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Abstract

In this paper we use asymptotic expansion of the velocity field to reconstruct small
deformable droplets (i.e., their forms and locations) immersed in an incompressible
Newtonian fluid. Here the fluid motion is assumed to be governed by the non-stationary
linear Stokes system. Taking advantage of the smallness of the droplets, our asymptotic
formula and identification methods extend those already derived for rigid inhomogene-
ity and for stationary Stokes system. Our derivations, based on dynamical boundary
measurements, are rigorous and proved by involving the notion of viscous moment ten-
sor VMT. The viability of our reconstruction approach is documented by numerical
results.
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1 Introduction

In this paper we derive an asymptotic expansion of a weighted boundary measurements,
expressed in term of velocity field, in the presence of multiple small deformable droplets
(modeled by deformable inhomogeneities) immersed in an incompressible Newtonian
fluid. This asymptotic expansion, through a convenable application system, will allow
us to identify these droplets having kinematic viscosities different from the background
medium. The system is modeled as a non-stationary Stokes flow, in an open bounded
domain Ω ⊂ Rd that contains deformable inhomogeneities (droplets) of small size, say
α. The non-stationary Stokes equations are a standard system of PDE’s governing the
flow of continuum matter in fluid form, such as liquid or gas, occupying the domain Ω.
These equations describe the change with respect to time t ∈ [0, T ] of the velocity and
pressure of the fluid.

The detection and the reconstruction of an object immersed in a fluid is a source
of many investigations [1, 2, 5, 6, 10, 11, 14]. This kind of inverse problems arises, for
example, in moulds filling during which small gas bubbles can be created and trapped
inside the material (as it is mentioned in [10, 14]) or in the detection of mines.

In this paper, we consider a dilute suspension of deformable droplets in a matrix
fluid. We assume that the droplets and matrix fluid to be Newtonian and neglect
inertia and body forces. As it is mentioned in [11], the evolution of droplet shape only
depends on the viscosity difference between the fluids and on surface tension. Then, we
make the assumption of small size of these inhomogeneities to use asymptotic formula
which allows us to solve a given inverse problem. This assumption was used before, for
different kinds of problems, in [4, 3, 5, 14, 18, 17] and in others. We further assume
that the small droplets are at a distance � α away from each other, and are also away
from the boundary, to be able to neglect droplet interactions and their interaction with
the boundary ∂Ω.

The goal of this work is to expand, in a mathematically rigorous way, a numerical
approach to identify the locations of the droplets from boundary measurements of the
velocity field. We get an asymptotic expansion of solutions to the transmission prob-
lem for the non-stationary Stokes equations in terms of the geometry of the droplets.
This procedure describes the perturbation of the solution caused by the presence of
deformable obstacles with small diameters. Based on this results, we derive an asymp-
totic expansion for a weighted boundary measurements Λα(T ) (as α→ 0) in terms of
viscous moment tensor VMT. This is partially inspired from the general idea devel-
oped, for a heat equation, in [3] to locate multiple inclusions and from the fact that
the Stokes system can be viewed as the incompressible limit (the compression modulus
is infinite)[5].

The formula that is developed is considerably different from the topological sensi-
tivity analysis method and allows us to find the locations of the inhomogeneities with
significant accuracy. It is explicit and can be easily performed numerically. The results
and the general approach that we will adopt here extend more those for rigid inclusions
[2, 20, 6, 10, 21, 25] and for stationary stokes cases [11, 14, 18, 19, 5] among others. How-
ever, they remain a little close to the common ideas of that developed for reconstructing
small conductivity inclusions from boundary measurements, see [20, 12, 4, 17, 23] and
the references therein. In addition, readers are recommended to consult important
works on other types of inverse problems [7, 8, 9, 16], and do not forget that we can
refer to the books (for example, [13, 24, 26]) to get acquainted with the main notations,
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the calculation techniques and the most well-known theorems used naturally for Stokes
system.

The paper is organized as follows. In the next section we formulate our model
problem for droplets in a non-stationary Stokes flow. We state our main results in
Section 3. The rigorous derivation of the asymptotic expansion, for the pattern Λα(T ),
is detailed in Section 4 in terms of the notion of viscous moment tensor VMT. In
Section 5 we use our asymptotic expansion to make up a reconstruction method by
introducing a so called identifier of interest which, by some T > 0, recover the discrete
locations zj ; j = 1, · · · ,m of the droplets. We then perform numerical experiments to
test the viability of the method.

2 Problem formulation

Let Ω be a bounded, open connected subdomain of Rd, d = 2, 3 with C1,1- boundary
∂Ω. Let ν denote the outward unit normal to ∂Ω. We suppose that Ω contains a finite
number of droplets, each of the form zj + αBj , where Bj ⊂ Rd is a bounded, smooth
domain containing the origin. The total collection of deformable inhomogeneities thus
takes the form Bα = ∪mj=1(zj + αBj). The points zj ∈ Ω, j = 1, . . . ,m, that determine
the location of the droplets are assumed to satisfy

|zj − zl| ≥ d0 > 0,∀ j 6= l and dist(zj , ∂Ω) ≥ d0 > 0. (2.1)

We also assume that α > 0, the common order of magnitude of the diameters of the
inhomogeneities, is sufficiently small that these are disjoint and their distance to Rd \Ω
is large than d0/2. Let µ0 denote the viscosity of the background medium, for simplicity
we shall assume in this paper that it is constant. Let µj denote the constant viscosity
of the jth inhomogeneity zj + αBj . Using this notation we introduce the piecewise
constant kinematic viscosity

µα(x) =

{
µ0 x ∈ Ω \ Bα,

µj x ∈ zj + αBj , j = 1, . . . ,m.

Before formulating the model problem in the presence of droplets and via a non-
stationary Stokes flow, we introduce the following notations.
Notation: Id denotes the unit matrix in Rd×d, and I denotes the identity fourth-
order tensor. The scalar product on Rd×d is defined by A : B = trace(AtrB) where
the superscript tr denotes the transpose of a matrix. L2

0(Ω) denotes the space of the
functions of L2(Ω) which differ by a constant and throughout this paper, the inner
product between two vectors u and w is denoted by u ·w. The strain rate tensor e for
the flow is defined as follows:

e(u) :=
1

2
(∇u+ (∇u)tr) =

(1

2
(
∂uk
∂xl

+
∂ul
∂xk

)
)

1≤k,l≤d
; u = (u1, · · · , ud) ∈ Rd. (2.2)

The divergence of a matrix-valued function A is denoted Div(A), while the divergence
of a vector-valued function u is denoted div(u). From now we denote by L2(Ω)d the
space of vector-valued functions whose components of its elements belong to the space
L2(Ω) of square integrable functions. Likewise, we denote by Hs(Ω)d the space of
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vector-valued functions where the notation Hs is used to denote those functions who
along with all their derivatives of order less than or equal to s are in L2(Ω). We denote
by Hs(∂Ω)d the trace space.

Let (vα, pα) ∈ L2(0, T ;H1(Ω)d) × L2(0, T ;H1(Ω)) be the solution to the following
nonstationary linearized Navier-Stokes system:

∂vα
∂t
−Div

(
2µαe(vα)

)
+∇pα = 0 in Ω× (0, T ),

div (vα) = 0 in Ω,

vα|t=0 = ϕ in Ω,

vα = g on ∂Ω× (0, T ).

(2.3)

Here T > 0 is a final observation time, the initial condition ϕ ∈ C∞(Ω)d and,
g ∈ L2(0, T ;H1/2(∂Ω)d) is a nonhomogeneous Dirichlet boundary data satisfying the
standard flux compatibility condition:∫

∂Ω
g(x, t) · ν ds(x) = 0, a.e. t ∈ (0, T ). (2.4)

We denote by (v, p) ∈ L2(0, T ;H1(Ω)d) × L2(0, T ;H1(Ω)) the solution of the non-
stationary incompressible Stokes problem in the absence of any deformable inhomo-
geneities (the background solution):

∂v

∂t
−Div

(
2µ0e(v)

)
+∇p = 0 in Ω× (0, T ),

div (v) = 0 in Ω,

v|t=0 = ϕ in Ω,

v = g on ∂Ω× (0, T ),

(2.5)

where ϕ and g are given in (2.3).
Let us now recall the notion of viscous moment tensor (VMT) which appears nat-

urally as a limit of the elastic moment tensor (EMT) corresponds to the Lamé system
and introduced firstly in [4]. We still denote by µ the viscosity in the whole space
containing a rescaled inhomogeity, i.e.

µ(x) :=

{
µ0, x ∈ Rd \Bj ,

µ̃0, x ∈ Bj ,

for j = 1, · · · ,m.
According to [4, 5] we define the symmetric, fourth-order, viscous moment tensor

(VMT) denoted by V(j) = (V
(j)
klpq)k,l,p,q=1,··· ,d as follows:

V
(j)
klpq = (µ̃0 − µ0)

∫
Bj

∇v̂(j)
pq : (∇(ζkel) +∇(ζkel)

tr)dζ for j = 1, · · · ,m, (2.6)
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where, for p, q = 1, · · · , d, v̂
(j)
pq ∈ H1(Ω)d is the solution to

µ0∆v̂
(j)
pq +∇p̂(j) = 0 in Rd \Bj ,

µ̃0∆v̂
(j)
pq +∇p̂(j) = 0 in Bj ,

v̂
(j)
pq |−= v̂

(j)
pq |+ on ∂Bj ,

(p̂(j)ν + µ̃0
∂v̂

(j)
pq

∂ν ) |−= (p̂(j)ν + µ0
∂v̂

(j)
pq

∂ν ) |+ on ∂Bj ,

div(v̂
(j)
pq ) = 0 in Rd,

v̂
(j)
pq (ζ)− ζpeq + δpqd̃(ζ) = O(|ζ|1−d) as |ζ| → ∞,
p̂(j)(ζ) = O(|ζ|−d) as |ζ| → ∞.

(2.7)

The subscripts + and − indicate the limits from outside and inside of Bj , re-
spectively, and throughout this paper (e1, · · · , ed) denotes the standard basis for Rd.
Moreover, for ζ ∈ Rd we denote

d̃(ζ) := 1/d
d∑

k=1

ζkek,

the Kronecker’s index is denoted by δpq.

3 The main results

The main objective of this article is to find several small deformable droplets modeled
by;

Bj
α := zj + αBj , (3.1)

included in Ω and located at points zj ∈ Ω, j = 1, · · · ,m.

Let v be the solution to (2.5), then it is convenient to define the conormal derivative
∂v

∂ν
(x, t) on ∂Ω× (0, T ) by:

∂v

∂ν
|∂Ω×(0,T ) :=

(
2µ0e(v)− pId

)
ν.

Similarly, for the solution vα of (2.3), we may introduce the conormal derivative;

∂vα
∂ν
|∂Ω×(0,T ) :=

(
2µαe(vα)− pαId

)
ν =

(
2µ0e(vα)− pαId

)
ν

because µα = µ0 on ∂Ω (outside of Bj
α, j = 1, · · · ,m). Consequently,

∂(vα − v)

∂ν
|∂Ω×(0,T ) =

(
2µ0e(vα − v)− (pα − p)Id

)
ν.

Then we have,
∂(vα − v)

∂ν
= σ(vα − v, pα − p)ν on ∂Ω× (0, T ), (3.2)

where generally σ(w, π) := 2µ0e(w)− πId denotes the stress tensor, and σ(w, π)ν the
Cauchy force on the boundary ∂Ω× (0, T ).
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To give the main results of this paper, we need firstly to define in terms of the
Cauchy force σ(vα− v, pα− p)ν, given by (3.2), the following weighted boundary mea-
surements:

Λα(T ) :=

∫ T

0

∫
∂Ω
ψ · σ(vα − v, pα − p)νx ds(x)dt, (3.3)

where vα, v are the solutions to (2.3) and (2.5) respectively, and the vector-valued
function ψ ∈ C2(Ω× [0, T ])d satisfies ∂tψ −Div(2µ0e(ψ)) +∇p = 0 in Ω× [0, T ] with
ψ(x, T ) = 0 for x ∈ Ω, div(ψ) = 0.

According to (3.3), we propose a resolution of the inverse problem of reconstructing
Bj
α based on the following main result.

Theorem 3.1 Let T > 0 and Ω ⊂ Rd, d = 2 or d = 3, be a bounded domain with C1,1-
boundary. Suppose that we have all hypothesis (2.1) and (2.4). Let vα, v be solutions
to (2.3) and (2.5) respectively. Then, the following asymptotic expansion for Λα(T )
holds as α→ 0:

Λα(T ) = αd
m∑
j=1

(µj − µ0)

∫ T

0
e(v)(zj , t) : V(j)e(ψ)(zj , t)dt+O(αd+1| logα|3−d). (3.4)

The proof of the above theorem will be given later. On the other hand, by making
appropriate choice of test function ψ and background solution v, we will develop from
the asymptotic formula given by Theorem 3.1 an efficient location search algorithm
for detecting the droplets Bj

α, j = 1, · · · ,m. This problem of reconstruction will be
based on finite measurements of the Cauchy force σ(vα − v, pα − p)ν defined by (3.2)
on ∂Ω× (0, T ).

Before proving Theorem 3.1, we suggest the following estimate of vα− v as follows.

Theorem 3.2 Let T > 0 and Ω ⊂ Rd, d = 2 or d = 3, be a bounded domain with C1,1-
boundary. Suppose that we have all hypothesis (2.1) and (2.4). Let vα, v be solutions
to (2.3) and (2.5) respectively. Then, there exist a constant C such that

‖vα − v‖L2(Ω×[0,T ])d ≤ Cα
d
2 . (3.5)

Here C can be given explicitly and dependant on T , v, Bj, µ0 and µj.

Proof. Let vα be the solution to (2.5) and v the solution to (2.3) respectively. Ex-
panding the following∫ T

0

∫
Ω

2µαe(v) : e(vα − v)dxdt =

∫ T

0

∫
Ω

2µ0e(v) : e(vα − v)dxdt

−
∫ T

0

∫
Ω

2(µ0 − µα)e(v) : e(vα − v)dxdt. (3.6)

Choosing vα − v as a test function in (2.3), integration by parts over Ω yields∫ T

0

∫
Ω

∂v

∂t
·(vα−v)dxdt+

∫ T

0

∫
Ω

2µ0e(v) : e(vα−v)dxdt−
∫ T

0

∫
∂Ω

(2µ0e(v)−pId)νx·(vα−v)ds(x)dt

=

∫ T

0

∫
Ω

(∂v
∂t
−Div(2µ0e(v)) +∇p

)
· (vα − v)dxdt = 0,
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where we have used div(v) = 0. Then by considering the Dirichelet conditions on ∂Ω,
for both vector-valued functions v and vα, the following holds∫ T

0

∫
Ω

2µ0e(v) : e(vα − v)dxdt = −
∫ T

0

∫
Ω

∂v

∂t
· (vα − v)dxdt. (3.7)

Inserting (3.7) into relation (3.6), we obtain that,∫ T

0

∫
Ω

2µαe(v) : e(vα − v)dxdt = −
∫ T

0

∫
Ω

∂v

∂t
· (vα − v)dxdt

−
∫ T

0

∫
Ω

2(µ0 − µα)e(v) : e(vα − v)dxdt

= −
∫ T

0

∫
Ω

∂v

∂t
· (vα − v)dxdt (3.8)

+2
m∑
j=1

∫ T

0

∫
Bjα

(µj − µ0)e(v) : e(vα − v)dxdt,

where Bj
α is given by (3.1). On the other hand, choosing vα − v as a test function in

(2.5), then by integrating by parts over Ω and as done for (3.7), we may obtain that∫ T

0

∫
Ω

2µαe(vα) : e(vα − v)dxdt = −
∫ T

0

∫
Ω

∂vα
∂t
· (vα − v)dxdt. (3.9)

Subtracting relation (3.8) from (3.9), we immediately obtain∫ T

0

∫
Ω

2µα|e(vα − v)|2dxdt = −
∫ T

0

∫
Ω

2µαe(v) : e(vα − v)dxdt+

∫ T

0

∫
Ω

2µαe(vα) : e(vα − v)dxdt

=

∫ T

0

∫
Ω

∂v

∂t
· (vα − v)dxdt−

∫ T

0

∫
Ω

∂vα
∂t
· (vα − v)dxdt

+2
m∑
j=1

∫ T

0

∫
Bjα

(µ0 − µj)e(v) : e(vα − v)dxdt.

That is,∫ T

0

∫
Ω

∂vα
∂t
· (vα − v)dxdt−

∫ T

0

∫
Ω

∂v

∂t
· (vα − v)dxdt+

∫ T

0

∫
Ω

2µα|e(vα − v)|2dxdt

= 2
m∑
j=1

∫ T

0

∫
Bjα

(µ0 − µj)e(v) : e(vα − v)dxdt. (3.10)

Now inserting (3.9) and (3.7) into (3.10), the following holds

−
∫ T

0

∫
Ω

2µαe(vα) : e(vα−v)dxdt+

∫ T

0

∫
Ω

2µ0e(v) : e(vα−v)dxdt+

∫ T

0

∫
Ω

2µα|e(vα−v)|2dxdt

= 2

m∑
j=1

∫ T

0

∫
Bjα

(µ0 − µj)e(v) : e(vα − v)dxdt. (3.11)
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Let µ := inf
x∈Ω

µα(x), then by definition of µα, we have µ > 0 and µ0 ≥ µ. Moreover,

the following holds,

−2µ

∫ T

0

∫
Ω
|e(vα−v)|2dxdt ≤ −

∫ T

0

∫
Ω

2µαe(vα) : e(vα−v)dxdt+

∫ T

0

∫
Ω

2µ0e(v) : e(vα−v)dxdt.

Therefore relation (3.11) becomes,∫ T

0

∫
Ω

(µα − µ)|e(vα − v)|2dxdt ≤
m∑
j=1

∫ T

0

∫
Bjα

(µ0 − µj)e(v) : e(vα − v)dxdt,

and this together with Cauchy-Schwarz inequality and the fact that e(v) is bounded in
Ω× (0, T ) (by assumption of regularity of v) enables one to get the following estimates,∫ T

0

∫
Ω

(µα−µ)|e(vα−v)|2dxdt ≤
m∑
j=1

∫ T

0
|µ0−µj |‖e(v)(·, t)‖

L2(Bjα)d2
‖e(vα−v)(·, t)‖

L2(Bjα)d2
dt

≤
m∑
j=1

|µ0−µj ||Bj
α|

d
2T

1
2 sup

(x,t)∈Ω×(0,T )
|e(v)(x, t)|‖e(vα−v)‖

L2(Ω×(0,T ))d2
= Cα

d
2 ‖e(vα−v)‖

L2(Ω×(0,T ))d2
.

Thus,

‖e(vα − v)‖
L2(Ω×(0,T ))d2

≤ Cα
d
2 ,

and the desired result follows immediately by invoking the Korn inequality.

4 Proof of the asymptotic formula

In this section, we focus our attention on proving rigorously Theorem 3.1. Let us,
firstly, introducing the following vector-valued function

V (x, t) = vα(x, t)− v(x, t) + α
m∑
j=1

d∑
k,l=1

∂lv(zj ; t)kv̂
(j)
kl (

x− zj
α

), (4.1)

where vα, v and v̂
(j)
kl are solutions to (2.3), (2.5) and (2.7) respectively. It is clearly

that V ∈ L2(0, T ;H1(Ω)d) since v, vα ∈ L2(0, T ;H1(Ω)d), the function ∂lv(zj ; t)k does

not depend on space variable x and the solution v̂
(j)
kl of (2.7) belongs to H1(Ω)d.

The following estimate holds.

Proposition 4.1 Let d = 2, 3. Suppose that we have all hypothesis (2.1) and (2.4)
and let V be given by (4.1). Then, there exist a constant C such that,

‖e(V )‖
L2(Ω×(0,T ))d2

≤ Cα1+ d
2 | logα|

3−d
2 . (4.2)

Here the constant C is independent of α.
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Proof. We set,

Ω̃ := {x− z∗
α

;x ∈ Ω}; z∗ = z1, · · · , zm (4.3)

and we observe that e(V ) satisfies:

‖e(V )‖
L2(Ω×(0,T ))d2

=
(
α2+d

∫ T/α2

0
‖e(Ṽ )(·, t)‖2

L2(Ω̃)d2
dt
)1/2

; for x ∈ Ω̃, 0 ≤ t ≤ T/α2,

(4.4)
where Ṽ (x, t) := V (αx, α2t).

Hence to prove (4.2), it suffices to estimate the term

∫ T/α2

0
‖e(Ṽ )(·, t)‖2

L2(Ω̃)d2
dt. To

do this we may find out, firstly, the equations that the vector-valued function Ṽ can
satisfy in the rescaled domain Ω̃.

Let P := pα − p where pα, p are introduced in (2.3) and (2.5) respectively. One
may use (4.1) to observe that V satisfies:

∂V

∂t
−Div

(
2µ0e(V )

)
+∇P = α

m∑
j=1

d∑
k,l=1

∂t∂lv(z∗; t)kv̂
(j)
kl (

x− z∗
α

) := F1(x, t) in (Ω\Bα)×(0, T ),

∂V

∂t
−Div

(
2µαe(V )

)
+∇P = (µα−µ0)χBαDiv

(
2e(v)

)
+α

m∑
j=1

d∑
k,l=1

∂t∂lv(z∗; t)kv̂
(j)
kl (

x− z∗
α

)

:= F1(x, t) in Bα × (0, T ),

div (V ) = 0 in Ω.

Moreover, we have
V |+ = V |− on ∂(z∗ + αB)× (0, T ),

µ0
∂V

∂ν
|+ − µα

∂V

∂ν
|− = (µα − µ0)

∂v

∂ν
:= F2(x, t) on ∂(z∗ + αB)× (0, T )

and

V |t=0 = α

m∑
j=1

d∑
k,l=1

∂lϕ(0)kv̂
(j)
kl (

x− z∗
α

) in Ω,

µ0V = αµ0

m∑
j=1

d∑
k,l=1

∂lv(z∗; t)kv̂
(j)
kl (

x− z∗
α

) := F3(x, t) on ∂Ω× (0, T ).
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Now let f1(x, t) := α2F1(αx, α2t) and fi(x, t) := αFi(αx, α
2t) for i = 2, 3. Then it

is easily seen that Ṽ satisfies:

∂Ṽ

∂t
−Div

(
2µ0e(Ṽ )

)
+∇P̃ = f1 in (Ω̃\Bα)× (0, T/α2),

∂Ṽ

∂t
−Div

(
2µαe(Ṽ )

)
+∇P̃ = f1 in Bα × (0, T/α2),

div (Ṽ ) = 0 in Ω̃,

Ṽ |+ = Ṽ |− on ∂(z∗ + αB)× (0, T/α2),

µ0
∂Ṽ
∂ν |+ − µα

∂Ṽ
∂ν |− = f2 on ∂(z∗ + αB)× (0, T/α2),

Ṽ |t=0 = α
m∑
j=1

d∑
k,l=1

∂lϕ(0)kv̂
(j)
kl (x− z∗) in Ω̃,

µ0Ṽ = f3 on ∂Ω̃× (0, T/α2).

(4.5)

Now, using the trace estimate and integrations by parts over Ω×(0, t) for 0 ≤ t ≤ T ,
straightforward calculations give

sup
0≤t≤T

‖Ṽ (·, t)‖
L2(Ω̃)d

+ ‖e(Ṽ )‖
L2(Ω̃×(0,T ))d2

≤ C‖Ṽ |t=0‖L2(Ω̃)d
+ C ′

(
‖f1‖L2(0,T ;L2(Ω̃)d)

(4.6)

+‖f2‖L2(0,T ;L2(∂B)d) + ‖f3‖L2(0,T ;L2(∂Ω̃)d)

)
,

where the constants C, C ′ depend only on the domains Ω, Bj , j = 1, · · · ,m, and the
constants µj , j = 0, · · · ,m.
Now we need to estimate the following terms:∫ T/α2

0
‖f1(·, t)‖2

L2(Ω̃)d
dt,

∫ T/α2

0
‖f2(·, t)‖2L2(∂B)ddt, and

∫ T/α2

0
‖f3(·, t)‖2

L2(∂Ω̃)d
dt.

Before doing this we recall from (2.7) that,

v̂pq(x)− xpeq + δpqd̃(x) = O(|x|1−d) as |x| → ∞, (4.7)

where for x ∈ Rd, d̃(x) := 1
d

∑d
k=1 xkek. Since diam(Ω̃) = O(1/α), we have∫

Ω̃
|v̂pq(x)− xpeq + δpqd̃(x)|2dx =

{
O(log(1/α), if d = 2,
O(1), if d = 3.

(4.8)

Therefore, ∫
Ω̃
|Ṽ (x, 0)|2dx ≤ C

{
α2| log(α)|, if d = 2,
α2, if d = 3.

(4.9)

Moreover, by definition of f1 we get that∫ T/α2

0
‖f1(·, t)‖2

L2(Ω̃)d
dt ≤ Cα4

∫ T/α2

0

∫
B
|Div(2e(v))(αx, α2t)|2dxdt

+Cα6
m∑
j=1

d∑
k,l=1

∫ T/α2

0
|∂t∂lv(z∗; t)k|2dt

∫
Ω̃
|v̂pq(x)− xpeq + δpqd̃(x)|2dx.
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From (4.8) and the fact that v is a smooth vector-valued function, we obtain:∫ T/α2

0
‖f1(·, t)‖2

L2(Ω̃)d
dt ≤ Cα2. (4.10)

On the other hand, we have

(µα − µ0)
∂v

∂ν
(x, t) = O(|x|) for all (x, t) ∈ ∂(z∗ + αB)× (0, T ).

Consequently, f2(x, t) = αF2(αx, α2t) = O(α2), and hence∫ T/α2

0
‖f2(·, t)‖2L2(∂B)ddt ≤ Cα

2. (4.11)

Regarding (4.7) and (4.3), we can write |v̂pq(x) − xpeq + δpqd̃(x)| = O(αd−1) for all

x ∈ ∂Ω̃. Thus,∫ T/α2

0
‖f3(·, t)‖2

L2(∂Ω̃)d
dt ≤ µ0α

2
m∑
j=1

d∑
k,l=1

∫ T/α2

0
|∂lv(z∗; t)k|2dt

∫
∂Ω̃
|v̂kl(x)−xkel+δkld̃(x)|2dx

(4.12)
≤ Cα2.

Now from (4.6) we have,

‖e(Ṽ )‖
L2(Ω̃×(0,T ))d2

≤ C‖Ṽ |t=0‖L2(Ω̃)d
+ C ′

(
‖f1‖L2(0,T ;L2(Ω̃)d)

(4.13)

+‖f2‖L2(0,T ;L2(∂B)d) + ‖f3‖L2(0,T ;L2(∂Ω̃)d)

)
,

Therefore by using (4.9), (4.10), (4.11) and (4.12) the inequality (4.13) becomes:

‖e(Ṽ )‖
L2(Ω̃×(0,T ))d2

≤ C
{
α| log(α)|1/2, if d = 2,
α, if d = 3.

(4.14)

On the other hand, by change of variable at t, we have:∫ T/α2

0
‖e(Ṽ )(·, t)‖2

L2(Ω̃)d2
dt = 1/α2‖e(Ṽ )‖2

L2(Ω̃×(0,T ))d2
,

which by (4.14) becomes:∫ T/α2

0
‖e(Ṽ )(·, t)‖2

L2(Ω̃)d2
dt ≤ C

{
| log(α)|, if d = 2,
1, if d = 3.

(4.15)

To achieve the proof, we may insert (4.15) into relation (4.4).

We now proceed to prove Theorem 3.1.
Proof of Theorem 3.1. Let us start by simplifying the definition (3.3). So let

setting u = vα − v where vα, v are solutions to (2.3) and (2.5) respectively. Then
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integrating by parts over Ω × (0, T ), and using both conditions u(x, 0) = vα(x, 0) −
v(x, 0) = 0 and ψ(x, t = T ) = 0, we obtain that∫ T

0

∫
Ω

(∂ψ
∂t
· u−µ0e(u) : e(ψ)

)
dxdt =

∫
Ω

(
u(x, T ) · ψ(x, T )− u(x, 0) · ψ(x, 0)

)
dx

−
∫ T

0

∫
Ω

(∂u

∂t
· ψ + µ0e(u) : e(ψ)

)
dxdt

= −
∫ T

0

∫
Ω

(∂(vα − v)

∂t
· ψ + µ0e(vα − v) : e(ψ)

)
dxdt

= −
∫ T

0

∫
∂Ω
ψ · (2µ0e(vα − v)− (pα − p)Id)νx ds(x)dt.

Taking (3.2) into consideration, the following holds,∫ T

0

∫
Ω

(∂ψ
∂t
· u−µ0e(u) : e(ψ)

)
dxdt = −

∫ T

0

∫
∂Ω
ψ · σ(vα − v, pα − p)νx ds(x)dt.

(4.16)
On the other hand, by integrating by parts over (0, T ), we have∫ T

0

∫
Ω

(∂ψ
∂t
· u− µ0e(u) : e(ψ)

)
dxdt =

∫
Ω

(
u(x, T ) · ψ(x, T )− u(x, 0) · ψ(x, 0)

)
dx

−
∫ T

0

∫
Ω

∂u

∂t
· ψ dxdt−

∫ T

0

∫
Ω
µ0e(u) : e(ψ) dxdt

= −
∫ T

0

∫
Ω

(∂u

∂t
· ψ + µ0e(u) : e(ψ)

)
dxdt (4.17)

Replacing u = vα− v in the right-hand side of (4.17) and integrating by parts over
Ω, we obtain that∫ T

0

∫
Ω

(∂u

∂t
· ψ + µ0e(u) : e(ψ)

)
dxdt = −

∫ T

0

∫
Ω

(∂v
∂t
· ψ + µ0e(v) : e(ψ)

)
dxdt

+

∫ T

0

∫
Ω

(∂vα
∂t
· ψ + µ0e(vα) : e(ψ)

)
dxdt

= −
∫ T

0

∫
∂Ω
ψ · (2µ0e(v)− pId)νxds(x)dt

+

∫ T

0

∫
Ω

(µ0 − µα)e(vα) : e(ψ)dxdt

+

∫ T

0

∫
Ω

(∂vα
∂t
· ψ + µαe(vα) : e(ψ)

)
dxdt.

Therefore, by integrating by parts again, we obtain∫ T

0

∫
Ω

(∂u

∂t
· ψ + µ0e(u) : e(ψ)

)
dxdt = −

∫ T

0

∫
∂Ω
ψ · (2µ0e(v)− pId)νxds(x)dt

+

∫ T

0

∫
∂(Ω\Bα)

ψ · (2µ0e(vα)− pαId)νxds(x)dt
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+

∫ T

0

m∑
j=1

∫
∂Bjα

ψ ·(2µje(vα)−pαId)|−νxds(x)dt+

∫ T

0

m∑
j=1

∫
Bjα

(µ0−µj)e(vα) : e(ψ) dxdt

=
m∑
j=1

∫ T

0

∫
Bjα

(µ0 − µj)e(vα) : e(ψ) dxdt,

where from Section 2 and (3.1) we have Bα := ∪mj=1B
j
α.

Further, returning up to relation (4.17) and using the above relation, the following
holds,∫ T

0

∫
Ω

(∂ψ
∂t
· u− µ0e(u) : e(ψ)

)
dxdt = −

m∑
j=1

∫ T

0

∫
Bjα

(µ0 − µj)e(vα) : e(ψ)dxdt.

Now one may compare relations (4.16) and (3.3) to find that,

Λα(T ) :=

m∑
j=1

(µ0 − µj)
∫ T

0

∫
Bjα

e(vα)(x, t) : e(ψ)(x, t)dxdt. (4.18)

Moreover, since e(v̂pq(x) − xpeq + δpqd̃(x)) = O(|x|−d) as |x| → ∞ and the fact that
the inclusions are well-separated, it follows from (3.1) and (4.18) that

∣∣Λα(T )−
m∑
j=1

(µj−µ0)

∫ T

0

∫
Bjα

[e(v)(x, t)−
d∑

k,l=1

∂lv(zj ; t)ke(v̂
(j)
kl )(

x− zj
α

)] : e(ψ)(x, t)dxdt
∣∣

=
∣∣ m∑
j=1

(µj − µ0)

∫ T

0

∫
Bjα

|e(V )(x, t) : e(ψ)(x, t)dxdt
∣∣ ≤ Cαd/2‖e(V )‖

L2(Ω×(0,T ))d2
,

and hence, by using Proposition 4.1, the following inequality holds

∣∣Λα(T )−
m∑
j=1

(µj−µ0)

∫ T

0

∫
Bjα

[e(v)(x, t)−
d∑

k,l=1

∂lv(zj ; t)ke(v̂
(j)
kl )(

x− zj
α

)] : e(ψ)(x, t)dxdt
∣∣

(4.19)
≤ Cα1+d| logα|3−d.

On the other hand, since both v and ψ are divergence free, we have for all ζ ∈ Rd:

e(v)(x, t)ζ =
d∑

k,l=1

∂lv(zj ; t)k(ζkel − δkld̃(ζ)) +O(α) and e(ψ)(x, t)ζ

=

d∑
p,q=1

∂qψ(zj ; t)q(ζqep − δpqd̃(ζ)) +O(α) for all x ∈ Bj . (4.20)

Now inserting (4.20) into the left-hand side of (4.19), we obtain that

Λα(T ) = αd
m∑
j=1

(µj−µ0)

∫ T

0

d∑
k,l=1

d∑
p,q=1

∂lv(zj ; t)k∂qψ(zj ; t)q

∫
Bj

∇v̂(j)
pq : (∇(ζkel)+∇(ζkel)

tr)dζdt

+O(α1+d| logα|3−d),
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which by definition (2.6) gives that,

Λα(T ) = αd
m∑
j=1

(µj−µ0)

∫ T

0
e(v)(zj ; t) :

d∑
p,q=1

e(ψ)pq(zj ; t)

∫
Bj

e(v̂(j)
pq )(x)dxdt+O(α1+d| logα|3−d).

Thus,

Λα(T ) = αd
m∑
j=1

(µj − µ0)

∫ T

0
e(v)(zj ; t) : V(j)e(ψ)(zj ; t)dt+O(α1+d| logα|3−d)

which achieves the proof of Theorem 3.1.

5 The location method

In this section, we focus our attention on developing a simple localization method
by formulating a location search algorithm. This method is deeply based on the for-
mula (3.4) for the purpose of identifying locations of the deformable inhomogeneities
Bj
α = zj + αBj , j = 1, · · · ,m modeling the small deformable droplets immersed in

an incompressible Newtonian fluid. A suitable choice of test functions ψ and back-
ground solutions v may be needed to develop a real-time location search algorithm
[23]. This algorithm is related to the location search algorithm associated to a class
of parabolic system as in [3]. This approach is also related to the linear sampling
method [15, 22]. Without loss of generality, we consider the two-dimensional problem
along the rest of this section. The case of dimension three can be done in the same way.

For y ∈ R2\Ω the function ψ, introduced in Section 3, satisfies (∂t−µ0∆)ψ+∇p = 0
in Ω× [0, T ] with ψ(x, T ) = 0 for x ∈ Ω and is given by:

ψ(x, t) = ψy(x, t) := ψ̃(1− erf(ηy(x, T − t))) (5.1)

where ψ̃ is a constant vector (can be given explicitly), ηy(x, t) = x/
√

4µ0t and erf(η) =
2√
π

∫ η

0
e−ξ

2
dξ.

More precisely,

ψ(x, t) = ψy(x, t) := ψ̃
(
1− 2√

4µ0π(T − t)

∫ x

0
e
− |ξ−y|2

4µ0(T−t)dξ
)
. (5.2)

Therefore, by using (2.2) we get

e(ψy)(zj , t) := − 2√
4µ0π(T − t)

e
−
|zj−y|

2

4µ0(T−t) Ψ̃, (5.3)

where Ψ̃ is a matrix determined according to the components of ψ̃.

On the other hand, for y′ ∈ R2\Ω, we choose

v(x, t) = vy′(x, t) :=
ṽ√

4µ0πt

∫ x

0
e
− |ξ−y

′|2
4µ0t dξ, (5.4)
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where ṽ is a known constant vector. Here the Dirichlet condition g corresponds to the
point source y′ with initial condition ϕ(x) = 0 in Ω. Consequently, in the presence of
the deformable inhomogeneities zj +αBj , j = 1, · · · ,m and using Theorem 3.1, we can
obtain that

Λα(T ) = α2
m∑
j=1

µ0 − µj
πµ0

(Ṽ : V(j)Ψ̃)

∫ T

0

1√
t(T − t)

e
(−
|zj−y|

2

4µ0(T−t)
−
|zj−y

′|2

4µ0t
)
dt

+O(α3| log(α)|)

where the matrix Ṽ is determined according to the components of ṽ.

Let P be the orthogonal projection from the space of symmetric matrices onto the
space of symmetric matrices of trace zero. Let Id and I be defined as in Section 2.
Then according to [4], the orthogonal projection P = (Pklpq)1≤k,l,p,q≤d is given by

P = I− 1

d
Id ⊗ Id,

and more explicitly

Pklpq =
1

2
(δkpδlq + δkqδlp)−

1

d
δklδpq. (5.5)

Now we recall that the (4-tensor) viscous moment tensor (VMT) V(j) can be re-
garded as a linear transformation on the space of symmetric matrices because of its
symmetry. Then, as the Stokes system appears as a limiting case of the Lamé system,
all coefficients of V(j) can be determined explicitly by using P and the (4-tensor) elas-
ticity moment tensor (EMT) M . For more details one can refer to [4, 5].

Next, suppose for the sake of simplicity that all the domains Bj are disks. Then it
follows from [5] that V(j) = a(j)P , where P is given by (5.5) for d = 2, and let

a(j) = 4µ0
µ0 − µj
µ0 + µj

|Bj |.

Let the source points yl ∈ R2\Ω for l ∈ N, then the proposed location method for
detecting the droplets Bj

α is as follows. For n ∈ N, define the matrix A = (All′)1≤l,l′≤n
by

All′ := α2
m∑
j=1

µ0 − µj
πµ0

a(j)(Ṽ : P Ψ̃)

∫ T

0

1

t2(t− T )2
e

(−
|zj−yl|

2

4µ0(T−t)
−
|zj−yl′ |

2

4µ0t
)
dt.

On the other hand, we can define the symmetric real matrix C = (Cll′)1≤l,l′≤n by

Cll′ :=

∫ T

0

1

t2(t− T )2
e

(− |z−yl|
2

4µ0(T−t)
−
|z−yl′ |

2

4µ0t
)
dt, for all z ∈ Ω.

One can remark that the matrix C may be decomposed as follows

C =

p∑
l=1

wl(z)wl(z)
∗
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for some p ≤ n, where wl ∈ Rn and w∗l denotes the transpose of wl. Let wl1, · · · , wln
be the components of the vector wl, for l = 1, · · · , p.
Then, for l = 1, · · · , p and for z ∈ Ω we define the vector h(l) ∈ Rn×2 by

h(l) = [ψ̃1wl1(z), · · · , ψ̃nwln(z)]∗.

Let yl = (yl1, y
l
2) for l = 1, · · · , n, z = (z1, z2), and zj = (z

(j)
1 , z

(j)
2 ). For l = 1, · · · , p, we

also introduce

h
(l)
1 = [ψ̃11wl1(z), · · · , ψ̃n1wln(z)]∗ and h

(l)
2 = [ψ̃12wl1(z), · · · , ψ̃n2wln(z)]∗.

Then we can now characterize the location of the inclusions in terms of the range of
the matrix A as follows

For all l = 1, · · · , p : h
(l)
1 and h

(l)
2 ∈ Range(A) iff z ∈ {z1, · · · , zm}. (5.6)

The above characterization can be justified by following, for example, the approach
done in the proof of Lemma 5.2 in [3] for the case of heat problem.

Now we define the singular value decomposition (SVD) of the matrix A by

A = UΣV ∗. (5.7)

Moreover, we assume that for l = 1, · · · , p, the vectors {h(l)
1 , h

(l)
2 } are chosen to be

linearly independent. Consequently, the rank of A is fixed to be equal to 2p and the
first 2p columns of U , {w1, · · · , w2p}, make a basis for column space of A that we note
it by US . But the other columns, {w2p+1, w2p+2, · · · , wn}, provide a basis for the left
null space of A that we note it by UN . Let proj = I − (USU

∗
S) be the orthogonal

projection onto the null space of A. Within the above remark (5.6) we claim that a
test point z coincides with one of the positions zj if and only if proj(h

(l)u0) = 0, for
any u0 ∈ R2\{0}. Thus we can form an image of the locations {zj ; j = 1, · · · ,m} by
plotting, at each point z ∈ Ω, the identifier of interest

I(l)
u0 (z) :=

‖h(l)u0‖
‖proj(h(l)u0)‖

for l = 1, · · · , p.

The obtained plot will have sharp peaks at the discrete points zj ; j = 1, · · · ,m which
determine the locations of the droplets. Precisely, for some positive T and for small
finite number of equidistantly distributed source points yl, l = 1, · · · , d, we perform
together the calculation of the SVD (5.7) of the matrix A (defined by the pattern
Λα(T )) and the decomposition of the matrix C. Then we fix the arbitrary vector u0

to be equal to an element of the canonical basis in Rd or equal to a linear combination
between elements of this basis. Therefore, it is expected that the plots of the identifier

of interest z 7→ I
(l)
u0 (z) illustrate the result indicating that sharp peaks should occur at

the droplets locations.

5.1 Numerical experiments

In this subsection we suppose that Ω is a unit disk in R2 centered at the origin. We
present here a numerical experiments for locating two or three inclusions, but our
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procedure remains valid to locate any finite number m of inclusions. To begin, we
assume that we know the values All′ of the pattern Λα(T ) for some positive T and for
a small finite number of equidistantly distributed source points yl.
Let,

δ := min
l 6=l′
‖yl − yl′‖.

Then, for l = 1, · · · , n we may set

yl = δ
(

cos(
2πl

n
), sin(

2πl

n
)
)
.

To proceed with this numerical method, we notice that there are two cases of interest:
δ ≤ T and δ > T . For our numerical experiments, we see that the second case is
sufficient to show the validity of the localization method described in Section 5.
In the first numerical experiment we take two homogeneous disks B1 and B2 of common
diameter α = 0.1 and respectively centered at z1 = (0.21, 0.32) and z2 = (−0.43,−0.35),
to be retrieved using n = 10 source points. We assume that the viscosity of the back-
ground medium is µ0 = 1, while the viscosities µj , of Bj , j = 1, 2 are equated to 3.
Notice that, the retrieval of the inclusions involves the calculation of the SVD (with
A = UΣV ∗) of the matrix A = [All′ ] ∈ Rd×d and the decomposition of the matrix C.
Numerically, we can find that the rank of C is equal to one (p = 1), and we expect
to see four or six nonzero singular values βj of the matrix A. Moreover, for a sam-
pling step h = 0.03 and according to different discrete locations z ∈ Ω, we calculate

the identifier of interest I
(l=1)
u0 (z) where u0 ∈ {e1, e2, e1 + e2} and {ei}2i=1 means the

orthonormal basis in R2. Let Iu0(z) := I
(1)
u0 (z). Then the plots of z 7→ Iu0(z) illustrate

the results, where the sharp peaks are expected to occur at the locations zj (j = 1, 2)
of the inclusions. Using a standard log scale, we display also other associated results
about the singular values of the matrix A.
For T = 1 and δ = 2.5, the singular values are displayed in Fig. 5.1 (a) while the
identifier of interest Iu0(z), for u0 = e1 + e2, is displayed in Fig. 5.1 (b).

1 2 3 4 5 6 7 8 9 10

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0
Stokes: Singular values of A

Singular Value Number βi

lo
g
1
0
(β
i
)

(a)

x-axis

y
-a

x
is

(b)

Fig. 5.1. T = 1, δ = 2.5: (a) distribution of the singular values of A for n = 10 source
points; (b) gloss level (or color) map of Iu0(z), u0 = e1 + e2, for z ∈ Ω.

Here the numerical results are not difficult to be interpreted. There are four singu-
lar values which move out from the noise, and two singular values are associated with a
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specific inclusion. The inclusions, being that they are observed via different Iu0(z), are
clearly discriminated from the background, the visual aspect depending on the choice
of u0.

In Fig. 5.2 (a), we see the distribution of the singular values of matrix A for T = 3
and δ = 4.
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Fig. 5.2. T = 3, δ = 4: (a) distribution of the singular values of A for n = 10 source points;
(b) gloss level (or color) map of Iu0(z), u0 = e1 + e2, for z ∈ Ω.

Fig. 5.2 (b) shows also the identifier of interest Iu0(z) for u0 = e1 + e2, where the
images are obtained by using the first 5 largest singular vectors associated, of course,
with the 5 largest singular values of the matrix A, respectively.

In the second numerical example, we add one more homogeneous disk B3 with the
same diameter α = 0.1, centered at z3 = (0.4, 0.51) and having the viscosity µ3 = 3.
We need to retrieve the three inclusions by using the same number of source points
n = 10, but for different values of δ, T than the previous example.

Therefore, for δ = 4, T = 1, the result is shown in Fig. 5.3 where we have the
distribution of the singular values of matrix A for 10 source points and the identifier
of interest Iu0(z) for u0 = e1.
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Fig. 5.3. T = 1, δ = 4: (a) distribution of the singular values of A for n = 10 source points;
(b) gloss level (or color) map of Iu0(z), u0 = e1, for z ∈ Ω.

The interpretation here is slightly similar the first numerical example concerned
with two disks. Then there are six singular values emerge from noise, and two singular
values are considered to associate with one specific inclusion. The inclusions, being
that they are observed via Iu0(z) for u0 = e1, are discriminated from the background
medium.
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