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A B S T R A C T
In recent years, as the boundaries of computing have expanded with the emergence of the Internet of
Things (IoT) and its increasing number of devices continuously producing flows of data, it has become
paramount to boost speed and to reduce latency. Recent approaches to this growing complexity and
data deluge aim to integrate seamlessly and securely diverse computing tiers and data environments,
spanning from core cloud to edge - the Computing Continuum (or Edge-to-Cloud Continuum).
Typically, the cloud is used for resource-intensive computations while the edge for low-latency tasks.

This provides an opportunity to run complex AI-enabled applications across multiple tiers
specifically facilitating the training of Machine Learning (ML) models at the "edge" of the Internet
(i.e., beyond centralized computing facilities such as cloud datacenters). Federated Learning (FL)
represents a novel ML paradigm for collaborative training, capitalizing on processing capabilities at
the edge for training purposes while addressing privacy concerns. A set of clients (i.e., edge devices)
collaboratively train a shared model under the supervision of a centralized server without exchanging
personal data. However, several challenges arise from the decentralized nature of FL in the Computing
Continuum context: statistical heterogeneity (data drift between parties), system heterogeneity (due
to the nature of the environment), volatility (e.g., client dropouts), security threats and, persistently,
privacy (although no personal data is transmitted, the shared model updates include information about
data used for training).

As opposed to previous studies dedicated to federated learning (typically on homogeneous, edge-
based infrastructures), this survey aims to present a systematic overview of the existing litera-
ture addressing how state-of-the-art Federated Learning (FL) systems contend with the challenges
previously outlined within the edge-to-cloud Computing Continuum, in particular heterogeneity,
volatility and large-scale distribution. We analyze representative tools for implementing, monitoring,
configuring and deploying such systems. We highlight significant efforts made to overcome statistical
heterogeneity and security problems in FL. We specifically analyze the quality of the experimental
evaluation done for existing systems and the relevant benchmarks. Finally, we discuss some open
issues and future directions (e.g., lack of experiments in realistic environments) to support the broader
adoption of FL across the continuum and to eventually fulfill the vision of the AI and edge computing
convergence - the edge intelligence.

1. Introduction
The number of IoT devices generating more and more

data at the edge has greatly increased in recent years. Many
organizations see there an opportunity to massively store and
process personal data for training machine learning (ML)
models. However, data protection regulations such as GDPR
in EU or CCPA in US set many constraints and directives to
follow in order to process those data (e.g., data minimization
principles, security measures). Cloud-based solutions that
have been used for years to train ML models in a centralized
manner are now facing numerous constraints due to these
new data protection regulations.

Alternative solutions advocate for decentralization by
moving the AI closer to or at the edge of the network,
where the data is produced. This shift towards edge intel-
ligence [1] is now accelerated by the emergence of novel
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systems enabling the concurrent execution across multiple
computing tiers (IoT, edge, fog, clouds). Commonly referred
to as the Edge-to-Cloud Continuum or the Computing
Continuum (CC), this approach leverages the strengths of
each computing tier (heavy computations on the clouds,
low-latency processing at the edge) while circumventing
their respective limitations through specific optimisations
and new decentralised solutions for historically centralised
problems (e.g., learning).

Federated Learning (FL) is such an alternative, enabling
ML in decentralized environments to address privacy con-
cerns and satisfy regulatory compliance. In FL, a set of
clients collaboratively train a ML model by periodically
performing local training and sending updated versions
of the model to a central server. FL takes advantage of
the recent improvements in computational resources at the
edge to perform on-device training of the model without
communicating raw user data to the server and instead
exchanges model weights as illustrated in Figure 1. FL
brings significant advantages over centralized settings.
Improving privacy: In a centralized setting, data are sent
to remote servers and then processed using cloud or HPC
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resources. This can lead to privacy risks, and therefore,
individuals may not want their data to be collected. In FL,
raw personal data is not exchanged between parties, instead
it is processed locally on user devices.
Learning from more diverse data: As FL takes advantage
of decentralized processing from edge devices to train ML
models, it benefits from more data diversity and is more rep-
resentative of the current trends in the different populations
of devices. Traditional centralized ML is limited either by
privacy concerns (e.g., collaboration between hospitals) or
scaling issues (e.g., with the increasing volumes of data to
process).
Reducing the pressure on the servers: With the explod-
ing volume of data continuously generated at the edge,
the required bandwidth, storage, and computing resources
needed to upload and process data in real-time can become
a bottleneck for cloud-based solutions. FL takes advantage
of edge resources to directly process data at their generation
sites, reducing the pressure on the servers.

At the same time, FL faces several challenges due to
its decentralized nature: system heterogeneity and statistical
heterogeneity, as well as ensuring client participation and
security. The heterogeneous and volatile nature of the re-
sources across the Computing Continuum complicate these
issues even further. This article proposes a structured analy-
sis of the literature on FL focusing on the existing solutions
to address these challenges. The main contributions of this
survey are:

• An overview of the key concepts in FL, characteriz-
ing the nature of the collaborative training (e.g., scale
and nature of the data partitioning).

• A survey of the FL literature resulting in a taxonomy
of existing systems and tools built from the perspec-
tive of how they address the challenges of supporting
FL in the Computing Continuum.

• A set of discussions providing a critical perspective
on existing works and identifying promising direc-
tions to cope with the limitations.

• A set of open challenges that need further investiga-
tion to better support the development of FL systems
in the context of the Computing Continuum, such as:
addressing the concept drift; exploring unsupervised
approaches; enabling seamless composability of FL
components and reconfigurability of the system; as
well as sustainability in order to support more hetero-
geneity in FL.

The remainder of this article is organized as follows. In
Section 2, we discuss previous surveys on FL and motivate
the need for a new one. Section 3 describes the methodology
used for conducting this survey. Section 4 gives background
about FL and the CC, and highlights the current challenges
for the adoption of FL across the CC. Section 5 provides
a detailed overview of FL systems with regard to the chal-
lenges they want to address. Section 6 lists frameworks

Figure 1: Federated Learning Process

that can be used to implement FL systems and approaches
for the configuration of the application. Section 7 provides
more information about model validation as well as model
management and deployment tools. Section 8 is dedicated
to open issues and research opportunities for the broader
adoption of FL across the CC.

2. New Contributions of this Study
Several studies were conducted to assess advances in

Federated Learning. In this section we position our survey
with respect to these prior works.

Related studies. The basic concepts and the architecture
of FL were first introduced in [2, 3, 4], and were illustrated
with several use-cases (e.g., mobile devices, industrial engi-
neering, healthcare). Two extensive reviews about FL at the
Edge of the continuum are proposed in [5, 6]. [5] reviews
FL studies from two perspectives: enabling FL at the Edge
and Edge platforms in support of FL. Authors of [6] present
protocols, architectures and specific issues of existing ap-
proaches for FL at the Edge (e.g., heterogeneity manage-
ment, security). The underlying implementation challenges
for mobile edge computing are presented in [7]. Authors
of [8] focus on the problem of Non-IID data in FL (i.e., data
drift among clients). In this work, different types of data
skew are described and several approaches to handle them
are proposed. In [9], the authors present challenges related
to Vertical FL (i.e., training from vertically partitioned data)
and discuss possible solutions. Several approaches to opti-
mization and implementation of FL in resource-constrained
IoT are presented in [10]. In [11] and [12], a functional
architecture and a collection of architectural patterns for FL
systems are discussed. Authors of [13] propose a defini-
tion of FL systems and classify them according to multi-
ple criteria (e.g., data partitioning, model implementation,
communication architecture). A taxonomy of threat models
and major attacks in FL is provided by [14]. Finally, some
studies focus on the application layer, like [15, 16] presenting
specific FL designs, privacy and security measures for smart
healthcare.
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While all these studies address important issues of Fed-
erated Learning in homogeneous settings (i.e., only at the
edge), none of them considered it from the Computing
Continuum perspective, that is, presenting the current ap-
proaches and the challenges of applying FL in highly dis-
tributed, heterogeneous and volatile environments. In [17],
authors propose a taxonomy of heterogeneous FL environ-
ments and present few directions to address it such as person-
alized FL and transfer learning, however they do not directly
target highly distributed and volatile environments. Decen-
tralized FL approaches are reviewed in [18] but remain
specific to peer-to-peer FL. [19] reviews distributed learning
approaches (FL and split learning) in the IoT-Edge-Cloud
Continuum, yet specially targeting privacy and security.
Other studies were proposed with a focus on the Computing
Continuum [20, 21], however they do not deal with FL.
We aim to fill this gap and provide further background,
challenges and perspectives of FL in the context of the
Computing Continuum.

Originality of this study. Our goal is to provide an
overview of the main challenges and the latest progress
towards the adoption of FL across the continuum. This sur-
vey brings several new contributions compared to previous
studies:

• We highlight a set of challenges of the FL support
across the Computing Continuum.

• We propose a taxonomy of FL systems to solve these
challenges.

• We provide an extended overview of frameworks
and benchmarks for implementing FL systems with
respect to the supported settings, training modes
and ML frameworks they natively interface with.

• We are the first to systematically present details
of the experimental evaluation such as the scale
of experiments, datasets and platforms used to vali-
date those FL systems, in an effort to support repro-
ducibility for further analysis and optimisation within
the community.

• We present a set of deployment and model manage-
ment tools to facilitate the supervision of FL systems
in this highly distributed environment.

3. Survey Methodology
To find articles that address the different challenges of

supporting FL in the CC, we used several Digital Libraries:
Google Scholar, IEEE Xplore, arXiv and ACM Digital Li-
brary and searched for the following terms:

• (Volatile 𝑂𝑅 Heterogeneous 𝑂𝑅 Personalized 𝑂𝑅
Privacy-preserving 𝑂𝑅 Decentralized) 𝐴𝑁𝐷 Feder-
ated Learning

• Federated Learning 𝐴𝑁𝐷 (Computing Continuum
𝑂𝑅 Client Selection)

Figure 2: Publication date of selected articles

• Federated Learning 𝐴𝑁𝐷 (Framework 𝑂𝑅 Bench-
mark 𝑂𝑅 Hyperparameter Optimization 𝑂𝑅 Evalua-
tion)

Then we iteratively discarded articles with non-relevant
titles and in a second stage kept the most relevant ones
after reading their abstract, introduction and conclusion.
Overall, in this survey, we selected and reviewed 53 articles
published between 2018 and 2023 as illustrated on Figure 2.
We went further by reviewing 21 implemented FL tools (i.e.,
frameworks and benchmarks) hosted on online repositories
such as GitHub.

4. Main Concepts and Current Challenges
In this section, we present some background about FL

before introducing the main challenges for its seamless adop-
tion across the Computing Continuum.
4.1. Federated Learning Overview

Federated Learning (FL) is a distributed paradigm for
collaborative training of machine learning (ML) models. FL
is typically deployed in a setup composed of an orchestrating
server and a set of distributed clients at the Edge. These
clients perform local training of the model over their lo-
cal datasets. The server coordinates the training phase by
periodically selecting subsets of clients. It then aggregates
the resulting local model updates and performs a weighted
averaging to build the new global model, before starting a
new training round as depicted in Algorithm 1 [22].
4.2. Federated Learning Settings

FL can be classified according to several setups: cross-
device and cross-silo FL are defined by the scale and nature
of the clients used in the federation while vertical and
horizontal FL are defined by the partitioning scheme of the
training data.

In cross-device FL, hundreds to millions of devices
with very heterogeneous power and network accessibility are
used to train a model. Those devices usually have limited
battery life, computational capabilities and unstable net-
works. Smartphones, sensors and IoMT (Internet of Med-
ical Things) are common devices in cross-device FL. One
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Figure 3: Data Partitioning Schemes

Algorithm 1 FedAvg
Input: K is the total number of clients, C is the fraction of
client to sample in each round, B is the local minibatch size,
R is the total number of rounds, E is the number of local
epochs; 𝜂 is the learning rate and 𝑃𝑘 refers to the partition
of client 𝑘.
Function Server(𝐾 , 𝐶)

𝑤 ← (initialize model weights)
foreach 𝑟𝑜𝑢𝑛𝑑 ∈ range (1, 𝑅) do

𝑚 ← 𝑚𝑎𝑥(𝐶 ⋅𝐾, 1)
𝑆𝑡 ← (random set of 𝑚 clients)
foreach client 𝑘 ∈ 𝑆𝑡 do

𝑤𝑘, 𝑛𝑘 ← ClientUpdate(𝑘, 𝑤)

end
𝑛 ←

∑𝑘
𝑖=1 𝑛𝑘

𝑤 ←
∑𝑘

𝑖=1
𝑛𝑘
𝑛 𝑤𝑘

end
return 𝑤

Function ClientUpdate(𝑘, 𝑤)
𝑏𝑎𝑡𝑐ℎ𝑒𝑠 ← (split 𝑃𝑘 into batches of size B)
foreach local epoch ∈ range(1, 𝐸) do

foreach batch ∈ 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 do
𝑤 ← 𝑤 − 𝜂∇𝑙𝑜𝑠𝑠(𝑤; 𝑏𝑎𝑡𝑐ℎ)

end
end
return 𝑤, |𝑃𝑘|

example illustrating well this setting is the mobile key-
board prediction system [23] from Google, leveraging 1.5
million Android smartphones to perform FL on local key-
board inputs. Some key challenges in cross-device FL are
power-efficiency, low communication overhead, statistical
heterogeneity (clients tend to have very different usage) and
security (e.g., IoMT).

In cross-silo FL, few data silos which typically come
with strong computational power and stable networks are
used to train a model. Those data silos are usually owned
by big institutions such as data centers from hospitals or
banks. Power-efficiency and low communication overhead
remain important challenges in cross-silo FL, but they are
less critical than in cross-device FL due to clients with
strong computational power and network accessibility. In
turn, privacy is a key challenge due to the nature of the data
that is more likely to be sensitive [24] (e.g., patient records,
bank statements).

In horizontal FL (HFL), data is partitioned by samples
over the participating parties. In other words, parties have
similar data (i.e., data with the same attributes) that can
directly be used to train the model. For instance, mobile
devices may generate log data from a texting application to
train a model using FL. This setting is illustrated on the left
part of Figure 3. This setting is easily scalable, therefore it
suits very well deployments across the Computing Contin-
uum.

In vertical FL (VFL), data is partitioned by features
over the participating parties. In other words, parties have
data with different attributes overlapping over their IDs and,
through collaboration, they can train a model by combining
their data. For instance, an insurance company and a bank
may have overlapping data concerning their clients. Using
VFL, they can train a model with data from their overlapping
clients without revealing anything private to the other party.
This setting is illustrated on the right part of Figure 3. This
setting is not suited for highly distributed systems, as it is
hardly scalable. Instead, it suits cross-silo scenarios with
very few participants. Therefore we do not focus on this
setting in this study.

Personalized FL (PFL) refers to the problem of training
specialized models to better fit clients needs. It is proposed
as a solution to the problem of inconsistent performance
of the model caused by client drift (i.e., diverging data
distribution between clients). It can, for instance, take the
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Figure 4: The Computing Continuum

form of additional fine-tuning of the global model using
local data to specialize it to a client’s data distribution, or
training specific models for clusters of similar clients.
4.3. The Computing Continuum

Edge, fog, cloud and HPC infrastructures leverage very
different processing, storage and network resources. While
edge devices continuously produce high volumes of data,
cloud and HPC infrastructures have access to huge process-
ing capabilities. The traditional approach for handling such
volumes of data is to send them to cloud or HPC infras-
tructures for centralized processing. Recent improvements
in processing capabilities at the edge are now enabling the
processing of new data close to their generation site. By
strategically distributing the processing loads between the
different tiers of the continuum, we can improve latency,
network usage and privacy while taking advantage of the full
spectrum of available resources. With these new perspec-
tives also come new possibilities in terms of applications
(e.g., smart cities, smart healthcare, digital twins etc.). We
refer to this very heterogeneous and interconnected environ-
ment as the Computing Continuum [25] (Figure 4).

The majority of existing studies have considered FL
to be deployed in standard environments combining Cloud
resources for the server and Edge resources for the clients.
Deploying FL in the CC introduces more diversity: devices
can be spread over larger geographical areas, subject to
varying degrees of volatility, with different computing re-
sources (e.g., Fog, HPC etc.) and producing different types
of data. Additionally, the recent convergence of network-
ing and Cloud-Edge computing [26] has lead to the emer-
gence of new network topologies such as hierarchical and
peer-to-peer networks. Overall, this requires the elaboration
of communication-efficient protocols as well as innovative
mechanisms to ensure the successful execution of the train-
ing phase, as discussed in the next subsection.
4.4. Challenges of Supporting FL across the

Computing Continuum
While Federated Learning is a promising candidate for

applying ML workflows over highly distributed resources,

Figure 5: Client drift due to statistical heterogeneity

the complex and heterogeneous nature of the continuum
brings some additional challenges, that we discuss here.

1. Statistical Heterogeneity. In decentralized settings,
the data distribution among parties is usually Non-IID
(non independent and identically distributed). Clients
with diverging data distributions will likely converge
to different optima and the naive strategy of averaging
the local models to update the central model will
not necessarily converge to the global optimum. This
problem is called client drift, and its impact in a FL
system is illustrated in Figure 5.

2. Volatile Environments and System Heterogeneity.
In the common FL setup, a massive number of het-
erogeneous devices is used. The different computing
resources (e.g., CPU, memory, storage), with various
autonomy (e.g., battery life) and volatile network ac-
cessibility may have a strong impact on the stability of
the learning process.

3. Robustness of the System. FL brings a privacy benefit
over centralized settings by directly processing data
at the edge. However, this edge training still involves
exchanging model updates between parties, which
may contain sensitive information about individuals.
Additionally, all participating peers have full access to
the model weights and therefore any malicious client
has the ability to manipulate the model with regard to a
malicious objective. Without appropriate privacy and
security measures, the system is vulnerable to model
inversion and model poisoning attacks.

4. Spatial Diversity. Peers across the CC may be de-
ployed over widely distributed geographical areas.
Direct communications from the Edge to the Cloud in
a single-hop manner may result in high overhead due
to long transmission delays (e.g., high latency, packet
re-transmission). Exploring alternative network topol-
ogy becomes necessary to ensure communication-
efficiency.

In the following sections, we present some of the current
approaches and tools proposed to address these challenges
as well as the main research opportunities in this direction.
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5. Current Approaches towards a Seamless
Integration of FL in the CC
The heterogeneous and volatile nature of devices com-

posing some tiers of the continuum (e.g., edge, fog) has
various impacts on FL: inefficient training phase, high la-
tency, risks of security breaches, low participation rate. This
calls to rethink the design of distributed applications running
across the CC. In this section we provide an overview of the
mechanisms applied in this direction in FL. A summary of
these approaches is presented in Table 1.
5.1. Statistical Heterogeneity

The statistical heterogeneity problem in FL can be
addressed through two distinct approaches [71]. The first
approach consists in training one centralized model and
through specific mechanisms attempting to mitigate the
impact of Non-IID data in order to reach the global optimum
(i.e., reach a consensus among all participating peers). The
second approach consists in training personalized models
for each FL client or group of clients with similar data
distributions to better suit each of their local needs and
converge to their local optima.
5.1.1. Training One Centralized Model

The main goal when targeting the improvement of the
global model accuracy (i.e. model stored at the server side)
is to generalize the global data distribution. Non-IID data
across clients complicate generalization and improving per-
formance of the model implies reducing the impact of Non-
IID data through different mechanisms.

A large part of previous research on FL has focused on
reducing the impact of Non-IID data. FedProx [27] adds
a proximal term to the local sub-problem to limit the im-
pact of heterogeneous clients and diverging data. In [28],
authors explore different server optimizers (i.e., modifying
the aggregation rules to update the global model) to im-
prove the convergence of the model. FedAdagrad, FedYogi
and FedAdam strategies are introduced which specifically
use different optimizers at the server level. FedBN [29]
addresses the problem of feature shift Non-IID data (as
opposed to label distribution skew), which may occur with
clients from different environments or clients using different
types of sensors. The authors use local batch normalization
before averaging models to reduce the impact of feature
shift. FedCurv [30] focuses on building lifelong learning
FL and aims to overcome catastrophic forgetting in the FL
setting. The authors introduce an algorithm adding a penalty
term to the loss function reacting to change in important
parameters for the initial task while learning a second task.
SCAFFOLD [31] attempts to solve slow convergence due
to client-drift. For this, it estimates the update direction for
the global model and local models and uses the difference
for correction. FedNova [32] uses normalized averaging to
eliminate objective inconsistency due to heterogeneous local
updates. FedMA [33] constructs a shared model by matching
and averaging hidden elements of the model with similar
feature extraction signatures.

5.1.2. Training Personalized Models
To better fit the client needs, one direction is to pro-

vide them with personalized models. This personalization
approach is motivated by the generalization problem in
FL: given highly heterogeneous data, training a common
model for all the users cannot suit everyone’s needs. These
algorithms are referred to as personalized FL (PFL). PFL is
particularly relevant in the CC where the statistical hetero-
geneity among clients can be very high. PFL approaches can
be divided in two groups: (1) user-level personalization (i.e.,
each client has its own personalized model), and (2) cluster
personalization (i.e., clients are grouped into clusters for
personalized FL training based on their data distributions).

User-level personalization. Several works have ex-
plored user-level personalization in FL. In [34], authors
suggest finding an initial model that clients can easily adapt
to their local data distributions by performing a few steps
of gradient descent locally. In FedProto [35], the federa-
tion process is used to build shared prototypical networks
and the training on each client focuses on minimizing the
classification error on local data while keeping the resulting
local prototypes close to the global prototypes. In [36], the
authors highlight the similarities between FL and Model-
Agnostic Meta-Learning (MAML) algorithms and propose a
FedAvg variant which combines FedAvg and Reptile to pro-
vide personalized models through fine-tuning. pFedHN [37]
(personalized Federated HyperNetworks) trains a central
hypernetwork model on the server side using client descrip-
tors (embedding vectors) to generate smaller personalized
models for each client. It takes advantage of the server com-
puting power to train a large central hypernetwork without
communication overhead. In [38], APFL (Adaptive PFL)
is a bi-level optimization algorithm learning a mixture of
local and global models to provide a personalized solution.
Authors of [39] propose Ditto, an algorithm optimizing two
tasks, the global objective and local objectives. For this it
uses a tunable regularization term encouraging personalized
models to stay close to the global model which can be used
to adjust the trade-off between fairness and robustness of the
models. FedPer [40] is enabling personalization by training
global base layers and keep locally personalized layers.

Cluster personalization. Another approach to achieve
PFL is to divide the FL procedure into multiple clusters of
similar clients that jointly trains personalized models. By
clustering clients with similar data distributions, clustered
FL keeps the benefit of collaborative training applied to a
more specialized task.

Gradient similarity has been used to form clusters through
recursive bipartitioning [41] and greedy agglomerative pro-
cesses [44].

Clustering through emprical risk minimization has been
proposed in [42, 43]. In IFCA [42] (Iterative Federated
Clustering Algorithm), the server communicates 𝐾 models
corresponding to 𝐾 clusters to each client. Clients iteratively
estimate their cluster identity using local empirical loss
functions. Authors argue that this approach benefits from
releaving the server from the client clustering overhead.

C. Prigent et al. Page 6 of 21



Enabling Federated Learning across the Computing Continuum: Systems, Challenges and Future Directions

Table 1
Federated Optimization Algorithms

Optimization Target Evaluation Setting

Algorithm
Global

Model

Personalized

Models

Resource

Utilization

Client

Selection
Security Data Type Dataset

Scale of Experiments

(number of clients)

Experimental

Platform

Statistical Heterogeneity

FedAvg [22] - - - - - Image (1) (2) > 500 Unknown

FedProx [27] ✓ ✗ ✗ ✗ ✗ Image/Text (1) (2) (3) (4) > 500 Simulated

FedOpt [28] ✓ ✗ ✗ ✗ ✗ Image/Text (2) (5) (6) (7) (8) > 500 Simulated

FedBN [29] ✓ ✗ ✗ ✗ ✗ Image
(1) (15) (16) (17)

(18)
[20; 100[ Unknown

FedCurv [30] ✓ ✗ ✗ ✗ ✗ Image (1) [20; 100[ Simulated

SCAFFOLD [31] ✓ ✗ ✗ ✗ ✗ Image (8) [100; 200[ Simulated

FedNova [32] ✓ ✗ ✗ ✗ ✗ Image (6) < 20 Distributed

FedMA [33] ✓ ✗ ✓ ✗ ✗ Image/Text (2) (6) [20; 100[ Distributed

Per-FedAvg [34] ✗ ✓ ✗ ✗ ✗ Image (1) (6) [20; 100[ Simulated

FedProto [35] ✗ ✓ ✓ ✗ ✗ Image (1) (4) (6) [20; 100[ Simulated

FedAvg + Reptile [36] ✗ ✓ ✗ ✗ ✗ Image/Text (4) (2) > 500 Simulated

pFedHN [37] ✗ ✓ ✓ ✗ ✗ Image (6) (7) (20) [100; 200[ Simulated

APFL [38] ✗ ✓ ✗ ✗ ✗ Image (1) (6) (8) > 500 Distributed

Ditto [39] ✗ ✓ ✗ ✗ ✗ Image/Text
(4) (5) (10) (11)

(21)
[200; 500[ Simulated

FedPer [40] ✗ ✓ ✗ ✗ ✗ Image (4) (2) (24) [20; 100[ Simulated

CFL [41] ✗ ✓ ✗ ✗ ✗ Image (1) (6) [20; 100[ Simulated

IFCA [42] ✗ ✓ ✗ ✗ ✗ Image (1) (4) (6) > 500 Simulated

FedSoft [43] ✗ ✓ ✗ ✗ ✗ Image (8) [100; 200[ Simulated

FLACC [44] ✗ ✓ ✗ ✗ ✗ Image (1) (4) (6) (8) [200; 500[ Unknown

LADD [45] ✗ ✓ ✗ ✗ ✗ Image (25) (26) (27) (28) > 500 Simulated

System Heterogeneity

FedCS [46] ✗ ✗ ✓ ✓ ✗ Image (6) (10) > 500 Simulated

VFedCS [47] ✓ ✗ ✗ ✓ ✗ Image (6) (8) [100; 200[ Simulated

FedMarl [48] ✓ ✗ ✓ ✓ ✗ Image/Text (1) (2) (6) (10) > 500 Distributed

PruneFL [49] ✗ ✗ ✓ ✗ ✗ Image (4) (6) (21) (22) < 20 Distributed

FD + FedAug [50] ✓ ✗ ✓ ✗ ✗ Image (1) < 20 Unknown

SPATL [51] ✓ ✓ ✓ ✗ ✗ Image (4) (6) [100; 200[ Simulated

FetchSGD [52] ✗ ✗ ✓ ✗ ✗ Image/Text (4) (6) (7) (29) > 500 Unknown

AQFL [53] ✗ ✗ ✓ ✗ ✗ Image/Text (2) (4) (22) (30) > 500 Simulated

FedSyn [54] ✗ ✗ ✗ ✗ ✓ Image (1) (6) < 20 Distributed

FedKD [55] ✗ ✗ ✓ ✗ ✓ Image/Text
(6) (7) (31) (32)

(33)
< 20 Unknown

FedAsync [56] ✓ ✗ ✓ ✗ ✗ Image/Text (6) (9) [100; 200[ Simulated

ASO-Fed [57] ✓ ✗ ✓ ✗ ✗ Image/Tabular (10) (12) (13) (14) [20; 100[ Simulated

Robust Systems

FedCVAE [58] ✗ ✗ ✗ ✗ ✓ Image/Tabular (1) (4) (11) > 500 Unknown

PDGAN [59] ✗ ✗ ✗ ✗ ✓ Image (1) (10) < 20 Simulated

FedGuard [60] ✗ ✗ ✗ ✗ ✓ Image (1) [100; 200[ Distributed

FLDetector [61] ✗ ✗ ✗ ✗ ✓ Image (1) (4) (6) [200; 500[ Unknown

AttackerDetectionMicro [62] ✗ ✗ ✗ ✗ ✓ Tabular (38) (39) (40) [20; 100[ Unknown

Fed_BVA [63] ✗ ✗ ✗ ✗ ✓ Image (1) (6) (7) (10) [100; 200[ Simulated

Interconnecting peers across the CC

Hierarchical FL [64] ✗ ✗ ✓ ✗ ✗ Image (6) [200; 500[ Simulated

HierFAVG [65] ✗ ✗ ✓ ✗ ✗ Image (1) (6) [20; 100[ Simulated

MFLCES [66] ✗ ✗ ✓ ✓ ✗ Image (1) > 500 Simulated

SHARE [67] ✗ ✗ ✓ ✗ ✗ Image (1) (6) [20; 100[ Simulated

ProxyFL [68] ✗ ✗ ✓ ✗ ✓ Image
(1) (6) (10) (34)

(35)
< 20 Simulated

Dis-PFL [69] ✗ ✓ ✓ ✗ ✓ Image (6) (7) (23) [100; 200[ Simulated

FedMes [70] ✗ ✗ ✓ ✗ ✗ Image (1) (6) (10) [20; 100[ Simulated

(1) MNIST, (2) Shakespeare, (3) Sent140, (4) FEMNIST, (5) Stack Overflow, (6) CIFAR-10, (7) CIFAR-100, (8) EMNIST, (9) WikiText-2,
(10) Fashion-MNIST, (11) Vehicle, (12) FitRec, (13) Air Quality, (14) ExtraSensory, (15) SVHN, (16) USPS, (17) SynthDigits, (18) MNIST-M, (19) STL-10,
(20) Omniglot, (21) CelebA, (22) ImageNet-100, (23) Tiny-ImageNet, (24) FLICKR-AES, (25) GTA-5, (26) Cityscapes, (27) CrossCity, (28) Mapillary Vistas
(29) PersonaChat (30) Reddit (31) Chest X-Ray (32) AG News (33) SST2 (34) Kvasir (35) Camelyon-17 (38) Adult Income (39) 120 years of Olympic history

(40) Bank Marketing
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However, while decreasing the computation burden for the
server, it increases the communication overhead by sending
multiple copies of the model to each client. FedSoft [43]
follows a similar approach, but rather than assigning a single
cluster per client, allows the assignment of several soft
clusters for each client.

Finally, knowledge extraction has been used to extract
meaningful characteristics of client local data distributions.
In LADD [45], clients apply style extraction to their data
through Fourier Domain Adaptation style transfer tech-
niques. Clusters are built by running K-Means over their
extracted styles.
5.2. System Heterogeneity

The volatile nature of edge environments combined with
the system heterogeneity found across the Computing Con-
tinuum makes it challenging to natively support FL. Current
approaches rely on client selection schemes to efficiently
sample FL clients and other sustainable approaches to better
support the execution workflow over heterogeneous devices.
5.2.1. Client Selection Schemes

They can be used to efficiently sample FL clients in order
to improve the stability of the FL training or to accelerate the
convergence of the model with high quality data.

In [46], authors propose a client selection strategy based
on client resource conditions in mobile Edge computing.
FedCS defines a 2-steps client selection scheme consisting
in asking a set of random clients their resource information
(e.g., network state, computational capacities, data size) and
selecting them by estimating their required time to achieve a
round (including global model download, local training and
updated model upload). Authors of FedMarl [48] illustrate
the FL problem as a multi-agent reinforcement learning
(MARL) problem where the server coordinates a set of RL
agents that select in each round the clients participating in
the FL training. The server also computes a reward with
regard to the test accuracy, total processing latency and
communication cost of each round. Authors of [47] address
the problem of client selection in volatile environment where
the set of available clients changes over time (i.e., clients may
join or disconnect) and data collection exhibits discrepancies
during the FL training. They propose an online learning
scheme that identifies clients with higher utility (effective
participation data over the last 𝑇 rounds). They illustrate
their problem as a combinatorial multi-armed bandit and
base their solution on the upper confidence bound (UCB)
algorithm to select clients with regard to a tradeoff between
high utility and low selection rate.
5.2.2. Sustainable Approaches

Clients in FL are likely to be constrained devices with
limited computing resources, network access and battery
life. Ensuring the proper support of FL across all devices
calls for sustainable approaches (i.e., targeting energy effi-
ciency by minimizing computations and communications).

Communication-efficiency in FL can be achieved through
multiple approaches. Model pruning is used in [49]. Authors

propose PruneFL, an algorithm leveraging adaptive model
pruning to reduce communication and computation costs
resulting in better training efficiency. In [50], two algorithms
are proposed. FD (federated distillation) is used to reduce
communication overhead through knowledge distillation
while FAug uses a generative model to correct the Non-
IID nature of local datasets. Their combination results in
drastic reduction in communication overhead with little
degradation in model accuracy. SPATL [51] uses an RL
agent for salient parameter selection of over-parameterized
models in order to reduce communication overhead in FL.
In SPATL, the model is split into an encoder and a predictor.
The encoder part is trained in a federated manner, while the
predictor stays local to each client to address data divergence
problem among clients. In [52], authors propose FetchSGD
where each FL client compresses its model update using
Count Sketch, a datastructure that randomly projects a vector
several times into lower dimensional spaces such that high
magnitude elements can later be recovered. The server then
takes advantage of the mergeability of sketches to combine
model updates. In [53], authors propose AQFL (Adaptive
Quantized FL). After selecting a random subset of clients,
the server collects the computational profile of each client.
The server then sends custom quantized models to each
client with regard to their computational profiles (the model
quantization precision is selected to meet the time budget).
The server finally aggregates and de-quantizes each local
update before updating the global model.
5.2.3. Reducing Latency between Rounds

Network topologies in the continuum and limited com-
puting resources at the edge may lead to high latency and
client staleness. Finding the right mechanisms to mitigate
these problems avoids slow and inefficient FL training.

A semi-synchronous approach is proposed in [64]. The
FL system is split into several FL subprocesses running into
clusters of mobile users and orchestrated by small cell base
stations. A local FL process is executed in each cluster while
all models are periodically synchronized through a macro
base station for global consensus. FedAsync [56] minimizes
the impact of slow clients by enabling asynchronous updates
of the global model and uses an alpha factor to reduce the
impact of slow clients (which result in greater error due
to staleness). ASO-Fed [57] follows a similar approach by
enabling asynchronous updates but also accepts new data
arriving during training.
5.3. Robust Systems

Although oriented towards privacy-preserving, FL is
not fully secured by nature. Exchanged gradients or model
updates may reveal sensitive information to third-parties and
might be exploited to reconstruct or infer personal data. As
stated in [72], standard FL is vulnerable to several types of
attacks (e.g., model poisoning or inference attacks). These
vulnerabilities are critical and defensive mechanisms must
be adopted to ensure security and user privacy. This problem
is exacerbated in the CC where the system is highly and
widely distributed. The volatile nature of peers encountered
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Table 2
Privacy Preserving Mechanisms for FL

Privacy Preserving Mechanism Impact on a FL System Scale

Accuracy Computation Overhead Communication Overhead

Differential Privacy Varying (Privacy Trade-off) No Impact No Impact Any

Homomorphic Encryption No Impact High Low Cross-silo

Secure Multi-party Computation No Impact Medium High Any

Synthetic data Varying Medium No Impact Any

Knowledge Distillation Varying Medium No Impact Any

across the CC adds to this problematic. In such context, the
threat level is high. A malicious actor could attempt to take
control of a fraction of devices in the federation in order
to disrupt the training process (e.g., through adversarial at-
tacks). The system is also subject to privacy-threats through
data transmission interception. In Table 2, we listed several
mechanisms that can be used to ensure privacy, along with
their impact on FL systems and scale of the application, as
discussed below.
5.3.1. Privacy Improvement

One major concern for users privacy in FL is represented
by the inference attacks. Since gradients are derived from
participants private data, a third-party could infer infor-
mation about them (e.g., class representatives, membership,
properties) or directly infer inputs and labels of the training
data (e.g., deep leakage from gradients [73]). We present
several mechanisms to limit privacy leakage risks.

Differential Privacy (DP) is a privacy preserving mech-
anism used to add random noise to the data. It enables better
privacy as data used for training is altered depending on an
𝜖 factor (the smaller the 𝜖 factor, the greater the noise on
data), yet it reduces training efficiency. Consequently, this
factor should be carefully selected to enable privacy while
maintaining acceptable model accuracy. Authors from [74]
studied the impact of this factor in the FL context and showed
that the smaller the 𝜖 factor (and the greater the noise),
the greater the decrease in accuracy for underrepresented
classes. This ends in worsening unfairness of the model.
Moreover, authors of [75] discuss the limits of DP and
highlight its misuse in ML. Notably, using the same data for
several epochs will increase the privacy budget and decrease
the effective protection. Consequently, using clients data for
a smaller number of local epochs is a condition to ensure that
DP effectively works.

Homomorphic Encryption (HE) enables computations
over encrypted data without access to the secret key. In the
FL context, HE can be used to let clients encrypt their inputs
(locally updated weights) with the HE scheme, afterwhich
the server can aggregate encrypted weights and send back
the updated model to the clients (which is still encrypted).
However, it requires additional expensive computation on
the server side for computing over encrypted data. In [76],
authors propose a system that combines DP and HE. While

HE protects from a semi-honest server by encrypting local
model updates, DP protects data from semi-honest clients
and end-users that can access the raw model. By introducing
a new stochastic quantization operator, they achieve DP
guarantees despite the noise being quantized and bounded
due to HE.

Secure Multi-Party Computation (SMPC) is a set of
cryptographic methods enabling parties to jointly compute a
function over private inputs. Although closely related to HE,
SMPC relies on multiple communications between parties to
provide a computation efficient framework instead of impos-
ing a high computational overhead for the server. However,
this requires to design complex communication schemes for
synchronization and data exchanges between parties and can
lead to high communication overhead. Secret Sharing is a
common mechanism used for achieving SMPC. With Secret
Sharing, a secret value can be split into 𝑛 shards such that any
𝑡 shards can be used to reconstruct the secret value. Any set
that contains less than 𝑡 shards can not give any information
about the secret value. In [77], a system based on public
key exchanges with signatures and verifications, and secret
sharing between clients is used to enable SMPC in the FL
setting. By leveraging Secret Sharing, the proposed protocol
is robust to user dropouts as long as 𝑡 users are alive.

Synthetic Data can be used to reproduce the data distri-
butions of participants with limited privacy risks. In [54],
a local GAN is trained on each client of a FL system to
generate synthetic data based on their data distribution.
Laplacian noise is added to the GANs parameters to achieve
DP and add additional privacy guarantees. Finally, local
GANs are aggregated by the server to generate synthetic data
for training.

Knowledge Distillation is the process of using ouputs of
an initial model to train a new one. The Private Aggregation
of Teacher Ensemble (PATE) [78] approach was proposed
for avoiding models to accidentally store training data. 𝑁
teacher models are trained using 𝑁 distributed and private
datasets. They vote ouputs for nonsensitive and unlabeled
data on which a student model is trained. FedKD [55]
applies a similar approach in FL. The server aggregates
teacher models trained locally by the federated clients to
apply knowledge distillation to a student model. To reduce
privacy risks, authors propose to use quantization and noise
to perturb the teacher outputs.
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Figure 6: A poisoning attack in Federated Learning

5.3.2. Securing against Malicious Peers
FL is by nature highly exposed to poisoning attacks.

At training time, any client participating in the FL round
could introduce malicious updates [79]. Figure 6 illustrates
a poisoning attack in Federated Learning scenario. At in-
ferring time, other risks to consider are adversarial exam-
ples which are designed by malicious users to intentionally
make the model misclassify given inputs. For instance, an
attacker could drastically change the predicted output by
adding a small noise to a given input. We introduce several
approaches to limit these security risks in FL.

Protection against Poisoning Attacks. Several works
have proposed to replace the standard FL weighted averag-
ing operator [22] with more statistically robust aggregation
operators such as geometric median [80] or norm threshold-
ing [81].

Other works proposed to follow anomaly detection mod-
els. FLDetector [61] proposes to detect malicious updates
by checking their consistency between rounds. In each new
round, the server uses historical data to predict client up-
dates, and flags a client as malicious if its update is incon-
sistent with the predicted model update. Authors of [58]
propose to use conditional variational autoencoders (CVAE)
to detect and discard malicious client updates. They pre-train
a CVAE from publicly available data and use it to reconstruct
client updates. Updates with a high reconstruction error
are deemed as malicious and excluded from aggreagtion.
In addition they use the geometric median to pre-process
client updates in order to defend against same-value attacks.
Authors of [62] propose a new protocol for fair detection
of poisoning attacks in FL based on micro-aggregations.
Their approach consists in collecting demographic attributes
from federated peers to build clusters of clients which are
expected to produce similar model updates. Following this
assumption, peers that provide outlier updates (i.e., updates
that are far from the others) in there respective clusters are
discarded from the training round. All the remaining updates
are used to update the centralized model.

Finally, generative model-based approaches benefit from
the generation of synthetic data to evaluate the client’s model
performance and exclude low performing models from ag-
gregation. In [59], a GAN is trained on the FL server to
generate unlabeled synthetic data close to those used for
training. The synthesized dataset is then used for evaluation
of the client updates. The most frequent predicted labels are

selected as the true labels and the client updates that do
not meet a minimum threshold accuracy are discarded from
the current iteration. Authors of [60] propose to synthesize
validation data from CVAEs trained locally by the federated
peers. This approach benefits from the ability of CVAEs
to condition their outputs on specific labels to produce
balanced and labeled validation dataset.

Adversarial Examples. In [82], authors leverage DP
properties to enable model robustness against adversarial
examples. They reduce the sensitivity of the DNN model by
breaking it down in two parts and add a noise layer between
the two.

In [63], authors propose to improve the adversarial ro-
bustness of models in the FL context by introducing adver-
sarial examples during the training phase. For this, the server
uses bias-variance based adversarial attacks to build adver-
sarial examples with large bias and variance with regard to
clients local models. These adversarial examples are sent to
the clients and used for local training in addition to their local
data to produce robust local models.
5.4. Interconnecting Peers across the CC

The communication channels between the server and
clients in the Edge may suffer from quality degradation due
to distant communications or interference. In this context,
several approaches exploring different topologies for FL sys-
tems were proposed to improve communication-efficiency
and privacy (Figure 7). While the introduction of relay
gateways can reduce communication-cost for Edge clients,
exploring alternative topologies can further improve privacy.
5.4.1. Hierarchical FL

Hierarchical FL (HFL) introduces intermediate layers (at
least one) between the Cloud server and the Edge clients. De-
vices in these intermediate layers are used as relay gateways
to increase the network coverage area through multi-hop
routing. Instead of performing long and expensive commu-
nications with the central server, Edge clients communicate
their model updates to proxy gateways which take care of
forwarding them to the central server [64]. HierFAVG [65]
introduces a semi-synchronous HFL approach. Each Edge
server performs several rounds of partial aggregation and
synchronizes periodically with the central server for global
aggregation of the model. Authors show that increasing the
Edge aggregation frequency can reduce energy consumption
by improving model convergence. On the other hand, too
frequent synchronization may also result in the opposite
effect. Authors of [66] propose a multi-level (i.e., more than
3 layers) HFL framework, significantly increasing the scala-
bility of the system to wide geographic areas. They propose
a greedy algorithm based on model aggregation and training
time estimation to perform a stratified participant selection.
A topology learning approach for HFL has been introduced
by [67]. Authors propose to optimize: (1) communication-
efficiency by minimizing the distance between clients and
edge aggregators, and (2) model convergence by shaping
balanced data distribution under a same edge aggregator.
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Figure 7: FL Topologies

5.4.2. Peer-to-peer FL
Fully Decentralized Approaches can be of interest to

improve privacy by avoiding communication of local up-
dates to a central entity. Instead, federated peers use peer-
to-peer protocols to jointly train the model. In [68], each
participant owns a private model that stays local and a public
(or proxy) model that is shared with neighbor participants.
All participants agree on a proxy model architecture which
usually is smaller than the private models. Proxy models
enable efficient information exchange between clients with
DP guarantees which improves privacy and reduces commu-
nication overhead. Authors of [69] explore PFL in decentral-
ized setting. They propose Dis-PFL, a peer-to-peer approach
using sparse masks to train and communicate local models
with little communication and computation overhead. One
challenge coming from such fully decentralized approaches
is that the training efficiency is highly correlated with the
topology of the network. Some recent works have been
targeting this problem in decentralized FL. For instance,
[83] proposes to learn a network topology that optimizes the
neighborhood of each client with respect to data heterogene-
ity to efficiently train the model.
5.4.3. Multi-server FL

Multi-server FL has been studied to improve model
performance with personalization through clustered FL [41,
42, 43, 44, 45] (discussed in section 5.1.2). Other works have
considered multi-server FL with a spatiality constraint, de-
ploying seperated FL training based on the coverage areas of
different edge servers. [70] specifically focus on multi-server
FL with overlapping areas between edge servers (i.e., clients
could be in the intersection of multiple servers). Clients in
overlapping areas enable knowledge sharing across the net-
work by spreading the models of the different edge servers
across the multiple subnetworks.
5.5. Discussion

Overall, the statistical heterogeneity, system heterogene-
ity and privacy problems have been active research topics in
FL, resulting in significant progress in these directions. Per-
sonalized FL is a promising direction to address statistical
heterogeneity. Compression schemes such as model quan-
tization and model pruning enable a broader support of

(a) Data type (b) Scale

(c) Experimental platform
Figure 8: Evaluation settings used in the reviewed studies

devices with limited resources, and client selection schemes
are proposed to better sample quality participants in volatile
environments. Regarding privacy, one already well adopted
mechanism is differential privacy, while other approaches
such as SMPC and HE are current research directions.

Recent efforts have been made towards more decentral-
ized approaches to deploy FL. Hierarchical, peer-to-peer
and multi-server FL have been explored to improve model
convergence (e.g., through clustered FL), communication-
efficiency (e.g., using relay gateways) and privacy (e.g., by
eliminating the central orchestrator).

Finally, we highlight that the common practice in FL is
to perform evaluation through simulation: 73% of the re-
viewed studies ran experimental evaluation using simulation
platforms (Figure 8c). Concerning the use-cases, FL studies
have mainly considered computer vision tasks (Figure 8a)
- 77.2% of the evaluation tasks, while natural language
processing represents 17.5% and tabular data processing
represents 5.3% of the evaluation tasks. We observe a certain
diversity regarding the scale of experiments (Figure 8b).
While some studies consider very small scale FL deploy-
ments (<20 clients), others scale to more than 500 clients.
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Table 3
Major state-of-the-art FL Frameworks and Benchmarks

FL Setting Topology Training mode Can be interfaced with

Framework Horizontal Vertical Standard Hierarchical P2P Simulation Distributed TensorFlow PyTorch Other Framework

TFF [84] ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ -

Flower [85] ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ Agnostic

OpenFL [86] ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ -

FATE [87] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ EggRoll, Spark

Substra [88] ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ -

IBM FL [89] ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ Agnostic

PaddleFL [90] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ PaddlePaddle

Nvidia FLARE [91] ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ Agnostic

FedTree [92] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ThunderGBM

FLSim [93] ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ -

FLAME [94] ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ -

p2pfl [95] ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ -

Benchmark Horizontal Vertical Standard Hierarchical P2P Simulation Distributed TensorFlow PyTorch Other Framework

FedJAX [96] ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ JAX

FedTorch [97] ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ -

FedScale [98] ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ -

LEAF [99] ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ -

FedNLP [100] ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ -

OARF [101] ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ -

NIID-Bench [102] ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ -

FLamby [103] ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ -

UniFed [104] ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ Agnostic

6. Taxonomy of FL Frameworks, Benchmarks
and Performance Optimisation Tools
In this section we present a structured view of the ex-

isting frameworks and benchmarks according to the ap-
proaches discussed in the previous section. We further pro-
vide details about the right choice of FL frameworks, their
configuration and monitoring for an efficient execution on
the Computing Continuum.

In Table 3 we list the major frameworks and benchmarks
for FL and give details about their supported FL settings,
topology, training modes and ML frameworks they can inter-
face with or they depend on. Training mode refers to whether
the framework is simulating the federated process using one
or few nodes, or it provides a mechanism to distribute the FL
process on many nodes.
6.1. Frameworks

Several frameworks have been proposed to help users
in developing their FL systems. While simulation frame-
works enable fast FL simulation for prototyping on a single
machine, distributed frameworks enable a more realistic
experience through the deployment of the FL server and
clients on distributed nodes.

Simulation frameworks. Tensorflow Federated [84]
from Google provides a single simulation environments
composed of two main layers. Federated Learning API is
a high-level interface used by developers to apply FL algo-
rithms to their TensorFlow models and data while Federated

Core API provides a low-level interface enabling developers
to design new algorithms.

FLSim [93] is provided by Meta Research as an easy-
to-use FL Simulator using PyTorch. By default, FLSim core
is using FedAvg, however the server and local optimizers
can easily be changed by configuring values of a JSON
object (e.g., changing SGD to FedProx or synchronous to
asynchronous aggregation). Likewise, the number of global
and local epochs, or the number of sampled clients per round
can be modified. Moreover, FLSim supports several privacy
mechanisms including differential privacy and secure aggre-
gation, and lets the researcher define a metric reporter to
collect relevant metrics and log them into TensorBoard.

Distributed frameworks. Flower [85] is a framework
for cross-device horizontal FL. It can be used with any ML
framework and comes with a well-furnished documentation.
Flower enables researchers to design new algorithms by
describing global logic (e.g., client selection, aggregation,
federated or centralized evaluation) and local logic (e.g.,
local model training and evaluation). Researchers may also
choose between realistic multi-node FL or single-machine
simulation with Ray to run their experiments.

OpenFL [86] provides a Python API and a CLI to
perform FL and let the developer choose between Director-
Based Workflow which uses long-lived components to run
many experiments in series easing FL research or Aggregator-
Based Workflow to run a unique federation with short-lived
components. To ensure security of the framework, OpenFL
uses Public Key Infrastructure Certificates and provides
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a Trusted Execution Environments to execute code with
various security properties.

FATE [87] targets Industrial FL. It aims at providing
all the necessary tools for production environments. Fed-
eratedML lets developers access many implementations of
algorithms for vertical and horizontal FL as well as federated
statistics (e.g., Private Set Intersection), federated feature
engineering (e.g., Feature Sampling) and secure protocols.
Moreover, FATE comes with several tools to help developers
in their tasks: FATE-Flow coordinates the execution of
algorithmic components, FATE-Board is a visualization tool
used to monitor the federated system, FATE-Serving is used
to improve federated inference, FATE-Cloud enables feder-
ated site and client management, and KubeFATE enables the
use of FATE with Kubernetes.

Substra [88] is a FL framework for clinical data. It
provides 3 types of interfaces to interact with: a web in-
terface to trace all operations and modifying permissions
of the different organizations, a CLI to add new datasets,
algorithms or objectives, and a Python SDK to let devel-
opers integrate Substra in their applications. Substra uses a
distributed ledger to trace all operations and uses kubernetes
to run the workers and server on distributed nodes. Substra
proposes 3 training modes: local mode for simulation on a
single node, deployed mode for running all the tasks on a
deployed Substra platform and hybrid mode where tasks run
locally using assets from remote organizations.

IBM FL [89] is a framework for Industrial FL which
can be used with any ML framework. It supports fusion al-
gorithms for neural networks, decision trees, reinforcement
learning, linear classifiers, K-means and Naïve Bayes. An
Experiment Manager Dashboard is provided to configure,
run and monitor FL experiments while IBMFL Multi-Cloud
Orchestrator is used to automate the deployment and moni-
toring on OpenShift clusters.

FedTree [92] is a FL framework for tree-based mod-
els in vertical and horizontal settings providing CLI and
Python interface. It allows configuration of privacy preserv-
ing mechanisms such as Homomorphic Encryption (for ver-
tical setting), Secure aggregation (for horizontal setting) and
Differential Privacy. FedTree allows standalone simulation
or distributed training mode.

PaddleFL [90] is a framework based on PaddlePaddle
from Baidu. PaddleFL provides two components to perform
FL: Data Parallel component enables distributed nodes to
train a model using common horizontal FL strategies while
PFM component which supports horizontal, vertical and
transfer learning scenarios uses secure multi-party compu-
tation to secure training and predictions.

Nvidia FLARE [91] provides a framework-agnostic
Python SDK for FL. It comes with privacy preserving
mechanisms (e.g., Differential Privacy, Homomorphic En-
cryption). A simulator can be used for prototyping on a
single node and FLARE Console lets administrators manage
the system (e.g., submitting jobs, starting or stopping clients)
with a CLI or a FLARE Dashboard can be used for simplified
project management.

Cisco proposes FLAME [94] to provide fine grain ab-
straction for the composability and extensibility of FL tasks.
With FLAME, FL applications are described as topology
abstraction graphs (TAGs) to decouple the ML application
logic from the deployment details. FLAME lets developers
define roles and channels. The role abstraction defines a set
of functions for training and evaluating the model, load-
ing data, getting/distributing model updates from/to another
role. The channel abstraction, on its part, creates links be-
tween roles to enable the exchange of data between them.
Moreover, FLAME provides a channel manager interface
coming with a set of APIs accessible by any role ensuring
the compatibility with many communication backends (e.g.,
MPI, MQTT, Kafka, gRPC).

p2pfl [95] is a framework for decentralized FL systems.
It enables the construction of peer-to-peer networks using
gossip protocols with gRPC and FL training using FedAvg.
6.2. Benchmarks

FedJAX [96] is provided as a framework for fast simu-
lation of FL experiments. It uses JAX to take advantage of
accelerators such as GPUs and TPUs. FedJAX comes pack-
aged with CIFAR-100, EMNIST, Shakespeare and Stack
Overflow datasets with baseline models while also providing
tools to create new datasets and models. Implementation
of FedAvg and clustering algorithms are provided with the
framework.

FedTorch [97] is a Python FL library built on top
of PyTorch distributed API. It comes with implementa-
tion of several optimization algorithms including FedAvg,
SCAFFOLD, FedProx and APFL among others. It supports
EMNIST, Shakespeare, Adult and Synthetic datasets and
proposes a mechanism to distribute a dataset and make it
Non-IID.

FedScale [98] is a benchmark focusing on cross-device
mobile FL which can be used with PyTorch and Tensorflow
providing high level APIs to implement FL algorithms. It
comes with more than 20 large-scale Non-IID federated
datasets consisting in computer vision, natural language
processing and other applications. FedScale proposes two
backends: a mobile backend for on-device FL evaluation and
a cluster backend for training thousands of clients using few
GPUs. Moreover FedScale includes environment datasets to
emulate heterogeneous system performance and availability
of clients.

LEAF [99] is a benchmark for cross-device FL pro-
viding a suite of open-source datasets simulating federated
scenarios: FEMNIST, Sentiment140, Shakespeare, Reddit
and a Synthetic dataset and implementations of Minibatch
SGD, FedAvg and Mocha. LEAF enables the user to monitor
statistical metrics (performance at a given time) and system
metrics (computing resources needed from edge devices and
number of bytes downloaded and updated).

FedNLP [100] is a benchmark for natural language pro-
cessing tasks. It is part of the FedML ecosystem and uses it to
provide implementations of FedAvg, FedProx and FedOpt.
FedNLP divides NLP applications into 4 categories and
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provides a dataset for each of them: 20Newsgroup for Text
Classification, OntoNotes for Sequence Tagging, MRQA for
Question Answering and Gigaword for Seq2Seq Generation.
Each dataset is horizontally partitioned following Non-IID
schemes.

OARF Benchmark Suite [101] enables benchmarking of
horizontal and vertical FL systems by providing datasets
for both settings. For horizontal FL, several datasets for
Computer Vision, NLP and Geographic Information System
(GIS) tasks are provided. For vertical FL, provided datasets
represent recommendation and year prediction tasks. These
datasets are partitioned using Dirichlet distribution to simu-
late label distribution skew and quantity skew. OARF also
provides implementation of FL algorithms (e.g., FedAvg,
FedProx) and allows comparison of algorithms using per-
formance (e.g., accuracy, time to convergence) and system
metrics (e.g., communication cost).

NIID-Bench [102] enables benchmarking of FL algo-
rithms under Non-IID data distribution scenarios. It pro-
vides implementation of FedAvg, FedProx, SCAFFOLD and
FedNova and lets researchers compare algorithms using 9
datasets with several Non-IID settings: Label distribution
skew, Feature distribution skew or Quantity skew.

FLamby [103] is a recent benchmark focusing on cross-
silo FL in realistic healthcare settings. It is provided with 7
datasets covering classification, segmentation and survival
tasks with natural splits and baseline models. Interfacing
with other FL frameworks should be easy as examples of
Fed-BioMed, FedML and Substra interface are provided
with the benchmark. Common FL strategies are provided
such as FedAvg, FedProx, SCAFFOLD and FedOpt.

UniFed [104] is focusing on the selection of a FL
framework. It enables evaluation of FL frameworks with
scenarios for cross-device and cross-silo horizontal FL as
well as vertical FL. To this end, performance of a framework
is defined based on its training efficiency, communication
cost and resource consumption.

Selecting the right framework. While numerous tools
for implementing FL algorithms are provided, selecting the
best tool is not easy and many factors need to be taken into
account. For instance, by looking at Table 3, one can quickly
identify a subset of frameworks that best fit some specific
needs by filtering the FL setting, training mode and frame-
work interface. However, while identifying corresponding
frameworks, this do not tell which is performing the best.

Authors from [105] proposed a comparative review of
several FL frameworks including TFF, FATE and Paddle
FL. In this review, authors compared accuracy and training
time of these frameworks and could draw first conclusions
on their performance. However system metrics such as en-
ergy consumption or bandwidth usage are very important
to monitor in the FL context considering that FL clients
could be resource-constrained devices. As presented earlier,
UniFed [104] is a benchmarking tool for FL frameworks that

lets researchers compare frameworks performance (train-
ing efficiency, communication cost and resource consump-
tion) on several scenarios. Such tool could be used to com-
pare training and system performance of many frameworks,
therefore helping in their selection. Nevertheless, ease of
use or deployment aspects are also important features that
should be considered when selecting a framework. Flex-
ibility is another important factor to consider. While the
reviewed frameworks mainly support the standard client-
server parameter server topology, FLAME [94] is the only
framework that enables a flexible configuration of the roles
and communications of the FL system (an important feature
to develop decentralized approaches).
6.3. Hyperparameter Tuning

Hyperparameter optimization (HPO) can be performed
either by simulation or in a distributed manner during the
FL process. Simulations benefit from HPC accelerators to
efficiently explore many FL configurations and to get fast
results. Distributed HPO enables a more realistic evaluation
of the different configurations by monitoring the computing
resources and the communication. HPO may target several
objectives (e.g., accuracy of the model, resource consump-
tion) by tuning a broad range of parameters (e.g., model
architecture, number of local epochs, client amounts selected
for each round, optimization algorithms).

In [106], authors advocate that commonly used models
in centralized settings may not be the optimal choice for
Non-IID settings encountered in FL. They propose to per-
form Neural Architecture Search in the FL setting where
each client performs a local searching process.

Authors of [107] introduce an approach for single-shot
FL HPO. Each client starts by performing local HPO asyn-
chronously using adaptive HPO schemes (e.g., Bayesian
Optimization) to efficiently approximate loss surfaces of the
hyperparameter space with low communication overhead.
Then, the server aggregates the local loss surfaces and builds
a model to predict the best hyperparameter configuration to
fit the population. Finally, a FL process is started to train a
shared model using the best hyperparameter candidate.

In [108], authors proposed a system to automatically tune
FL hyperparameters during the training process given opti-
mization preferences. Authors define system metrics (e.g.,
computation time, transmission time, computation load and
transmission load) to optimize and let the users select their
optimization preference by giving priorities to each of the
metrics. The system then updates hyperparameters (e.g.,
number of participants, number of training passes) given
user preferences by targeting higher weighted improvements
over the weighted degradation for each optimization step.

In a preliminary work, authors of [109] propose a system
design for optimizing FL systems in the CC. They propose
to use a formal description of the experimental infrastructure
(large-scale testbeds) to deploy several FL configurations in
parallel among a population of heterogeneous devices and
perform distributed HPO using an exploration strategy (e.g.,
Grid Search, Random Search, Bayesian Optimization).
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6.4. Monitoring Model Performance
To ensure that the trained model is performing as wanted,

the model performance needs to be evaluated using several
metrics collected during training (i.e., training and system
metrics). In the FL context, the model can be evaluated either
on the server side, using a fix test set, or locally using clients
data in a federated manner.

The impact of personalized FL is evaluated in [110]
through on-device evaluation. Federated clients receive a
copy of the global model and apply local fine-tuning to adapt
the model to their local data distributions. They use their lo-
cal test data to evaluate the global model and the locally fine-
tuned model, and measure the performance improvement.

Authors of [111] report that most personalized FL stud-
ies only evaluate their models with training loss, average
validation accuracy and prediction error metrics. However,
reporting the per-user performance is also important to
identify potential bias in such scenarios. They propose a
set of metrics for assessing performance of personalized
FL methods e.g., Percentage of User-models Improved and
fairness metrics e.g., Average variance.

While traditional metrics such as model accuracy and
resource consumption are generally considered in FL, more
specific metrics may also be useful. For instance, measuring
user contributions can be an important factor to better se-
lect high quality participants and reward them accordingly.
In [112], authors leverage such metrics to detect undesirable
user strategies such as an overly privacy-preserving tech-
nique adding excessive noise to the model which actually
impairs the training phase.

Provenance capture can benefit FL systems by helping in
their optimization, interpretability and explainability. This is
particularly important and challenging in the CC (with het-
erogeneous and volatile participants). Capturing which hy-
perparameter combinations were used by the federated peers
during training can assist in the interpretability of model
performance. Specifically, a model performance degradation
could be the cause of a wrong hyperparameter selection or
the sign of a data corruption at a specific client. Some works
specifically focus on this aspect. In [113], task results and
telemetry metrics are aggregated with noised model updates
by the server. High level statistics such as average task exe-
cution times and amount of on-device data are aggregated
by the server while sensitive metadata coming from the
HTTP communication with the users are dropped (e.g., IP
addresses). ProvFL [114] introduces a neuron provenance
mechanism in FL. It dynamically isolates sensitive neurons
of the model and extracts each client’s contribution to the
selected neurons, enabling accurate identification of clients
responsible for the given behaviour of the global model.

In most of these studies authors consider testing the
model directly with clients data and aggregating FL metrics
to the server. However, sharing raw training metrics with the
server can induce a privacy risk. Knowing that the model
performed well or poorly on a given client can give hints
about training data of that specific client to an attacker.
Therefore, there is a need to think how to best aggregate

these metrics with respect to clients privacy, or to consider
alternatives such as model testing on the server side (e.g.,
through synthetic data). System metrics on the other hand,
do not give information about the training inputs, therefore
can be directly aggregated to the server.

Monitoring tools. Traditional monitoring tools such as
Tensorboard [115], Neptune [116], Weights & Biases [117]
or MLflow Tracking API [118] provide visualization com-
ponents for training metrics of ML experiments (e.g., loss,
accuracy, model graph, model weights). More specialized
tools such as FATE-Board [87] or FedML MLOps plat-
form [119] have been proposed to better capture FL metrics.
FATE-Board offers data and model visualization tools for
tracking the progress of the FL jobs, dataset information and
model outputs. The FedML MLOps platform provides tools
to visualize the FL topology, device status, training results
(e.g., accuracy and loss) and system performance (e.g.,
CPU and memory utilization). More specialized tools for
system performance monitoring are available. For instance,
Telegraf [120], InfluxDB [121] and Grafana [122] can be
combined together to retrieve and visualize system metrics
of distributed clients. Telegraf agents collect metrics from
each client (e.g, GPU, CPU, memory and bandwidth usage)
and store them into time series databases using InfluxDB.
Grafana enables visualization of these metrics through dy-
namic dashboards accessible from a web interface. Prov-
Light [123] is proposed for efficient provenance capture on
the IoT/Edge. Data compression and grouping coupled with
the use of lightweight communication protocols enable low
provenance capture overhead.
6.5. Discussion

Defining impacting metrics that capture well the be-
haviour of the system is essential to get a global understand-
ing of its performance (e.g., resource utilization, per-user ac-
curacy, variance). Coupling those metrics with the possibil-
ity to select optimization preferences, as proposed in [108],
is a promising direction for multi-objective optimization in
FL. Unfortunately, although aggregating per-user metrics
enables a better understanding of the performance of the sys-
tem across the different clients, it can also induce a privacy
risk (e.g., performance of the model on a specific client can
give hints about its local data). Therefore, one should also
investigate how to best aggregate, or choose those metrics
to minimize privacy risks. Applying differential privacy to
aggregated metrics could be a solution to a certain extent.
In addition, FL studies usually consider model performance
and resource utilization as separate metrics. Most of the
previous studies have monitored model convergence based
on the number of rounds - an approach which may introduce
biases, as different strategies could result in very different
resource usage per training round. A better practice for
FL experiments is to study model convergence based on
resource usage (e.g., total communication to achieve a target
accuracy).
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7. Deployment and Supervision of FL Systems
across the Continuum
In this section we present several tools to facilitate model

management and deployment of FL systems. These auto-
matic deployment tools are particularly useful for repro-
ducibility purposes - a long-desired goal of the AI, HPC and
Big Data communities. This means allowing researchers to
accurately reproduce relevant behaviors and representative
settings of a given FL application in a controlled environ-
ment, through extensive experiments in a large-enough spec-
trum of potential configurations of the underlying Edge-Fog-
Cloud infrastructure. This turns to be a non-trivial endeavour
due to the multiple combination possibilities of heteroge-
neous hardware and software resources, system components
for data processing, data analytics or FL model training.
7.1. Model Management

Several tools have been proposed to facilitate the man-
agement of FL models through centralized storage, model
versioning and provenance capture. In this section, we take
a look at some of these approaches.

MLflow Model Registry [118] is a centralized model
store that comes with many features for model life cycle
management. For instance, by using MLflow Model Reg-
istry, developers can assure model versioning, model lineage
(retrieving the inputs used for the experiment that produced
a given model e.g., hyperparameters, algorithm, libraries),
stage transition (transitioning from staging to production or
archiving a model) and model serving. Weights & Biases
Model Registry [117] proposes another option for model
management. It lets developers do model versioning, model
lineage, highlight the best model versions evaluated for
production and accessing a history of all changes.

Besides providing a well furnished cloud service with
ML training features, Amazon SageMaker [124] comes with
an Edge Manager component that can be used for com-
pilation, packaging and deployment of the model on edge
devices. A Model Registry component also allows to store
trained models, make model versioning and automate de-
ployments. Some FL frameworks also provides such fea-
tures. For instance, FATE [87] and FedML [119] support
model serving through FATE-Serving and FedML MLOps
components.
7.2. Deployment Tools

Deployments on the Edge-Fog-Cloud Continuum re-
quire flexible tools to configure and manage heterogeneous
workflows over distributed resources.

KubeFlow [125] is a toolkit that enables deployment
of containerized ML applications using Kubernetes. With
KubeFlow, one can easily customize the platform and ser-
vices used in each stage of the ML workflow (e.g., data
preparation, model training). KubeFATE, which is based on
KubeFlow, is the component of FATE framework [87] for
deploying and managing FATE clusters. FATE also supports
automatic deployments using Ansible or manual deployment
with a CLI. With FedML MLOps component [119], one can

build deployable packages for the FL server and clients, and
easily deploy the application by accessing a web interface.
IBM FL [89] uses a multi-cloud orchestrator to automat-
ically deploy and monitor FL experiments on OpenShift
clusters. E2Clab [126] is a deployment tool for reproducible
experiments on large-scale testbeds (e.g., Grid5000 [127],
FIT IoT-LAB [128], Chameleon [129]) with a focus on
the Computing Continuum [130] (edge-fog-cloud environ-
ment). It enables researchers to easily deploy, monitor, and
reproduce distributed experiments using description files of
the experiment workflows and resources.
7.3. Discussion

ML Operations (MLOps) is a set of practices, usually
adopted by companies, targeting efficient model deployment
and model maintenance in production. MLOps is now a well-
established field with many tools that have already been
provided. However, new needs are emerging towards highly
distributed and heterogeneous infrastructures, especially in
the context of deployments across the Computing Con-
tinuum. Furthermore, with new data regulations, privacy
preservation is now emerging as a major concern, which FL
tries to achieve. New practices and tools should be further
developed to enable efficient MLOps in the FL context (i.e.,
Federated MLOps) as decentralized storage and processing
add new constraints for the training of ML models [94].
Along these lines, support for better composability and di-
verse topologies for FL tasks will drive its broader adoption
across the Continuum.

8. Open Issues and Research Opportunities
Federated Learning is a fairly new paradigm for dis-

tributed ML, which has been quickly adopted by the commu-
nity and it is currently a very active research topic. As shown
in this survey, many research efforts focus on improving
privacy and performance of FL in heterogeneous settings.
We identified several other research directions that have not
yet been explored or have received little attention in the field
of FL, in order to facilitate its adoption across the continuum.
In this section, we discuss some of them.
8.1. Performance Evaluation in Realistic

Environments
Most of the current research efforts are using simulation

environments to evaluate performance of their FL systems
(e.g., using one or few nodes with GPUs). While enabling
fast results through HPC accelerators, this approach does
not allow for real capture of system performance (e.g.,
bandwidth usage, power consumption) and other factors
that impact on the model in real-life settings. Using real
devices in distributed settings is needed to get realistic evalu-
ations of FL system performance. Scientific testbeds such as
Grid5000 [127] and Chameleon [129] offer more and more
supports for such experiments by providing a large collection
of reconfigurable devices. Public clouds such as Amazon
Web Services or Microsoft Azure are other alternatives that
supports distributed experiments. Reconfigurable platforms
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enable the simulation of real network topology such as
the ones shared by [131]. It is important to simulate such
networks to better understand the applicability of different
FL approaches in constrained and realistic environments.
8.2. Reconfigurable Systems

Enabling dynamic deployment and configuration of the
system based on new objectives and environment changes
will result in better FL support for complex environments.
For instance, such a reconfiguration could be needed in
case of clients deprived of network accessibility. In this
situation, by dynamically reconfiguring the system, clients
could perform additional local training epochs until network
recovery. Topology learning approaches can help overcome
these problems. Building clusters based on similarity in
data distributions to improve model convergence on feder-
ated clients (e.g., cluster personalization), or dynamically
deploying relay gateways close to the edge to improve the
communication-efficiency (e.g., hierarchical FL) are some
example of such initiatives.
8.3. Addressing the Concept Drift

Data drift between clients has been well studied in the FL
setting. On the other hand, concept drift, which translates
into sudden changes in the relationship between the inputs
and expected outputs of the model, is a direction that has
been little explored, despite its important impact on model
performance.

Key research challenges in this context are how to detect
concept drift and how to react to it. Clustered FL address this
problem to a certain extent by grouping clients with similar
data distributions. Still, current approaches lack migration
mechanism to dynamically adapt in time-varying clustering
problems (e.g., moving clients from one cluster to another
when their local data distributions are subject to conceptual
drift during training). New approaches are required to detect
drifted clients and identify candidate clusters for migration.
First efforts have been made in this direction in [132].
Continual learning proposes an alternative solution by in-
crementally training the model using the continuous flow
of data. An important challenge in continual learning is the
problem of catastrophic forgetting which requires innovative
mechanism to ensure that previously learned patterns are
not forgotten. FL could benefit from continual learning to
address the concept drift problem. However high variability
in terms of clients and training data across the CC makes it
an important challenge.
8.4. Enabling Seamless Composability

Many components are put together in order to build a
complete FL system (e.g., algorithms, privacy, security).
Combining these building blocks into an efficient application
is non-trivial. Yet, there is a need for such highly composable
FL systems as the various component combinations satisfy
specific and changing requirements, as shown in this survey.

Algorithms, privacy and security mechanisms should be
designed in a way that makes them easy to implement and
interface with each other. Similarly, FL frameworks should

be easy to interface with other tools to avoid unnecessary
extra configuration of the application.

Existing FL frameworks mainly consider the standard
Edge-Cloud parameter-server architecture and do not pro-
vide flexible configuration to deploy alternative FL network
topologies (e.g., hierarchical or peer-to-peer). Deployments
on the CC require flexible tools to describe heterogeneous
workflows which is currently missing from most FL frame-
works.

A first step in preparing for composability is to enable
its core attributes, identified by Gartner [133]: modularity
(components should have a singular, clear and complete
functionality and be able to operate as standalone services);
discovery (easily identifiable and accessible components);
autonomy (easily changeable and self-contained building
blocks); and orchestration support (enabling easy interaction
with other applications and services). These attributes can be
enabled by familiar technology, from APIs to containers.
8.5. Explainability Support

In critical systems that rely on AI to take decisions, it is
crucial to understand why a model is taking a decision in a
specific context. Using models that are easily interpretable
such as linear regressions or decision trees can be a solution.
However, opaque models such as random forests or deep
neural networks which are more challenging to interpret
might be needed to capture the complex patterns of a targeted
task.

Current techniques for interpreting those models rely on
explanation by simplification, feature relevance and visu-
alization [134]. Investigating how those techniques can be
adapted in the highly distributed FL setting will enable the
use of FL in critical applications. Provenance capture is also
helping by tracking hyperparameter combinations used by
the federated peers. This leads to a better interpretation of
the model performance, drives the optimization and supports
reproducibility of experiments across the CC.
8.6. Sustainability

Current trends in ML are moving towards two oppo-
site directions. On the one hand, energy consumption is
becoming a major topic in daily life with the rising cost of
energy as well as its environmental impact. On the other
hand we are continuously executing more complex tasks
(i.e., training more complex models). In both cases, building
energy efficient systems (e.g, through model compression)
will enable a better support of resource-constrained devices
as well as training more complex models in FL. More
informed model selection coupled with model pruning [49]
or model quantization [135] are some directions to achieve
better sustainability.
8.7. System Robustness vs. Fairness

One problem arising from the decentralized and het-
erogeneous nature of FL on the continuum is that it is
vulnerable to various threats coming from federated peers
such as poisoning attacks. Current approaches for detection
of malicious peers may filter out benign minority groups
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that have very different data compared to the rest of the
participating peers. While minority groups allow for better
data representativity in FL, they are usually identified as
outliers and are discarded from the training rounds. As a
result, one important challenge is to effectively distinguish
minority groups from malicious peers to enable robust and
bias-free FL [136]. Geographic and demographic data [62]
could support such initiative by performing stratified detec-
tions of malicious peers.

9. Conclusion
In this survey we make an in-depth analysis of the

challenges related to the support of FL across the Computing
Continuum. We review state-of-the-art FL systems address-
ing system heterogeneity and statistical heterogeneity as well
as enabling better privacy. We analyze existing tools for
implementing, monitoring, configuring and deploying such
systems. Finally, we discuss several major open issues and
research opportunities to better support FL on the Edge-to-
Cloud Continuum.

Investigating how to best address these challenges will
lead FL to a mature stage and help in its adoption by
a broader community. This will enable the use of FL in
complex systems that are restricted by various regulations.
Smart cities, defense equipment and smart medical devices
are some of the numerous examples of systems that could
benefit from such future advances.
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