N
N

N

HAL

open science

Mesh adaptation and dynamic positioning for the
efficient simulation of lifting hydrofoil flows

Jeroen Wackers, Alban Leroyer, Jules Richeux, Pierre Robin, Ganbo Deng,

Hayriye Pehlivan Solak, David de Prémorel

» To cite this version:

Jeroen Wackers, Alban Leroyer, Jules Richeux, Pierre Robin, Ganbo Deng, et al.. Mesh adaptation
and dynamic positioning for the efficient simulation of lifting hydrofoil flows.

2025, 315, pp.119751. hal-04659314v2

HAL Id: hal-04659314
https://hal.science/hal-04659314v2
Submitted on 9 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Ocean Engineering,


https://hal.science/hal-04659314v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Mesh adaptation and dynamic positioning for the
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Abstract

Accurate simulations of the flow around lifting hydrofoils are challenging, since
they need to capture the flow near the foil surface precisely, represent the free
surface, and take into account body motion and deformation. Therefore, these
simulations are often computationally expensive.

This paper studies numerical methods to limit the costs of hydrofoil sim-
ulation. Mesh adaptation is used to efficiently capture the free-surface flow,
to resolve flow details around the foil surface, and to ensure the accuracy of
mesh motion techniques, like overset meshing. For maximum precision of the
boundary-layer flow, adaptation is started from dedicated body-aligned meshes.

Hydrofoil flexibility is taken into account through a linear eigenmode-based
reduced-order model of the structural response. This approach removes the
need to couple directly the fluid and structure solvers and reduces the computa-
tional overhead for fluid-structure simulation. Equilibrium positions for flexible
and rigid motion are determined with a fixed-point iteration based on approx-
imate models for the forces, which eliminate the need for costly time-accurate
simulation.

Test cases demonstrate that these methods work together, providing accu-
rate simulation of realistic hydrofoils with reasonable computational costs.

Keywords: Lifting hydrofoil, RANS simulation, mesh adaptation,
fluid-structure interaction, quasi-static positioning, sock mesh

1. Introduction

Hydrofoils, which reduce ship resistance by lifting the hull out of the water,
are important in modern ship design. Created originally for fast motor vessels,
hydrofoils are now extensively used on racing sailboats, for kite and windsurf-
ing, and on pleasure craft; they can also increase the energy efficiency of fast
passenger transport. Considering this trend, naval architects require design
methodologies for lifting hydrofoils. Thus, efficient, accurate and easy-to-use
hydrodynamic simulation is of major importance for the industry.
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And yet, not many simulations of realistic hydrofoils exist in the open liter-
ature. The research often focuses on ventilation (Harwood et al., 2016; Matveev
et al., 2019; Zhi et al., 2022), and cavitation (Brizzolara, 2019; Perali, 2023).
Non-ventilating flows are mostly simulated within yacht racing teams, where
the work is kept a secret. Open discussions include (Banks et al., 2014; Ma-
rimon Giovannetti et al., 2022; Knudsen et al., 2024) who present combined
experimental and numerical studies of hydrofoils, (Prasad et al., 2015) who
study the effects of free-surface proximity, and (Sacher et al., 2018; Ploé, 2018)
who simulate hydrofoils in the context of automatic shape optimisation.

Accurate simulation of hydrofoils is computationally expensive, for three rea-
sons. First, hydrofoils are often slender elongated structures, so the compression
and suction peaks are small with respect to the foil’s main dimensions. Thus,
very fine meshes are required to capture the pressure. Second, the foil motion
and deformation must be taken into account, since a foil’s stable attitude varies
strongly with its charge and immersion depth, and foils are flexible structures
whose deformation under load influences their performance. Finally, the free-
surface position is hard to predict before the computation if the hydrofoil moves
or makes waves, so resolving the surface accurately is a challenge for meshing.

This paper investigates four numerical methods to increase the efficiency of
hydrofoil simulation: (1) Accurate and reliable resolution of local flow features
is obtained through adaptive grid refinement. (2) Fluid-structure interaction
(FSI) is simulated efficiently with a structural model based on modal analysis,
while (3) quasi-static approaches are used to determine the equilibrium position
and shape for moving hydrofoils. Finally, (4) a dedicated initial mesh topology
increases the precision of the results and the possibilities of FSI simulations.
The four methods function together and reinforce each others’ efficiency.

Adaptive mesh refinement. Mesh adaptation locally and automatically refines
the mesh during the simulation, according to the requirements of the flow.
Adaptation is reaching maturity for the simulation of complex industrial flows,
notably in aeronautics (Balan et al., 2020; Park et al., 2021; Alauzet and Frazza,
2021). For hydrodynamic simulations, adaptation is used with flow solvers such
as OpenFOAM (Eskilsson and Bensow, 2012; Wang et al., 2020), StarCCM+
(Perié¢, 2022) and FINE/Marine (Korkmaz et al., 2023; Wackers et al., 2017).

Recently, Wackers et al. (2022) used adaptive mesh refinement for the auto-
mated simulation of ship hull resistance. By combining anisotropic refinement
of unstructured hexahedral meshes with standardised user guidelines, they ob-
tained simulations that require little user intervention and produce better ac-
curacy on coarser meshes than traditional meshing methods.

Here, this approach is used for efficient meshing of hydrofoils. Mesh adapta-
tion is applied specifically to capture the free surface for any position of the foil,
to accurately resolve the flow around the hydrofoil, and to maintain the correct
cell sizes when the mesh is deformed or moved.

FSI modal approach. Since modern hydrofoils deform under load, (at least) the
static deformation must be taken into account for accurate force predictions.
Full simulation of such fluid-structure interaction problems requires a two-way
coupling between the fluid and structure solver, which is complicated and ex-
pensive for industrial simulation.
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Therefore, we consider an alternative: to replace the structural solver by
a reduced-order model based on a modal analysis, that is pre-computed with
a finite-element solver. This approximation is cheap to evaluate and thanks
to the tight coupling with the fluid solver, the procedure converges fast. A
disadvantage is that the structural deformation is linearised, but for typical
hydrofoil deformations this is an acceptable approximation.

Quasi-static positioning and deformation. Hydrofoils are often simulated at a
specified lift force (corresponding to the weight of the hull carried by the foil) and
sideforce. We achieve this by dynamically adjusting the incidence and sideslip
angles of the foil during the simulation.

To achieve optimal convergence, quasi-static procedures have been imple-
mented both for the modal structural deformation and for the dynamic posi-
tioning: using simplified models, the equilibrium position is estimated regularly
and the actual deformations are brought smoothly to this estimated equilibrium.
Such procedures are more robust than time-accurate resolution of the motions
and, with good estimations of the equilibrium, they converge rapidly.

‘Sock’ initial mesh topology. On unstructured hexahedral meshes, the highest
accuracy is obtained when the cells are aligned as much as possible with the
geometry. However, for the intricate curved shapes of hydrofoils, this is a chal-
lenge. Following Mallol et al. (2019), we show how a nearly body-fitted mesh
can be created in a small tube-like domain around the hydrofoil. This domain
is then included as an overset mesh into a much larger background domain.

The advantages of this approach are the possibility to handle large deforma-
tions of the hydrofoil, as well as high accuracy of the solutions for reasonable
mesh sizes, especially when combined with adaptive refinement.

The study uses the Navier-Stokes solver ISIS-CFD (Queutey and Visonneau,
2007; Wackers et al., 2011). This flow solver is described in section 2, with special
attention for its mesh refinement method and the simulation of body motion.
Sections 3 to 6 present hydrofoil mesh adaptation, the modal deformation, the
quasi-static approach and the ‘sock’ meshes. These methods are applied to
various hydrofoil test cases in section 7, to test their versatility and accuracy.
Comparisons with non-adapted meshes, different solvers, and experiments are
provided. To conclude, the implications of the tests are discussed in section 8.

2. The ISIS-CFD flow solver

The flow solver ISIS-CFD is developed by CNRS / Centrale Nantes and
distributed by Cadence Design Systems as part of the FINE/Marine flow sim-
ulation suite. This introductory section presents the flow solver (section 2.1),
mesh deformation (section 2.2) and overset (section 2.3) techniques that allow
6 degree-of-freedom rigid and flexible body motions, and the integrated mesh
adaptation method (section 2.4).

2.1. The flow solver

ISIS-CFD is an incompressible unsteady Navier-Stokes solver for multifluid
flow, based on the finite-volume method to build the spatial discretisation of the
transport equations (Duvigneau and Visonneau, 2003; Queutey and Visonneau,
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2007). The velocity field is obtained from the momentum conservation equa-
tions and the pressure field is extracted from the mass conservation constraint
transformed into a pressure equation, similar to the SIMPLE method (Rhie and
Chow, 1983). Among others, classical Reynolds-averaged Navier-Stokes tur-
bulence models like k¥ —w SST (Menter, 1994) are available, with wall-resolved
and law-of-the-wall boundary conditions. Both steady and unsteady free-surface
flows are solved with a time integration technique.

Free-surface flow is simulated by treating the fluid everywhere as a mixture
of water and air (Wackers et al., 2011), which are distinguished with a con-
servation equation for the volume fraction of water that has a discontinuous
inflow condition. This discontinuity is convected through the flow, implicitly
defining the free-surface position. Specific compressive discretisation schemes
keep the interface as sharp as possible. This approach is robust but it requires
fine regular meshes at the interface location.

Volume fraction
0.95
0.8

Figure 1: An adapted mesh for a lifting hydrofoil, coloured with the water volume fraction.

The unstructured finite-volume discretisation is face-based: fluxes are com-
puted face by face using only the two neighbour cells, which means that cells with
any number of arbitrarily shaped faces are accepted. ISIS-CFD is mostly used
with unstructured hexahedral grids from the Hexpress grid generator which is
also part of FINE/Marine. These meshes combine semi-structured regions with
body-fitted viscous layer grids near the walls (see figures 1 and 3). The grids
consist purely of hexahedral cells, with mesh size variations obtained by placing
larger cells next to two or four smaller neighbour cells. Thanks to its face-based
nature, ISIS-CFD treats these grids the same as any other type of mesh.

2.2. Mesh deformation and motion

Body motion is taken into account with both mesh deformation and rigid
transformation of the mesh (Leroyer and Visonneau, 2005; Leroyer et al., 2008),
or sliding interfaces and overset meshes which allow a part of the mesh to move
within the rest (see section 2.3). To solve the flow on moving meshes, ISIS-CFD
uses an Arbitrary Lagrangian Eulerian (ALE) formulation of the flow equations.

Rigid-body motion. For free-surface flows with rigid-body motion, the alignment
of the free surface with the mesh must be preserved as much as possible close to
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external boundaries. Therefore, for single-domain configurations, motions that
do not displace the free surface (z- and y-translation, z-rotation, with z the ver-
tical axis) are treated by rigid-body displacement of the entire mesh. Those that
do (z-translation, z- and y-rotation) require mesh deformation where the outer
boundaries of the mesh are not deformed, to make sure the mesh at the free sur-
face moves as little as possible. If the free-surface grid is created with adaptive
refinement, z-translation can also be treated with rigid-body movement.

Mesh deformation is performed with analytical weighted regridding: the
required motion is applied to all the nodes of the mesh, multiplied by a weighting
coefficient w(x) which goes to zero on the outer boundaries so that only the inner
part of the mesh moves (figure 2). An initial coefficient wg(x) is computed as
a solution of Laplace’s equation with Dirichlet boundary conditions 1 on the
body surface and 0 on the outer boundaries. This coefficient is then modified
to produce the actual weighting:

w(x) = max (wo(x)?/Cmax, 1) - (1)

The power ¢ reduces the zone where the mesh deforms significantly, to leave the
free-surface mesh far away from the body undisturbed. The factor c¢pax on the
other hand, imposes a zone of rigid-body motion w = 1 close to the body, to
preserve the shape of the boundary layer mesh. For hydrofoil simulations with
mesh refinement, the default values are ¢ = 1.6 and ¢y = 0.55.
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Figure 2: Deformed mesh for rotation of the central body (left) and the weighting coefficient
w(x) (right).

Flexible-body deformation. The deformation of flexible bodies cannot be per-
formed with the analytical weighting presented above. For the modal FSI de-
scribed in section 4, the mesh is deformed with radial basis functions (RBF)
scattered over the geometry, which are used to interpolate the displacement of
each of the modal bodies throughout the mesh (Mouton et al., 2018).

RBF methods were initially developed as general interpolation techniques
(Hardy, 1990; Franke, 1982), but have been widely adopted for mesh defor-
mation in the ALE framework (de Boer et al., 2007; Rendall and Allen, 2009;
Bos et al., 2013; Biancolini et al., 2014; Groth et al., 2019). Separate RBF
interpolations are used for the displacements in each coordinate direction. To
accurately reproduce data which resemble polynomials, the so-called augmented
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RBF method is commonly used. Given a set of points in space {xj}?il for
which data {d; };.Lil is known, the augmented RBF interpolant s(x) is given by:

06 = 306 (= x,1) + 7). ©)

md

with 7(x) = ymi(x), (3)
k=1

{mp (%)}, basis P4, of d-variate polynomials (4)

of degree at most m, mg = dim Pgl,

where ¢ is the RBF kernel (by default, we use CTPS Cg from de Boer et al.
(2007) for hydrofoils, with a characteristic radius equal to the chord ¢). |- |
indicates a vector length. The coefficients {)\;, j € [1,n,]} and the coefficients
{Vk,k € [1,mq4]} of the polynomial 7(x) are determined by the interpolation
conditions s(x;) = d; for j € [1,n,] augmented with the additional constraints
Z;ﬁl AjTr(x5) = 0,1 < k < my. These additional conditions translate natu-
rally into a constrained optimization problem (Schaback, 1995; Bayona, 2019).
In this work, polynomials of degree 1 are chosen.

In terms of computational time, obtaining the coefficients requires @(nf’,)
floating-point operations, while evaluating the solution at n, nodes is of the
order O(n,, x np). Even if the RBF technique can quickly become prohibitively
expensive when the number of structure nodes and/or fluid nodes are large, it
will be seen in section 4.3 how its use with the modal approach leads to an
effective and robust algorithm.

2.8. Qverset meshing

Overset meshing is the dynamic connection of two or more mesh domains
which partially or fully cover each other. This allows for unlimited mesh dis-
placement and is therefore the method of choice to simulate large body motions.
Figure 20 shows an overset mesh.

There are three different types of cells in an overset computation: active,
inactive, and interpolation cells. The treatment of active cells is exactly the same
as for computations without overset: the governing equations are discretised and
solved to determine the unknowns of the problem in those cells. Inactive cells are
cells that are overlapped by active cells in another domain. They are discarded
in the computation. Cells located at the interface between the active cells and
inactive cells are interpolation cells. Unknowns, as well as all other quantities
required for the discretisation such as the gradient of those unknowns, need to
be interpolated from a host cell located in another domain.

Domain connection. In each time step, the first task for overset meshing is to
determine the status of the different cells. In our implementation, a domain is
declared as either a background domain, or an overlapping domain which must
contain a solid body. When a cell in a background domain is covered by an
overlapping domain, it becomes inactive. When a cell in an overlapping domain
is covered by another overlapping domain, it is active if its cell centre is closer
to the body in its own domain than the one in the other overlapping domain.
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Otherwise, it is inactive. After assigning active or inactive status to all cells,
the inactive cells next to an active cell are changed to interpolation cells.

The second step in the overset implementation is to search for host cells. A
host cell is an active cell in another domain that contains the cell centre point
of an interpolation cell. This straightforward search is performed with a tree
algorithm whose details will not be given here.

Interpolation. The last step is to interpolate the solution from the host cells to
the interpolation cells using the neighbouring cells of each host cell. While the
first two steps mainly have an impact on the cost of the computation, this one is
crucial both for the accuracy and the stability of the overset algorithm. In the
SIMPLE algorithm used in ISIS-CFD, second derivatives of the pressure appear
in the continuity equation, so the pressure must be smooth to avoid spurious
velocity oscillations. Hence, it is mandatory to ensure a second order accurate
interpolation for the pressure. To achieve this, a least-squares approach based
on linear polynomials is used. By default, the neighbours of the faces of a host
cell are used to create the stencil. If the minimum interpolation coefficient is
smaller then a prescribed value (the default value being -0.1), we switch to a
stencil based on the neighbours of the nodes. This is usually the case when the
interpolation point is closer to a node than to the centre of the host cell. If the
minimum interpolation coefficient is still smaller then the prescribed value, a
distance-weighted interpolation scheme is used to ensure stability.

An exception is made near the free surface. Since the pressure is a C°-
continuous function at the free surface, least-squares interpolation can create
oscillations in this region. Hence, the distance-weighted scheme is always used.
And since the volume fraction is discontinuous, second order interpolation makes
no sense. Therefore, no interpolation is performed: the volume fraction of the
host cell is assigned directly to the interpolation cell.

2.4. Adaptive refinement

Mesh adaptation in ISIS-CFD (Wackers et al., 2012, 2017) uses local cell
division (figure 1), starting from a coarse initial mesh (figure 3). To efficiently
capture flat or stretched flow features such as vortical wakes or the water surface,
the adaptation is anisotropic: cells can either be split in one or several directions.
For unsteady flows or to accommodate the convergence of a steady flow, existing
refinement can be undone and the procedure is fully parallel, including adaptive
load balancing. Since a cell can only be refined or derefined once during each
adaptation step, the procedure is called every 10 — 25 time steps, until the flow
has converged and the mesh is no longer changed by the adaptation.

Metric-based refinement. Anisotropic grid refinement is based on metric tensors
(George et al., 1991; Loseille et al., 2010; Alauzet and Frazza, 2021). For metric-
based adaptation, the refinement criterion is a symmetric tensor field C(x) which
indicates the ideal size of the cells everywhere in the domain. Starting from this
continuous field computed from the flow, the grid is adapted until the three
dimensions d; ; of each hexahedral cell ¢, which are the vectors between the face
centres for the the three pairs (j = 1,2, 3) of opposing faces, satisfy:

\Cl di,jl = Tr7 Vi, Vj S [1, 2, 3], (5)
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as closely as possible. Cells are refined in a direction j whenever the modified
distance |C; d; ;| exceeds T, and derefined whenever it is below 7). /2.5, to make
sure the derefined cells are not immediately refined again. T, is a global specifi-
cation of the mesh fineness: all the cell sizes are proportional to this parameter.

Free surface — Hessian criterion. The criteria C come from the Hessian matrix
of second spatial derivatives of the solution, which is a measure of linear inter-
polation errors (Loseille et al., 2010). The refinement criterion must react to
all the flow features which are relevant for hydrofoil resistance: pressure fields,
boundary layers, wakes, and shear layers. Therefore, it is based on the Hessians
of both the pressure and the velocity (Wackers et al., 2017).

To get the same order of magnitude for all Hessians, a common weight pV is
assigned to the the velocity Hessians. In ALE, the criterion is made independent
of the (potentially moving) reference frame by choosing V' = |v — v |, where
v = [u,v,w] and v, is the inflow velocity!. Our tests show that this weighting,
which emphasizes the velocity Hessians close to the geometry, is more effective
for resistance computation than other formulations. The criterion then becomes:

(6)

]
e = (max(1#)]l, V13w, pV |7 ()], pV (7))
¢ is the Hessian operator. ||- || indicates a matrix having the same eigenvectors
as the original one and the absolute values of its eigenvalues; the power ¢ is
again applied to the eigenvalues, ¢ = 0.5 is used here. Finally, the maximum of
two tensors is computed following the procedure in Wackers et al. (2012), which
is based on George and Borouchaki (1998).

A smooth anisotropic mesh at the free surface is required for the volume
fraction equation, but the pressure gradient is discontinuous at the free surface
so the pressure Hessian is undefined there. Therefore, the Hessian criterion is
extrapolated from below the surface, and the refined mesh at the free surface
is created with a second criterion (Wackers et al., 2012), based on the water
volume fraction «. Directional refinement normal to the surface is obtained
from normal vectors ng = Vaa/|Vaal|, where a g is a smeared volume fraction
field created with Laplacian smoothing. The criterion is:

(7)

Co— ns®@ng if 0.1 <ay <0.9,
o otherwise.
The choice based on a4 creates a buffer layer of a few cells around the surface
position for safety.
The two tensor criteria are combined into one by taking a weighted maximum
of the tensors. Since the free-surface criterion always has a unit eigenvalue, a
weighting constant a is applied only to the Hessian criterion:

Cc = max (Cg,aCp) . (8)
In practice, we specify separate thresholds T,g and T,y for the free-surface and
Hessian criterion. These are then used to set T,. = T;.¢ and a = %:Ii

I This criterion is the same as the one from Wackers et al. (2022) which uses V = |v/, since
Voo = 0 in the moving reference frames used for free-surface flows.
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In the adapted mesh of figure 1, refinement in the pressure peaks at the
leading and trailing edge can be seen, as well a anisotropic refinement in the
wake. The free surface is refined and the Hessian criteria capture the region
where the pressure disturbance from the foil interacts with the free surface.

Grid quality measures. Post-treatment of the refinement criterion is used to
improve the regularity of the adaptively refined meshes. First, a minimum cell
size is imposed: cells smaller than this size are no longer refined. This option
prevents spurious refinement in case of locally large errors in the refinement cri-
terion, which may appear in the high aspect-ratio cells of the near-wall boundary
layer grid. Also, it prevents infinite refinement around flow singularities.

Furthermore, adaptive refinement can be forbidden outside of a specified
limiting box. This option is used to maintain a coarse grid near the outflow
boundary in order to damp out perturbations of the flow. For the grid refinement
in the z-, y- and z-directions, different limiting boxes can be chosen.

3. Adaptive mesh refinement for hydrofoil simulation

Using the strategy for standardising computational setup presented in sec-
tion 3.1, we discuss how mesh adaptation can address the hydrofoil simulation
challenges outlined in section 1: creating the mesh around the unknown free-
surface position (section 3.2), providing fine cells to capture the flow details
around the foil geometry (section 3.3), and ensuring the continuity of the grid
size during mesh deformation and overset motion (section 3.4).

3.1. Standardised computational setup

Systematic use of mesh adaptation requires that the simulations are easy to
configure, with reliable guidelines for the simulation parameters which are valid
over a large range of cases and which do not require trial and error to produce
correct simulations. This concerns the choice of the refinement criterion and
numerical parameters such as the threshold T;,.

To get the same type of mesh for similar objects, independent of their size or
speed, Wackers et al. (2022) use dimension analysis. The guidelines for the re-
finement criterion and all other parameters are non-dimensionalised in terms of
the object velocity U, reference length L, and density p. The remaining depen-
dence on F'r, Re and the geometry is weak for a class of geometries; for exam-
ple, simulation parameters for resistance evaluation of model-scale displacement
ships can be chosen independent of the hull shape or the flow regime.

Guidelines for the non-dimensional parameters are obtained through sys-
tematic testing. A full definition of the hydrofoil simulation protocol is given
by Richeux (2022). Without repeating all the details of the tests, the following
subsections present some elements of the protocol and this subsection introduces
its basis: the reference length and the initial mesh.

Hydrofoil length scale. For dimension-independent guidelines, all length param-
eters (refinement thresholds, minimum cell size etc.) are expressed in terms of a
reference length L. This length can be the largest dimension of the object, or it
can be a characteristic dimension of the flow. For a ship, these lengths coincide:
the flow around a hull develops over the distance from bow to stern, which is
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also the ship’s largest dimension. Therefore, Wackers et al. (2022) choose this
length scale for their ship refinement protocol.

For hydrofoils, the largest dimension is typically the span. However, the
most important flow phenomena for a correct prediction of the foil performance
are the boundary layer and the leading-edge and trailing-edge peaks in the
pressure field. These are all linked with the streamwise flow, so it makes sense
to standardise the meshes in the wing sections, independent of the overall shape
of the foil. To achieve this, the chord ¢, the main dimension in the streamwise
direction, is taken as the reference length. We use the maximum chord; an
average value can be chosen if the wing is highly tapered.

Initial mesh. Since the refinement criterion C(x) directly specifies the target
size and aspect ratio of the cells, the adapted mesh should be independent
of the initial Hexpress mesh from which the computation is started. But for
refinement by local division, this is only partially true, which means that the
initial mesh should be created with care.

Division-based refinement can only divide the initial cell sizes by a power of
2. Thus, if a specific cell size is desired for the refined grid, this must be taken
into account for the initial grid. Hexpress creates meshes by octree division of
a cartesian base mesh, followed by projection on the geometry; for hydrofoils,
we use a base mesh with cell sizes of 4¢. Since any further refinement, either
in Hexpress or in the adaptation, is accomplished by cutting these cells in half,
the cell sizes ¢/2™ are available for the mesh adaptation.

Furthermore, the adaptation cannot change the orientation of the cells. For
accurate solutions, the initial mesh must therefore be aligned with the main flow
features. In the boundary layer, Hexpress inserts a body-aligned grid whose
height is proportional to the cell sizes outside the viscous layer, so the coarser
the initial mesh, the thicker (i.e. better) the boundary layer grid will be. Unfor-
tunately, very coarse grids risk bad quality cells around the trailing and leading
edges. For hydrofoils, a good compromise is an initial cell size of ¢/8 on the foil
surfaces, with ¢/32 around the leading and trailing edge (Richeux, 2022).

Figure 3: Typical chordwise cut through an initial mesh, repeated in spanwise direction to
mesh the entire foil.

Figure 3 shows an example of such a mesh. Since the protocol is defined

in terms of the reference length ¢, the initial mesh in profile cross-sections is
similar for all foils (c.f. figure 13).

10
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3.2. Free-surface refinement

The volume fraction equation which determines the position of the free sur-
face (section 2.1) requires a fine, regular mesh around the discontinuity. How-
ever, due to the mesh motion and deformation, as well as the large waves which
some hydrofoils generate, the free-surface position within the mesh is impossible
to predict before a simulation. Thus, apart from filling most of the domain with
fine cells, the only way to create the free-surface mesh is with adaptation.

Guidelines for ISIS-CFD non-adapted meshes suggest a constant cell size at
the free surface, independent of the mesh size below the surface. This strategy
is conserved for the adapted meshes, so the threshold T..g (section 2.4) is fixed,
independent of the other parameters. The free-surface criterion (7) has unit
eigenvalues, so T,g directly specifies the size of the refined cells at the free
surface.

To capture the free surface while keeping the number of cells as low as
possible, we search the highest value for T,.s which does not perturb the solution.
The ISIS-CFD recommendation for hydrofoils is a free-surface mesh size around
¢/100 vertically, so T,s = ¢/128 and ¢/64 are tested here on the L-foil of section
7.1. Table 1 shows four cases where the meshes around the hydrofoil become
progressively finer, while the foil is gradually brought closer to the free surface.
Both T}.¢ produce similar forces, while the number of cells is significantly reduced
for T, = ¢/64. In the cases where the hydrofoil tip is close to the water surface,
the simulations with T, = ¢/128 crashed due to the large mesh deformation
needed to reach the equilibrium position (see section 5.3). Thus, the higher
free-surface threshold T,s = ¢/64 contributes both to reducing the number of
cells and to stabilising the mesh deformation. T;.¢ = ¢/64 is therefore adopted.

Table 1: Influence of the free-surface threshold on the drag value and the number of cells for
different submersions and Hessian thresholds (section 3.3).

Trar Tip angle Immersion T,g Nb. cells F, (N)
2c 90° 100% ¢/128  1.235M 1066.3

c/64 0.588M (-52%)  1066.8 (-0.04%)
c/4 60° 83% c/128  4.041M 1046.4

¢/64  3.051M (-24%) 1043.4 (-0.28%)
Jr 60° 54% /128 crash

/64 2.997TM 820.3
/113 60° 54% /128 crash

c/64 12.480M 795.1

This free-surface threshold seems high compared to the threshold for ships
T,s = L/1000 (Wackers et al., 2022). However, for a typical sailing yacht,
the hydrofoil chord is about 30 times smaller than the ship length, so ¢/64
corresponds to L/1920. Thus, the choice of T;.g = ¢/64 is coherent.

3.3. Hessian refinement

Solving correctly the flow around the geometry is essential to compute hydro-
foil forces. Since most of these forces are pressure-based, an accurate resolution
of the pressure field is needed. Furthermore, the boundary layer has a major
influence on the viscous drag and the displacement effect of the flow in the
boundary layer changes the pressure field. High-accuracy solutions therefore
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require the precise representation of the velocity in the boundary layer. This
motivates the use of the pressure—velocity Hessian criterion of section 2.4.

Threshold. Since the size of all the cells below the surface is proportional to
T.m, this is a convenient parameter to control the overall fineness of the mesh.
The relation between T.;; and the numerical uncertainty is similar over a class
of test cases (Wackers et al., 2022), so T,.iz can be seen as a direct specification
of the numerical uncertainty.

For the values of T, Wackers (2019) finds a suitable range of [0.4L, 0.04L]
for a diverse set of simulations including ships, wing profiles, and 3D hydrofoils.
Wackers et al. (2022) propose T,y € [0.2L, 0.025L] for displacement ships. For
hydrofoils, Serani et al. (2019) use T,y € [0.4¢, 0.1c].

The tests in this paper (section 7) confirm that suitable threshold values for
hydrofoils are somewhat higher than for ships. The main reason for this is prac-
tical: hydrofoils are slender, elongated shapes with highly concentrated pressure
peaks on the leading and trailing edges. Such flows require large numbers of cells
for accurate solutions, even with adapted meshes. Thus, to keep the cell sizes
reasonable, a slightly lower accuracy than for ships must be accepted; hence the
higher thresholds. The range used in this paper is T,z € [2.0¢, 0.0625¢].

Refinement limiting. Unmodified application of the pressure-velocity Hessian
criterion leads to the accurate resolution of the entire flow field, which may not
be necessary to compute the forces on a hydrofoil. Limiting the refinement cri-
terion can reduce the number of cells in the refined meshes, while still producing
good force predictions.

The refinement far behind the foil is removed since, for most hydrofoils, it
has little influence on the forces. A limiting box is used to forbid refinement in
the x- and y-directions from a certain distance behind the foil. The refinement
along z is allowed everywhere in the domain to correctly capture the free surface
and thus prevent it from diffusing. A series of tests on the L-foil in (Richeux,
2022) shows that the limiting box does not have any influence on the drag as
long as it is more than 0.25c¢ from the trailing edge. To increase the safety
margin, the current protocol uses a box at 1c behind the trailing edge.

TrH=c/2 —e— hmin = ¢/128
—— hmin = ¢/256
=~ hmin = ¢/512

760

740 4

= 7201

51 1% _1_
fnd
700 4
680 4 TrH TrH=0/32
TrH=c/8 L=
) TiH=c/11 Ticthe
0 5 10 15 20

nb. cells

Figure 4: L-foil drag as a function of T}z for three minimum cell sizes.

Furthermore, the mesh is not refined below a minimum cell size. This acts
as a cutoff filter for refinement in small flow details, which do not contribute to
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the forces. Figure 4 shows the convergence of the drag with T,y for the L-foil,
for three minimum cell sizes: hyin = ¢/128, ¢/256 and ¢/512. For low numbers
of cells, these three behave similarly. Afterwards, the ¢/128 series converges
faster, but it levels off at a value that is too high. The two other series have
a similar convergence behaviour, although the ¢/256 series probably converges
faster for the higher numbers of cells. Thus, Ay = ¢/256 is the most interesting
value, that provides faster convergence than finer minimum cell sizes but does
not significantly modify the converged forces. While ¢/512 may be the safest
choice for very fine meshes, ¢/256 is retained in the protocol.

3.4. Deformation and overset

When the mesh deformation and overset techniques are used to accompany
body motion (section 2.2), adaptive refinement helps to preserve the simulation
accuracy. These approaches interact as follows.

For analytical mesh deformation, the weighting w(x) in (1) is obtained on
the refined meshes by interpolation from the existing nodes to the new ones. For
division-based refinement, new nodes are always surrounded by existing ones, so
this interpolation is straightforward and fast. The distances d; ; for the metric
criterion (5) are computed on the deformed mesh. Thus, if a part of the mesh
gets stretched by the deformation, this is compensated by extra refinement.

Figure 5: Cut through an overset domain around a hydrofoil, with matched refinement in the
background and overset domains. The axial velocity is shown in colour.

For overset meshing, there are reasons to place the domain boundaries close
to the hydrofoil (section 6), but this requires a high accuracy for the interpola-
tions between the overset and background domains. The best interpolation is
achieved when the cell sizes in both domains are locally the same. Since the cell
sizes for metric-based refinement are linked to the refinement criterion value,
this condition is satisfied naturally since the Hessian-based refinement criterion
is continuous over the domain interface. Figure 5 shows this continuity of the
cell sizes; the interpolation is good enough to preserve the strength of the wake.

Without adaptive refinement, the background domain needs fine cells in
all the possible positions of the overset interface. The resulting increase in
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the number of cells cancels the benefits of the overset approach. Thus, mesh
adaptation is essential to make overset efficient.

4. Modal approach for fluid-structure interaction

Modern composite hydrofoils deform during their operation, which has an
influence on their performance (Marimon Giovannetti et al., 2022). It is becom-
ing clear in the industry that flow-induced deformation should be taken into
account for hydrodynamic simulation.

Ideally, this fluid-structure interaction (FSI) should be solved with compu-
tational costs that are similar to stationary rigid-body simulations. For fully
coupled FSI, this is difficult since a finite-element (FEM) solver, which com-
putes the deformation, has to run in parallel with the fluid solver. The coupling
between the solvers can be loosened by alternately solving rigid-body flow and
applying the fluid forces in the FEM solver to get a new deformed geometry.
However, this iterative process may converge slowly.

Our strategy for reducing the computational overhead of FSI is to maintain
the strong coupling, but to replace the structure solver by a reduced model
of the structural response, based on eigenvalue analysis. For small to medium
deformations, this provides a good approximation of the structural deforma-
tion with negligible overhead. This modal approach is presented in section 4.1.
Section 4.2 discusses the iterative solution of FSI coupling using added-mass
stabilisation. Finally, section 4.3 presents the mesh deformation and shows the
natural link between modal FSI and RBF interpolation.

4.1. Linearised modal approach for fluid-structure interaction

Let a full 3D model of the structure (here the foil) be defined through any
FEM code, prior to running the fluid solver. In this model, the linearised form
of the equations governing the motion of the structure is given by:

Mii+ Ci+ Ku = £(t), 9)

where M, C', and K mean respectively the mass, damping and stiffness matri-
ces, and u the displacement of the nodes in the FEM model (u = 0 represents
the equilibrium position around which linearisation has been performed). f(t)
refers to the external load, i.e. the fluid load.

The linear system (9) can be treated by the FEM code with a so-called
modal analysis by computing its natural vibration eigenmodes and describing
the solution as:

u(t) = ¥q(t), (10)

th th

where the ¢*"* column 151 of the eigenmodal matrix ¥ represents the i*" eigen-
mode, whose size is equal to the number of DOF n of (9), and g(¢) the vector of
amplitudes for all the modes. Given the M and K orthogonal property of the
natural vibration modes and assuming the hypothesis of Rayleigh damping, i.e.
taking C as a linear combination of M and K, the problem is now simplified
to a resolution of n single-DOF equations. Each single equation (corresponding
to the 7" row of the system) has the form:

. . NT
m;G; + cigs + kiqs = ¥, F(1).
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The eigenmodal matrix ¥ can be mass-normalized to have $7 M®¥ = T (1;2 ~
P, = 1, /m;) leading to the modal equations:

Gi + 2eiwid; +wiq =P, £(), i€ ([l,n], (11)

with w; = 27 f;, where f; are the eigenfrequencies. The total deformation is:

u=>atw. (12)

Model reduction is achieved by excluding from the resolution the modes which
are without major interest for the studied configuration. In practice, only the
few first modes n,, corresponding to the lower natural frequencies are retained
as input to the modal FSI module integrated in the fluid solver. Figure 23
presents an example of these first modes.

The modal shapes for the nodes located on the surface of the structure,
denoted 1s;, with the frequencies f; and damping coefficients ¢;, are retained
from this off-line resolution and provided to the fluid solver as an input file.
During the FSI coupling, the deformed shape at the structure nodes of the body
surface is mapped continuously onto the fluid domain with the RBF technique
described in section 2.2.

4.2. Flow coupling and stabilisation

The n,, decoupled modal equations selected from the first modes are solved
with a specific module integrated in the ISIS-CFD code and coupled with the
flow resolution, in the same manner as the resolution of the Newton’s laws for
rigid bodies when solving unsteady configurations (Yvin et al., 2018). Within
each time step, the structure solution and the implicit flow discretisation are
updated alternately in a series of nonlinear iterations.

Just like with rigid bodies, the added mass effects are naturally included in
the source term through the fluid forces f(¢) and failing to account for them has
the same destabilising effect on the nonlinear iterations. To make the coupled
FSI solution process stable, an added mass coefficient is computed at the be-
ginning of the simulation, by solving the pressure field z; while imposing a unit
acceleration for the i*» mode. The coefficients a; are deduced by projecting the
pressure field 4; on the i*" mode shape: a; = Y] ;. Equations (11) are then
modified to equations (13), which are solved at each non-linear iteration k.

. k+1 . k+1 k+1 k .k .
(1+ai) qi|t:dt+25iwi Qiltidt""w? qi t++dt = "/%T f|t+dt+ai Qi|t+dta (S [17nm]‘
(13)

The added-mass coefficient can be updated during the simulation if it is required,
typically when the immersion of the body drastically changes. Alternatively, a
quasi-static approach can be used for configurations where only the dynamic
equilibrium is of interest, see section 5.1.

4.8. Mesh deformation and data transfer at the interface

Coupling a fluid and a structure model implies the interpolation of (a) forces
from the fluid to the structure and (b) the structure deformation to the fluid
domain. With the modal approach, the structure is viewed by the fluid solver as
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a set of points without connectivity or mesh; the RBF interpolation (section 2.2)
is chosen, on the one hand, because it is suitable for this type of data. On the
other hand, it allows both problems (mesh deformation and force interpolation)
to be treated in a unified, efficient, and precise manner.

In general, RBF interpolation is not the most efficient method in terms of
computation time, especially when the number of structural points increases
and the entire interpolation process (obtaining coefficients and evaluating the
solution at desired nodes) needs to be repeated each time. However, in the
present case, the first selected modes can be accurately described by a limited
set of points, and, most importantly, this data remains unchanged throughout
the simulation, even if the fluid mesh changes through adaptive refinement. As
a result, the evaluation step of the RBF coefficients \; and v in equation (2)
is done only once at the beginning of the simulation and stored.

Furthermore, if the modal shape extraction defined during the off-line FEM
resolution leads to an excessive density of points compared to the requirement, a
greedy algorithm can be used to select only a subset. The implemented method,
inspired by Rendall and Allen (2009) iteratively selects a subset of structure
points such that the reduced RBF interpolation generates a relative error in
displacement lower than a tolerance Trpr over the entire set of points available.
For each mode, initially a very small set of points is chosen: the nodes with
null displacement or the four nodes with the smallest displacement if no such
nodes exist, and the node associated with the maximal displacement. Then, the
algorithm iteratively adds the nodes for which the error between the interpolated
reduced mode @bsfed and 1, is the highest. The process stops when the relative
error as described by equation (14) is lower than the tolerance Trpp.

max (957 (x;) — 9s; ()

JE[1,ns]

max |9, (J
jinax [3hs;(7)]

ErpBri = (14)

By default, Trpr = 0.001. The subset of points obtained reduces the size of the
matrices to be solved, without greatly compromising the quality of the interpo-
lation or altering the structural response. The computation time is drastically
reduced for obtaining the RBF coefficients as well as for the evaluation of fluid
node positions, which is performed at least at each time step.

The combination modal/RBF becomes even more attractive as it seamlessly
integrates with the interpolation of forces, naturally ensuring the conservation
of energy transmitted at the fluid-structure interface (Rendall and Allen, 2009).
If Hg defines the interpolation operator obtained with RBF from the structure
surface nodes to the fluid surface nodes, then fluid-domain deformation modes
are defined as:

Yy, = Hgpg;, forie [1,ny]. (15)

To ensure energy conservation at the interface, the fluid forces are interpolated
using f, = Hg J . With the source term of the modal equation, this naturally
gives:

Vsl fo=1s Hsf ;= (Hstps;, )T £ = 5] £ (16)
"!’fi
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The specificity of modal deformations is also exploited for multi-domain config-
urations (overset) in which one of the domains contains a modal body. Since
the deformations are linear combinations of modal shapes invariant during the
simulation, each process of a parallel computation can compute the positions of
the domain boundary nodes directly by calling the RBF procedure. Thus, over-
set receives the deformed domain boundary without requiring any inter-process
communication.

5. Quasi-static computation of equilibrium

An issue with dynamic motion, both rigid-body and flexible, is that time-
accurate resolution of the coupled fluid and body motion equations often re-
quires smaller time steps than the equivalent fixed-body simulations, to keep
the simulations stable. This adds to the cost of the simulations and is undesired
when time integration is used only to find a steady equilibrium position.

Therefore, we introduce ‘quasi-static’ resolution of the body motion, where
the flow at a given instant is used to predict the equilibrium position and shape of
the body, which is then gradually brought to this position over several time steps.
Subsequently, a new prediction is computed, etc. This procedure rapidly finds
the equilibrium positions and, since the motion is not solved time-accurately,
the strict time step limits do not apply.

The key element of this method is the prediction of the equilibrium position.
While the principle of the quasi-static approach is the same for FSI deformation
and for rigid-body motion, this prediction is different for the two. The solution
of the modal FSI equations (section 4) is shown in section 5.1 and rigid-body
equilibrium is solved in section 5.2. Finally, mesh-related limits for the quasi-
static motions are discussed in section 5.3.

5.1. Quasi-static modal resolution

For modal FSI, when a steady deformation is expected, the FSI coupling is
not solved using Newton’s law (11) at each time step. Instead, the equilibrium
amplitude for each mode is estimated at given time instants k. This estimation
is based on an approximation of the Jacobian of the forces projected on each
mode (F;) with respect to the amplitudes from the previous steps.

The final steady condition of the system (11) which should be achieved reads:

wigi =] f = F;. (17)

A Newton-Raphson-like method is used to estimate a new stable amplitude qf“
from previous states (¢¥, FF) and (¢¥~, FF™!). Assuming the new state has to

7
verify w?qf™ = FF we eliminate the unknown F}™ by linearisation (18)
and then deduce (19).

)

OF;

wf (af +das) = Ff + 5 tdai, - with dg, = g/ — gf, (18)
dgi = =57 (19)
w? 9q;

The Jacobian ‘g{;i is approximated by (FF — Fikfl) /(qF — qffl) to compute dg;

3
which then provides the new amplitude qf“.
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The new set of modal amplitudes {qf“,i € [an]} are applied progres-
sively using an imposed law of deformation, which prevents classical instabilities
due to added mass effects (section 4.2). After reaching the new shape and an
additional time period to stabilize the fluid load, a new estimation of the dy-
namic equilibrium is computed again until convergence. Since hydrofoil forces
converge rapidly, the corrections are applied often: for the current simulations,
the first correction comes after 30 time steps and each subsequent one after 20
time steps, with 10 to 15 time steps for the shape modification (for comparison,
the foil traverses one chord length ¢ in 20 time steps). An under-relaxation
with a coefficient of 0.5 is applied to the newly computed amplitude, to avoid
divergence of the process due to a too rough approximation of the Jacobian.

5.2. Quasi-static positioning approach

Besides deformation, accurate simulation of hydrofoils requires dynamic po-
sitioning of the foil. Since the drag of a foil depends strongly on its load (lift
and sideforce), simulations are often performed at imposed loads and the foil
attitude is adjusted to obtain these loads. The equilibrium position is hard to
predict before a simulation, so large changes of the foil attitude may be needed.

Simulating a lifting hydrofoil at a fixed load requires adjusting the orientation
of the foil with respect to the flow. To control both the vertical and the lateral
force, the rake (pitch) and leeway (yaw) angles are adjusted. Their effect is
usually coupled: a change in rake or leeway modifies both the lateral force and
the lift force. For this rigid-body motion (section 2.2) the mesh is deformed
to change the rake, while the leeway is modified by rotating the entire mesh
around the z-axis. The quasi-static positioning was introduced by Ploé (2018).

Figure 6: Surface element for the determination of the vertical and lateral lift slope.

Contrary to the solution-derived Jacobians of section 5.1, the relation be-
tween the forces and the angles is estimated analytically here. Let F, and F,
be the lateral and vertical forces, R, the rake, and R, the leeway. For a small
section of the hydrofoil surface dS with normal vector n (figure 6), the surface
parallel to the z-axis is:

2 2
ny, +ng

[02 2 2
ng +ny, +ng

Let 6 be the angle of dS with respect to the horizontal plane: § = arctan(n,,/n.).
Then the change in angle of attack for dS due to changes in the main angles

dS = dSs (20)
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dRy and dR, is:
do = dRycosf + dR. sin 0. (21)

Using the theoretical 2D lift slope dC; = 27 da and the dynamic pressure % pU?,
the force change on the surface is df = % pU? 21 dov dS. Finally, the force change
is decomposed as df, = df sinf and df, = df cos §. Integrating these incremental
forces over the entire wetted surface S leads to the total change in the forces:

dFy| _ 1 0 1[ysin?0dS 1 [ sinfcos@dS) [dR.
[dFZ] a 2pU o h Is sin @ cos 0 dS 5[5 cos? 0 dS dR,|" (22)

The coefficients % before the integrals are added because the hydrofoil has an
upper and a lower side, so the projected surface of the foil is integrated twice.
Numerically, the integrals are approximated by summing over the wall faces in
the fluid mesh.

For each quasi-static correction, the new angles are computed from (22) by
substituting [dF,,dF,]" = [Fjeet — FF Fareet — FF] solving for the angle
change, and deducing RZ‘H, RF*1like in (18). The same movement procedure
and time intervals as for the quasi-static modal resolution are used here, except
that no explicit under-relaxation of the computed angle corrections is applied:
the 2D lift slope used in (22) is always an overestimation in 3D so the angle
corrections are systematically too small, which stabilizes the process.

Depending on the geometry of the hydrofoil, it may not be possible to solve
equation (22). For example, a vertical foil (i.e. a rudder) has cosf = 0 every-
where so dR, cannot be computed; a rudder cannot generate vertical forces. A
fortiori, for any straight foil, cos# and sin 8 are constant so the determinant of
the matrix in (22) is zero. Since the lift force on a straight foil is normal to its
projected surface, such a foil cannot generate arbitrary forces in vertical and
lateral directions independently.

5.83. Mesh-related motion limits

Since the quasi-static approach is stable, large attitude changes can be ap-
plied quickly which is good for the convergence speed. However, rapid ALE
mesh motion can perturb the solution, especially the free surface which has to
pass through the moving mesh. If the mesh moves more than 0.2 — 0.5 cells per
time step, the discretisation of the volume fraction equation smears out the vol-
ume fraction at the surface. Besides losing accuracy, this smearing causes mesh
refinement over a larger zone at the surface, so the number of cells increases.

Figure 7 shows how solid-body rotation with analytical weighting (1) deforms
a layer of free-surface cells. The rotation dR, over a period dI' provokes a
vertical motion of the mesh, which has a maximum dz,,,, because the weighting
w(x) goes to zero on the outer boundaries. To prevent smearing, dz,q, cannot
exceed 0.5hyin, ps dT'/dt with dt the time step, which puts a limit on dR,.

This reasoning leads us to impose limits for dR,, dR, and the modal coeffi-
cients ¢;. For weighted deformations, dz,,q, can be analytically linked with the
angle changes but for FSI, this is not possible. Therefore, based on several test
cases, standard limits of 0.25° per quasi-static cycle are adopted for dR, and
dR., and of 0.15 per cycle for dg;.

Still, this artificial limiting reduces the convergence of the quasi-static pro-
cedures. For overset meshing, where only the small overset domain moves, no
such limits apply. This is one of several advantages of the overset approach.
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Figure 7: Anaytical weighted deformation: the effect of a quasi-static pitch rotation on the
free-surface mesh.

6. Increased accuracy and flexibility with ‘sock’ meshes

Proper alignment of the mesh with the flow and the foil geometry is im-
portant for good accuracy, which is the motivation for using thick boundary
layer meshes (section 3.1). However, another alignment issue exists. Hexpress,
which generates the initial meshes for the adaptive refinement, starts from a
coarse uniform cartesian grid which is adjusted to the geometry by local octree
refinement and projection of the grid to the geometry. This volume-to-surface
approach gives the best meshes when the original cartesian grid is aligned with
the surface. For highly curved hydrofoils however, this is not always possible.

(a) The foil-shaped domain (b) Initial mesh created in this domain

Figure 8: Example of a sock domain for the Nacra 17 foil (section 7.4).

A solution is to use a close-fitting curved overset domain around the foil
(figure 8a), in which a curved starter mesh generated using Cadence’s IGG
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structured mesher (figure 8b) replaces the cartesian grid. This mesh is then
imported in Hexpress, where local refinements are performed as usual to capture
the foil geometry. This approach, dubbed ‘sock’ meshing for obvious reasons,
was invented by Cadence and Centrale Nantes (Mallol et al., 2019).

Since the sock mesh follows the shape of the foil, the total number of cells is
reduced because the geometry of the foil is captured more efficiently, especially
at the leading and trailing edges (figure 9). In addition, the mesh is of better
quality, as it contains less ‘diamond’ cells which degrade the accuracy of the
discretised flow equations. And as seen above, the overset domain allows large
motions and deformations without imposing limits on the convergence speed.

T 7A TS
LT
B

Figure 9: Detail of the surface mesh for an IMOCA foil obtained without (left) and with a
sock domain (right).

Finally, the better alignment is an advantage for mesh adaptation, since
directional refinement in the flow direction can be used to capture pressure
peaks, while diamond cells have to be refined isotropically. The sock meshes are
fully hexahedral like standard Hexpress meshes, so they function naturally with
adaptive refinement and the adaptation protocol of section 3 is valid. And since
the sock domains are narrow (our standard size is 3¢ in axial and 2c in lateral
direction), the overset boundary is close to the hydrofoil. Therefore, adaptation
is essential for accurate overset interpolation (section 3.4).

7. Test cases

The developments described in the previous sections are tested on four dif-
ferent test cases with varying shapes, velocities, and motions: a catamaran
foil (section 7.1) where the test focuses on the convergence of the quasi-static
positioning and the accuracy of adaptive refinement, a small slow windsurfer
hydrofoil (section 7.2) that tests the suitability of the adaptation protocol for
varying conditions, a monohull foil test (section 7.3) which focuses on the sock
mesh, and a Nacra 17 foil (section 7.4) for modal FSI. Except for the last case,
no experimental data are available so comparisons are made with non-adapted
mesh solutions and potential-flow solutions.

7.1. L-foil grid convergence and accuracy

The convergence of the quasi-static positioning is studied on a rigid L-
hydrofoil, followed by a mesh dependence study on adapted grids. Since no
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experimental results are available, the solutions are compared with simulations
on non-adapted meshes.

The case (figure 1) is an enlarged version of a foil for a C-class two-person
catamaran. The geometry, produced with the hydrofoil modeller of Ploé (2018),
has a chord ¢ = 0.35m, a span of 1.5m, and is simulated at U = 10m/s with
imposed forces F;*#* = 6000N and F;*&* = 8000N. The density is p =
1026.02kg/m3, the gravity 9.81m/s? and the dynamic viscosity is 0.00122kg/(ms),
giving a Froude number Fr = 5.40 and a Reynolds number Re = 2.94-10°. Tur-
bulence is modelled with £ —w SST and a wall-modelled boundary condition
with ¢ = 50 is used. The time step is chosen such that the foil advances one
chord length in 20 steps; 800 time steps are run for convergence, which is enough
for a high-velocity hydrofoil. Sign conventions are as in figure 10.

F, /\i\ ,

AT
)

R, \/ 7

Figure 10: Sign conventions for forces and rotations of the L-foil. The hydrofoil advances in
the positive X-direction. Figure not to scale.

The simulation setup follows the mesh adaptation protocol of section 3,
except that the free-surface threshold (section 3.2) is chosen as T,.¢ = ¢/128 to
better agree with the non-adapted meshes described below. A series of meshes
is produced by varying the Hessian threshold T, between 4c and ¢/16.

For comparison, a series of non-adapted meshes is created with Hexpress,
featuring uniform grids of varying sizes on the foil surface with two supple-
mentary levels of refinement on the leading and trailing edge. Around the free
surface, a refinement box is used with cell size ¢/128 on the second finest grid
(the free-surface cell sizes vary for this series); the box has a height of 0.7¢ to
ensure the good resolution of the volume fraction even in the case of mesh de-
formation. This setup represents the existing state of the art for FINE/Marine
hydrofoil simulations, except that the free surface is normally captured with
adaptive refinement instead of a fixed refinement box (see section 7.3).

Convergence of the quasi-static positioning. The rake (R,) and leeway (R,) are
adjusted during the computation, to attain the requested forces in y- and z-
direction (see section 5.2). The convergence of the forces and rotations during
a typical simulation is shown in figure 11.

This figure shows the alternation of linear angle modifications over 10 time
steps, followed by steady intervals of 10 time steps to let the forces stabilise.
During the rotations, the forces change notably and the acceleration at the
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Figure 11: Time-convergence of the adapted-grid L-foil simulation for T}.y = ¢/8. Top: rake
Ry and leeway R., middle: targeted forces F; and F%, bottom: resistance Fi.

beginning and the end of each rotation provokes spikes in the force due to
added mass effects. This confirms the importance of having steady periods
before estimating a new equilibrium position.

The rake increases to about 1.6° nose-up. Until 0.25s, this increase is con-
strained by the limit of 0.25°/step (section 5.3) and afterwards, the natural
under-relaxation of the procedure is visible: 6 more steps are needed before
R, is close to convergence. The leeway changes never reach the rotation limit
and the target Fy, which is most affected by R., is quickly reached. However,
since the shaft of the foil is not vertical, nose-up rake also increases Fy. The
quasi-static procedure compensates for the increasing rake with negative leeway,
which eventually reaches —0.8°. Due to this coupling, the convergence speed
for R, is also determined by the limits on R,.
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Figure 12: Relative errors (F' — Fiarget)/Ftarget in the controlled forces Fy and F. for the
L-foil series of adapted meshes.

Figure 12 shows that the position control is accurate: in all but one case
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the vertical and sideways forces are within 0.05% of the target values, much less
than the numerical uncertainty in the non-controlled quantities (see below). The
angles converge after about 400 time steps which is acceptable for hydrofoils,
whose forces typically need 600-800 time steps to converge, even for fixed posi-
tions. Therefore, the quasi-static positioning maintains both the accuracy and
the efficiency of fixed-position simulations.

Figure 13: Cuts at y = 0.08 for the L-foil, showing (top to bottom) the mesh for T,y = ¢/2,
c/4, ¢/8 and ¢/16.

Mesh dependence and numerical accuracy. A part of the series of adapted
meshes created by varying 7.5 is shown in figure 13. As the cells of the original
grid can only be divided in powers of two, these meshes are not strictly similar,
but they are close enough to allow mesh convergence studies.

Figure 14 shows the convergence of F, with the mesh size. For the adapted
meshes, the convergence is excellent: fast, smooth, and monotonic. This is
difficult to obtain on unstructured meshes, as shown by the non-adapted series
which also exhibit monotonic convergence, but with small irregularities in the
slope. Furthermore, the adapted meshes are more accurate: the non-adapted
meshes require about 4 times more cells to converge to the same value for
F,. Figure 13 explains this good accuracy: fine cells in the pressure peaks
on the leading and trailing edges play a major role in obtaining accurate drag
predictions for hydrofoils. Still, the two series converge to the same value which
confirms the reliability of both.
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Figure 14: Convergence of the resistance for the L-hydrofoil, with uncertainty following Eca
and Hoekstra (2014). Comparison of adapted and non-adapted mesh solutions.
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Figure 15: Convergence of the incidence angles for the L-foil, with uncertainties (R, uncer-
tainty on the finest non-adapted grid: 67%.).
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Like in previous works (Wackers et al., 2017, 2022; Korkmaz et al., 2023),
the procedure of Ega and Hoekstra (2014) is used to estimate the numerical
uncertainty of the resistance. This method computes uncertainties based on a
range of fits for the force data as a function of the grid size. For the adapted-
mesh solutions, the threshold T,y can be used as a convenient measure of this
mesh size; for the non-adapted meshes, the number of cells to the power —% is
used. To determine the uncertainty on a given grid, the force from this grid and
all the coarser ones are used in the extrapolation.

In figure 14, the errorbars for coarser meshes overlap the ones for the finer
meshes, which shows that the estimations are reliable. The adapted-mesh so-
lutions produce the same uncertainty with about four times less cells than
the non-adapted meshes. However, the uncertainties are relatively high: the
adapted meshes give 5% uncertainty on the finest 21M cells grid, whereas ship
simulations lead to about 1% uncertainty at 6M cells (Wackers et al., 2022).
This is one of our motivations to consider sock meshes (see section 7.4).

The forces Fy and F, are kept constant by the quasi-static procedure, so
the incidence angles R, and R, are converging quantities (figure 15). The
adapted-grid results show good but not strictly monotonic convergence, with
lower uncertainties than for the resistance (which was also observed by Wackers
et al. (2017)). For the non-adapted meshes, the convergence is oscillatory so
the uncertainties are high; it is unclear if the non-adapted series will converge
to the same angles as the adapted grids. Overall, the adapted grids produce
accurate and reliable results on much coarser meshes than non-adapted grids.

7.2. Kitefoil: low velocity, fized position

To test the versatility of the hydrofoil refinement protocol, Richeux (2022)
applied it blindly to a range of test cases. The kitesurf foil shown here is as
different as possible from the L-foil: a small symmetric hydrofoil in a fixed
position, very close to the water surface, at a velocity that is too low to permit
flight. Again, no experiments exist for this geometry, so the solution is compared
with non-adapted mesh results and with a potential-flow solution.

Figure 16: Kitefoil with adapted mesh (7. = ¢/8) and volume fraction in the y = 0 plane.

The geometry (Perali et al., 2024) resembles the main wing of the iQFOIL
windsurfer selected for the 2024 Olympics, with a maximum chord ¢ = 0.12m
and a span of 0.474m. The attitude is fixed at zero pitch and yaw, 20° right
roll, and an immersion of 0.83c. The velocity is U = 0.922m/s, the density

26



725

730

740

p = 1027kg/m?, the Froude number Fr = 0.85 and the Reynolds number Re =
8.134 - 10%. Turbulence is modelled with k& — w SST; a wall-resolved boundary
condition with y* = 1 is used for this low Reynolds number. No transition
model is used, even though the actual flow is probably partially laminar. The foil
advances a chord length in 20 time steps and 3000 steps are run for convergence.
The geometry and a typical mesh are shown in figure 16. At this low speed
close to the surface, the hydrofoil generates a wave train which influences the
forces on the foil. To resolve this wave train, the limiting box (section 3.3) is
placed at 10c behind the trailing edge. Otherwise, the standard hydrofoil re-
finement protocol is used, with free-surface threshold T,.s = ¢/64. Non-adapted
meshes for comparison are made with the same approach as in section 7.1.
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Figure 17: Convergence of the resistance and lift for the kitefoil (F, uncertainty on the finest
non-adapted grid: 26%). F, is omitted as it is similar to F..

For the resistance, despite the difference with the L-foil case, the mesh-
convergence on adapted meshes is similar (figure 17, c.f. figure 14). The uncer-
tainty as a function of T, /¢ has the same order of magnitude, which shows that
T, is a good choice to control the desired accuracy. The non-adapted series is
not obviously converging to the same value, although the errorbars overlap.

The lift F, has a non-monotone convergence, caused probably by the wave
train which reflects on the outflow boundary, as well as on any region where the
mesh gets coarser. The marked difference with the non-adapted meshes however
is due to a lack of resolution on the leading and trailing edges: when the middle
non-adapted mesh was remade with two more levels of refinement on the foil
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edges, the lift dropped to about 6.2N (not shown in figure 17). This again shows
the importance of adaptive refinement: without adaptation, the solutions seem
to converge well but may actually be far from grid-independent.

Figure 18 compares the adapted-grid RANS wave pattern with a poten-
tial flow simulation using the PUFFin solver (Perali et al., 2024). The poten-
tial code, which lacks viscous damping, predicts larger amplitudes as expected.
However, the shapes of the wave patterns, the wave lengths, and the asymmetry
due to the roll angle, agree closely. This indicates that both results are reliable.
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Figure 18: Kitefoil wave pattern, comparison of RANS T,y = ¢/8 (left) and potential flow
(right) from Perali et al. (2024).

7.8. IMOCA foil and sock mesh

To evaluate the sock mesh approach, the refinement protocol is applied to
a hydrofoil of an offshore racing sailboat. The foil pierces the surface at two
different locations (Figure 19) and the geometry is notably wider (5.5m) and
more slender, but also more complex than the previous geometries. This makes
the sock mesh technique presented in section 6 particularly relevant.

Figure 19: Wave field around the IMOCA foil.

As this test is based on an industrial case, the solutions are compared
with the results of the current state-of-the-art industrial approach for hydro-
foil simulations. This approach uses a non-adapted mesh around the hydrofoil,
which is placed in a box-shaped overset domain. Mesh adaptation is used, but
only to capture the free surface. The reference simulations are set up by the
FINE/Marine integrated tool C-Wizard, which is commonly used by yacht de-
sign teams and therefore relevant for comparison in the scope of industrial use.
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The case concerns an IMOCA Open60 monohull foil, placed in conditions
close to its position when sailing at beam reach: low immersion and a velocity
of U = 14m/s. The attitude is fixed at zero pitch and roll, the density is
p = 1025.07kg/m?3, the Froude number Fr = 5.82 and the Reynolds number is
Re = 8.105 - 10°. Turbulence is modelled with k — w SST and a wall-modelled
boundary condition with y* ~ 51 is used. To accurately capture the waves, the
limiting box for the mesh refinement was extended to 10c¢ behind the foil, like
for the kitefoil. The Hessian threshold T.p is varied from 4c to ¢/8.
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Figure 20: Cuts in an z-plane through the IMOCA foil, showing the sock mesh with T} = ¢/4
(top) and the overset box mesh (bottom). The inserts show the full overset domains.

Meshes. The meshes of the two methods are compared in figures 20 and 21.
For the sock-mesh approach, T,y = ¢/4 is shown, while the overset box mesh
uses the C-Wizard coarse preset. Both lead to refined meshes containing 6.6M
elements at the end of the computation, which makes these settings relevant
in a foil design process. As shown in figure 20, the distribution of cells is
fundamentally different: for the overset box mesh, the geometry crosses the
grid directions diagonally while the sock-mesh cells are well-aligned with the
foil, which results in a better-quality mesh (c.f. figure 9). At the leading and
trailing edge, the sock mesh is at least twice finer than the oveset box mesh, so
pressure peaks can be captured with accuracy. Since this is similar to previous
test cases, it is not shown.

The detail in figure 21 shows the close proximity of the foil and the overset
interface for the sock mesh. As explained in section 3.4, the continuity of the
refinement criterion over the interface ensures locally equal cell sizes in both
domains, which is essential for the interpolation accuracy. At the free surface,
the number of cells is higher in the (diagonal) sock mesh than in the (free-surface
aligned) overset box mesh. However, since the free-surface zone is small, this is
an acceptable price to pay for the better alignment on the foil surface.
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Figure 21: Zoom of figure 20, focusing on the foil tip.
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Figure 22: Convergence of the resistance and lift for the IMOCA foil. F, is omitted as it is
similar to F.
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Convergence of the forces. Figure 22 shows the forces, scaled with the finest
sock-mesh results for confidentiality reasons. The convergence behaviour is sim-
ilar to the previous sections, while the sock mesh leads to smaller uncertainties:
at ¢/8, the uncertainty is below 5% for the resistance and below 1% for the lift,
which is about two times less than the L-foil of section 7.1.

The overset box series is far from mesh convergence, although all sock-mesh
results lie within the uncertainty range for the fine mesh preset. And while
the ¢/4 sock mesh has three times less cells than this grid, its results are more
accurate. These low numerical uncertainties obtained with affordable CPU time
make the sock-mesh approach interesting in the scope of industrial use.

7.4. FSI: flexible NACRA foil

Finally, the fluid-structure interaction capability and the quasi-static modal
procedure of section 5.1 are tested on a Z-shaped foil of the Olympic sailing
catamaran Nacra 17. This foil was extensively studied in Marimon Giovannetti
et al. (2022) and Knudsen et al. (2024), including experimental testing of the
foil in a cavitation tunnel. The case has no free surface; the foil is attached to
one of the tunnel walls, which are represented in the simulation.

The foil is fixed at 3° pitch, 0° roll and velocity V' = 7m/s, which gives a foil
deformation 0.890¢ (with maximum chord ¢ = 0.2m) in the experiments. A sock
mesh (figure 8) is used to accompany this fairly large deformation. Turbulence is
modelled using k—w SST with a wall-modelled boundary condition and y* close
to 50. For all quasi-static and RBF interpolation parameters, the default values
of sections 2.2, 4.3, and 5.1 are chosen. The foil travels 1 chord length in 10
time steps and 2500 steps are run in total. The forces are non-dimensionalised
with %pVQA7 where A is half the wetted surface.

€

Figure 23: Eigenmodes ¢ — ¢5 (left to right) of the Nacra 17 foil. The colours indicate the
magnitude of the deformation; the undeformed shape is shown in grey. The eigenfrequencies
f1 — fs are 12.98, 31.23, 59.95, 141.11, and 217.95Hz.

The Abaqus model of Marimon Giovannetti et al. (2022) has been used
here to conduct the modal analysis (section 4.1). Since the exact structure and
mechanical properties of the NACRA foil are kept secret by the manufacturer,
the model assumes a shell with a single spar, made of isotropic material with
density p = 3000kg/m?, Young’s modulus? E = 65GPa and Poisson coefficient

2The model we received has a higher Young’s modulus than the article (E = 30-55GPa).
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o = 0.35. It is meshed using shell elements of typical size dejmis,Fra = 0.004m.
The internal structure is regarded as as highly uncertain and later, Knudsen
et al. (2024) changed to a variable wall-thickness model with p = 1600kg/m3,
E =61GPa and o = 0.33.

FSI convergence. Figure 23 shows the shapes of the eigenmodes which form the
basis of the reduced-order structural model. To reduce the computational time,
only the first five modes obtained in this FEM simulation were used, since in our
experience, for typical sailboat foils, eigenmodes with frequencies above 200Hz
contribute little to the global deformation. The mode v, is the main bending
mode, 1, is a twisting of the upper foil which rotates the lower part fore-and-aft,
14 and 1, are higher-order bending modes, and 15 is a pitch-changing twist
of the lower foil.
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Figure 24: Time-convergence of the Nacra 17 simulations for T,y = ¢/8. Top: modal ampli-
tudes g1 — g5 for the flexible foil (centre: zoomed), bottom: resistance coefficient Cp,.

As can be seen in figure 24, the first mode is dominant, with a small contribu-
tion of the second bending mode g3. The effect of the other modes is negligible,
which validates the choice to include not more than 5 modes in the model. The
convergence of the modal amplitudes is smooth, thanks to the under-relaxation
of 0.5. The resistance however has strong oscillations, like for the quasi-static
positioning (figure 11). The smooth convergence of the rigid-body resistance
confirms that these peaks are due to the foil deformation.

However, the quasi-static procedure keeps the modal FSI stable and the
convergence to a steady state takes the same time as for the rigid case (about
4s). Since the time steps are the same for the two cases, this shows that FSI
can be taken into account for a low additional computational cost, thanks to
the quasi-static modal approach.

Flexible versus rigid simulations. The deformation of the NACRA foil and the
pressure on the suction side are shown in figure 25. Since the foil has a pitched-
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Figure 25: Comparison of foil shapes and suction-side pressure for the deformed (left) and
rigid (right) Nacra 17 hydrofoil.

up attitude, bending increases the angle of attack, as shown by the stronger
suction peak compared with the rigid case. This, and the bottom section which
becomes more horizontal, increase the lift F, (+23% vs. rigid) and slightly
reduce the sideforce F, (-5% vs. rigid). Due to the higher loading, the (induced)
drag increases (+6% vs. rigid). See table 2 for the results.

The mesh convergence in figure 26 is oscillating for the flexible foil, while the
rigid foil has a smooth convergence. This may be due to the noisier time signals
for the flexible foil. However, the numerical uncertainties are similar for the
two cases and the convergence is globally the same. The foil tip displacement
Ugip converges exactly like F,, which proves that the (linear) structure model is
solved accurately. Overall, the precision of the simulation results is not affected
by the FSI. However, the significant effect of FSI on the forces is confirmed.

Table 2: Comparison of simulation (T = ¢/16) and experimental results for the Nacra 17.

CFz CFy CFZ utip/c

Experimental 0.0132 0.252 0.246 0.890
Simulation 0.0168 0.268 0.279 0.866
Simulation (rigid) 0.0156 0.284 0.227 —

Simulation (Knudsen et al., 2024) 0.0158 0.284 0.297 1.095

Comparison with experiments. For the flexible foil at T,y = ¢/16, table 2 shows
a deformation at the tip of the foil within 4% of the experimental result, but
the difference is 27% for the drag and 13% for the lift. Since the numerical
uncertainty for this mesh is 2.5% for the drag and around 1% for the side and
lift forces and the deformation, this could indicate a significant modelling error.

However, the results are coherent. Our simulation overestimates the ex-
perimental forces and underestimates the deformation, which indicates that
the structure model is too rigid, due to the choice of the material properties,
the constant shell thickness over the span, the simplistic spar, or the bound-
ary conditions representing the attachment in the tunnel. Based on different
tests, Marimon Giovannetti et al. (2022) reach the same conclusion, even using
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Figure 26: Convergence of the resistance for the Nacra 17 hydrofoil, with uncertainty.
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E = 55GPa. The reworked model of Knudsen et al. (2024) is probably more
accurate, since their result overestimates both the forces and the deformation.

Furthermore, all simulations overestimate the lift, probably due to an align-
ment issue in the experiments, but the ratio 1.04 between the lift and side-
force is close to the experiments (0.98) and almost the same as Knudsen et al.
(2024)’s simulation (1.05). Compared to the rigid-foil ratio of 0.80, this again
underscores the importance of FSI for accurate force predictions. Finally, no
transition model is used, while the actual flow is probably partially laminar.
This, and the higher induced drag, explain the overestimation of Cp,, which
Knudsen et al. (2024) also observe.

The linearised deformation does not preserve the structure exactly and ac-
tually increases its surface area, but for the current case, this increase is only
1% so it is not the main cause of the differences. Thus, this test cannot be seen
as a formal validation but, given the uncertainty in the structure model, the
agreement with experiments is satisfactory.

8. Conclusion and discussion

This paper discusses numerical techniques for the efficient RANS compu-
tation of the flow around lifting hydrofoils. These require a fine resolution of
the flow around the foil: above 10M cells may be needed to get high precision.
Also, fluid-structure interaction has a significant influence on the forces. While
this does not make hydrofoil simulation impossible, it shows that computational
efficiency is crucial to make these simulations possible for daily use in a ship
design environment.

Mesh adaptation. In our view, efficient hydrofoil simulation is impossible with-
out adaptive mesh refinement. For free-surface capturing, due to the dynamic
positioning, the foil deformation and the large waves that hydrofoils generate,
the water surface position cannot be predicted in advance. Thus, without adap-
tation, large boxes of fine cells are required: in the L-foil test of section 7.1,
the finest non-adapted mesh contains 13.9M cells (62% of the total) to cap-
ture the surface. For comparison, the T,y = 4c¢ adapted mesh, which has full
free-surface refinement, has only 700k cells. Furthermore, without adaptation,
computations may be erroneous if the refinement zone is not placed correctly.
For these reasons, free-surface mesh adaptation is already standard practice in
the industrial use of FINE/Marine.

Adaptation around the hydrofoil is equally important, and anisotropy is
crucial: the ‘sock’ mesh, a flow- and geometry-aligned base mesh that enables
anisotropic refinement, is required for good uncertainty at reasonable costs.
The IMOCA case in section 7.3 shows 4.8% estimated uncertainty for T,y =
¢/8, which is three times better than the adapted non-sock mesh for the L-
foil (section 7.1) at the same threshold. Hessian-based adaptation provides not
only accuracy but also safety, as shown by the kitefoil of section 7.2 where the
non-adapted meshes ‘converge’ to an incorrect solution.

The sock approach requires small overset domains with boundaries close to
the foil surface, so accurate interpolation between the overset and background
domain is needed. Mesh adaptation is the only way to ensure equal cell sizes in
the interpolation regions of both domains without requiring a large box of fine
cells in the background grid.
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This work demonstrated a standardised mesh adaptation protocol for hydro-
foils: despite their different natures, all the test cases in section 7 were performed
with the same guidelines for the computational settings. This paves the way
to automated, less expensive, and less technical hydrofoil CFD. De facto, this
makes simulation accessible to a larger number of users.

Modal FSI. The modal approach for FSI combines fluid simulation with a lin-
earised eigenvalue decomposition of the structural finite-element model, created
off-line with an external structural solver. For hydrofoil simulation, this offers
several advantages. First, there is no direct coupling between the fluid and
structure solvers; any structure solver and any model can be used. Thus, there
is no limitation for the use of anisotropic material behaviour, which is essen-
tial to model composite structures correctly. Furthermore, once the linearised
reduced-order model is constructed, it can be evaluated almost instantly which
means that the computational overhead for the model FSI is close to zero. The
main impact on the fluid simulation cost is actually the RBF deformation of
the mesh, which can be sped up by the greedy approach. In addition, when
using quasi-static deformation, the mesh is updated at most once per time step
(instead of each non-linear iteration), which drastically limits the overhead.

The main disadvantage of the modal approach is, that it is linear without any
coupling between the modes, and therefore limited to moderate deformations.
Modern foils can bend a lot (up to 20% of their span for an IMOCA foil), in
which case the linearised model may be inaccurate. For this reason, we study a
one-dimensional beam solver as an alternative for the modal approach. Still, the
modal FSI provides good results for small to medium deformations (the Nacra
17 case of section 7.4 has an error of only 1% in the foil surface area) and since
the computation is not much more expensive than for rigid bodies, the approach
can be recommended for industrial applications.

Quasi-static positioning and deformation. To efficiently find equilibrium solu-
tions for the equations of rigid and flexible body motion, we propose quasi-static
fixed-point algorithms, where in each step an approximate equilibrium position
is estimated from the current flow. The body is then gradually moved to this
new position. The central part of the algorithm is estimating the dependence of
the forces on the position, to deduce the equilibrium position or shape. A wide
range of options exist: here, the estimation for the rigid-body positioning is
based on the 2D analytical lift slope, integrated over the hydrofoil surface. For
the foil deformation, the dependence is extracted with finite differences from the
two previous solutions. These approximations do not have to be very accurate;
for example, the rigid-body estimation ignores the presence of the free surface.

The quasi-static procedure eliminates the time step constraints for the time-
accurate solution of body motions and the tests in section 7.1 and 7.4 show that
the simulations converge as fast as for rigid bodies, which means again that the
computational overhead for body motion is negligible.

Overset meshes. Two meshing approaches to handle hydrofoil motion are pre-
sented: mesh deformation and overset meshes. Deformation is successful for
smaller foil motions and it has the advantage that the mesh is one block, so no
interpolation is needed and the discretisation is fully conservative. However, the
mesh deformation limits the amplitudes and the speed with which the quasi-
static procedures can move the foil, since too fast deformations smear out the
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water surface. Also, the single-block Hexpress meshes have diagonal ‘diamond’
cells wherever the foil is not aligned with the mesh directions. These cells reduce
the accuracy of the solution.

By combining overset meshing with foil-aligned ‘sock’ initial meshes, only
the small overset domain has to move, which means that larger and faster mo-
tions are possible. Furthermore, the body-aligned sock mesh makes efficient
anisotropic refinement possible, as noted above. For these reasons, we recom-
mend the sock approach as part of a standardised hydrofoil simulation method.

I
I
|
|
uan:
'\

Figure 27: Simulation of a full yacht hull with hydrofoils.

The paper shows the strong synergy of these approaches. Thus, the efficiency
of a hydrofoil simulation does not come from one technique, but from a care-
ful coupling of methods that help each other to be efficient. Combined with
a well-tested, reliable Navier-Stokes solver, these methods result in a simula-
tion approach which can provide high-accuracy simulation of hydrofoils in an
industrial design environment.

Upcoming challenges are the simulation of a full sailing yacht with foils and
appendages (Figure 27) and the modelling of dynamic motion in waves. For
the former, simulation accuracy must be preserved at the junction between the
foil overset domain and the hull in the background domain. Furthermore, the
mesh adaptation protocols for hulls and hydrofoils (intended for vastly different
length scales) must be combined into one approach. For the latter, stable and
efficient time-accurate simulation is crucial. The basis of rapid FSI through
well-chosen efficient structure models, and efficiency and reliability provided by
mesh adaptation, remains important for these advanced applications.
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