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Abstract

The current research lacks sufficient studies on optimizing shapes for managing transient
heat transfer in building enclosures. This gap is primarily due to numerical challenges in
optimizing shapes for this purpose. This article aims to address and bridge these gaps by
investigating the energy efficiency of a building wall through the optimization of its external
boundary shape. The study assumes two-dimensional transient heat diffusion to represent
the physical phenomena in the building facade, considering a third type boundary condition
for the outside boundary, including convective and short-wave solar radiation effects. The
internal boundary condition is modeled using the Robin boundary condition. The boundary
element method is employed to solve the transient heat transfer problem, reducing compu-
tational costs while ensuring accuracy. The optimization problem focuses on minimizing the
heat losses of the wall by finding optimal parameters for the external boundary. A real case
study on a house wall reveals optimal shapes, maintaining the same material quantity as
standard flat wall and increasing energy efficiency.

Keywords: transient heat transfer, boundary element method, shape optimization, short
wave radiation.

1 INTRODUCTION
One third of the global energy consumption and one fifth of greenhouse gas emissions is

contributed by buildings, according to the 2022 statistics from the International Energy Agency
(IEA) in Paris, France [1]. Over the past half century, efforts to enhance the energy efficiency
of building enclosures have led to various models and simulation programs [2]. However, these
designs often rely on two principles: a) treating enclosures as plane barriers against varying
climatic conditions, disregarding non-uniform distribution of incident radiation and convective
heat flux [3]; and b) utilizing a 1D model through the combination of multiple plane layers [4].

The primary focus of this article is to explore the potential improvement of energy efficiency
through the shape optimization of building facades. Notable research in building facade shape
optimization includes studies on minimizing wind-induced loads in high-rise buildings [5] and
multi-objective optimization for sustainable high-rise buildings [6].

The first challenge in shape optimization lies in parametrizing the shape, with continuous and
discrete approaches being prominent [7]. Continuous parameterization involves mathematical
equations for smooth transitions between shapes, but it demands significant computational re-
sources. Conversely, discrete parameterization uses a finite set of parameters, making it suitable
for representing more complex real-world shapes. However, it explores only a limited part of the
parameter domain, potentially missing optimal shapes.
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The second challenge involves modeling physical phenomena in building enclosures. Existing
works often neglect or simplify heat transfer through solid walls, emphasizing fluid flow dynamics
around enclosures [8]. This oversight misses the crucial energy balance played by solid facades
between the inside and outside environment [9]. Additionally, there is limited attention given to
the impact of solar radiation on building shape and design [10]. Another drawback of existing
works is considering steady-state models for building surface shape design [11].

To address these challenges, this research investigates transient heat transfer mechanisms
through building walls, considering the impact of incident short-wave radiation and incorporating
a continuous description of the building wall shape. The boundary element method (BEM) is
employed for computational efficiency without compromising accuracy. The article is organized
as follows: Section 2 presents governing equations with appropriate boundary conditions. It
continues with the description of the numerical method for the direct problem. Section 3
outlines the design optimization problem, while Section 4 verifies BEM with analytical solutions.
Finally, Section 5 presents a real case study for the facade shape optimization during winter
and summer periods.

2 METHODOLOGY

2.1 Physical domain

The physical domain under investigations is illustrated in Figure 1. The domain is denoted
by Ω with space coordinates x =

(
x , y

)
. The height of the facade is H

[
m

]
. The boundary

of the domain is Γ = ∪4
i=1 Γi. The bottom, right and top boundaries are denoted as Γ2 , Γ3

and Γ4 , respectively. The left boundary is Γ1 and is defined by:

Γ 1( p ) = { x ∈ R2 | x = γ ( p , y) , y ∈ [ 0 , H] , p ∈ Ω p} , (1)

where γ( p , y) is a parametrized mapping function, which shapes the form of the boundary Γ 1
depending on the N p parameters:

p =
(

p 1 , . . . , p N p

)
∈ Ω p .

Note that in the case γ ( p , y) = 0 , we have a plane boundary Γ 1 and the facade is a classical
rectangular one. In such case, the length of the wall is denoted L

[
m

]
.

outside

short-wave radiation

Figure 1. Illustration of the physical domain.
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2.2 Governing equations

The physical process are observed for the time domain Ω t : t ∈ [ 0, t ∞ ], where t ∞
[
s

]
is

the total duration time. The two-dimensional transient heat diffusion transfer is assumed to
represent the physical phenomena in the building facade:

c ρ
∂T

∂t
= k ∆ T , ∀ t ∈ Ωt , ∀ x ∈ Ω , (2)

where c
[
J · kg−1 · K−1 ]

is the specific heat capacity, ρ
[
kg · m−3 ]

is the material density,
k

[
W . m −1 . K −1 ]

is the thermal conductivity of the wall and T
[
K

]
is the temperature inside

the facade. The initial conditions of the problem is given as:

T (x, t = 0) = T 0 (x) , ∀ t ∈ Ωt , ∀ x ∈ Ω . (3)

The left boundary is in contact with the outside environment of the building. Combining
Newton’s law of heat transfer with Fourier’s first law of conduction and adding the incident
short-wave solar radiation leads us to a third-type boundary condition also known as Robin
boundary condition:

k ∇ T · n⃗ = − h ∞
L ( t, y )

(
T − T ∞

L

)
+ q ∞

L ( t, x ) , ∀ t ∈ Ωt , ∀ x ∈ Γ1 ,

where h ∞
L

[
W . m −2 . K −1 ]

is the surface heat transfer coefficient between the solid material
and the surrounding fluid (air) with the temperature T ∞

L

[
K

]
. The incident flux q ∞

L

[
W . m −2 ]

varies with the height of the facade due to the surrounding effects of the urban area and due
to the shape of the boundary that may induce local shadings [12]. The surface heat transfer
coefficient h ∞

L depends on height y
[
m

]
and the according wind velocity v ∞

[
m . s −1 ]

[13]:

h ∞
L ( t, y ) = h 0 + h 1

v ∞( t )
v 0

( y

y 0

) λ
,

where h 0 , h 1
[
W . m −2 . K −1 ]

and λ
[
−

]
are given surface coefficients and the velocity variation

coefficient respectively. v 0
[
m . s −1 ]

and y 0
[
m

]
are reference quantities.

The incident short-wave radiation on a tilted surface can be decomposed as follows [14]:

q ∞
L ( x ) = a ( q dr ( x ) + q df ( x ) + q rf ( x ) ), (4)

where direct q dr [
W . m −2 ]

, diffusive q df [
W . m −2 ]

and reflective q rf [
W . m −2 ]

fluxes are com-
ponents of the incident short-wave radiation. a is the absorptivity of the wall.

The right boundary is in contact with the ambient air inside of the building so a Robin
boundary condition is assumed:

k ∇ T · n⃗ = − h ∞
R

(
T − T ∞

R ( t )
)

, ∀ t ∈ Ωt , ∀ x ∈ Γ3 ,

where T ∞
R

[
K

]
is the known inside ambient temperature and h ∞

R

[
W . m −2 . K −1 ]

is the surface
heat transfer coefficient inside the building. Last, the top and bottom boundaries of the facade
are assumed as adiabatic:

k ∇ T · n⃗ = 0 , ∀ t ∈ Ωt , ∀ x ∈ Γ2 ∪ Γ4 .

Note that for computational purposed [15], a dimensionless formulation of the equations is
defined [16] and all methodology is described for dimensionless variables.
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2.3 Numerical method to solve the direct problem

2.3.1 Dual reciprocity method

In the view of the dual reciprocity boundary element method [17], the transient heat Eq. (2)
is rewritten as:

∆ u = b ( x , u ), (5)

where:

b ( x , u ) = ∂u

∂t
. (6)

The solution to Eq. (5) can be expressed as the sum u = Φ + û , where Φ is the solution of
homogeneous Laplace’s equation and û is the particular solution, such that:

∆ û = b . (7)

It is generally difficult to find a solution that satisfies the above, particularly in the case of
non-linear time-dependent problems. The dual reciprocity method proposes the use of a series
of particular solutions û k instead of a single function û. If there are Ne boundary nodes and
Ni internal nodes, there will be ( Ne + Ni ) values of û k. The following approximation for b is
proposed:

b ( x , u ) ≈
Ne + Ni∑

k=1
µ k f k ( x ) , (8)

where the µ k are a set of initially unknown coefficients and the f k are approximating functions,
which can be compared to the usual interpolation functions [18]. In order to define these
functions it is customary to propose an expansion for f :

f ( x ) = 1 + r ( x ) . (9)

where r is the distance from a source point to a boundary point, which is defined as:

r( x ) =
[

( x − xξ)2 + ( y − yξ)2
]1/2

.

Here x ξ = ( xξ , yξ ) is a source point coordinates and x = (x, y) is a boundary point
coordinates, which is shown in Fig. 2(a).

The series of particular solutions û k and the approximating functions f k are related through
the relation:

∆ û k = f k . (10)

Thus, in this case û and q̂ can be found as:

û ( x ) = r2 ( x )
4 + r3 ( x )

9 ,

q̂ ( x ) =
( ∂r

∂x

∂x

∂n
+ ∂r

∂y

∂y

∂n

)(1
2 + r ( x )

3
)

.

(11)

Substituting Eq. (10) into Eq. (8) gives:

b ≈
Ne + Ni∑

k=1
µk (∆ûk) . (12)
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Eq. (12) can be substituted into the original equation Eq. (??) to give the following expression:

∆u =
Ne + Ni∑

k=1
µk (∆ûk) . (13)

Eq. (13) can be multiplied by Φ, which is the fundamental solution of Laplace’s equation and
integrated over domain, producing:

∫
Ω

( ∆ u ) Φ dΩ =
Ne + Ni∑

k = 1
µj

∫
Ω

( ∆ ûj ) Φ dΩ , (14)

where Φ is defined by :

Φ = − ln ( r )
2 π

,

2.3.2 Boundary integral equation

To obtain a Boundary Integral Equation (BIE) relating to boundary values, integral by parts
is taken from the Laplacian terms in Eq. (14) and the limit is taken when the point x ξ tends
to a point x on the boundary Γ. However, if x ξ belongs to the boundary Γ, the limits produce
what is called a free term. Taking into account these terms produces the following BIE for each
source node x ξ:

c ξ u ξ +
∫

Γ
q∗u dΓ −

∫
Γ

Φ q dΓ =
Ne + Ni∑

k=1
µk

(
c ξ û ξ k +

∫
Γ

q∗ ûk dΓ −
∫

Γ
Φ q̂k dΓ

)
, (15)

where q and q∗ are normal derivatives for u and Φ:

q = ∇ u · n⃗ , q ∗ = ∇ Φ · n⃗ ,

The free coefficient c ξ in Eq. (15) is given by:

c ξ = α

2 π
, 0 ≤ c ξ ≤ 1,

where α is an internal angle at source point x ξ .

(a) (b)

Figure 2. Illustration of the approximation of the whole boundary Γ (a) and of one boundary
element Γ j (b).
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2.3.3 Discrete Boundary Integral equation

The BIE (15) can only be solved analytically for some very simple problems. For this,
a standard Green’s function method is normally used. Rather than attempting analytical
solutions to the BIE for particular geometries and boundary conditions, we seek a suitable
reduction of the equation to an algebraic form that can be solved by a numerical approach.

The Boundary Element Method (BEM) is a numerical method of solution of the BIE, based
on a discretization procedure [19]. Application requires two types of approximation: the first
geometrical, involving a subdivision of the boundary Γ into Ne small segments or elements Γj ,
schematically shown in Fig. 2(b), such that:

Γ ≈
Ne∑
j=1

Γj .

Taking this into account, Eq. (15) can be written in the form:

c i u i +
Ne∑
j=1

∫
Γj

q∗ u dΓ −
Ne∑
j=1

∫
Γj

Φ q dΓ =
Ne + Ni∑

k=1
µ k

c i ûik +
Ne∑
j=1

∫
Γj

q∗ ûk dΓ −
Ne∑
j=1

∫
Γj

Φ q̂k dΓ

 .

(16)

The second approximation required by the BEM is functional. We approximate the variation
of u and q within each element by writing them in terms of their values at some fixed points
in the element (nodal points or nodes), using interpolation functions. The simplest possible
approximation is a piece-wise constant one, which assumes that u and q are constant within
each element and equal to their value at the midpoint. Using this approximation into Eq. (16),
we obtain:

c i u i +
Ne∑
j=1

u

∫
Γj

q∗ dΓ −
Ne∑
j=1

q

∫
Γj

Φ dΓ =

Ne + Ni∑
k=1

µ k

c i ûik +
Ne∑
j=1

ûk

∫
Γj

q∗ dΓ −
Ne∑
j=1

q̂k

∫
Γj

Φ dΓ

 .

(17)

Note that for the piece-wise constant elements boundary is smooth which means the free term
c i = 1

2 . Calling integrals:

Gi j =
∫

Γj

Φ dΓ , Hi j =
∫

Γj

q ∗ dΓ + ci δi j , (18)

where δi j is the Kronecker delta:

δi j =

1, if i = j,

0, if i ̸= j.

(19)

The Eq. (17) can be rewritten as following:

Ne∑
j=1

Hij uj −
Ne∑
j=1

Gij qj =
Ne + Ni∑

k=1
µk

 Ne∑
j=1

Hij ûjk −
Ne∑
j=1

Gij q̂jk

 . (20)

After application to all boundary nodes and computation of integrals Eq. (20) can be rewritten
in the matrix form as:

H u − G q =
Ne + Ni∑

k=1
µk (H ûk − G q̂k) . (21)

6



If each of the vectors ûk and q̂k is considered to be one column of the matrices Û and Q̂
respectively, then Eq. (21) may be written without the summation:

H u − G q =
(
H Û − G Q̂

)
µ . (22)

The µ vector in Eq. (22) is calculated as follows. By taking the value of b at ( Ne + Ni ) different
points, a set of equations like Eq. (8) is obtained. This may be expressed in matrix form as:

b = F µ , (23)

where each column of F consists of a vector fk containing the values of the function fk at the
( Ne + Ni ) collocation points. Now F can be inverted to obtain µ:

µ = F −1 b = F −1 u̇ , (24)

where u̇ = ∂u
∂t

. Now Eq. (22) may be rewritten as:

H u − G q =
(
H Û − G Q̂

)
F −1 u̇ . (25)

The term multiplying u̇ can be seen as a "heat capacity" matrix and Eq. (25) can be rewritten
in the form:

C u̇ + H u = G q , (26)

where "heat capacity" matrix equal:

C = −
(
H Û − G Q̂

)
F −1 . (27)

System (26) is similar in form to the one obtained using the finite element method. Thus, any
standard direct time-integration scheme can be used to find a solution to the above system. For
higher accuracy, a three-level time integration scheme will be employed here in the form:

u̇ =
(
3 u m + 1 − 4 u m + u m − 1)

2 ∆ t
, (28)

Substituting this approximation into Eq. (26) gives:( 3
2 ∆t

C + H

)
um+1 − G qm+1 = 4

2 ∆t
C um − 1

2 ∆t
C um−1 . (29)

The right side of (29) is known at time (m + 1) ∆ t, since it involves values which have
been specified as initial conditions or calculated previously. Upon introducing the boundary
conditions at time (m + 1) ∆ t, which are of the convective type q = − Bi ( u − u ∞ ), q needs
to be applied at all boundary nodes:

q = D u + e , (30)

where the diagonal matrix D and the vector e contain the values of (−Bi) and (Bi u ∞), re-
spectively, at each boundary node. Substituting Eq. (30) into Eq. (29) yields the system of
equations: ( 3

2 ∆t
C + H − G D

)
um+1 = G e + 4

2 ∆t
C um − 1

2 ∆t
C um−1 , (31)

which can be solved for the boundary values of temperature. Heat fluxes along the boundary
may then be evaluated pointwise by using Robin boundary condition.
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2.3.4 Numerical integration

Integration in Eq. (18) is carried out using composite Simpson’s rule. Quadratic boundary
elements are used to represent curved geometry. They provide increased accuracy because of
their better representation of the variation of the functions along the boundary. The variation
of coordinates x within each quadratic element is defined by their values at three global nodal
points x−, xo, x+ using suitable interpolation functions, which are function of the homogeneous
coordinate η :

x ( η ) = N1 x− + N2 xo + N3 x+ ,

with

N1 = 1
2 η ( η − 1) , N2 = ( 1 − η2 ) , N3 = 1

2 η ( η + 1 ) ,

η is the dimensionless coordinate varying −1 ≤ η ≤ 1. The difference with the numerical
implementation of quadratic elements is that the Jacobian and normal vector are no longer
constant within each element. In order to implement them, there is a need to transform from
Cartesian to curvilinear coordinates [17]. The transformation from dΓ to dη is now given by:

dΓ = | J | dη,

with the Jacobian computed in the form:

| J | =
√

J 2
x + J 2

y = dΓ
dη

,

in which

J x = dx

dη
, J y = dy

dη
.

Hence one can write for Eq. (18):

Gi j =
∫ 1

−1
Φ

(
x ( η i ) , x ( η )

)
| J | dη .

Similarly, other integrals can be computed. The components of the unit normal vectors at any
point are given by:

n x = J y

| J |
, n y = − J x

| J |
.

3 DESIGN OPTIMIZATION PROBLEM
The objective of this work is to optimize energy efficiency of a building wall by finding

the optimal shape of the left boundary Γ 1 which is in contact with outside environment. In
general, heat transfer design objectives can be classified into two categories: (i) heat transfer
augmentation problems and (ii) thermal insulation problems. Thus, the optimization problem
aims at finding parameters of the left boundary that minimizes the following cost function:

p ◦ = arg min
p ∈ Ω p

J ( p ) , (32)

where the objective function J
[
W . m −2 ]

is the averaged inward heat flux on the right boundary,
corresponding to the inside of the building:

J ( p ) = σ
1

H t∞

∫ t∞

0

∫ H

0
−k ∇ T ( γ ( p , y) ) n⃗ dy dt , (33)
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where σ is the parameter which takes values −1 and 1. In other words the first case requires the
highest thermal conductance for the heat transfer augmentation. Consequently, in the second
case the thermal conductance is the lowest for the thermal insulation problems. Note that the
objective function needs to be optimized under several constraints. First, the physical area of
the wall S ( p ) should not exceed the reference case area S∞. The reference case is defined as the
flat standard wall (γ = 0 in Eq. (1)). Thus, the cost function Eq. (33) needs to be optimized
under the following constraint:

S ( p ) ≤ S∞,

which, given the representation in Figure 1, leads to:∫
Γ3

L dΓ −
∫

Γ1
γ ( p , y) dΓ ≤

∫
Γ3

L dΓ,

which can be rewritten as ∫
Γ1

γ ( p , y) dΓ ≥ 0. (34)

The second constraint that must be satisfied by the parametrized mapping is that the maximum
width of the wall cannot be higher than L . In other words, the left and right boundaries cannot
overlap:

γ ( p , y) ≤ L − δ, (35)

where δ is a given spatial tolerance.
The extremums of cost function Eq. (33) are found with trust region method using exhaustive

search results as an initial values for parameters[20]. Trust-region method first defines a region
around the current best solution, in which a certain model (usually a quadratic model) can, to
some extent, approximate the original objective function. Trust-region method then take a step
forward according to the model depicts within the region. Unlike the line search methods, such
method usually determines the step size before the improving direction.

4 VERIFICATION OF THE NUMERICAL MODEL
Exact solution u e for Eq. (2) is used as a reference for verification of numerical solutions:

u e (x) = x4 y4 t

12 + 2 x2 t2 − 2 y2 t2. (36)

The boundary conditions will be in the following sections. The verification will be carried for
rectangular domain with the L = 0.25 and H = 0.5. Thus, it corresponds to a flat facade
with mapping function γ ( P , y) = 0. Since the objective of this work lies on computation of
fluxes on boundaries, the following boundary conditions are considered for the problem Eq. 2:

u = u e ( x ) , ∀x ∈ Γ 1 ∪ Γ2 ∪ Γ3 ∪ Γ 4 ,

To compute analytical solution q e (x) for fluxes on boundaries, one has to take normal
derivatives of û. The analytical solution is compared with the BEM as well as the finite-
difference method (FDM). The latter is implemented using the alternating-direction implicit
(ADI) method. For the numerical solution output q, the error ε 2 is computed according to:

ε 2 ◦ q =
∣∣ ∣∣ q − q e

∣∣ ∣∣
2 .

The fluxes q are computed for all boundary points. Different values of the time step ∆t are
chosen.
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Figure 3(a) presents the error according the time step of method for BEM and FDM. It
illustrates unconditional stability of the BEM and highlights that time step doesn’t have impact
to the BEM accuracy comparing to FDM. It highlights that BEM results has a significant lower
error compared to FDM results for bigger time step values. Figure 3(b) shows the error according
the spatial step of each method. The BEM approach has an error behaviour around O( ∆h )
in contrast with FDM approach, which has second order behaviour. In addition to that, the
BEM approach shows better accuracy for bigger values of spacial step. Thus, overall the BEM
method is suitable for problems which demand high memory storage and time computation.

10−4 10−3 10−2 10−1 100

∆t [-]

10−7

10−5

10−3

10−1

ε 2
[-

]

BEM ( ∆h = 0.01 )

FDM ( ∆h = 0.01 )

∆t

∆t2

(a)

10−2 10−1

∆h [-]

10−7

10−6

10−5

10−4

10−3

ε 2
[-

]

BEM

FDM

∆h

∆h2

(b)

Figure 3. Influence of time step ∆t on ε2 error for dimensionless q at t = 1 for spacial step
value ∆h = 0.01 (a) and influence of spacial step ∆h on ε2 error (b).

5 CASE STUDY

5.1 Presentation

Since the BEM numerical method have been verified, a real case study is now investigated
for optimization of the thermal design of a building facade. Case study considers a house wall
for two different days with opposite climate conditions (winter and summer) from 9 h to 18 h in
Nice city, France. The initial condition is assumed to be interpolation of measured temperature.
Thus, first order polynomials of x ∈ [0, L] are fitted the temperature distribution in the wall.

T 0 (x) =
(
T 0

R − T 0
L

)
· x

L
+ T 0

L, x ∈ [0, L]. (37)

Time step ∆t = 6 min. The wall is composed of bricks with thermal diffusivity k
ρ cp

= 1 m 2 . s −1.
The height and width of the wall are H = 3 m and L = 0.3 m. T R, T L, v ∞ are taken from
standard climatic data [16]. The absorptivity of the right boundary is set to a = 0.5 . The
incident radiation flux are computed using analytical projections of the solar angle, considering
shadow induced by front building and by the own shape of the boundary Γ 1 . For the boundary
Γ 1 , other coefficients are taken as h 0 = 5.82 W . m −2 . K −1 , h 1 = 3.96 W . m −2 . K −1 , λ =
0.32 , v 0 = 1 m . s −1 , y 0 = 65.33 m. Regarding the urban environment, two values of ratio
between front building distance D x m and height D y m are considered as presented in Table 1.
This choice ensure to have a sunlit on the facade and ensure a possible shape optimization of the
facade [16]. The shape optimization is carried out for two dates (December 21st and June 21st).
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December 21st is chosen for heat transfer augmentation problem, since it aims to increase the
rate of heat transfer in winter period. Inversely, June 21st is considered for thermal insulation,
since it aims to reduce heat transfer in summer period.

5.2 Results

The number of boundary elements is set to Ne = 256. The spatial tolerance is set to
δ = 0.25 L. For the mapping function γ Eq. (1), a third order polynomial is considered:

γ ( p , y ) = p0 y
( y

H
− p1

) ( y

H
− 1

)
− H p 0

12 ( 2 p1 − 1 ) .

With such equation, parameter p 0 states the convexity of the shape and p 1 the roots of the
equation. As described in Section 3, area and boundary constraints (Eq. (34) and Eq. (35)) have
to be satisfied. Application of those constraints for the given mapping function is demonstrated
in [16]. As a result, we have:

p 1 ∈ [ 0 , 1 ] , p̂ −
0 ( p 1 ) ≤ p 0 ≤ p̂ +

0 ( p 1 ) ,

where p̂ − and p̂ + are constraint functions which are illustrated in Figure 4(a). Note that it is
a connected space.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
p 0 [− ]

0.0

0.2

0.4

0.6

0.8

1.0

p
1

[−
]

p̂+
0 ( p 1 )

p̂−0 ( p 1 )

(a)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
p 0 [− ]

0.0

0.2

0.4

0.6

0.8

1.0

p
1

[−
]

−115

−105
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Figure 4. Domain of p variation (a) and the distribution of the objective function value in the
domain resulting from the exhaustive search (b).

First analysis focuses on the heat transfer augmentation problem on December 21st. After
preliminary analysis using exhaustive search method the objective function distribution is shown
in Fig. 4(b). A grid of 10 × 10 parameters equally spaced between the bounds is defined for
exhaustive search method. The cost function has monotonous behaviour. Thus, to increase
convergence rate one can use extremum values from this exhaustive search results as a initial
parameters for the optimization method. The flat wall reference p ref and optimized wall p ◦

parameters are given in Table 1. In addition, the reference flat wall and the optimized shapes
with corresponding SWR and heat flux at midday on inside and outside surfaces of the wall are
illustrated in Fig. 5. In case of the heat transfer augmentation the heat transfer is increased by
52%. Figure 5(b) reveals that it is achieved due to concavity on the top of the wall and convexity
on the bottom, which lead to higher magnitude of short wave radiation at Γ1 (Fig. 5(a)) and as
a consequence of the heat flux on the inside surface Γ3 (Fig. 5(c)).

Second analysis deals with thermal insulation problem on June 21st. Results are presented
in Table 1, which shows optimization for energy efficiency from reference case. Figure 6(b)
illustrates that in case of thermal insulation problem optimized shape shows opposite pattern
then in the heat transfer augmentation case. The heat transfer is decreased by 16%. Such
behaviour appeared due to convexity on the top of the wall and concavity on the bottom. It
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Table 1. Optimization results.

Cost function value Optimized shape parameter Neighbour building

Day J ( p ref ) J ( p ◦ ) J ( p ◦ )/J ( p ref ) p ◦
0 p ◦

1 D x / D y

heat transfer augmentation problems

December 21st −6.368 −3.086 0.484 −0.9 0.999 0.8

thermal insulation problems

June 21st 19.905 16.704 0.839 0.437 0.999 0.3

imply a decrease of the incident short wave radiation at Γ1 (Fig. 6(a)) and of the heat flux at Γ3
(Fig. 6(c)). It is due to the change of the angle between the direct beam and the normal facade
surface that affects the direct flux component qdr. Note that results are depicted for midday
values only.

To sum up all above, the influence of the shape of the wall and shadow distribution along
surface is significant for optimization of energy efficiency in the buildings. Figure 7(a) shows
distribution of the shadow on wall’s surface during the day Hs and according to Fig. 7(b),
considerable impact can be seen when wall partially under the shadow.
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Figure 5. Comparison of the reference and optimized wall shapes (b) with corresponding SWR
distributions (a) and flux q on Γ 3 (c) on December 21 st for the heat transfer augmentation
problem. The green line corresponds to the optimized data.

Another important point regarding the optimized wall shapes is that in both cases of heat
transfer augmentation and thermal insulation the total area of the wall is the same as in the
reference flat case. Thus, from engineering point of view there is no need for additional materials
compared to the reference flat wall.

6 CONCLUSION
This article explores the optimization of wall shapes to enhance energy efficiency by consid-

ering incident radiation, which is influenced by the wall’s surface shape. Initially, the Boundary
Element Method is employed to model the complex geometry of the non-flat wall and predict
transient heat transfer phenomena in the two-dimensional structure. The validity of the BEM
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Figure 6. Comparison of the reference and optimized wall shapes (b) with corresponding SWR
distributions (a) and flux q on Γ 3 (c) on June 21 st for the thermal insulation problem. The
orange line corresponds to the optimized data.

9 10 11 12 13 14 15 16 17 18

t [ h ]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
s

[m
]

Dec. 21

Jun. 21

(a)

9 10 11 12 13 14 15 16 17 18

t [ h ]

−2

−1

0

1

2

3

1 H

∫ Γ
3
q
d
y

[W
.m
−

3
]

×101

ref Dec.21

opt Dec.21

ref Jun.21

opt Jun.21

(b)

Figure 7. Variation of the shadow height induced by the front building on the reference wall (a)
and of the average flux q on Γ 3 (b) on December 21 st and June 21 st respectively.

model is confirmed through comparison with an analytical solution and the finite difference
method. The numerical findings emphasize that the Boundary Element approach is both faster
and with increase stability compared to conventional finite-difference methods.

Subsequently, a practical case study is undertaken to enhance the energy efficiency of a
building wall, focusing on a house wall located in the south-east of France where radiation levels
are substantial. Two heat transfer design objectives are considered: (i) increasing heat transfer
and (ii) improving thermal insulation. The results indicate that these objectives can be achieved
without the addition of materials. Specifically, the energy efficiency can be enhanced by two
times in winter and 16% in summer, respectively.

Future research should prioritize simulation for longer time period with inclusion of the night
time. Regarding the shape optimization of building enclosures, there is a need to explore various
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approaches for parameterizing the wall domain.
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