for inversion of 2× 2 matrices,

M(z) = K(ε)(K(ε) + zI)−1 = I − z

det(K(ε) + z)

(
z + 2ε2 + ε3 −ε

−ε 1 + z

)
where z

det(K(ε)+z) =
z

(1+z)(z+2ε2+ε3)−ε2 . For fixed z, direct computation gives

lim
ε→0

M(z) =

(
1

1+z

0

)
By lemma 2.14, this implies that one eigenvalue has valuation 0 and leading coefficient 1. Scaling z = τε and
taking the limit again, we obtain:

lim
ε→0

M(ετ) =

(
1

0

)
By lemma 2.14, no eigenvalue is of valuation 1. Setting z = τε2 on the other hand gives:

lim
ε→0

M(ε2τ) =

(
1

1
1+τ

)
By lemma 2.14, there is an eigenvalue of valuation 2 with leading term 1, which agrees with the computation
in example 2.4.

In this case, computation of the eigenvalues via regularised inverses is more tedious that computing
eigenvalues directly. If the matrix has a specific form, as in section 3, going through the regularised inverse is
much easier.

We are now ready to present our main results.
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3. Matrices in diagonal-scaling form. The reader may have noticed that in many examples we have
given so far the entries of the matrix are of different orders: some entries of order 1, some entries of order ε,
some entries of order ε2, etc. When such structure exists, it can be exploited to obtain asymptotic expansions
more easily (an idea that appears in the tropical algebra literature, see [1]).

Example 3.1. Take the matrix defined by eq. (1.3)

K(ε) =

1 + ε+ ε2 ε+ ε2 ε2

ε+ ε2 ε+ ε2 ε2

ε2 ε2 ε2


Not only are the entries of different magnitudes in ε, but here they are ordered such that the valuation is
non-decreasing across rows and columns (valKi+c,j ≥ valKi,j for c ≥ 0). We can take advantage of this
property to re-express K(ε) as:

K(ε) =

ε0 ε
1
2

ε1

1 + ε+ ε2 ε
1
2 + ε

3
2 ε

ε
1
2 + ε

3
2 1 + ε ε

1
2

ε ε
1
2 1

ε0 ε
1
2

ε1


=

ε0 ε
1
2

ε1

1
1

1

+ o(1)

ε0 ε
1
2

ε1


= ∆(ε)(I +O(ε))∆(ε).(3.1)

The diagonal matrix ∆(ε) = diag(ε0, ε
1
2 , ε1) that appears in this equation is what we call a “scaling matrix”.

For matrices which admit a non-trivial diagonal scaling, we can derive precise results on the asymptotic
eigenvalues and eigenvectors (Theorem 3.2). In the next subsection, we set the notation and assumptions and
formulate the main result of this section. To make the result more user-friendly, section subsection 3.2 explains
how to find and use diagonal scalings in computations and highlight links to tropical algebra. The proof of
Theorem 3.2 is presented in subsection 3.3, and relies on regularised inverses.

3.1. ASE of diagonally-scaled matrices. In this section, we address the following case:

(3.2) K(ε) = ∆(ε)(H + o(1))∆(ε)

where ∆(ε) is a scaling matrix. Any matrix perturbation can be put into the form of equation of eq. 3.2, if
only under the trivial scaling ∆(ε) = I. In such a case our theorem will have nothing of much interest to say
- it will only describe the eigenvalues and eigenvectors of order ε0. Our results begin to be interesting if the
scaling matrix is non-trivial, which means that K(ε) needs to have entries with different orders of magnitude
in ε.

We need to set up some notation to describe the scaling matrix ∆(ε) and the block structure it induces
in H. We write:

(3.3) ∆(ε) = ∆b(ε) = diag(εν0 , . . . , εν0︸ ︷︷ ︸
b0

, εν1 , . . . , εν1︸ ︷︷ ︸
b1

, . . . , ενp , . . . , ενp︸ ︷︷ ︸
bp

)

where ν0 < ν1 < · · · < νr and each valuation νi (not necessarily integer) is repeated bi times.
We partition H according to the valuations in ∆(ε), as

(3.4) H =


H0,0 H0,1 . . . H0,p

H1,0 H1,1 . . . H1,p

...
... . . . . . .

Hp,0 Hp,1 . . . Hp,p

 ,

with Hi,j ∈ Rbi×bj (bi are positive integers). For convenience, we define:
• H≤i,≤j to be the submatrix of H with row blocks up to i and column blocks up to j;
• Hi,≤j to be the submatrix of the i-th block row

Hi,≤j =
(
H0,0 H0,1 . . . H0,j

)
,

and similar notation H≤i,j for the submatrix of the j-th block column;
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• shortcuts H<i,<j = H≤i−1,≤j−1, Hi,<j = Hi,≤j−1, H<i,j = H≤i−1,j .
Whenever H<i,<i is invertible, we define the i-th Schur complement as

(3.5) Si = Hi,i −Hi,<i(H<i,<i)
−1H<i,i,

and formally define S0 = H0,0. If there exists a j such that Sj is not invertible, then the sequence of Schur
complements stops at this Sj (non-invertibility of Sj implies non-invertibility of H<j+1,<j+1).

Armed with the above notation, we can formulate the following theorem.

Theorem 3.2. Let K(ε) be as in eq. (3.2). Assume that the matrix H≤j,≤j, for j ≤ p is invertible (i.e.,
all Schur complements up to Sj exist). Then:

1. the ASE of K(ε) has the following block-diagonal form

(3.6) K(ε) =


ε2ν0S0

. . .

ε2νjSj

o(ε2νj )

 ,

2. if H is invertible (i.e., j = p), there is no o(ε2νp) term and the ASE is completely determined by H:

(3.7) K(ε) =


ε2ν0S0

ε2ν1S1

. . .

ε2νpSp

 ,

Proof. The proof of Theorem 3.2 is deferred to subsection 3.3, and uses regularised inverses.

Remark 3.3 (Related results). We know of related, but not equivalent, results in the literature. Tropical-
isation of the characteristic polynomial of K(ε) can be used to lower-bound the valuation of the eigenvalues
[2, 1, 3], and obtain the leading coefficients of eigenvalues in certain cases. Schur complements appear in the
Lidskii–Vishik–Lyusternik approach to perturbation theory of non-symmetric matrices [20, 21], and in [8].

How to work with and interpret the results of theorem 3.2 will hopefully become clearer with the tools we
introduce in section 3.2. Let us give two simple examples of its application (more can be found in the next
subsection).

Example 3.4. Let us apply theorem 3.2 to the 2× 2 matrix of example 2.4. We first need to re-express the
matrix in a diagonal-scaling form:

K(ε) =

(
1 ε
ε 2ε2 + ε3

)
=

(
1

ε

){(
1 1
1 2

)
+O(ε)

}(
1

ε

)
.

In the notation used above, the scaling has valuations ν0 = 0, ν1 = 1, and H =

(
1 1
1 2

)
. By theorem 3.2, the

eigenvalues of K(ε) come in two “blocks” of valuation 2ν0 = 0 and 2ν1 = 2. To find the leading terms of the
eigenvalues, we partition H according to the structure given by the valuations, which here is:

H =

[
1 1
1 2

]
and compute the sequence of Schur complements:

S0 = H0,0 = 1

S1 = H0,0 −
H1,1

H2
1,2

= 1.

S0 and S1 are of size 1× 1 with eigenvalue 1. These blocks are of size 1. The ASE is therefore

K(ϵ) =

(
1 0
0 0

)
+ ε2

(
0 0
0 1

)
This result agrees with the calculations performed earlier.
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Example 3.5. We apply Theorem 3.2 to the matrix in eq. (3.1). Here H = I, ν0 = 0, ν1 = 1
2 , ν2 = 1,

b0 = b1 = b2 = 1. The Schur complements are S0 = S1 = S2 = 1. According to the theorem, we have

K(ϵ) =

1
0

0

+ ε

0
1

0

+ ε2

0
0

1


We can infer from this expression that K(ε) has three eigenvalues with expansion λ0(ε) = 1 + o(1),λ1(ε) =
ε+ o(1),λ2(ε) = ε2 + o(1). The associated limiting eigenvectors are [1, 0, 0]⊤, [0, 1, 0]⊤, [0, 0, 1]⊤.

Remark 3.6. Let us explain how the asymptotic eigenvectors and eigenvalues can be recovered from the
ASE, as given in eq. (3.6) in the general case (see also ex. 2.13 for generalities on interpreting the ASE in
terms of asymptotic eigenvalues and eigenvectors).

Take j the maximum index such that Sj exists, and denote for each i ≤ j the block matrix

Zi =
(
0 · · · Ibi · · · 0

)T
.

Note that in this case eqs. (3.6) and (3.7), can be written as

K(ε) =

j∑
i=0

ε2νiZiSiZ
T
i + o(ε2νj ), and(3.8)

K(ε) =

p∑
i=0

ε2νiZiSiZ
T
i ,(3.9)

respectively.
For i < j, Theorem 3.2 states that there exists a block of eigenvalues with valuation 2νi. Since Zi

is orthonormal, the eigenvalues and eigenvectors of the term ZiSiZ
⊤
i in the ASE can be obtained from

the eigenvalues and eigenvectors of Si. By assumption, i < j so that Si is invertible, and has bi non-zero
eigenvalues ηi,1 . . . ηi,bi . ThenK(ε) has a block of asymptotic eigenvalues of the form λ(ε) = ε2νi(ηi,k+O(ε)) for
k ∈ {1, . . . , bi}. The corresponding eigenvectors can be obtained from the eigenvectors of Si, if all eigenvalues
of Si are simple. If there are repeated eigenvalues in Si, then the asymptotic eigenvectors cannot be identified
(a further expansion is needed to make the eigenvalues distinct).

In interpreting the last block j in the expansion of the ASE, we need to be careful. If j < p then the
expansion is truncated early, we are in case 1 of the theorem, and the ASE is only identified up to valuation
2νj . The Schur complement Sj is non-invertible. Its non-zero eigenvalues (and eigenvectors) give the leading
coefficients of asymptotic eigenvalues of K(ε) with valuation 2νj , and its zero eigenvalues (and the associated
null space) correspond to eigenvalues of K(ε) with valuation strictly higher than 2νj . If, on the other hand,
H is invertible, then the last Schur complement Sj has full rank, and all asymptotic eigenvalues of K(ε) can
be identified using the theorem.

3.2. Theorem 3.2: a user’s guide. To make theorem 3.2 more useful in calculations (either by hand or
on a computer), let us explain how to easily compute H from K(ε) given a candidate scaling. The right tools
to use come from tropical algebra (see e.g. [18] for an introduction). Fortunately, they are easy to understand
and can be described with minimal background.

In computations by hand, it is useful to write down a valuation matrix for the entries of K(ε):

Definition 3.7 (Valuation matrix). The valuation matrix Ω of K(ε) is a matrix with entries in Z+∪{∞}
that contains the element-wise valuations of K(ε), i.e. Ω = [valKij(ε)]i,j

Example 3.8. If

K(ε) =

 1 ε2 + ε3 0
ε2 + ε3 5ε3 0

0 0 ε1


then

Ω =

 0 2 ∞
2 3 ∞
∞ ∞ 1

 .

Recall that val(0) = ∞.
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Diagonal scalings need to be designed carefully so that:

(3.10) K(ε) = ∆(ε)(H + o(1))∆(ε)

as in theorem 3.2. Equation (3.10) implies:

(3.11) valKij(ε) ≥ val∆(ε)ii + val∆(ε)jj

This leads to the following definition:

Definition 3.9 (Valid scaling). We say ∆(ε) is a valid scaling for K(ε) if eq. (3.11) is verified for all
i, j. We say that ∆(ε) is tight at entry i, j if:

valKij(ε) = val∆(ε)ii + val∆(ε)jj

Given a candidate scaling ∆(ε), one can form the matrix Ω̃ with entries

Ω̃i,j = val∆(ε)ii + val∆(ε)jj

Then ∆(ε) is a valid scaling iff

(3.12) Ω− Ω̃ ≥ 0

element-wise.

Example 3.10 (Example 3.8, continued). Let us try the candidate scaling ∆(ε) = diag(ε0, ε1) on the
matrix given in example 3.8. With this scaling,

Ω− Ω̃ =

(
0 2
2 3

)
−
(
0 1
1 2

)
=

(
0 1
1 1

)
.

This scaling is tight only at entry (0, 0). Let us try to tighten the scaling, with ∆(ε) = diag(ε0, ε
3
2 ). Then:

Ω− Ω̃ =

(
0 2
2 3

)
−
(
0 3

2
3
2 3

)
=

(
0 1

2
1
2 0

)
.

The scaling is now tight at (0, 0) and (1, 1). Finally, we can easily see that raising the valuation of the scaling
any further makes it invalid: for instance ∆(ε) = diag(ε0, ε2) is not a valid scaling, since

Ω− Ω̃ =

(
0 2
2 3

)
−
(
0 2
2 4

)
. =

(
0 0
0 −1

)
.

and eq. (3.12) is not verified anymore.

There is a systematic way of finding valid scalings that are maximally tight, via the Hungarian algorithm,
see e.g. [17, 18] for an introduction.

Once a valid scaling has been found, the matrix H is easy to compute:

Proposition 3.11. Given a valid scaling ∆(ε), the decomposition

K(ε) = ∆(ε)(H + o(1))∆(ε)

is verified for

(3.13) Hij =

{
lcKij(ε) if ∆(ε) is tight at (i, j)

0 otherwise

Recall that lcKij is notation for the leading coefficient of the entry Kij.

Proof. Follows directly by verifying that eq. (3.10) holds entry-wise for both tight and non-tight entries.
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Example 3.12 (Example 3.8, continued). Recall that with the scaling ∆(ε) = diag(ε0, ε1), the only tight
entry is (0, 0). Then we have

K(ε) =

(
1 ε2 + ε3

ε2 + ε3 5ε3

)
=

(
1

ε

){(
1 0
0 0

)
+ o(1)

}(
1

ε

)
Applying theorem 3.2 with this scaling is not very informative, since the second Schur complement S1 = 0.
All we can deduce is that the first eigenvalue has expansion λ0(ε) = 1 +O(ε), and that the second eigenvalue

has valuation larger than 2. If we improve the scaling to ∆(ε) = diag(ε0, ε
3
2 ), entry (1, 1) becomes tight, and

we can write

K(ε) =

(
1

ε
3
2

){(
1 0
0 5

)
+ o(1)

}(
1

ε
3
2

)
Applying theorem 3.2 with this scaling now gives us the asymptotics of both eigenpairs, with λ1(ε) = ε3(5 +
O(ε)).

Example 3.13 (Example 2.5, continued). We can compute the asymptotics of the matrix given in ex. 2.5
using the tools of this section. Some of the computations are best done with the help of a Computer Algebra
System. For convenience we reproduce the matrix here:

K(ε) =


1 ε

2 ε4 0 0
ε
2

1
4ε

2 ε2

2 0 0

ε4 ε2 ε2 ε3

2 0

0 0 ε3

2
1
8ε

4 ε4

2

0 0 0 ε4

2 ε4


The corresponding valuation matrix is:

Ω =


0 1 4 ∞ ∞
1 2 2 ∞ ∞
4 2 2 3 ∞
∞ ∞ 3 4 4
∞ ∞ ∞ 4 4


Take ∆(ε) = diag(ε0, ε0, ε1, ε1, ε2, ε2). Then:

Ω̃ =


0 1 1 2 2
1 2 2 3 3
1 2 2 3 3
2 3 3 4 4
2 3 3 4 4


We highlight in blue the entries for which the scaling is tight (Ω̃i,j = Ωi,j). One can check that the scaling is

valid by computing Ω− Ω̃, which should have non-negative entries.
H is found by applying proposition 3.11:

H =


1 1

2
1
2

1
4

1
2

1
2 1 1

2
1
2

1
8

1
2

1
2 1


The block structure in H corresponding to the valuations is highlighted. The Schur complements for this
block structure are

S0 = 1, S1 =

(
0 1

2
1
2 1

)
, S2 =

(
1
8

1
2

1
2 1

)
.
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Theorem 3.2 gives us the ASE of K as:

K(ϵ) =


1

+ ε2


0 1

2
1
2 1

+ ε4

 1
8

1
2

1
2 1


The limiting eigenvalues and eigenvectors can be computed by diagonalising S0,S1 and S2 using the classical
formulas for 2× 2 matrices (we do not detail these calculations).

Example 3.14. Our final example for this section concerns a matrix for which 3.2 fails to characterise all
eigenvalues, even with the optimal scaling (we end up in case (1) of the theorem). Take

K =

1 ε ε
ε ε3 −ε3
ε −ε3 ε3


with valuation

Ω =

0 1 1
1 3 3
1 3 3


With the scaling D = diag(ε0, ε1, ε1), we have

Ω̃ =

0 1 1
1 2 2
1 2 2

 .

Again the tight entries are highlighted in blue, and it can easily be checked that the scaling cannot be improved.
Prop. 3.11 gives:

H =

 1 1 1
1 0 0
1 0 0


The Schur complements are S0 = 1, S1 = − ( 1 1

1 1 ). Since S1 is of rank one, there is a single eigenvalue of
valuation 2. Theorem 3.2 gives:

K(ϵ) =

1
0

0

− ε2

0
1 1
1 1

+O(ε3)

The last eigenvalue has valuation > 2 but is not identified. For this we need a stronger theorem, specifically
theorem 4.2. We revisit this computation in example 4.3.

The rest of this section contains the proof of theorem 3.2, and readers can skip ahead to section 4 for a
generalisation of the theorem that is more widely applicable.

3.3. Regularised inverses in diagonally-scaled matrices. We shall now study the asymptotic spec-
tral behaviour of K(ε) using regularised inverses, as introduced in section 2.4. The regularised inverses inherit
a block structure from the diagonal scaling, as summarised in the following lemma:

Lemma 3.15. Let s be a real positive number and

j = max i
2νi≤s

be the index of the last block in ∆(ε) to have valuation less than or equal to s
2 . Then the leading term of the

regularised inverse Ms,τ (ε) of K(ε) at order s defined as in (2.7) has the following expression depending on
whether 2νj ̸= s:

• in case 2νj ̸= s and H≤j,≤j invertible, then for all τ

(3.14) Ms,τ (ε) =

(
Ib 0
0 0

)
+ o(1),

where b =
∑j

i=0 bi.
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• in case 2νj = s and H<j,<j invertible (so that the Schur complement Sj is well defined), then

(3.15) Ms,τ (ε) =

Ib−bj 0 0
0 Sj(Sj + τI)−1 0
0 0 0

+ o(1),

for all τ such that the inverse exists (e.g., for all positive τ in the SPD case).

Proof. We compute directly the leading term of Ms. It is important to keep in mind throughout that
there are two cases, depending on whether s

2 matches one of the valuations νi. Recall the definition of j,
j = argmax i

2νi≤s
, whereby the matching case has νj =

s
2 and the non-matching case has νj <

s
2 .

First, note that:
Ms,τ (ε) = K(ε)(K(ε) + τεsI)−1 = I − τεs(K(ε) + τεI)−1

We prefer the latter form because it is symmetric. Injecting the definition of K(ε) (eq. (3.2)),

Ms,τ (ε) = I − τεs (∆(ε)(H + o(1))∆(ε) + τεsI)
−1

To compute the leading term, we define a modified diagonal scaling where each valuation greater than νj is
clipped to s

2 :

(3.16) ∆̃(ε) = diag(εmin (ν0,
s
2 ), . . . , . . . , εmin (νr,

s
2 ))

Note that it may be the case that νj =
s
2 (matching case), or not (non-matching). This lets us rewrite Ms as:

(3.17) Ms(ε) = I − τ
(
∆̃(ε)(H̃ + o(1))∆̃(ε)

)−1

,

where

H̃ =



(
H≤j,≤j 0

0 τI

)
, if νj <

s
2 ,H<j,<j H<j,j 0

Hj,<j Hj,j + τI 0

0 0 τI

 , νj =
s
2 .

The two cases are non-matching and matching, respectively. We use the fact that ∆̃(ε) is square to pull it out
of the inverse in eq. (3.17), and obtain:

(3.18) Ms(ε) = I − τε
s
2 ∆̃(ε)−1

(
H̃ + o(1)

)−1

∆̃(ε)−1ε
s
2

and we note that block i in ∆̃(ε)−1ε
s
2 is either o(1) if νi <

s
2 , or 1 + o(1) otherwise.

Note that the matrix H̃ is invertible under the assumptions in the theorem (i.e., invertibility of H≤j,≤j

for the non-matching case and invertibility of both H<j,<j and Sj + τIcj for the matching case), so that:

(3.19) Ms(ε) = I − τ

(
0 0
0 I

)(
H̃−1 + o(1)

)(0 0
0 I

)
+ o(1)

Here multiplication to the left and right by the matrix

(
0 0
0 I

)
selects the blocks with valuation ≤ s

2 . We

therefore only need to compute the relevant part in H̃−1, which we can do by block matrix inversion:

H̃−1 =



(
∗ ∗
∗ τ−1I

)
, if νj <

s
2 ,∗ ∗ ∗

∗ (Sj + τI)−1 0

∗ 0 τ−1I

 otherwise.

Inserting into eq. (3.19) and simplifying, we obtain (3.14) and (3.15) as claimed.
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Now we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. Lemma 3.15 tells us that the limit-rank function (eq. (2.11)) for s ≤ j equals

(3.20) r(s) =
∑

i:2νi≤s

bi

so that new dimensions appear every time s
2 matches one of the scalings νi. By matching the rank function

with the that of (2.11), and comparing results in Lemma 3.15 to that in Lemma 2.14, we obtain (3.6). Note
that if H is invertible, then the equality (3.20) holds for all s, and therefore the matrix in (3.7) is full rank
and is equal to the ASE.

4. Generalised kernel form. The results of the previous section are only directly useful if the matrix
has entries with different orders of magnitude in ε, so that a non-trivial scaling matrix can be used. An
example of a matrix that only has the trivial scaling is the kernel matrix given in eq. (1.2). Recall that this
matrix can be expanded as a series in ε2, where each term is a matrix of distances raised to some power:

K2l =
1

l!

[
(xi − yi)

2l
]n
i=1,j=1

Using the binomial theorem, we can expand the distances in terms of monomials:

K2l =
1

l!

[
2l∑

q=0

(
2l

q

)
(−1)qxqi y

2l−q
i

]n
i=1,j=1

If we note vi = [xij ]
n
j=1, this results in the expansion:

K(ε) = v0v
⊤
0 − ε2

(
v2v

⊤
0 − 2v1v

⊤
1 + v0v

⊤
2

)
+ . . .

Recall that v0 = 1, the constant vector, so that every entry in K(ε) is O(1) (more precisely, has zero
valuation). We can only use the trivial scaling matrix, and so theorem 3.2 only tells us about the eigenvalues
and eigenvectors of valuation 0. There is only one such eigenvalue, since K0 = v0v

⊤
0 is of rank one.

Thus, theorem 3.2 is not powerful enough to directly characterise the ASE of all analytic perturbations.
Better results are needed, and this section we will consider a generalisation of (3.2), and characterise the ASE
for matrices of the form:

(4.1) K(ε) = V ∆(ε) (W + o(1))∆(ε)V ⊤

Although this form may seem abstract, it includes very general kernel matrices in the flat limit. We will begin
by defining these matrices in more detail, explaining what V and W correspond to in eq. (4.1), and then
derive the ASE of matrices in this form.

4.1. ASE of matrices in generalised kernel form. We need to make the notation more precise.
Again, we define the scaling matrix similarly to (3.3)

(4.2) ∆(ε) = ∆a(ε) = diag(εν0 , . . . , εν0︸ ︷︷ ︸
a0

, εν1 , . . . εν1︸ ︷︷ ︸
a1

, . . . , ενp . . . ενp︸ ︷︷ ︸
ap

),

where each valuation νi is repeated ai times and ν0 < ν1 < · · · < νp.
We assume that V ∈ Rn×

∑
ai and is partitioned according to the valuations, as

(4.3) V =
(
V0 V1 . . . Vp

)
,

so that Vi ∈ Rn×ai . We will use the QR factorisation of V , which we arrange in the block-upper triangular
form:

(4.4) V = QR =
(
Q0 Q1 . . . Qp

)

R0,0 R0,1 . . . . . . R0,p

R1,1 R1,2 . . . R1,p

R2,2 . . . R2,p

. . .
...

Rp,p

 ,

so that the blocks Ri,j ∈ Rbi×aj and Qr ∈ Rn×bi .
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Remark 4.1. Under the assumption that rankV = n, the numbers bi sum to n, and Q ∈ Rn×n is a square
matrix. Moreover bi measures the new dimensions introduced by Vi, i.e.,

bi =

{
rankV0, i = 0,

rankV≤i − rankV<i, i > 0,

where we assume that bi > 0 (i.e. rankV≤i > rankV<i).

The matrix W ∈ R
∑

ai×
∑

ai in eq. (4.1) is also divided into blocks

W =


W0,0 W0,1 . . . W0,p

W1,0 W1,1 . . . W1,p

...
... . . . . . .

Wp,0 Wp,1 . . . Wp,p

 .

according to the structure of the valuations in (4.2).
Finally, we define the following matrix:

(4.5) H =


R0,0

R1,1

. . .

Rp,p

W


R⊤

0,0

R⊤
1,1

. . .

R⊤
p,p


The sequence of Schur complements in H are defined in the same way as for thm. 3.2, see (3.5).

With this notation, we obtain the following generalisation of theorem 3.2:

Theorem 4.2. Let K(ε) be given in (4.1), with W invertible, H be as in (4.8), and V satisfying assump-
tions of Remark 4.1. Let S0, . . . ,Sp denote the Schur complements in H.

1. Then the ASE is given by

(4.6) K(ϵ) =

p∑
i=0

ε2νiQiSiQ
⊤
i .

2. We have S0 = W0,0, and for any j > 0 such that V≤j−1 is full column rank, Sj admits a simpler
expression via Schur complements of W

(4.7) Sj = Rj,j

(
Wj,j −Wj,<j(W<j,<j)

−1W<j,j

)
R⊤

j,j ,

where the matrices Wj,<j and W<j,j = W T
j,<j are defined as

Wj,<j =
(
Wj,0 Wj,1 · · · Wj,j−1

)
.

The proof is deferred to the next subsection.

Example 4.3 (Ex. 3.14 revisited). Ex. 3.14 is a case where thm. 3.2 fails to characterise all eigenvalues.
We show that thm. 4.2 succeeds. In this example we have:

K(ε) =

1 ε ε
ε ε3 −ε3
ε −ε3 ε3


One can check that K(ε) can also be written as

K(ε) = V

1
ε

ε
3
2

1 1 0
1 0 0
0 0 1

1
ε

ε
3
2


with

V =

1 0 0
0 1 −1
0 1 1

 .
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This is a form compatible with theorem 4.2. Since V already has orthogonal columns we can write

V = QR =

 1 0 0
0 1√

2
− 1√

2

0 1√
2

1√
2

 1 √
2 √

2

 .

We highlight the block structure corresponding to the successive valuations 0, 1, 32 . In the notation of this
section, we have (eq. (4.5)):

H =

 1
√
2

√
2


 1 1

1

1


 1

√
2

√
2

 =

 1
√
2√

2
2


The Schur complements in H are S0 = 1,S1 = −2,S2 = 2. Applying theorem 4.2, the ASE of K equals:

K(ϵ) = q0q
⊤
0 − 2ε2q1q

⊤
1 + 2ε3q2q

⊤
2 =

1
− ε2

 1 1
1 1

+ ε3

 1 −1
−1 1


Compared to the previous attempt, we have managed to identify the eigenvalue of order O(ε3).

4.2. Proof of theorem 4.2. We begin with a lemma that allows us to convert the form of eq. (4.1) to
the simpler form we used previously in section 3, that of eq. (3.2). The lemma already appears in a different
form in [5].

Lemma 4.4. Let V , Q, R be as in (4.3), (4.4), and H as in (4.5). Then we have the following asymptotic
equivalence:

(4.8) R∆a(ε)(W + o(1))∆a(ε)R
⊤ = ∆b(ε)(H + o(1))∆b(ε)

where ∆a(ε) and ∆b(ε) are defined in (4.2) and (3.3), respectively, and

Proof. We denote A(ε) = R∆(ε)(W + o(1))∆(ε)R⊤, and Ai,j the block i, j in the partitioning induced
by the valuations in the scaling matrix ∆(ε).

Ai,j(ε) =
∑

k≥i,l≥j

Ri,kε
νi(Wk,l + o(1))(R)⊤l,jε

νj

= ενi(Ri,iWi,i(Ri,i)
⊤ + o(1))ενj

since the valuations in ∆(ε) are increasing. Eq. (4.5) is exactly this result expressed for all blocks.

Given this lemma, the proof of theorem 4.2 is straightforward.

Proof of Theorem 4.2. For the first part of the theorem (statement (1)), consider the matrix

K ′(ε) = Q⊤K(ε)Q = R∆(ε)(H + o(1))−1∆(ε)R⊤

and note that by lemma 2.10, K ′(ε) = Q⊤K(ϵ)Q. Lemma 4.4 lets us apply theorem Theorem 3.2 to K ′. We

obtain eq. (4.6) via K(ϵ) = QK ′(ε)Q⊤.
For the second part (statement (2)), note that in this case since rankR = rankV = n, all the diagonal

blocks Ri,i are full row rank. This implies that H is invertible (thanks to invertibility of W ). The simplified
expression for the Schur complement Si (eq. (4.7)) can be obtained as follows. If V≤j−1 is full column rank,
then Ri,i are square for j < i and the matrix

A = diag(S0, . . . ,Sj−1)

is invertible. Then the Schur complement is obtained as

Sj = Rj,jWj,jR
T
j,j −Rj,jWj,<jA

T(AW<j,<jA
T)−1AW<j,jR

T
j,j

= Rj,j

(
Wj,j −Wj,<j(W<j,<j)

−1W<j,j

)
R⊤

j,j ,

which completes the proof.
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5. Application to kernel matrices. In this section, we apply theorem 4.2 to kernel matrices, to settle
a conjecture from [5]. The only difficulty is to show that kernel matrices can indeed be written in the form
required by theorem 4.2, and explicitate the matrices involved.

5.1. Kernel matrices: background and notation. We need to briefly recall some definitions and
notation on kernel matrices. For more information on these matrices, we refer the reader to [23, 26, 13]. We
follow the notation used in [5].

Kernel matrices are formed from a set of n points in Rd, noted X = {x1,x2, . . . ,xn}. We define

(5.1) K(ε) = [k(εxi, εxj)]
n,n
i,j=1

where k(x,y) is a positive-definite kernel function and ε is a (spatial) non-negative scaling parameter. We
seek to characterise the ASE of kernel matrices in the flat limit ε→ 0.

The class of kernel functions is very wide, but the most commonly-used are radial, meaning that k(x,y)
only depends on the (Euclidean) distance ∥x− y∥:

(5.2) k(x,y) = ψ(∥x− y∥)

Radial kernels are particularly easy to work with because the flat limit expansion of k(εx, εy) can be obtained
from an expansion of ψ(s) at 0, i.e.:

(5.3) k(εx, εy) = ψ(ε ∥x− y∥) = ψ0 + εψ1 ∥x− y∥+ ε2ψ2 ∥x− y∥2 + ε3ψ3 ∥x− y∥3 + . . .

In this section we assume that ψ(s) is analytic at 0, so that we are dealing with analytic perturbations.

Remark 5.1. While we consider radial kernels in this section, the result will also hold for other smooth
kernels (as long as the kernel matrices analytic in the scaling parameter ε), similarly to [5].

The following criterion, called the “regularity index”, is key for characterising the flat limit of kernel
matrices:

Definition 5.2 (Regularity index). Let k(x,y) = ψ(∥x− y∥) a radial kernel, and ψ(s) have the following
expansion at 0:

(5.4) ψ(s) = ψ0 + ψ1s+ ψ2s
2 + . . .

We say k has regularity index r if ψ2r−1 ̸= 0, and ψ2c−1 = 0 for c < r, i.e. ψ2r−1 is the first non-zero odd
term in the expansion. Kernels with r <∞ are said to be “finitely smooth”, kernels with r = ∞ are said to be
“completely smooth”.

The spectral behaviour of kernel matrices depends in the most part on the regularity index, although we
cannot provide a concise explanation of why this is the case (see [7] for a discussion).

Two kernels with widely different flat limit behaviour are the Gaussian kernel and the exponential kernel,
with r = ∞ and r = 1, respectively:

Example 5.3 (Examples of kernels with different regularity coefficients). The Gaussian kernel (eq. (1.1))
corresponds to ψ(s) = exp(−s2) = 1 − s2 + 1

2s
4 − 1

6s
6 + . . . , which contains only even monomials in s

(s0, s2, s4, . . . ). This leads to a small-ε expansion that contains only even powers of ε, so that the Gaussian
kernel has therefore regularity r = ∞.

Contrast this to the so-called exponential kernel, which has

(5.5) ψ(s) = exp(−s) = 1− s+
1

2
s2 − 1

6
s3 + . . .

where the first odd power of s is s1. The regularity of the exponential kernel is therefore r = 1.
The following kernel is a special case of the Matérn family of kernels [24] with r = 2:

(5.6) ψ(s) = (1 + s) exp(−s) = (1 + s)(1− s+
1

2
s2 − 1

6
s3 . . . ) = 1− s2

2
+
s3

3
+ . . .

Compared to the exponential kernel, the term in s drops out, but the term in s3 remains, which increases r
from 1 to 2.
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5.2. Vandermonde, Wronskian and distance matrices. To express kernel matrices in the requisite
form we need some standard notation for multivariate polynomials (see [5] for details).

Let x =
(
x1 x2 . . . xd

)⊤ ∈ Rd. A monomial in x is a function of the form:

xα =

d∏
i=1

xαi
i

for α ∈ Nd (a multi-index). The degree of a monomial is defined |α| =
∑d

i=1 αi. For instance: x
(1,3,1) = x11x

3
2x

1
3

has degree 5, so does x(2,2,1) = x21x
2
2x

1
3. The numbers of monomials of degree ≤ s and degree = s in dimension

d are given by

(5.7) Ps,d =

(
k + d

d

)
, Hs,d =

(
k + d− 1

d− 1

)
respectively. By evaluating monomials of degree ≤ s on a discrete set of nodes X = {x1, . . . ,xn}, we form a
matrix:

Definition 5.4 (Vandermonde matrix). The Vandermonde matrix of degree ≤ s on nodes X = {x1, . . . ,xn}

(5.8) V≤s = [xα
i ]i∈{1,...,n},|α|≤s

The nodes vary along the rows, the monomials (indexed by α) along the columns. Which (degree-graded)
monomial order is used is irrelevant for our results.

Example 5.5. In dimension one, the generalised Vandermonde matrix simplifies to the classical Vander-
monde matrix:

(5.9) V≤s =
[
xji

]
i∈{1,...,n},j∈{0,...,s}

By eq. (5.7), the matrix V≤s has dimension n × Ps,d = n ×
(
s+d
d

)
in dimension d. One needs to keep in

mind two important differences between the univariate and the multivariate case:
1. In the univariate case, the matrix V≤s always has full column rank, if s ≤ n − 1 and if the nodes in

X are distinct. This is no longer the case in the multivariate case. For instance, if the nodes lie on a
line, then V≤1 has rank 2 instead of rank 1 + d. When the matrix V≤s is rank-deficient, we say the
nodes are non-unisolvent at degree s.

2. In the univariate case, by picking s = n − 1 we obtain a square matrix V≤n−1. In the multivariate
case this may or may not be possible depending on n and d. For instance, in dimension d = 2, the
size of V≤s is 1, 3, 6, 10, . . . with s = 0, 1, 2, 3, . . . . If n = 5 then V≤1 is too narrow and V≤2 too wide.

We also split the Vandermonde matrices in blocks, which correspond to fixed degrees of monomials:

V≤s =
(
V0 V1 · · · Vs

)
, Vs = [xα

i ]i∈{1,...,n},|α|=s

The particular order of monomials of the same degree will not be important for what follows, but we assume
it fixed.

Example 5.6. In dimension 2, the generalised Vandermonde matrix has blocks Vs with 1, 2, 3, . . . columns:

(5.10) V≤2 =


1 y1 z1 y21 y1z1 z21
1 y2 z2 y22 y2z2 z22
...

...
...

...
...

...
1 yn zn y2n ynzn z2n

 ,
where

X = {[ y1
z1 ] , [

y2
z2 ] , . . . , [

yn
zn ]},

with a particular chosen ordering of monomials.

Alongside Vandermonde matrices, we need to define Wronskian matrices, which are matrices of partial
derivatives of the kernel:
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Definition 5.7. Let k a radial kernel with regularity index r, and let d be fixed. Then for i, j ≥ 0 such
that i+ j ≤ 2r − 2 we define the Wronskian submatrix Wi,j ∈ RHi,d×Hj,d as

Wi,j =

 ∂q

∂xα∂yβ k(x,y)
∣∣∣
x,y=0

α!β!


|α|=i,|β|=j

,

where the columns and the rows and columns of Wi,j are indexed by the multi-induces whose order is consistent
with ordering the degrees in the Vandermonde matrices (5.8) (i.e., rows and columns of Wi,j are in the same
order as columns for Vi and Vj respectively).

See the appendix of [7] for convenient formulas for Wronskians of common kernels.
We can also define stacked Wronskian matrices W≤i,≤i, for i < r as

(5.11) W≤i,≤i =


W(0,0) W(0,1) · · · W(0,i)

W(1,0) W(1,1) · · · W(1,i)

...
...

...
W(i,0) W(i,1) · · · W(i,i)


This matrix is of size Pi,d × Pi,d and contain all partial derivatives up to order 2i. Moreover, it possesses the
following nice property:

Lemma 5.8. For a (strictly) positive definite kernel, all the Wronskian matrices are (strictly) positive
definite.

Proof. See [7].

Finally, the following matrices are required in the expansion of finitely-smooth kernels:

(5.12) D(q) = [∥xi − xj∥q]
n

i,j=1 .

We conclude this subsection by a result on conditional positive definiteness of D(q) for odd order d.

Lemma 5.9. If q = 2r − 1 for integer r ≥ 1, and V≤r−1 is full column rank, then the matrix

(−1)rAtD(q)A

is strictly positive definite for any full column rank matrix A with AtV≤r−1 = 0.

Proof. See [13], ch. 8.

We can now show that kernel matrices have the form required to apply theorem 4.2. We separate the
completely smooth and finitely smooth cases.

5.3. Results in for smooth radial kernels. We first analyse the smooth case, where the kernel function
is differentiable sufficiently many times. With some abuse of notation, denote by

(5.13) ∆k = ∆k(ε) =


1

εIH1

. . .

εkIHk

 ,
which is a particular case of the matrix (4.2) (corresponding to the choice of with aj = Hj,d and νj = j, i.e
the number of repetitions of εj is according to the number of homogeneous polynomials of degree d).

Lemma 5.10. Let k(x,y) be a positive definite kernel function, such that k(x,y) is a radial kernel with
regularity r, and X be a node set such that rankV≤p−1 = n for p ≤ r.

Then the kernel matrix has the following asymptotic form in ε→ 0:

(5.14) K(ε) = V≤p−1∆p−1(ε)(W≤p−1 + o(1))∆p−1(ε)V
⊤
≤p−1.

where V = V≤p is the Vandermonde matrix described in (5.8), W = W≤p,≤p is the Wronskian matrix from
(5.11), and ∆(ε) = ∆k is the diagonal matrix defined in (5.13).
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Proof. The proof is given in section 8.

Note that the same expansion holds for general smooth kernels (not necessarily radial).

Lemma 5.11. k(x,y) be a positive definite kernel function with k ∈ Cp,p and X be a node set such that
rankV≤p−1 = n. Then K(ε) has the same expansion as in (5.14)

Proof. The proof is given in section 8.

Lemma 5.10 and Lemma 5.11 help us to establish find the ASE for the completely smooth case.

Theorem 5.12. Let K(ε) satisfy the conditions of Lemma 5.10 or Lemma 5.11, and, in addition p is the
smallest such number (i.e., rankV≤p−1 < n but rankV≤p = n). Let Q0, . . . ,Qp and R0,0, . . . ,Rp,p come from
the block QR factorization of the matrix

V = V≤p =
(
V0 V1 · · · Vp

)
.

Then the ASE of K(ε) is given by

(5.15) K(ϵ) =

p∑
i=0

QiSiQ
⊤
i ε

2p,

where Si are the Schur complements of the block matrix H defined in (4.5).

Proof. By Lemma 5.10, K(ε) has factorization (5.14), where the matrix W is strictly positive definite by
Lemma 5.8. Therefore, we can apply Theorem 4.2, and the statements follow from Theorem 4.2.

In the case when the Vandermonde matrices are full rank, then we can use the simplified expression for
the Schur complements. These expressions lead to the following corollary, settling Conjecture 1 in [5] in the
smooth case.

Corollary 5.13. Let j ≤ p be such that the matrix V≤j is full-column rank. Then
1. the number of eigenvalues in the j-th block (with the order ε2j) is exactly equal to Hj,d (the number of

monomials of degree j);
2. the Schur complement Sj admits the simplified expression (4.7), and therefore, the leading coefficients

of the eigenvalues are given by the eigenvalues of Sj and the “leading eigenvectors” (in the sense of
Definition 2.9) are given by the eigenvectors of

(5.16) QjSjQ
t
j =

{
V0W0,0V

⊤
0 , j = 0,

QjQ
t
jVj

(
Wj,j −Wj,<j(W<j,<j)

−1W<j,j

)
V ⊤
j QjQ

t
j , j > 0.

Proof. This follows from the fact that the full rank property V≤j implies that all the diagonal blocks in
the QR decomposition (Ri,i for i ≤ j) are square (i.e. bi = ai in (4.4)). Therefore we obtain the simplified
expression (4.7). The rest follows from the fact that Qt

jVj = Rj,j .

Note that Theorem 5.12 applies also in the the non-unisolvent case (the case when the matrices V≤j−1

may not be of full column rank). However, the expressions for the Schur complements are more complicated
than the ones in Corollary 5.13, see subsection 5.5.

5.4. Finitely smooth case . The finitely smooth case appears when there is no such p that satisfies the
conditions of Lemma 5.10. This happens, for example, if rankV≤r−1 < n for a radial kernel of the regularity
index r. This case can be treated with the following proposition

Proposition 5.14. Let ψ be with regularity r and rankV≤r−1 < n. Then the kernel matrix has the
following asymptotic form in ε→ 0:

(5.17) K(ε) = V ∆(ε)(W + o(1))∆(ε)V ⊤,

• V = [V≤r−1 A] where A ∈ Rn×aj , is an arbitrary full column rank matrix such that spanV = Rn

(which implies (with c = n− rankV≤r−1).
• ∆(ε) is a diagonal scaling matrix, with block structure

∆(ε) =


1

ε1IH1,d

. . .

εr−1IHr−1,d

εr−
1
2 Ic

 ,
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where each block of integer valuation t is of size Hi,d. The only block with fractional valuation is the
last one.

• W is an extended “Wronskian” matrix with the following structure:

(5.18) W =

(
W≤r−1,≤r−1 0

0 ψ2r−1A
†D(2r−1)(A†)T

)
.

Proof. The proof is given in section 8.

Theorem 5.15. Let K(ε) satisfy the conditions of Proposition 5.14, and, in addition rankV≤r−1 < n.
Let Q0, . . . ,Qr−1 and R0,0, . . . ,Rr−1,r−1 come from the block QR factorization of the matrix

V = V≤r−1 =
(
V0 V1 · · · Vr−1

)
.

Then the ASE of K(ε) is given by

(5.19) K(ϵ) =

r−1∑
i=0

QiSiQ
⊤
i ε

2i + ε2r−1ψ2r−1AA†D(2r−1)AA†,

where the terms S0,S1, . . . have exactly the same form as in Theorem 5.12.

Proof. By Proposition 5.14, K(ε) has factorization (5.14), where the matrix W is strictly positive def-
inite by Lemma 5.8. Finally we note that, since AtV≤r−1, the QR decomposition (4.4) of the matrix V in
Proposition 5.14 from given by

V =
(
Q0 . . . Qr−1 A

)

R0,0 . . . R0,r−1

. . .
...

Rp,p

Ic

 ,

with c = n − rankV≤r−1 hence, we can again apply Theorem 4.2, and the statements of the theorem follows
from Theorem 4.2, 1–2.

As a corollary of Theorem 5.15, we recover both [5, Conjecture 1] and [5, Theorem 6.3] in the finite
smoothness case.

Corollary 5.16. 1. For j ≤ r − 1, if V≤j if full column rank, then the number of eigenvalues
of the order ε2j is exactly equal to Hj,d, and the expressions for the Schur complement are as in
Corollary 5.13.

2. If, in addition V≤r−1 is full column rank, then there are exactly n−Pr−1,d eigenvalues of order ε2r−1

corresponding to the ASE term ψ2r−1AA†D(2r−1)AA†.

Proof. The first part of the corollary is proved similarly to Corollary 5.13. The second part follows from
Lemma 5.9, which implies that the A†D(2r−1)A has rank c (and so has the matrix AA†D(2r−1)AA†).

5.5. Non-unisolvent case. Finally, we make some remarks on the non-unisolvent case, i.e. the case
where the Vandermonde matrix V≤s are rank-deficient for some s. We make first the remark on the ranks on
the Vandermonde matrices.

Lemma 5.17. If all the points xi, i ∈ {1, . . . , n} are distinct, then we have that rankV≤s > rankV≤s−1

for all 1 ≤ s < n.

Proof. If all the points are distinct, then there exists a vector a ∈ Rn such that all ti = atxi are distinct.
Note that the univariate Vandermonde matrices Ṽ≤s = [tji ]

n,s
i=1,j=0 are full column rank for s ≤ n − 1. Note

that the last column of Ṽ≤s lies in spanVs. Hence, for all 1 ≤ s ≤ n− 1, spanVs contains at least one vector
that does not belong to spanV≤s−1, and therefore rankV≤s > rankV≤s−1.

Note that Theorems 5.12 and 5.15 still apply, and as a special case, we generalize the results in [25] (see
[25, Theorem 8] where the number of eigenvalues of given order is provided for analytic kernels).

Corollary 5.18. Assume that the conditions of Theorem 5.12 or Theorem 5.15 hold and j ≤ r− 1, and
all the points xi are distinct.
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1. If rankV≤j is rank deficient but rankV≤j−1 is full column rank (rank Pj−1,d), then there are rankV≤j−
Pj−1,d eigenvalues of the degree ε2j and the formula (5.16) is still valid for the corresponding term of
the ASE.

2. If rankV≤j and rankV≤j−1 are both rank deficient (i.e., rankV≤j < Pj,d, rankV≤j−1 < Pj−1,d, then
there are rankV≤j−rankV≤j−1 eigenvalues of degree ε2j and the matrix Sj is obtained from the Schur
complement (with respect to the last block) of

H =

R0,0W0,0R
t
0,0 . . . R0,0W0,jR

t
j,j

... . . . . . .
Rj,jWj,0R

t
0,0 . . . Rj,jWj,jR

t
j,j

 .

Proof. The statements about the numbers of the eigenvalues follow from Remark 4.1, where bi gives the
number of rows in the diagonal block Qi,i of the QR decomposition. Note that bi is nonzero by Lemma 5.17.
Finally, the expressions for the Schur complement follow from combining (3.5) and (4.5).

Remark 5.19. The Vandermonde matrices V≤j are rank-deficient if the points x1 . . . xn are sampled from
an algebraic variety having polynomial equations of degree ≤ j. For example, consider points sampled on a
circle (i.e., x21 + x22 = 1), or, in general a conic section, in d = 2. Then we have that

rankV≤j = 2j + 1,

which is smaller than Pj,2 =
(
j+2
2

)
as long as j ≥ 2. In this case, Corollary 5.18 gives the limiting eigenvector

and eigenvalues for kernel matrices corresponding to nodes on a circle.
The example of the circle can be generalized to the case when the points xj lie on an algebraic variety.

In this case, the ranks of the Vandermonde matrix are connected to the Hilbert function [10, Ch. 9] of the
corresponding polynomial ideal (see also [4] for examples of Hilbert functions). Note that for some particu-
lar algebraic varieties (e.g., spheres) it may be more beneficial to use some predefined basis (e.g., spherical
harmonics [14]) instead of multivariate monomials.

5.6. Numerical illustration. We illustrate our results with two examples in dimension 2, and contrast
unisolvent to non-unisolvent sets.

Fig. 5.1. Eigenvalues of a Gaussian kernel matrix for a unisolvent node set. a. Nodes drawn i.i.d. from the unit square
b. The 10 largest eigenvalues of K(ε) for this node set, as a function of ε (in log-log scale). Groups of eigenvalues with different
valuations appear in different colors. There is 1 eigenvalue with valuation 0, 2 eigenvalues with valuation 2, 3 eigenvalues with
valuation 4, 4 eigenvalues with valuation 6, etc. The asymptotic approximation of an eigenvalue, keeping only the leading term,
corresponds to a line in log-log space. These approximations are shown here as dotted lines (note the varying slopes, correspond
to different valuations).

In our first example (fig. 5.1), nodes are drawn i.i.d. uniformly from the unit square. In such configurations,
the node set is unisolvent almost surely. The Gaussian kernel (eq. (1.1)) is completely smooth, and cor. 5.13
applies. As a consequence, the successive blocks of eigenvalues of with asymptotic behaviour in ε0, ε2, ε4, . . .
have size equal to H0,2,H1,2,H2,d,H3,d,H4,d, · · · = 1, 2, 3, 4, . . . . In general the i-th block has valuation 2i and
is of size Hi,d = i + 1. The leading coefficients can be obtained from eq. (5.16). In fig. 5.1, we show the
eigenvalues of the example matrix as a function of ε, along with the asymptotic approximations.
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Fig. 5.2. Eigenvalues of a Gaussian kernel matrix for a non-unisolvent node set. a. Nodes drawn i.i.d. from the affine
variety x2

2 = x3
1 − x1 (the underlying curve is shown as a solid line). This node set is non-unisolvent at degree 3 and higher,

see text. b. The 10 largest eigenvalues of K(ε) for this node set, as a function of ε (in log-log scale). Groups of eigenvalues
with different valuations appear in different colors. There is 1 eigenvalue with valuation 0, 2 eigenvalues with valuation 2, 3
eigenvalues with valuation 4, but only 3 eigenvalues with valuation 6. All further groups of eigenvalues are also of size ≤ 3.
Compared to the unisolvent set, the eigenvalue groups are smaller starting at valuation 8, which corresponds to polynomials of
degree 4.

In our second example (fig. 5.2), the nodes are sampled i.i.d. from the algebraic curve x22 = x31 − x1. This
is an affine variety of dimension one and degree 3, and the node sets is non-unisolvent for polynomials of degree
3 and higher. More precisely, the blocks Ri,i in the QR decomposition of the Vandermonde matrix (which
have size Hi,2 = i − 1, i > 0) have rank ≤ 3 for i ≥ 3. Compared to the unisolvent case, we still have blocks
of eigenvalues with asymptotic behaviour in ε0, ε2, ε4, . . . but starting at valuation 8 (which corresponds to
degree 4) these blocks are all of size ≤ 3. The leading coefficients of the eigenvalues can be obtained from cor.
5.18.

Remark 5.20. Just before the submission of this manuscript, we became aware of the paper by Diab and
Batenkov [11] that investigated the asymptotic eigenvalues in the non-unisolvent case, using the tools similar
to the ones in [5].

6. ASE in the degenerate case. The goal of this section is to address the general case of positive
definite K(ε). In fact, not every matrix K(ε) can be reduced to the generalized kernel form (4.1). As an
example, consider the following matrix:

K(ε) =

 1 ε1 ε1

ε1 2ε2 ε2

ε1 ε2 ε2 + ε3

 .

Indeed, we can represent the matrix in the diagonal scaling form as

(6.1) K(ε) =

1
ε1

ε1

1 1 1
1 2 1
1 1 1 + ε1

1
ε1

ε1

 .

We see that the last Schur complement of the last block is(
2 1
1 1

)
−
(
1
1

)(
1 1

)
=

(
1 0
0 0

)
,

therefore, by theorem Theorem 3.2 the first two eigenvalues are O(1), O(ε2) and the last eigenvalue is at least
O(ε3). In addition, the first two limiting eigenvectors are1

0
0

 and

0
1
0

 ,
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respectively, and therefore the limiting eigenvectors are given by U0 = I.
However, we cannot bring the matrix to the form (4.1) with the diagonal scaling1

ε1

ε
3
2

 ,

thus we cannot use Theorem 3.2 to get all the information on the ASE. In order to deal with such cases, we
are going to propose an iterative reduction strategy, also based on Schur complements.

6.1. Schur complement in the diagonally scaled form. Then we are able to derive the following
result, that helps us to continue the reduction beyond the case in Theorem 3.2.

Theorem 6.1. Let K(ε) be partitioned as

K(ε) = ∆(ε)H(ε)∆(ε),

H(ε) =

(
H11(ε) H12(ε)
H21(ε) H22(ε)

)
where H11(ε)H22(ε) are m×m and (n−m)× (n−m) symmetric, H21(ε) = HT

21(ε), H11(0) is non-singular
(rank m), and

(6.2) ∆(ε) =

(
∆m(ε)

εsIn−m

)
, ∆m(ε) = diag(εγ1 , . . . , εγm).

where γ1 ≤ · · · ≤ γm < s. Then K(ε) = K ′(ε), with

(6.3) K ′(ε) =

(
∆m(ε)H11(ε)∆m(ε) 0

0 ε2s(H22(ε)−H21(ε)H
−1
11 (ε)H12(ε))

)
,

Before proving Theorem 6.1, we show an example of such a reduction.

Example 6.2. We continue the example from the beginning of the section 6. Applying Theorem 6.1 in
(6.1) with ∆(ε) as in (6.1), we get that the Schur complement becomes(

2 1
1 1 + ε

)
−
(
1
1

)(
1 1

)
=

(
1 0
0 ε

)
,

hence the ASE of the matrix in (6.1) is equal to the ASE of1
ε2

ε3

 ,

which is already in the ASE form.

Remark 6.3. Note that Theorem 6.1 can be used to obtain an ASE of any symmetric analytic matrix in
an iterative fashion. Indeed, take the leading term of the right lower block in (6.3)

A(ε) = ε2s(H22(ε)−H21(ε)H
−1
11 (ε)H12(ε)),

and assume that val(A(ε)) = γ ≥ 2s. Then the leading term of the matrix A(ε)/εγ will describe the term of
the ASE for the group of eigenvalues of the next valuation εγ . By choosing an appropriate rotation Q, this
matrix can be brought to

QA(ε)Qt =

(
O(εγ) O(εγ+1)

O(εγ+1) O(εγ+1)

)
,

which is in a diagonally scaled form and thus Theorem 6.1 can be applied again (combined with Theorem 3.2
if necessary).
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6.2. Proof of Theorem 6.1. In order to prove Theorem 6.1, we will need several lemmas. The first
lemma slightly generalizes Lemma 2.14.

Lemma 6.4. Let ∆(ε) be as in (6.2), with γ1 ≤ · · · ≤ γm < s, the matrix Λ̃(ε) be an analytic diagonal
matrix

Λ̃(ε) =

λ̃1 +O(ε)
. . .

λ̃n +O(ε)

 ,

so that λ̃k ̸= 0 for k ≤ m, and define

Λ(ε) = ∆(ε)Λ̃(ε)∆(ε).

Then for general τ (not equal to any of {−λ̃k}nk=m+1) and for any matrix A(ε) = O(ε), the regularized inverse
matrix has the leading term

Λ(ε)(Λ(ε) + τε2s(I +A(ε)))−1 = I − τε2s(Λ(ε) + τε2s(I +A(ε)))−1 = Λ+O(ε),

where the matrix Λ is equal to

Λ = diag

(
1, . . . , 1,

λ̃m+1

λ̃m+1 + τ
, . . . ,

λ̃n

λ̃n + τ

)
.

Note that there may be zeros among {λ̃k}nk=m+1 in which case the zeros also appear on the diagonal of Λ.

Proof. With some abuse of notation we denote Λ̃0 = Λ̃(0), and take the matrix Λ̂(ε) := Λ̃(ε)+ τε2sA(ε).

Then, it is easy to see that we can put the matrix Λ̂(ε) in the diagonally scaled form:

Λ̂(ε) = ∆(ε)(Λ̃(ε) + τε2s∆(ε)−1A(ε)∆(ε)−1︸ ︷︷ ︸
O(ε)

)∆(ε) = ∆(ε)(Λ̃0 +O(ε))∆(ε).

Then we have that

I − τε2s(Λ(ε) + τε2s(I +A(ε)))−1 = I − τε2s(Λ̂(ε) + τε2sI)−1 = Λ̂(ε)(Λ̂(ε) + τε2sI)−1,

hence we can use Lemma 3.15 (applied to K(ε) = Λ̃(ε)) in diagonally scaled form

Λ̂(ε)(Λ̂(ε) + τε2sI)−1 = Λ+O(ε),

which completes the proof.

6.2.1. Main result. Then Lemma 6.4 implies the following.

Corollary 6.5. Let Q(ε) = I +O(ε). Then the congruence with Q(ε) preserves the asymptotic spectral
equivalent for any matrix:

Q(ε)K(ε)QT(ε) = K(ϵ).

Proof. Denote K ′(ε) = Q(ε)K(ε)QT(ε). Then we have that

M ′
s(ε) = I − τεs(K ′(ε) + τεsI)−1 = I − τεs(Q(ε)U(ε)Λ(ε)UT(ε)QT(ε) + τεsI)−1

= I − τεs(Q(ε)U(ε)(Λ(ε) + τεs(I +O(ε)))UT(ε)QT(ε))−1

= I − τεsQ−T(ε)U(ε)(Λ(ε) + τεs(I +O(ε)))−1UT(ε)Q−1(ε)

= I − (I +O(ε)(U0 +O(ε))(I −Λ+O(ε))(UT
0 +O(ε))(I +O(ε))

= U0ΛUT
0 +O(ε) = Ms(ε) +O(ε),

where the last but one equality is by Lemma 6.4. By matching the main terms of Ms(ε) and M ′
s(ε) for all

possible s, we conclude that the ASE of K ′(ε) and K(ε) are equal.
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Proof of Theorem 6.1. Consider the following analytic matrix

Q(ε) =

(
Im 0

−εsH21(ε)H
−1
11 (ε)∆−1

m (ε) In−m

)
Then we can verify that

Q(ε)K(ε)QT(ε) =

=

(
Im 0

−εsH21(ε)H
−1
11 (ε)∆−1

m (ε) In−m

)
∆(ε)

(
H11(ε) H12(ε)
H21(ε) H22(ε)

)
∆(ε)

(
Im −εs∆−1

m (ε)H−1
11 (ε)H12(ε)

0 In−m

)
=

(
∆m(ε)H11(ε)∆m(ε) 0

0 ε2s(H22(ε)−H21(ε)H
−1
11 (ε)∆−1

m (ε)∆m(ε)H11(ε)∆m(ε)∆−1
m (ε)H12(ε)) = K ′(ε),

)
and the proof is complete by Corollary 6.5.

7. Conclusion. We hope to have convinced the reader that theorems 3.2, 4.2 and 6.1, can be used to
simplify the analysis of matrix perturbations. One noteworthy limitation is that we have assumed that the
perturbations are analytic, i.e. the classical framework used by Rellich and Kato. This limitation can be lifted,
if one instead looks at the matrix K(ε) as admitting an asymptotic series (which need not be a power series).
We intend to extend our results in this direction in future work.

8. Appendix.

Proof of Lemma 5.10. As shown in the proofs of [5, Theorems 4.5 and 6.3], under such assumptions, the
kernel matrix has expansion

(8.1) K(ε) = V≤p−1∆p−1W≤p−1∆p−1V
T
≤p−1 + εp(V≤p−1∆p−1W1(ε) +W2(ε)∆p−1V

T
≤p−1) + ε2p−1(W3(ε)),

where W3(ε) = ε2p−1(ψ2p−1D
(2p−1) +O(ε)) and ψ2p−1 = 0 if p < r. Note that since V = V≤p−1 is full row

rank, we have

(8.2) In = V ∆p−1∆
−1
p−1V

†,

hence, we can rewrite

εp(V≤p−1∆p−1W1(ε) +W2(ε)∆p−1V
T
≤p−1) = V ∆p−1(W̃1(ε) + W̃2(ε)+)∆p−1V

t,

where
W̃2(ε) = εp∆(ε)−1V †W2(ε) = O(ε), W̃1(ε) = εpW1(ε)(V

†)T∆(ε)−1 = O(ε).

Similarly, for W3(3), we have

ε2p−1W3(3) = V ∆p−1 ε
p−1∆−1

p−1V
†(εW3(ε))(V

†)tεp−1∆−1
p−1︸ ︷︷ ︸

W̃3(ε)=O(ε)

∆p−1V .

Combining it all together, we obtain

K(ε) = V ∆(ε)(W + W̃1(ε) + W̃2(ε) + W̃3(ε)︸ ︷︷ ︸
O(ε)

)∆(ε)V ⊤,

which completes the proof.

Proof of Lemma 5.11. The proof repeats that of Lemma 5.10, but instead of (8.1) we use another expan-
sion from [5, eqn. (32),(55)], which reads

K(ε) = V ∆(ε)W∆(ε)V ⊤ + εpV ∆(ε)W1(ε) + εpW2(ε)∆(ε)V t + ε2pW3(ε).

Proof of Proposition 5.14. We use the expansion (8.1) for p = r, and an idea similar to the one in (8.2),

but for V = [V≤r−1 A]. Define the matrix Ṽ as

Ṽ =

[
V †
≤r−1

A†

]
.
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Then, since V is full row rank and the matrices V≤r−1 and A span orthogonal subspaces, we have

In = V Ṽ = V ∆(ε)∆(ε)−1Ṽ ,

hence, we can rewrite

εrV≤r−1∆r−1W1(ε) = V≤r−1∆r−1W̃1(ε)∆(ε)V t,

εrW2(ε)∆r−1V
T
≤r−1 = V ∆(ε)W̃2(ε)∆r−1V

t
≤r−1,

where

W̃1(ε) = εrW1(ε)(Ṽ )T∆(ε)−1 = o(1).W̃2(ε) = εr∆(ε)−1Ṽ W2(ε) = o(1).

Similarly, for W3(3), we have

ε2r−1W3(3) = V (εr−
1
2 I)Ṽ W3(ε)(Ṽ )t(εr−

1
2 I)V t.

Note that

Ṽ W3(ε)(Ṽ )t =

[
V †
≤r−1D

(2r−1)(V †
≤r−1)

T V †
≤r−1D

(2r−1)(A†)T

A†D(2r−1)(V †
≤r−1)

T A†D(2r−1)(A†)T

]
+O(ε),

and hence

(εr−
1
2 I)Ṽ W3(ε)(Ṽ )t(εr−

1
2 I) = ∆(ε)

([
0 0
0 A†D(2r−1)(A†)T

]
+ o(1)

)
∆(ε)

Combining it all together, we obtain

K(ε) = V ∆(ε)(

([
W≤r−1 0

0 0

]
+

[
0 0
0 A†D(2r−1)(A†)T

]
+ o(1)

)
)∆(ε)V ⊤,

which completes the proof.
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