

Control design for beam stabilization with self-sensing piezoelectric actuators: managing presence and absence of hysteresis

Andrea Mattioni, Christophe Prieur, Sophie Tarbouriech

▶ To cite this version:

Andrea Mattioni, Christophe Prieur, Sophie Tarbouriech. Control design for beam stabilization with self-sensing piezoelectric actuators: managing presence and absence of hysteresis. Mathematics of Control, Signals, and Systems, 2024, 36, pp.979-1008. 10.1007/s00498-024-00393-6. hal-04659186

HAL Id: hal-04659186 https://hal.science/hal-04659186v1

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Control Design for Beam Stabilization with Self-Sensing Piezoelectric Actuators: Managing Presence and Absence of Hysteresis

Andrea Mattioni^{1*}, Christophe Prieur^{1†} and Sophie Tarbouriech^{2†}

 $^1{\rm Univ.}$ Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, F-38000 Grenoble, France. $^2{\rm Universit\acute{e}}$ de Toulouse, LAAS-CNRS, 31031 Toulouse, France.

Abstract

This paper deals with the modeling and stabilization of a flexible clamped beam controlled with a piezoelectric actuator in the self-sensing configuration. We derive the model starting from general principles, using the general laws of piezoelectricity. The obtained model is composed by a PDE, describing the flexible deformations dynamics, interconnected with an ODE describing the electric charge dynamics. Firstly, we show that the derived linear model is well-posed and the origin is globally asymptotically stable when a voltage control law, containing the terms estimated in the self-sensing configuration, is applied. Secondly, we make the more realistic assumption of the presence of hysteresis in the electrical domain. Applying a passive control law, we show the well-posedness and the origin's global asymptotic stability of the nonlinear closed-loop system.

Keywords: Piezoelectric actuator, Nonlinear control, Partial Differential Equations, Asymptotic stability

2

$Nonlinear\ piezoelectric\ control$

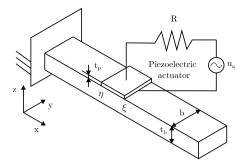


Fig. 1 Clamped flexible beam with a piezoelectric actuation.

1 Introduction

Piezoelectricity is a reversible process that consists of the property of certain materials of cumulating electric charge in response to mechanical stress, and the generation of a mechanical strain resulting from an electrical field (Yang et al, 2005). Therefore, piezoelectric materials can be used for different applications ranging from the stabilization of flexible structures (Choi and Han, 2016) to self-sensing actuation for nanopositioning applications (Liseli et al, 2019) or for energy harvesting (Erturk and Inman, 2008; Homayouni-Amlashi et al, 2020).

In this paper, we consider the stabilization problem of a clamped flexible beam controlled by a piezoelectric actuator in the self-sensing configuration. Many studies have already been devoted to the modeling procedure and characterization of this kind of system (Meirovitch, 1975; Destuynder, 1999). In these works, the electrical dynamics are not taken into account in the modeling procedure, while more attention is devoted to the characterization of the mechanical dynamics. The well-posedness and stabilization problems for this system without the electrical dynamics have already been investigated in the linear case (Le Gall et al, 2007b,a). Moreover, it is known that the system is exactly controllable with respect to the moment generated on the beam by the piezoelectric actuator (see e.g., (Tucsnak, 1996; Crépeau and Prieur, 2006)). More recently, in (Prieur and Tarbouriech, 2019) the authors investigated the case in which the input moment is subject to amplitude saturation.

In this paper, we extend the work of (Prieur and Tarbouriech, 2019) detailing the modeling procedure (Section 2) when taking into account the electrical dynamics of the piezoelectric actuator in the self-sensing actuation configuration (Dosch et al, 1992), as shown in Fig. 1. The beam is assumed to be clamped on one side and free on the other. The resulting dynamics are modeled by the interconnection of an Euler-Bernoulli PDE describing the flexible

dynamics with an ODE describing the electrical charge dynamics

$$\begin{cases} \rho w_{tt}(x,t) = -EIw_{xxxx}(x,t) + \frac{\alpha}{C_p} q_a(t) \frac{d}{dx} \left(\delta_{\eta}(x) - \delta_{\xi}(x) \right) \\ w(0,t) = w_x(0,t) = w_{xx}(L,t) = w_{xxx}(L,t) = 0 \\ \dot{q}_a(t) = -\frac{1}{RC_p} q_a(t) - \alpha \left[w_{xt}(x,t) \right]_{\eta}^{\xi} + \frac{1}{R} u_a(t) \end{cases}$$
 (1)

where w(x,t) corresponds to the beam deformation at point $x \in [0,L]$ of the beam and a time $t \in \mathbb{R}^+$, q_a is the free electrical charge accumulated in the piezoelectric actuator (with extremities $\eta < \xi$) minus the equivalent charge due to polarization, while u_a is the control input corresponding to the voltage applied to the electric circuit. Here, δ_{x^*} is the delta function, while $\rho, EI, \alpha, R, C_p \in \mathbb{R}^+$ are physical parameters of the beam and they correspond to the density of the beam, the mechanical elasticity constant, the coupling coefficient between the mechanical and electrical dynamics, the electrical resistance and the electrical capacitance, respectively. Since the influence of the piezoelectric actuator on the elastic beam results in an in-domain actuation, the beam state w(x,t) should meet some compatibility conditions (defined in Section 3.1) to obtain a well-posed PDE

$$[w_{xx}]_{\eta} = \frac{\alpha}{EIC_p} q_a(t) = -[w_{xx}]_{\xi}, \quad [w_{3x}]_{\eta} = [w_{3x}]_{\xi} = 0,$$
 (2)

where $[w]_{\eta} = w(\eta^+) - w(\eta^-)$. In this paper, we make use of the so-called strong dissipation feedback to stabilize the system in closed loop. Different works have shown the effectiveness of using this control term, in particular for boundary stabilization of hyperbolic equation (Mattioni et al, 2020, 2022). In (d' Andréa-Novel and Coron, 2000) and (Prieur and Tarbouriech, 2019), the control strategy containing this term has been obtained using backstepping techniques. Next, we study the well-posedness and global asymptotic stability of the origin in closed loop with the control law

$$u_a(t) = -\gamma \left(R[w_{xtt}]_{\eta}^{\xi} + \frac{1+\beta}{C_p} [w_{xt}]_{\eta}^{\xi} \right) - \frac{\beta}{C_p} q_a$$
 (3)

where $\gamma, \beta \in \mathbb{R}$. It is worth to remark that the term $[w_{xt}]^{\xi}_{\eta}$ is available thanks to the self-sensing actuator configuration (Liseli et al, 2019), while the term $[w_{xtt}]^{\xi}_{\eta}$ can be obtained by time differentiation of the previous term. The term $\frac{q_a}{C_p}$ corresponds to the voltage across the piezoelectric actuator that is indeed available. There exists abundant literature regarding the control design of flexible beams controlled by piezoelectric actuators in the self-sensing configuration. A portion of these papers approaches the topic from a practical standpoint: the control laws are directly applied to real benchmarks and results are subsequently discussed as in (Dosch et al, 1992; Simmers Jr et al, 2004; Rakotondrabe et al, 2014; Liseli et al, 2019) and references therein. Another group of these papers focuses on control design and closed-loop analysis, but

they do not account for the electrical dynamics introduced by the electrical circuit required in the self-sensing configuration (Prieur and Tarbouriech, 2019; Rittenschober and Schlacher, 2012; Aldraihem et al, 1996; Dadfarnia et al, 2004). In this paper, we perform control design and stability analysis on a model that includes a PDE for the mechanical vibrations and an ODE for the electrical circuit dynamics.

The asymptotic stability result stated in the next theorem is obtained considering the non-critical positioning (defined at the beginning of Section 3) of the piezoelectric actuator of length $L_p = \xi - \eta$, designing a weak Lyapunov function and making use of the LaSalle's invariance principle (see e.g. (Luo et al, 2012) for an introduction on the LaSalle's invariance principle). The proof of Theorem 1 is given in Section 3.

Theorem 1 For all non-critical positioning $\eta \notin \mathbb{S}(L_p)$, for $\gamma > 0$, $\beta > -1$ and for all initial conditions $(w(0), w_t(0), q_a(0))$ in $(H^2(0, L) \cap H^4(0, \eta) \cap H^4(\eta, \xi) \cap H^4(\xi, L)) \times H^2(0, L) \times \mathbb{R}$ satisfying the boundary conditions in (1) together with the compatibility conditions in (2), the solutions of (1) in closed-loop with (3) satisfy the following stability property for all $t \geq 0$

$$||w(t)||_{H^{2}}^{2} + ||w_{t}(t)||_{L^{2}}^{2} + (q_{a}(t) - [w_{xt}(t)]_{\eta}^{\xi})^{2} \le ||w(0)||_{H^{2}}^{2} + ||w_{t}(0)||_{L^{2}}^{2} + (q_{a}(0) - [w_{xt}(0)]_{\eta}^{\xi})^{2}$$

$$(4)$$

together with the attractivity property

$$||w(t)||_{H^2}^2 + ||w_t(t)||_{L^2}^2 + q_a(t)^2 \xrightarrow{t \to \infty} 0.$$
 (5)

Then, we consider the more realistic scenario where a hysteresis behaviour is present in the piezoelectric actuator. The hysteresis can be modeled using the Maxwell slip model, composed of a series of N linear capacitors in parallel with as many nonlinear resistors (Yeh et al, 2008; Goldfarb and Celanovic, 1997). The resulting dynamical equations can be written as follows

$$\begin{cases}
\rho w_{tt}(x,t) = EIw_{xxxx}(x,t) + \frac{\alpha}{C_p} q_a(t) \frac{d}{dx} \left(\delta_{\eta}(x) - \delta_{\xi}(x) \right) \\
w(0,t) = w_x(0,t) = w_{xx}(L,t) = w_{xxx}(L,t) = 0 \\
\dot{q}_a(t) = -\frac{1}{R} \left(\frac{q_a(t)}{C_p} + \sum_{j=1}^{N} \frac{q_{H,j}(t)}{C_{H,j}} \right) - \alpha \left[w_{xt}(x,t) \right]_{\eta}^{\xi} + \frac{1}{R} u_a(t). \\
\dot{q}_{H,j}(t) = -\frac{1}{R} \left(\frac{q_a(t)}{C_p} + \sum_{j=1}^{N} \frac{q_{H,j}(t)}{C_{H,j}} \right) - i_{RH,j} \left(\frac{q_{H,j}(t)}{C_{H,j}} \right) + \frac{1}{R} u_a(t),
\end{cases}$$
(6)

where the last equation has to be intended as a set of N equations, each of which describes the charge $q_{H,j}$ dynamics of the j-th hysterion. $C_{H,j}$ corresponds to the linear capacitance of the j-th hysterion, while $i_{RH,j}$ is the nonlinear current passing through the nonlinear resistor of the j-th hysterion. The modeling procedure to obtain the above equations, together with the explicit expression of $i_{RH,j}$, is detailed in Section 2.3.

The introduction of the nonlinear function makes the stability study more challenging since it is known that limit cycles and new equilibrium points may be introduced (see for example (Teel and Zaccarian, 2011; Tarbouriech et al,

2011)). The results of this work can be related to (Prieur et al, 2016) where the wave equation with cone-bounded nonlinearities in the case of bounded and unbounded control operators has been considered. Similarly, in (Singh et al, 2022) the authors proved the well-posedness of a nonlinear infinite dimensional system obtained as the perturbation of a scattering passive linear system. We refer to (Curtain and Zwart, 2020, Chapter 11) for a collection of results regarding the well-posedness and the stability of semilinear differential equations with Lipschitz nonlinearity. In this work, we study the well-posedness of system (6) in closed-loop with the control law

$$u_a = -\beta \left(\frac{q_a(t)}{C_p} + \sum_{j=1}^{N} \frac{q_{H,j}(t)}{C_{H,j}} \right).$$
 (7)

It is worth mentioning that the term in the parenthesis corresponds to the voltage across the piezoelectric actuator when considering the model with the hysteresis. This means that this term is directly available from measurements. Differently from the linear control law proposed in (3), in (7) are missing the terms depending on $[w_{xtt}]^{\xi}_{\eta}$, $[w_{xt}]^{\xi}_{\eta}$. This is because the insertion of the strong dissipation terms would require the elimination of the hysteresis contribution $\sum_{j=1}^{N} \frac{q_{H,j}}{C_{H,j}}$ to obtain a stable closed-loop system. This could be done, for example, through the use of a state observer and can be a possible topic of future research. In this work, the well-posedness of system (6) in closed-loop with (7) is investigated using the theory developed in (Miyadera, 1992), while the closed-loop stability has been assessed using Lyapunov arguments. We refer the interested reader to (Bastin and Coron, 2016; Krstic and Smyshlyaev, 2008), for works using Lyapunov techniques for the stability analysis of nonlinear PDE.

Theorem 2 For all non-critical positioning $\eta \notin \mathbb{S}(L_p)$, $\beta > -1$ and for all initial conditions $(w(0), w_t(0), q_a(0), q_{H,j}(0) \text{ in } (H^2(0, L) \cap H^4(0, \eta) \cap H^4(\eta, \xi) \cap H^4(\xi, L)) \times H^2(0, L) \times \mathbb{R}^{N+1}$ satisfying the boundary conditions in (6) together with the compatibility conditions in (2), the solutions of system (6) in closed loop with (7) satisfy the following properties:

• Stability:

$$||w(t)||_{H^2}^2 + ||w_t(t)||_{L^2}^2 + q_a(t)^2 \le ||w(0)||_{H^2}^2 + ||w_t(0)||_{L^2}^2 + q_a(0)^2$$
 (8)

• Attractivity:

$$||w(t)||_{H^2}^2 + ||w_t(t)||_{L^2}^2 + q_a(t)^2 \xrightarrow[t \to \infty]{} 0.$$
 (9)

This paper is organised as follows. In Section 2, we detail the modeling procedure of the system under analysis. In Section 3, we introduce some necessary notions for the non-controlled Euler-Bernoulli beam equation as well as a result regarding the exact observability of the system. Then, we present

6

the well-posedness result for the closed-loop linear system (1) as well as its asymptotic stability proof. Similarly, in Section 4 is given the well-posedness result as well as the asymptotic stability proof for the closed-loop nonlinear system (6). Finally, some concluding remarks and comments on future works are given in Section 5.

2 Modeling

2.1 Physical assumptions and energy definition

We consider the modeling problem of the system depicted in Figure 1. The goal is to obtain distributed parameter dynamics for the mechanical part while lumped parameter dynamics for the piezoelectric actuator (PA) and the electrical actuation circuit. To do so, we consider distributed parameters constitutive equations for the mechanical part while lumped parameters constitutive equations for the PA (Dosch et al, 1992, eq. (10),(19))

$$\begin{cases} s_1(x) = Y_p \varepsilon_1(x) - Y_p d_{31} V(x) \\ v_p = \frac{q_f}{C_p} - \frac{q_p}{C_p} \end{cases}$$
 (10)

where s_1 and ε_1 are the stress and strain along the x direction, respectively; V and v_p are the electrical field in the PA and the voltage applied to the PA, respectively; q_f and q_p are the free charge on the PA and the piezoelectric polarization charge due to stress, respectively. Finally, Y_p corresponds to Young's modulus while d_{31} is the piezoelectric constant. The electric field is assumed to be proportional to the voltage v_p and different to zero only in the interval $[\eta, \xi]$ where the PA is placed

$$V(x) = \frac{v_p}{t_b + t_p} (H_{\eta}(x) - H_{\xi}(x)). \tag{11}$$

According to Euler-Bernoulli assumptions, the normal strain corresponds to

$$\varepsilon = -yw_{xx} \tag{12}$$

where w corresponds to the beam deformation. Using the Euler-Bernoulli assumptions, the polarization charge q_p is proportional to the beam slope difference between η and ξ (Dosch et al, 1992, eq. (32))

$$q_p = \alpha [w_x]_{\eta}^{\xi} \qquad \alpha = Y_p d_{31} b \frac{t_b + t_p}{2}. \tag{13}$$

The total potential energy of the system is defined as

$$E_p = \frac{1}{2} \int_0^L \int_0^{t_b + t_p} \int_0^b \{ \varepsilon_1 s_1 \} \, dz dy dx + \frac{1}{2} v_p q_f. \tag{14}$$

Substituting (10)-(13) into (14) we obtain

$$E_{p} = \frac{1}{2} \int_{0}^{L} \int_{0}^{t_{b}+t_{p}} \int_{0}^{b} \left\{ -yw_{xx}(-Y_{p}yw_{xx} - Y_{p}yw_{xx} - Y_{p}d_{31} \frac{q_{f}-q_{p}}{C_{p}(t_{a}+t_{p})} (H_{\eta}(x) - H_{\xi}(x)) \right\} dzdydx + \frac{q_{f}-q_{p}}{2C_{p}} q_{f}$$

$$= \frac{1}{2} \int_{0}^{L} \int_{0}^{t_{b}+t_{p}} \left\{ bY_{p}y^{2}w_{xx}^{2} + Y_{p}d_{31}by \frac{q_{f}-q_{p}}{C_{p}(t_{b}+t_{p})} (H_{\eta}(x) - H_{\xi}(x))w_{xx} \right\} dydx + \frac{q_{f}-q_{p}}{2C_{p}} q_{f}$$

$$= \frac{1}{2} \int_{0}^{L} \left\{ EIw_{xx}^{2} + \alpha \frac{q_{f}-q_{p}}{C_{p}} (H_{\eta}(x) - H_{\xi}(x))w_{xx} \right\} dx + \frac{q_{f}-q_{p}}{2C_{p}} q_{f}$$

$$(15)$$

where in the last equality we have used the α definition in (13) and defined $EI = bY_p \int_0^{t_b} y^2 dy$. Using the definition of the polarization charge in (13) we obtain

$$E_p = \frac{1}{2} \int_0^L EIw_{xx}^2 dx + \frac{(q_f - \alpha [w_x]_{\eta}^{\xi})^2}{2C_p}.$$
 (16)

The kinetic energy of the system can be described by

$$E_K = \frac{1}{2} \int_0^L \rho w_t^2 dx.$$
 (17)

The overall energy of the system is defined as the sum of the kinetic E_K and potential E_P energies $E_{tot} = E_K + E_P$.

2.2 Derivation of governing equations

To derive the dynamic equations we first have to define the action

$$A = \int_{t_1}^{t_2} \{ E_K - E_P + W_{nc} \} dt \tag{18}$$

where t_1, t_2 are two arbitrary instants of time such that $t_2 > t_1$ while W_{nc} is the work of non-conservative forces applied on the system. The principle of least actions states that the true evolution of the system described by the action (18) satisfies dAh = 0 for any h such that $h(t_1) = h(t_2) = 0$ and where dA is the Fréchet derivative of the action functional and h is the variation function (in the mechanics' literature are usually referred to as virtual displacements). According to the variational principle, we have that

$$\int_{t_1}^{t_2} \left\{ dE_K h - dE_P h + dW_{nc} h \right\} dt = 0.$$
 (19)

We start by computing the Fréchet derivative of the Kinetic energy

$$dE_K h = \int_0^L \rho w_t h_{w_t} dx. \tag{20}$$

The Fréchet derivative of the Potential energy writes

$$dE_{P}h = \int_{0}^{L} \left\{ \left(EIw_{xx} - \frac{\alpha}{C_{p}} (q_{f} - \alpha[w_{x}]_{\eta}^{\xi}) (H_{\eta} - H_{\xi}) \right) h_{w_{xx}} \right\} dx + \frac{1}{C_{p}} (q_{f} - \alpha[w_{x}]_{\eta}^{\xi}) h_{q_{f}}.$$
(21)

We plug equations (20) and (21) in (19) to obtain

$$\int_{t_1}^{t_2} \int_0^L \left\{ \rho w_t h_{w_t} - \left(E I w_{xx} - \frac{\alpha}{C_p} (q_f - \alpha [w_x]_{\eta}^{\xi}) (H_{\eta} - H_{\xi}) \right) h_{w_{xx}} \right\} dx + \left(\frac{1}{C_p} (q_f - \alpha [w_x]_{\eta}^{\xi}) \right) h_{q_f} + dW_{nc} h dt = 0.$$
(22)

The Fréchet derivative of the work of the non-conservative forces is defined such to obtain the electrical circuit dynamical equation represented in Figure 1. To do so, we apply 2nd Kirchhoff's law to be able to write

$$0 = R\dot{q}_f + v_{pa} - u_a. \tag{23}$$

Therefore, to obtain the same voltage balance in the Action's Fréchet derivative, we define

$$dW_{nc}h = (R\dot{q}_f - u_a)h_{q_f}. (24)$$

We plug (24) in (22) and assuming, without loss of generality, that $h_{w_t} = \frac{\partial h_w}{\partial t}$ and that $h_{w_{xx}} = \frac{\partial^2 h_w}{\partial x^2}$, we perform two integrations by parts with respect to x and one with respect to t on (22) to obtain

$$\int_{t_{1}}^{t_{2}} \int_{0}^{L} \left\{ -\rho w_{tt} - EIw_{x4} + \frac{\alpha}{C_{p}} (q_{f} - \alpha[w_{x}]_{\eta}^{\xi}) \frac{d}{dx} (\delta_{\eta} - \delta_{\xi}) \right\} h_{w} dx - \left[EIw_{xx} h_{w_{x}} \right]_{0}^{L}
+ \left[EIw_{x3} h_{w} \right]_{0}^{L} - \frac{\alpha}{C_{p}} (q_{f} - \alpha[w_{x}]_{\eta}^{\xi}) \left(\left[(\delta_{\eta} - \delta_{\xi}) h_{w} \right]_{0}^{L} - \left[(H_{\eta} - H_{\xi}) h_{w_{x}} \right]_{0}^{L} \right)
+ \left(\frac{1}{C_{p}} (q_{f} - \alpha[w_{x}]_{\eta}^{\xi}) + R\dot{q}_{f} - u_{a} \right) h_{q_{f}} dt + \int_{0}^{L} \left[\rho w_{t} h_{w} \right]_{t_{1}}^{t_{2}} dx = 0.$$
(25)

We remark that the terms computed at the boundaries involving the Dirac and Heaviside functions are zero by definition. The remaining boundary terms are equal to zero as soon as we guarantee the boundary conditions

$$w(0,t) = w_x(0,t) = w_{xx}(L,t) = w_{x3}(L,t) = 0.$$
(26)

The last term in (22) is equal to zero because of the vanishing condition of functions h_w at $t_1, t_2, i.e.$ $h_w(t_2) = h_w(t_1) = 0$. From the remaining terms, we can extract the equations of motion and boundary conditions corresponding to the

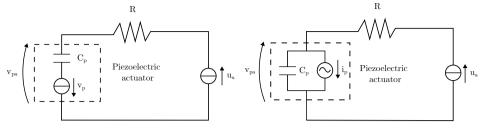


Fig. 2 Two equivalent lumped parameter electrical representations of the piezoelectric actuation.

series between a capacitor and voltage generator piezoelectric representation, represented in Figure 2,

$$\begin{cases} \rho w_{tt} = -EIw_{4x} + \frac{\alpha}{C_p} (q_f - \alpha [w_x]_{\eta}^{\xi}) \frac{d}{dx} (\delta_{\eta} - \delta_{\xi}) \\ w(0, t) = w_x(0, t) = w_{xx}(L, t) = w_{x3}(L, t) = 0 \\ R\dot{q}_f = -\frac{1}{C_p} (q_f - \alpha [w_x]_{\eta}^{\xi}) + u_a. \end{cases}$$
 (27)

The second PA equivalent representation of a capacitor in parallel with a current generator can be obtained through the following change of variable

$$q_a = q_f - \alpha [w_x]_{\eta}^{\xi}. \tag{28}$$

The corresponding equations of motions are the ones given in (1). From a physical point of view, $\dot{q}_a(t)$ is the current passing through the capacitor C_p in the right electrical circuit of Figure 2. The term $\frac{1}{R}\left(u_a - \frac{q_a}{C_p}\right)$ is the total current in the circuit, while $i_p = \alpha[w_{xt}]_{\xi}^{\eta}$ is the current generated by the direct piezoelectric effect.

2.3 Hysteresis model insertion in the equations of motion

Experimental observations indicate that the PA hysteresis behaviour lies in the electrical domain between the applied actuator voltage and the resulting charge q_a responsible for the mechanical stress (Goldfarb and Celanovic, 1997). The hysteresis behaviour can be modeled using the Maxwell slip model which, from an electrical point of view, can be represented by a series of N linear capacitors in parallel with as many nonlinear resistors (Yeh et al, 2008; Goldfarb and Celanovic, 1997). An equivalent electrical representation consists of the parallel of N inductors in series with as many nonlinear resistors (Caballeria et al, 2021). In this work, we consider the capacitor-resistor representation of the Maxwell-slip model depicted in Figure 3. From now on, we denote with hysterion the element composed by a capacitor in parallel with a nonlinear resistor. To obtain the electrical dynamical equations we write the

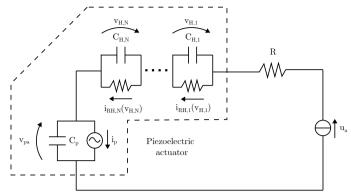


Fig. 3 Electrical representation of the PA embedded with the Hysteresis Maxwell-slip model.

1st Kirchhoff's law for \dot{q}_a and $\dot{q}_{H,j}$ for $j \in \{1, \dots, N\}$.

$$\begin{cases} \dot{q}_a = i_a - i_p \\ \dot{q}_{H,j} = i_a - i_{RH,j}(v_{H,j}). \end{cases}$$
 (29)

The current i_a corresponds to the current flowing in the resistor R

$$i_{a} = \frac{1}{R} \left(u_{a} - v_{pa} - \sum_{j=1}^{N} v_{H,j} \right)$$

$$= \frac{1}{R} \left(u_{a} - \frac{q_{a}}{C_{p}} - \sum_{j=1}^{N} \frac{q_{H,j}}{C_{H,j}} \right).$$
(30)

We embed the last equation in the 1st Kirchhoff's law and $i_p = \alpha [w_{xt}]_{\xi}^{\eta}$ in (29) to obtain

$$\begin{cases}
\dot{q}_a = -\frac{1}{R} \left(\frac{q_a}{C_p} + \sum_{j=1}^N \frac{q_{H,j}}{C_{H,j}} \right) - \alpha [w_{xt}]_{\xi}^{\eta} + \frac{1}{R} u_a \\
\dot{q}_{H,j} = -\frac{1}{R} \left(\frac{q_a}{C_p} + \sum_{j=1}^N \frac{q_{H,j}}{C_{H,j}} \right) - i_{RH,j} \left(\frac{q_{H,j}}{C_{H,j}} \right) + \frac{1}{R} u_a.
\end{cases}$$
(31)

The relation between $i_{RH,j}$ and $v_{H,j}$ proposed in (Yeh et al, 2008; Goldfarb and Celanovic, 1997) can be formalized by the following function

$$i_{H,j}(v_{H,j}) = \begin{cases} 0 & \text{if } |v_{H,j}| < \overline{v}_j \\ \overline{G}_H(v_{H,j} + \overline{v}_j) & \text{if } v_{H,j} \le -\overline{v}_j \\ \overline{G}_H(v_{H,j} - \overline{v}_j) & \text{if } v_{H,j} \ge \overline{v}_j. \end{cases}$$
(32)

where $\overline{G}_H >> 1$ is the common conductance to all the hysterions, while \overline{v}_j are the limit voltages different between hysterions. In this paper, we consider that each hysterion lets through leakage current when the voltage is in the interval $[-\overline{v}_j, \overline{v}_j]$. Therefore, introducing the conductance $\underline{G}_H << 1$, we consider the

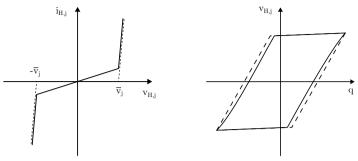


Fig. 4 Graphical representation of the proposed current as nonlinear function of the voltage, as well as the resulting hysteresis relation between voltage and charge. The dashed lines correspond to the function in (32) and the corresponding hysteresis, while the solid lines correspond to (33).

following nonlinear current function

$$i_{H,j}(v_{H,j}) = \begin{cases} \underline{G}_H v_{H,j} & \text{if} \quad |v_{H,j}| < \overline{v}_j \\ \overline{G}_H v_{H,j} + \overline{v}_j (\overline{G}_H - \underline{G}_H) & \text{if} \quad v_{H,j} \le -\overline{v}_j \\ \overline{G}_H v_{H,j} - \overline{v}_j (\overline{G}_H - \underline{G}_H) & \text{if} \quad v_{H,j} \ge \overline{v}_j. \end{cases}$$
(33)

In Figure 4 we plot the comparison between the two different current nonlinear functions, together with the resulting hysteresis between the voltage $v_{H,j}$ and the charge $q = \int_0^t i_a(\tau)d\tau$. It is easy to show that the current nonlinear function in (33) has the following properties.

Proposition 3 For all $j \in \{1, ..., N\}$, the nonlinear function $i_{H,j} : \mathbb{R} \to \mathbb{R}$ in (33) is

- continuous, monotonically increasing (i.e. $(i_{H,j}(v_{H,j1})-i_{H,j}(v_{H,j2}))(v_{H,j1}-v_{H,j2}) \geq 0$) and such that $i_{H,j}(0) = 0$
- such that $i_{H,j}(v_{H,j1})v_{H,j1} \geq \underline{G}_H v_{H,j1}^2$ for all $v_{H,j1} \in \mathbb{R}$.

3 Well-posedness and asymptotic stability: linear system

3.1 PA critical positioning and L^2 beam equation analysis

In this subsection, we provide some useful preliminaries for studying the indomain stabilization of the Euler-Bernoulli beam equation. As already shown in previous publications on stabilization of piezoelectric controlled flexible beams (Prieur and Tarbouriech, 2019; Crépeau and Prieur, 2006), stabilization is possible only in case the actuator is non-critical positioned. To understand what are non-critical points, it is necessary to recall some useful facts about the free evolution of the Euler-Bernoulli equations. To do that, we consider

the homogeneous Cauchy problem

$$\phi_{tt}(x,t) + \frac{EI}{\rho}\phi_{x4}(x,t) = 0, \quad \phi(\cdot,0) = \phi^0, \ \phi_t(\cdot,0) = v^0,
\phi(0,t) = \phi_x(0,t) = \phi_{xx}(L,t) = \phi_{x3}(L,t) = 0.$$
(34)

For the sake of compactness, we shall not explicit the time and space dependency of the variables, unless it is not clear from the context. We define the state $z = (\phi, \nu)$ where $\nu = \phi_t$ and let $A_0 : D(A_0) \to L^2(0, L)^2$ be the open-loop operator with domain

$$D(A_0) := \{ (\phi, \nu) \in H^4(0, L) \times H^2(0, L) \mid \nu(0) = \nu_x(0) = 0, \\ \phi(0) = \phi_x(0) = \phi_{xx}(L) = \phi_{x3}(L) = 0 \}$$
(35)

and defined by $A_0z = (\nu, -\frac{EI}{\rho}\phi_{x4})$. We define the set $\mathcal{H} = H^2(0, L) \times L^2(0, L)$ with inner product $\langle z_1, z_2 \rangle_{\mathcal{H}} = \int_0^L \phi_{1,xx}\phi_{2,xx} + \phi_{t,1}\phi_{t,2}dx$. The operator A_0^{-1} is compact and symmetric on \mathcal{H}^{-1} , hence there exists a countable orthonormal basis of \mathcal{H} consisting of eigenvectors of A_0^{-1} . In the following proposition, we provide a result on the characterization of the A_0 eigenvectors.

Proposition 4 (Lemma 2.1 in (Crépeau and Prieur, 2006)) The $L^2(0, L)$ -normalized eigenfunctions of A_0 are the functions $(\psi_n)_{n>1}$, defined for all x in (0, L) by

$$\psi_n(x) = \gamma_n(\cos(\alpha_n x) - \cosh(\alpha_n x) + \mu_n(\sinh(\alpha_n x) - \sin(\alpha_n x)))$$
 (36)

where α_n is the n-th positive root of

$$1 + \cos(\alpha_n L)\cosh(\alpha_n L) = 0 \tag{37}$$

with $\mu_n = \frac{\cos(\alpha_n x) + \cos(\alpha_n x)}{\sin(\alpha_n x) + \sinh(\alpha_n x)}$ and $\gamma_n = \frac{1}{\sqrt{L}}$.

We are now in the position to define the *critical set*. To do that, let $L_p = \xi - \eta$ be the length of the PA. For any $n \ge 1$ and any $L_p \in (0, L]$, let

$$\mathbb{S}_n(L_p) := \{ \eta \in [0, L - L_p], \psi_{n,x}(\eta) - \psi_{n,x}(\eta + L_p) = 0 \}, \tag{38}$$

where $\psi_{n,x}$ corresponds to the spatial derivative of the n-th eigenfunction ψ_n , therefore the *critical set* can be defined as

$$S(L_p) = \bigcup_{n \ge 1} S_n(L_p). \tag{39}$$

The exact observability of (34) with respect to the output $[\nu_x]_{\xi}^{\eta}$ is shown in the following lemma for any non-critical positioning (η, ξ) of the PA.

Lemma 5 If $\eta \notin \mathbb{S}(L_p)$, the system (34) is exactly observable with respect to $[\nu_x]_{\mathfrak{s}}^{\eta}$.

Proof According to (Curtain and Zwart, 2020, Corollary 6.2.15), a system is exactly observable on $[0,\tau]$ if and only if $\int_0^\tau ||y(t)||^2 dt \ge \gamma ||z||_{\mathcal{H}}^2$ for some $\gamma>0$ and for all $z\in\mathcal{H}$. It is easily seen that if $\phi^0=\sum_{n\ge 1}\phi_n^0\psi_n$ and $\nu^0=\sum_{n\ge 1}\nu_n^0\psi_n$, then the solution $\phi=\phi(x,t)$ to (34) reads

$$\phi(x,t) = \sum_{n=1}^{\infty} \left(\phi_n^0 \cos(\alpha_n^2 t) + \frac{v_n^0}{\alpha_n^2} \sin(\alpha_n^2 t) \right) \psi_n(x). \tag{40}$$

Using the former equation in the output definitions we obtain

$$[\nu_x(x,t)]_{\xi}^{\eta} = \sum_{n=1}^{+\infty} \left(-\phi_n^0 \alpha_n^2 \sin(\alpha_n^2 t) + v_n^0 \cos(\alpha_n^2 t) \right) (\psi_{n,x}(\eta) - \psi_{n,x}(\xi)). \tag{41}$$

Since $\alpha_{n+1}^2-\alpha_n^2\to\infty$ we infer from a generalization of Ingham's inequality that for any $\tau>0$

$$\int_{0}^{\tau} |[\nu_{x}(x,t)]_{\xi}^{\eta}|^{2} dt = \int_{0}^{\tau} \left(\sum_{n=1}^{+\infty} \left(-\phi_{n}^{0} \alpha_{n}^{2} \sin(\alpha_{n}^{2}t) + v_{n}^{0} \cos(\alpha_{n}^{2}t) \right) (\psi_{n,x}(\eta) - \psi_{n,x}(\xi)) \right)^{2} dt$$

$$\geq C_{\tau} \sum_{n=1}^{+\infty} \left((\phi_{n}^{0} \alpha_{n}^{2})^{2} + (v_{n}^{0})^{2} \right) (\psi_{n,x}(\eta) - \psi_{n,x}(\xi))^{2}.$$
(42)

Therefore, since $\eta \notin \mathcal{S}$ then $\psi_{n,x}(\eta) - \psi_{n,x}(\xi) \neq 0$ and from the previous inequalities we obtain that $\int_0^\tau ||\sigma(t)||^2 dt \geq \gamma ||z||_{\mathcal{H}}^2$, that indeed concludes the proof.

Now, we introduce the necessary tools to obtain that both hands of the PDE in (6) belong to $L^2(0, L)$. If w is any function in $H^1(0, \eta) \cap H^1(\eta, \xi) \cap H^1(\xi, L)$, we define $\{w_x\} \in L^2(0, L)$ by

$$\{w_x\}(x) := \begin{cases} w_x^{\mathcal{D}'(0,\eta)}(x) & \text{if } x \in (0,\eta) \\ w_x^{\mathcal{D}'(\eta,\xi)}(x) & \text{if } x \in (\eta,\xi) \\ w_x^{\mathcal{D}'(\xi,\pi)}(x) & \text{if } x \in (\xi,L). \end{cases}$$
(43)

We set also $[w]_{\eta} := w(\eta^+) - w(\eta^-)$, and $[w]_{\xi} := w(\xi^+) - w(\xi^-)$. Then it follows that

$$w_x = \{w_x\} + [w]_{\eta} \delta_{\eta} + [w]_{\xi} \delta_{\xi} \quad \text{in } \mathcal{D}'(0, L). \tag{44}$$

Assume now that $w \in H^2(0,L)$ and that $v \in H^2(0,L)$, and define $\varpi = -\frac{EI}{\rho}w_{x4} + \varepsilon \frac{d}{dx}(\delta_{\eta} - \delta_{\xi})$. If $\varpi \in L^2(0,L)$, then the restriction of ϖ to each of the intervals $(0,\eta)$, (η,ξ) and (ξ,L) has also to be a square integrable function. The same conclusion holds for w_{x4} , hence $w \in H^4(0,\eta) \cap H^4(\eta,\xi) \cap H^4(\xi,L)$. We may then compute the first space derivatives of w and then ϖ . We obtain

$$w_{x} = \{w_{x}\} + [w]_{\eta}\delta_{\eta} + [w]_{\xi}\delta_{\xi} = \{w_{x}\}$$

$$w_{xx} = \{w_{xx}\} + [w_{x}]_{\eta}\delta_{\eta} + [w_{x}]_{\xi}\delta_{\xi} = \{w_{xx}\}$$

$$w_{x3} = \{w_{x3}\} + [w_{xx}]_{\eta}\delta_{\eta} + [w_{xx}]_{\xi}\delta_{\xi}$$

$$w_{x4} = \{w_{x4}\} + [w_{x3}]_{\eta}\delta_{\eta} + [w_{x3}]_{\xi}\delta_{\xi} + [w_{xx}]_{\eta}\frac{d}{dx}\delta_{\eta} + [w_{xx}]_{\xi}\frac{d}{dx}\delta_{\xi}$$
 (45)

and

$$\varpi = -\frac{EI}{\rho} \left(\{ w_{x4} \} + [w_{x3}]_{\eta} \delta_{\eta} + [w_{x3}]_{\xi} \delta_{\xi} + [w_{xx}]_{\eta} \frac{d}{dx} \delta_{\eta} + [w_{xx}]_{\xi} \frac{d}{dx} \delta_{\xi} \right) + \varepsilon \frac{d}{dx} (\delta_{\eta} - \delta_{\xi}).$$

Then, ϖ is in $L^2(0,L)$ provided that all the coefficients in front of the Dirac functions vanish, i.e. $[w_{xx}]_{\eta} = \frac{\rho}{EI}\varepsilon = -[w_{xx}]_{\xi}$ and $[w_{x3}]_{\eta} = [w_{x3}]_{\xi} = 0$.

3.2 Well-posedness and stability analysis

In this subsection, we show the well-posedness and the asymptotic stability of solutions generated by the linear system (1) in closed loop with the control law (3). System (1) in closed loop with (3) writes:

$$\begin{cases} \rho w_{tt}(x,t) = -EIw_{xxxx}(x,t) + \frac{\alpha}{C_p} q_a(t) \frac{d}{dx} \left(\delta_{\eta}(x) - \delta_{\xi}(x) \right) \\ w(0,t) = w_x(0,t) = w_{xx}(L,t) = w_{xxx}(L,t) = 0 \\ \dot{q}_a(t) = -\frac{1+\beta}{RC_p} q_a(t) - \alpha \left[w_{xt}(x,t) \right]_{\eta}^{\xi} - \gamma \left[w_{xtt} \right]_{\eta}^{\xi} - \frac{\gamma(1+\beta)}{RC_p} \left[w_{xt} \right]_{\eta}^{\xi} \end{cases}$$
(46)

that, after the change of variables $\overline{q}_a = q_a + \gamma [w_{xt}]_{\mathcal{E}}^{\eta}$, can be rewritten as

$$\begin{cases} \rho w_{tt}(x,t) = -EIw_{xxxx}(x,t) + \frac{\alpha}{C_p} (\overline{q}_a(t) - \gamma [w_{xt}(x,t)]_{\eta}^{\xi}) \frac{d}{dx} (\delta_{\eta}(x) - \delta_{\xi}(x)) \\ w(0,t) = w_x(0,t) = w_{xx}(L,t) = w_{xxx}(L,t) = 0 \\ \dot{\overline{q}}_a(t) = -\frac{1+\beta}{RC_p} \overline{q}_a(t) - \alpha [w_{xt}(x,t)]_{\eta}^{\xi}. \end{cases}$$
(47)

Therefore, we define the space

$$V = \{ v \in H^2(0, L) \mid v(0) = v_x(0) = 0 \}$$
(48)

with inner product $\langle v_1, v_2 \rangle_V = \langle v_{1,xx}, v_{2,xx} \rangle_{L^2}$ and associated norm $||v||_V = \sqrt{\langle v_1, v_2 \rangle_V}$. Then, we can define the operator

$$A_{1}z = \begin{bmatrix} v \\ -\frac{EI}{\rho}w_{x4} + \frac{\alpha}{\rho C_{p}} \left(\overline{q}_{a} - \gamma \left[v_{x}\right]_{\eta}^{\xi}\right) \frac{d}{dx} \left(\delta_{\eta} - \delta_{\xi}\right) \\ -\frac{1+\beta}{RC_{n}}\overline{q}_{a} - \alpha \left[v_{x}\right]_{\eta}^{\xi} \end{bmatrix}$$

$$(49)$$

with state $z=(w,v,\overline{q}_a)\in Z_1=V\times L^2(0,L)\times \mathbb{R}$ and domain

$$D(A_{1}) = \{ z \in Z \mid w \in H^{4}(0, \eta) \cap H^{4}(\eta, \xi) \cap H^{4}(\xi, L), v \in H^{2}(0, L) \\ w(0) = w_{x}(0) = w_{xx}(L) = w_{x3}(L) = 0, \ v(0) = v_{x}(0) = 0, \\ [w_{xx}]_{\eta} = \frac{\alpha}{EIC_{p}} \left(\overline{q}_{a} - \gamma [v_{x}]_{\eta}^{\xi} \right) = -[w_{xx}]_{\xi}, \ [w_{x3}]_{\eta} = [w_{x3}]_{\xi} = 0 \}.$$

$$(50)$$

We remark that the compatibility conditions necessary to obtain an $L^2(0, L)$ right-hand side of the beam PDE obtained in Section 3.1 are present in $D(A_1)$. For the linear system's analysis, we equip the state space Z_1 with the energy inner product

$$\langle z_1, z_2 \rangle_1 = \int_0^L \{EIw_{1,xx}w_{2,xx} + \rho v_1 v_2\} dx + \frac{1}{C_p} \overline{q}_{1,a} \overline{q}_{2,a}$$
 (51)

and the associated norm $||z||_1 = \sqrt{\langle z, z \rangle_1}$. The energy inner product (51) corresponds to the standard inner product on Z_1 and therefore is well-posed. Here we present the well-posedness result for operator A_1 with domain $D(A_1)$.

Theorem 6 The closed-loop operator A_1 defined in (49), with domain $D(A_1)$ in (50), generates a contraction C_0 -semigroup in the state space Z.

Proof By the Lumer-Phillips Theorem, we have to show that the operator A_1 is dissipative and that $Ran(\lambda I - A_1) = Z_1$. We start with the dissipativity of operator A_1 , and applying two times integration by parts we obtain

$$\langle A_{1}z, z \rangle_{1} = \int_{0}^{L} \left\{ EIv_{xx}w_{xx} + \rho \left(-\frac{EI}{\rho}w_{x4} + \frac{\alpha}{\rho C_{p}} \left(\overline{q}_{a} - \gamma \left[v_{x} \right]_{\xi}^{\eta} \right) \frac{d}{dx} \left(\delta_{\eta} - \delta_{\xi} \right) \right) v \right\} dx$$

$$+ \frac{1}{C_{p}} \left(-\frac{1+\beta}{RC_{p}} \overline{q}_{a} - \alpha \left[v_{x} \right]_{\xi}^{\eta} \right) \overline{q}_{a}$$

$$= \int_{0}^{L} \left\{ EIv_{xx}w_{xx} - EIw_{xx}v_{xx} \right\} dx - \left[w_{x3}v \right]_{0}^{L} + \left[w_{xx}v_{x} \right]_{0}^{L}$$

$$\frac{\alpha \overline{q}_{a}}{\rho C_{p}} \int_{0}^{L} v \frac{d}{dx} \left(\delta_{\eta} - \delta_{\xi} \right) dx - \frac{\alpha \gamma \left[v_{x} \right]_{\eta}^{\xi}}{\rho C_{p}} \int_{0}^{L} v \frac{d}{dx} \left(\delta_{\eta} - \delta_{\xi} \right) dx$$

$$+ \frac{1}{C_{p}} \left(-\frac{1+\beta}{RC_{p}} \overline{q}_{a} - \alpha \left[v_{x} \right]_{\eta}^{\xi} \right) \overline{q}_{a}.$$

$$(52)$$

Using the boundary conditions in (50) together with the definition of the Dirac and Heaviside functions, we obtain

$$\langle A_1 z, z \rangle_1 = -\frac{\alpha \gamma}{\rho C_p} \left([v_x]_{\eta}^{\xi} \right)^2 - \frac{1+\beta}{RC_p^2} \overline{q}_a^2 \le 0 \tag{53}$$

The range condition $\operatorname{Ran}(\lambda I - A_1) = Z_1$ consists on finding for a certain $\lambda > 0$, $\tilde{z} = (\tilde{w}, \tilde{v}, \tilde{q}_a) \in D(A_1)$ such that $(\lambda I - A)\tilde{z} = f$ for all $f \in Z_1$. Let us first note that the latter equation is equivalent to

$$\begin{cases}
\lambda \tilde{w} - \tilde{v} = f_w \\
\lambda \tilde{v} - \left(-\frac{EI}{\rho} \tilde{w}_{x4} + \frac{\alpha}{\rho C_p} \left(\tilde{q}_a - \gamma \left[\tilde{v}_x \right]_{\eta}^{\xi} \right) \frac{d}{dx} \left(\delta_{\eta} - \delta_{\xi} \right) \right) = f_v \\
\lambda \tilde{q}_a - \left(-\frac{1+\beta}{BC} \tilde{q}_a - \alpha \left[v_x \right]_{\eta}^{\xi} \right) = f_{qa}
\end{cases}$$
(54)

that can be rewritten as

$$\begin{cases}
\tilde{v} = \lambda \tilde{w} + f_w \\
\lambda^2 \tilde{w} + \frac{EI}{\rho} \tilde{w}_{x4} - \frac{\alpha}{\rho C_p} \left(\tilde{q}_a - \gamma \left[\tilde{v}_x \right]_{\eta}^{\xi} \right) \frac{d}{dx} \left(\delta_{\eta} - \delta_{\xi} \right) = f_v - \lambda f_w \\
\tilde{q}_a = \frac{1}{\lambda + \frac{1+\beta}{RC_p}} f_{qa} - \frac{\alpha}{\lambda + \frac{1+\beta}{RC_p}} \left[\tilde{v}_x \right]_{\eta}^{\xi}
\end{cases} (55)$$

and therefore \tilde{v} and \tilde{q} are uniquely determined by \tilde{w} . Then, we replace the term \tilde{w}_{x4} by the expression in (45), and using the conditions in $D(A_1)$ we obtain that the second equation of (55) is equivalent to

$$\lambda^2 \tilde{w} + \frac{EI}{\rho} \{ \tilde{w}_{x4} \} = f_v - \lambda f_w. \tag{56}$$

We write the weak form of (56) for all $\phi \in V$ (with V defined in (48)), that since $\{\tilde{w}_{x4}\}\in L^2(0,L)$ we can split the integral in three different parts

$$\int_0^L \lambda^2 \tilde{w} \phi dx + \frac{EI}{\rho} \sum_{i=1}^3 \int_{I_i} \tilde{w}_{x4} \phi dx = \int_0^L \tilde{f} \phi dx \tag{57}$$

with $I_1 = (0, \eta^-)$, $I_1 = (\eta^+, \xi^-)$ and $I_1 = (\xi^+, L)$ and $\tilde{f} = f_v - \lambda f_w$. Using two times integration by parts on the second term and the boundary and compatibility conditions in $D(A_1)$ we obtain

$$\int_{0}^{L} \tilde{f}\phi dx = \int_{0}^{L} \lambda^{2} \tilde{w}\phi dx + \frac{EI}{\rho} \int_{0}^{L} \{\tilde{w}_{xx}\}\phi_{xx} dx + \frac{\alpha}{\rho C_{p}} \left(\tilde{q}_{a} - \gamma \left[\tilde{v}_{x}\right]_{\eta}^{\xi}\right) \left(\phi_{x}(\eta) - \phi_{x}(\xi)\right) \\
\int_{0}^{L} \tilde{f}\phi dx - \kappa_{1} f_{qa} \left[\phi_{x}\right]_{\xi}^{\eta} = \int_{0}^{L} \lambda^{2} \tilde{w}\phi dx + \frac{EI}{\rho} \int_{0}^{L} \{\tilde{w}_{xx}\}\phi_{xx} dx - \kappa_{2} \left[\tilde{v}_{x}\right]_{\eta}^{\xi} \left[\phi_{x}\right]_{\xi}^{\eta} \right]$$
(58)

where $\kappa_1 = \frac{R\alpha}{\rho(R\lambda C_p + 1 + \beta)}$ and $\kappa_2 = \frac{R\alpha(\alpha + \gamma(\lambda + \frac{1+\beta}{RC_p}))}{\rho(RC_p\lambda + 1 + \beta)}$. Using the last relation in (55) together with the fact that $\{\tilde{w}_{xx}\} = \tilde{w}_{xx}$ we get

$$\int_{0}^{L} \tilde{f}\phi \, dx - \kappa_{1} f_{qa}[\phi_{x}]_{\xi}^{\eta} - \kappa_{2}[f_{w,x}]_{\eta}^{\xi}[\phi_{x}]_{\xi}^{\eta} = \int_{0}^{L} \{\lambda^{2} \tilde{w}\phi + \frac{EI}{\rho} \tilde{w}_{xx}\phi_{xx}\} dx \\
+ \kappa_{2} \lambda [\tilde{w}_{x}]_{\xi}^{\eta}[\phi_{x}]_{\xi}^{\eta}.$$
(59)

We define the bilinear form

$$a(\tilde{w},\phi) = \int_0^L \{\lambda^2 \tilde{w}\phi + \frac{EI}{\rho} \tilde{w}_{xx}\phi_{xx}\} dx + \kappa_2 \lambda [\tilde{w}_x]_{\xi}^{\eta} [\phi_x]_{\xi}^{\eta}$$
 (60)

and since $\kappa_2 > 2$, we remark that this bilinear form is coercive in V. Indeed, we have that

$$a(\tilde{w}, \tilde{w}) = \int_0^L \left\{ \lambda^2 \tilde{w}^2 + \frac{EI}{\rho} \tilde{w}_{xx}^2 \right\} dx + \kappa_2 \lambda \left([\tilde{w}_x]_{\xi}^{\eta} \right)^2$$

$$\geq \frac{EI}{\rho} \int_0^L \tilde{w}_{xx}^2 dx = \frac{EI}{\rho} ||\tilde{w}||_V^2.$$
(61)

For showing that $a(\tilde{w}, \phi)$ is continuous we begin by using Cauchy-Swartz and Poincaré inequalities

$$a(\tilde{w},\phi) \leq \lambda^{2} \left(\int_{0}^{L} \tilde{w}^{2} dx \right)^{\frac{1}{2}} \left(\int_{0}^{L} \phi^{2} dx \right)^{\frac{1}{2}} + \frac{EI}{\rho} \left(\int_{0}^{L} \tilde{w}_{xx}^{2} dx \right)^{\frac{1}{2}} \left(\int_{0}^{L} \phi_{xx}^{2} dx \right)^{\frac{1}{2}} + \kappa_{2} \lambda \int_{\xi}^{\eta} w_{xx} dx \int_{\xi}^{\eta} \phi_{xx} dx$$

$$\leq \left(\lambda^{2} + \frac{EI}{\rho} \right) \left(\int_{0}^{L} \tilde{w}_{xx}^{2} dx \right)^{\frac{1}{2}} \left(\int_{0}^{L} \phi_{xx}^{2} dx \right)^{\frac{1}{2}} + \kappa_{2} \lambda \left(\int_{\xi}^{\eta} w_{xx}^{2} dx \right)^{\frac{1}{2}} \left(\int_{\xi}^{\eta} \phi_{xx}^{2} dx \right)^{\frac{1}{2}}.$$

$$(62)$$

Then, by increasing the integration intervals of the last terms, we obtain $a(\tilde{w},\phi) \leq (\lambda^2 + EI\rho^{-1} + \kappa)||\tilde{w}||_V||\phi||_V$, that indeed proves that the bilinear form $a(\tilde{w},\phi)$ is continuous. Therefore, we define the linear functional $\int_0^L \tilde{f}\phi \ dx - \kappa_1 f_{qa} [\phi_x]_\xi^{\eta} - \kappa_2 [f_{w,x}]_\eta^{\xi} [\phi_x]_\xi^{\eta}$, and we apply the Lax-Milgram Theorem to conclude that there exists a unique solution $\tilde{w} \in V$ to the weak formulation of (55). Now we show that $\tilde{w} \in H^4(0,\eta) \cap H^4(\eta,\xi) \cap H^4(\xi,L)$. To do that we start by showing that $\tilde{w} \in H^4(0,\eta)$. Therefore we select the test function such that $\phi \in C_c^{\infty}(0,\eta) \subset V$ and from (56) we obtain

$$\int_0^{\eta} \lambda^2 \tilde{w} \phi dx + \frac{EI}{\rho} \int_0^{\eta} \tilde{w}_{x4} \phi dx = \int_0^{\eta} \tilde{f} \phi dx \tag{63}$$

from which we know that there exists a unique solution $\tilde{w} \in V$. Since $\phi \in C_c^{\infty}(0, \eta) \subset V$, using two integrations by parts, the previous equation can be rewritten as

$$\int_{0}^{\eta} \tilde{w}_{xx} \phi_{xx} dx = \frac{\rho}{EI} \int_{0}^{\eta} (\tilde{f} - \lambda^{2} \tilde{w}) \phi dx \tag{64}$$

that indeed proves that $\tilde{w}_{xx} \in H^2(0,\eta)$ and therefore $\tilde{w}_{x4} \in L^2(0,\eta)$ according to the H^2 definition (Brezis, 2011, page 216). Similar arguments can be used to prove that $\tilde{w}_{x4} \in L^2(\eta,\xi)$ and $\tilde{w}_{x4} \in L^2(\xi,L)$. To summarize we have proven that there exists

a $\tilde{w} \in L^2(0,\eta) \cap L^2(\eta,\xi) \cap L^2(\xi,L)$ that satisfies the boundary and compatibility conditions unique solution to (56). From the first and last equations of (55), \tilde{v} and \tilde{q} can be uniquely determined from \tilde{w} . Hence, we proved the range condition and using the Lumer-Phillips Theorem we can conclude that A_1 generates a contraction C_0 -semigroup in Z_1 .

In order to conclude about the global asymptotic stability of the origin of system (1) with (3), we first introduce the two following technical lemmas.

Lemma 7 The canonical embedding from $D(A_1)$ to Z_1 is compact.

Proof The statement is equivalent to the fact that for each sequence in $D(A_1)$, which is bounded with the graph norm, there exists a subsequence that (strongly) converges in Z_1 . Recalling the definition of the graph norm $||z||_{D(A_1)}^2 := ||z||_1^2 + ||A_1z||_1^2$

$$||z||_{D(A_{1})}^{2} = \int_{0}^{L} \left\{ EI(w_{xx})^{2} + \rho v^{2} + EI(v_{xx})^{2} + \rho \left(-\frac{EI}{\rho} w_{x4} + \frac{\alpha}{\rho C_{p}} \left(\overline{q}_{a} - \gamma \left[v_{x} \right]_{\eta}^{\xi} \right) \frac{d}{dx} \left(\delta_{\eta} - \delta_{\xi} \right) \right)^{2} \right\} dx$$

$$+ \frac{1}{C_{p}} \overline{q}_{a}^{2} + \frac{1}{C_{p}} \left(-\frac{1+\beta}{RC_{p}} \overline{q}_{a} - \alpha \left[v_{x} \right]_{\eta}^{\xi} \right)^{2}$$
(65)

We substitute the w_{x4} expression in (45) to obtain

$$||z||_{D(A_1)}^2 \ge \int_0^L EI(w_{xx})^2 + \rho v^2 + EI(v_{xx})^2 + \frac{EI^2}{\rho} \{w_{x4}\}^2 dx$$

$$\frac{1}{C_p} \overline{q}_a^2 + \frac{1}{C_p} \left(-\frac{1}{RC_p} \overline{q}_a - \alpha [v_x]_{\eta}^{\xi} \right)^2,$$
(66)

From the previous inequality, we get

$$||z||_{D(A_{1})}^{2} \ge \min \left\{ EI, \frac{EI^{2}}{\rho} \right\} \int_{0}^{L} (w_{xx})^{2} + \{w_{x4}\}^{2} dx,$$

$$||z||_{D(A_{1})}^{2} \ge \min \left\{ EI, \rho \right\} \int_{0}^{L} v^{2} + (v_{xx})^{2} dx,$$

$$||z||_{D(A_{1})}^{2} \ge \frac{1}{C_{p}} \overline{q}_{a}^{2}.$$

$$(67)$$

Consider now a sequence $(z_n)_{n\in\mathbb{N}}$ in $D(A_1)$ bounded for the graph norm $D(A_1)$. From (67) we deduce that the sequence $(w_n)_{n\in\mathbb{N}}$ is bounded in $H^4(0,\eta)\cap H^4(\eta,\xi)\cap H^4(\xi,L)$, the sequence $(v_n)_{n\in\mathbb{N}}$ is bounded in $H^2(0,L)$ and the sequence $(\overline{q}_{a,n})_{n\in\mathbb{N}}$ is bounded in \mathbb{R} . It follows that there exist $v\in L^2(0,L)$ and $q\in\mathbb{R}$ such that extracting a subsequence from each sequence we obtain that $(v_{n'})_{n'\in\mathbb{N}}\to v$ in $L^2(0,L)$ and $(\overline{q}_{a,n'})_{n'\in\mathbb{N}}\to \overline{q}_a$ in \mathbb{R} . Then, we extract a subsequence from $(w_{n'})_{n'\in\mathbb{N}}$, calling it $(w_{n'})_{n'\in\mathbb{N}}$, such that $(w_{n'})_{n'\in\mathbb{N}}\to w_1$ in $H^2(0,\eta)$. We successively extract a sequence such that $(w_{n'})_{n'\in\mathbb{N}}\to w_2$ in $H^2(\eta,\xi)$, and a final subsequence such that $(w_{n'})_{n'\in\mathbb{N}}\to w_3$ in $H^2(\xi,L)$. Then, we define $w\in H^2(0,L)$

$$w = \begin{cases} w_1 & \text{for } x \in (0, \eta) \\ w_2 & \text{for } x \in (\eta, \xi) \\ w_3 & \text{for } x \in (\xi, L). \end{cases}$$

$$(68)$$

Therefore we conclude that there exists a subsequence $(w_{n'})_{n'\in\mathbb{N}} \to w$ in V. It follows that there exists a subsequence $(z_{n'})_{n'\in\mathbb{N}}$ that strongly converges in Z_1 .

Lemma 8 (Lemma 3.1.1 in (Mattioni, 2021)) For a linear system

$$\Sigma = \begin{cases} z_t(t) = Az(t) \\ y = Cz(t) \\ z(0) = z_0 \end{cases}$$

$$(69)$$

where A is the generator of a C_0 -semigroup and C is an admissible output operator, the following two statements are equivalent

- if y(t) is constant then $z_0 = 0$.
- Σ is approximately observable and its only equilibrium point is zero.

We are now in the position to prove Theorem 1.

Proof of Theorem 1. The stability property follows from the contraction semigroup generation of Theorem 6. For concluding the attractivity property, we define the candidate Lyapunov functional $\mathcal{V}(z) = \frac{1}{2}\langle z, z \rangle_1$ for all $z \in Z_1$. Since the defined Lyapunov function corresponds to half the square of the norm in the space Z_1 , its time-derivative along the solutions to system (1) are given by

$$\dot{\mathcal{V}} = \langle A_1 z, z \rangle_1 \le -\frac{\alpha \gamma}{\rho C_p} \left([v_x]_{\eta}^{\xi} \right)^2 - \frac{1+\beta}{R C_p^2} \overline{q}_a^2. \tag{70}$$

To prove the asymptotic stability we make use of LaSalle's invariance principle. We notice that according to Lemma 7 the embedding of $D(A_1)$ in Z_1 is compact and using (Miyadera, 1992, Corollary 3.7) it follows that $||A_1z(t)||$ is decreasing. Therefore the trajectory set $\{z(t) \mid t \geq 0\}$ is pre-compact in Z_1 . Therefore, according to LaSalle's invariance principle, the solutions converge to the largest invariant set Ω_0 of $\Omega = \{z \in Z_1 \mid \dot{\mathcal{V}} = 0\}$. According to (70), we have that $\Omega = \{z \in Z_1 \mid \overline{q}_a = 0, [v_x]_{\eta}^{\xi} = 0\}$. To find its largest invariant set Ω_0 , we apply the conditions $\overline{q}_a = 0, [v_x]_{\eta}^{\xi} = 0$ to (47) to obtain that the problem of finding Ω_0 consists of finding the solution to the over-constrained system

$$\begin{cases} w_t = v, \ v_t = -\frac{EI}{\rho} w_{x4} \\ [v_x]_{\eta}^{\xi} = 0 \\ w(0) = w_x(0) = w_{xx}(L) = w_{x3}(L) = 0, v(0) = v_x(0) = 0, \\ [w_{xx}]_{\eta} = [w_{xx}]_{\xi} = 0, [w_{x3}]_{\eta} = [w_{x3}]_{\xi} = 0. \end{cases}$$

$$(71)$$

This corresponds to the over-constrained Euler-Bernoulli beam equation with homogeneous boundary conditions and output defined as $y = [v_x]_{\eta}^{\xi}$. First of all, we notice that the output y is a linear bounded operator from $D(A_1)$ to \mathbb{R} and therefore is admissible. Then, it is possible to prove that the operator in (71) generates a contraction C_0 -semigroup and that its only equilibrium is the origin. Since $\eta \notin \mathcal{S}$, according to Lemma 5, system (71) is exactly observable with respect to $[v_x]_{\eta}^{\xi}$ and therefore it is also approximately observable with respect to the same output. Hence, since we know that the output y(t) is constrained to be constant, thanks to Lemma 8 we can conclude that the only solution to the over-constrained problem (71) is the origin. Hence, we obtain that $\Omega_0 = \{0\}$ and by LaSalle's invariance principle we can conclude that the

origin of Z_1 is a globally asymptotically stable equilibrium, and therefore we obtain the following attractivity property

$$w(t)_{H^2}^2 + v(t)_{L^2}^2 + (q_a(t) + \gamma [v_x(t)]_{\eta}^{\xi})^2 \xrightarrow[t \to \infty]{} 0.$$
 (72)

We assume that $z(0) = z_0 \in D(A_1)$ and therefore $z(t) \in D(A_1)$ for all t. Defining the operator $C^e z(t) = [v_x]_{\eta}^{\xi}$, we remark that the operator $C^e A_1^{-1}$ is bounded. Therefore, we can rewrite

$$[v_x(t)]^{\xi}_{\eta} = C^e A_1^{-1} A_1 z(t). \tag{73}$$

Since in Theorem 6 we have shown that A_1 is the generator of a contraction semigroup, we can write $z(t) = T(t)z_0$, where T(t) is the semigroup generated by A_1 . If $z_0 \in D(A_1)$, we can use linearity to have $A_1T(t)z_0 = T(t)A_1z_0$, and therefore

$$[v_x(t)]_{\eta}^{\xi} = C^e A_1^{-1} A_1 T(t) z_0 = C^e A_1^{-1} T(t) A_1 z_0.$$
 (74)

Since we have already shown that T(t) is an asymptotically stable semigroup, we have that $T(t)A_1z_0 \xrightarrow[t\to\infty]{} 0$ and therefore

$$[v_x(t)]_{\eta}^{\xi} = C^e A_1^{-1} T(t) A_1 z_0 \xrightarrow[t \to \infty]{} 0$$

$$(75)$$

because of the boundedness of $C^eA_1^{-1}$. Since $q_a(t) = \overline{q}_a(t) + \gamma [v_x(t)]_{\eta}^{\xi}$ and since $\overline{q}_a(t) \xrightarrow[t \to \infty]{} 0$ we obtain that $q_a(t) \xrightarrow[t \to \infty]{} 0$ for $z_0 \in D(A_1)$.

4 Well-posedness and asymptotic stability: nonlinear system

In this section, we first give the proof of the well-posedness of the nonlinear system (6) in closed loop with (7). The equations of system (6) in closed-loop with (7) corresponds to

$$\begin{cases}
\rho w_{tt}(x,t) = EIw_{xxxx}(x,t) + \frac{\alpha}{C_p} q_a(t) \frac{d}{dx} \left(\delta_{\eta}(x) - \delta_{\xi}(x) \right) \\
w(0,t) = w_x(0,t) = w_{xx}(L,t) = w_{xxx}(L,t) = 0 \\
\dot{q}_a(t) = -\frac{1+\beta}{R} \left(\frac{q_a(t)}{C_p} + \sum_{j=1}^{N} \frac{q_{H,j}}{C_{H,j}} \right) - \alpha \left[w_{xt}(x,t) \right]_{\eta}^{\xi} \\
\dot{q}_{H,1}(t) = -\frac{1+\beta}{R} \left(\frac{q_a(t)}{C_p} + \sum_{j=1}^{N} \frac{q_{H,j}}{C_{H,j}} \right) - i_{RH,1} \left(\frac{q_{H,1}}{C_{H,1}} \right) \\
\vdots \\
\dot{q}_{H,N}(t) = -\frac{1+\beta}{R} \left(\frac{q_a(t)}{C_p} + \sum_{j=1}^{N} \frac{q_{H,j}}{C_{H,j}} \right) - i_{RH,N} \left(\frac{q_{H,N}}{C_{H,N}} \right).
\end{cases} (76)$$

We now define the state $z = (w, v, q_a, q_{H,1}, \dots, q_{H,N}) \in Z_2 = V \times L^2(0, L) \times \mathbb{R}^{N+1}$ where $V = \{v \in H^2(0, L) \mid v(0) = v_x(0) = 0\}, \ v = w_t$ and the

corresponding nonlinear operator is defined as

$$\dot{z} = A_{2}z = \begin{bmatrix}
v \\
-\frac{EI}{\rho}w_{x4} + \frac{\alpha}{\rho C_{p}}q_{a}\frac{d}{dx}\left(\delta_{\eta} - \delta_{\xi}\right) \\
-\frac{1+\beta}{R}\left(\frac{q_{a}}{C_{p}} + \sum_{j=1}^{N}\frac{q_{H,j}}{C_{H,j}}\right) - \alpha\left[v_{x}\right]_{\eta}^{\xi} \\
-\frac{1+\beta}{R}\left(\frac{q_{a}}{C_{p}} + \sum_{j=1}^{N}\frac{q_{H,j}}{C_{H,j}}\right) - i_{RH,1}\left(\frac{q_{H,1}}{C_{H,1}}\right) \\
\vdots \\
-\frac{1+\beta}{R}\left(\frac{q_{a}}{C_{p}} + \sum_{j=1}^{N}\frac{q_{H,j}}{C_{H,j}}\right) - i_{RH,N}\left(\frac{q_{H,N}}{C_{H,N}}\right)
\end{bmatrix} (77)$$

with domain

$$D(A_{2}) = \{ z \in Z_{2} \mid w \in H^{4}(0, \eta) \cup H^{4}(\eta, \xi) \cup H^{4}(\xi, L), v \in H^{2}(0, L) \\ w(0) = w_{x}(0) = w_{xx}(L) = w_{x3}(L) = 0, \ v(0) = v_{x}(0) = 0, \\ [w_{xx}]_{\eta} = \frac{\alpha}{EIC_{p}} q_{a} = -[w_{xx}]_{\xi}, \ [w_{x3}]_{\eta} = [w_{x3}]_{\xi} = 0 \}.$$
 (78)

We remark that, similarly to the linear case, the compatibility conditions of Section 3.1 are present in $D(A_2)$. We equip the state space Z_2 with the inner product

$$\langle z_1, z_2 \rangle_2 = \int_0^L \{ E I w_{xx,1} w_{xx,2} + \rho v_1 v_2 \} dx + \frac{1}{C_p} q_{a,1} q_{a,2} + \sum_{j=1}^N \frac{q_{H,j,1} q_{H,j,2}}{C_{H,j}}$$
 (79)

and the corresponding norm $||z||_2 = \sqrt{\langle z, z \rangle_2}$. Therefore, we rewrite (77) as an abstract Cauchy problem

$$\begin{cases} z_t(t) = A_2 z(t) \\ z(0) = z_0. \end{cases}$$
(80)

In the next theorem, we show that there exists a unique solution for the former Cauchy problem, characterized by some non-increasing properties, for all initial conditions taken in $z_0 \in D(A_2)$. We would like to point out that in order to demonstrate the range condition required to establish the m-dissipativity of the operator A_2 , we employ a novel approach inspired by the methodology utilized in (Vanspranghe et al. 2022).

Theorem 9 For each $z_0 \in D(A_2)$ there exists a unique absolutely continuous $z: [0,\infty) \to Z_2$ such that $z(0) = z_0$ and (80) holds at a.e t > 0. Moreover, if $z(t) \in D(A_2)$ then $||z(t)||_2$, $||A_2z(t)||_2$ are non-increasing.

Proof According to (Showalter, 2013, Proposition 3.1 p.174), the Cauchy problem (80) has a unique solution with the properties listed in the statements if the operator $-A_2$ is m-accretive or equivalently if A_2 is m-dissipative. To be m-dissipative, an

operator needs to satisfy the dissipativity condition $\langle A_2z - A_2\tilde{z}, z - \tilde{z}\rangle_2 \leq 0$ together with the fact that $\text{Ran}(I - \lambda A_2) = Z_2$ for some $\lambda > 0$. We start by computing the dissipativity inner product

$$\langle A_{2}z - A_{2}\tilde{z}, z - \tilde{z} \rangle_{2} = \int_{0}^{L} \left\{ EI \frac{\partial^{2}}{\partial x^{2}} (v - \tilde{v}) \frac{\partial^{2}}{\partial x^{2}} (w - \tilde{w}) - EI \frac{\partial^{4}}{\partial x^{4}} (w - \tilde{w}) (v - \tilde{v}) \right. \\ \left. + \frac{\alpha}{C_{p}} (q_{a} - \tilde{q}_{a}) \frac{d}{dx} \left(\delta_{\eta} - \delta_{\xi} \right) (v - \tilde{v}) \right\} dx \\ \left. - \frac{1+\beta}{R} \left(\frac{q_{a} - \tilde{q}_{a}}{C_{p}} + \sum_{j=1}^{N} \frac{q_{H,j} - \tilde{q}_{H,j}}{C_{H,j}} \right) \frac{q_{a} - \tilde{q}_{a}}{C_{p}} \right. \\ \left. - \frac{\alpha}{C_{p}} [v_{x} - \tilde{v}_{x}]_{\eta}^{\xi} (q_{a} - \tilde{q}_{a}) \right. \\ \left. - \sum_{j=1}^{N} \frac{1+\beta}{R} \left(\frac{q_{a} - \tilde{q}_{a}}{C_{p}} + \sum_{j=1}^{N} \frac{q_{H,j} - \tilde{q}_{H,j}}{C_{H,j}} \right) \frac{q_{H,j} - \tilde{q}_{H,j}}{C_{H,j}} \right. \\ \left. - \sum_{j=1}^{N} \left(i_{RH,j} \left(\frac{q_{H,j}}{C_{H,j}} \right) - i_{RH,j} \left(\frac{\tilde{q}_{H,j}}{C_{H,j}} \right) \right) \frac{q_{H,j} - \tilde{q}_{H,j}}{C_{H,j}} \right.$$

$$(81)$$

Using integration by parts together with the homogeneous boundary conditions makes the first two terms eliminate each other. Therefore we obtain

$$\langle A_{2}z - A_{2}\tilde{z}, z - \tilde{z} \rangle_{2} = -\frac{\alpha}{C_{p}} (q_{a} - \tilde{q}_{a}) \int_{0}^{L} (\delta_{\eta} - \delta_{\xi}) (v_{x} - \tilde{v}_{x}) dx$$

$$-\frac{\alpha}{C_{p}} [v_{x} - \tilde{v}_{x}]_{\eta}^{\xi} (q_{a} - \tilde{q}_{a})$$

$$-\frac{1+\beta}{R} \left(\frac{q_{a} - \tilde{q}_{a}}{C_{p}} + \sum_{j=1}^{N} \frac{q_{H,j} - \tilde{q}_{H,j}}{C_{H,j}} \right) \frac{q_{a} - \tilde{q}_{a}}{C_{p}}$$

$$-\frac{1+\beta}{R} \left(\frac{q_{a} - \tilde{q}_{a}}{C_{p}} + \sum_{j=1}^{N} \frac{q_{H,j} - \tilde{q}_{H,j}}{C_{H,j}} \right) \sum_{j=1}^{N} \frac{q_{H,j} - \tilde{q}_{H,j}}{C_{H,j}}$$

$$-\sum_{j=1}^{N} \left(i_{RH,j} \left(\frac{q_{H,j}}{C_{H,j}} \right) - i_{RH,j} \left(\frac{\tilde{q}_{H,j}}{C_{H,j}} \right) \right) \frac{q_{H,j} - \tilde{q}_{H,j}}{C_{H,j}}.$$
(82)

Using the Dirac function properties and collecting the third and fourth terms we obtain

$$\langle A_{2}z - A_{2}\tilde{z}, z - \tilde{z} \rangle_{2} = -\frac{1+\beta}{R} \left(\frac{q_{a} - \tilde{q}_{a}}{C_{p}} + \sum_{j=1}^{N} \frac{q_{H,j} - \tilde{q}_{H,j}}{C_{H,j}} \right)^{2} - \sum_{j=1}^{N} \left(i_{RH,j} \left(\frac{q_{H,j}}{C_{H,j}} \right) - i_{RH,j} \left(\frac{\tilde{q}_{H,j}}{C_{H,j}} \right) \right) \frac{q_{H,j} - \tilde{q}_{H,j}}{C_{H,j}}.$$
(83)

Using the monotonically increasing property of the nonlinear functions $i_{H,j}$ we get Using the Dirac function properties and collecting the third and fourth terms we obtain

$$\langle A_2 z - A_2 \tilde{z}, z - \tilde{z} \rangle_2 \le -\frac{1+\beta}{R} \left(\frac{q_a - \tilde{q}_a}{C_p} + \sum_{j=1}^N \frac{q_{H,j} - \tilde{q}_{H,j}}{C_{H,j}} \right)^2, \tag{84}$$

and therefore $\langle A_2z - A_2\tilde{z}, z - \tilde{z}\rangle_2 \leq 0$. Let us now show the range condition, *i.e.* for some $\lambda > 0$ we must find $\tilde{z} \in D(A_2)$ such that $(\lambda I - A_2)\tilde{z} = g$ for all $g \in Z_2$. The latter equation is equivalent to

$$\lambda \tilde{w} - \tilde{v} = g_{w} \qquad \text{in } V$$

$$\lambda \tilde{v} + \frac{EI}{\rho} \tilde{w}_{x4} - \frac{\alpha}{\rho C_{p}} \tilde{q}_{a} \frac{d}{dx} (\delta_{\eta} - \delta_{\xi}) = g_{v} \qquad \text{in } L^{2}(0, L)$$

$$\lambda \tilde{q}_{a} + \frac{1+\beta}{R} \left(\frac{\tilde{q}_{a}}{C_{p}} + \sum_{j=1}^{N} \frac{\tilde{q}_{H,j}}{C_{H,j}} \right) + \alpha \left[\tilde{v}_{x} \right]_{\eta}^{\xi} = g_{a} \qquad \text{in } \mathbb{R}$$

$$\lambda \tilde{q}_{H,j} + \frac{1+\beta}{R} \left(\frac{\tilde{q}_{a}}{C_{p}} + \sum_{j=1}^{N} \frac{\tilde{q}_{H,j}}{C_{H,j}} \right) + i_{RH,j} \left(\frac{\tilde{q}_{H,j}}{C_{H,j}} \right) = g_{H,j} \text{ in } \mathbb{R}$$

$$(85)$$

where the last equation has to be intended as a set of N equations from j=1 to j=N. We take the weak form of the second equation, with $v\in V$ (with V defined in (48))

$$\lambda \langle \tilde{v}, v \rangle_{L^2} + \frac{EI}{\rho} \langle \tilde{w}_{x4}, v \rangle_{L^2} - \frac{\alpha}{\rho C_p} \langle \tilde{q}_a \frac{d}{dx} (\delta_{\eta} - \delta_{\xi}), v \rangle_{L^2} = \langle g_v, v \rangle_{L^2}.$$
 (86)

Using two times integration by parts on the second term, one time on the third together with the boundary conditions in $D(A_2)$, the former equation is equivalent to

$$\lambda \langle \tilde{v}, v \rangle_{L^2} + \frac{EI}{\rho} \langle \tilde{w}_{xx}, v_{xx} \rangle_{L^2} - \frac{\alpha}{\rho C_p} \tilde{q}_a [\tilde{v}_x]_{\eta}^{\xi} = \langle g_v, v \rangle_{L^2}. \tag{87}$$

We obtain $\tilde{w} = \frac{1}{\lambda}(\tilde{v} + g_w)$ from the first equation in (85) and we substitute it in the former equation to obtain

$$\lambda \langle \tilde{v}, v \rangle_{L^2} + \frac{EI}{\lambda \rho} \langle \tilde{v}_{xx}, v_{xx} \rangle_{L^2} - \frac{\alpha}{\rho C_p} \tilde{q}_a[\tilde{v}_x]_{\eta}^{\xi} = \langle g_v, v \rangle_{L^2} + \frac{1}{\lambda} \langle g_{w,xx}, v_{xx} \rangle_{L^2}. \tag{88}$$

Taking the inner product in \mathbb{R} of the last N+1 equations with the test-elements $q_a, q_{H,1}, \ldots, q_{H,N} \in \mathbb{R}$, the range condition transforms on finding $\tilde{z} \in D(A_2)$ such that for all $v \in V$ and $q_a, q_{H,1}, \ldots, q_{H,N} \in \mathbb{R}$

$$\tilde{w} = \frac{1}{\lambda} (\tilde{v} + g_w)
\lambda \langle \tilde{v}, v \rangle_{L^2} + \frac{EI}{\lambda \rho} \langle \tilde{v}_{xx}, v_{xx} \rangle_{L^2} - \frac{\alpha}{\rho C_p} \tilde{q}_a [v_x]_{\eta}^{\xi} = \langle g_v, v \rangle_{L^2} + \frac{1}{\lambda} \langle g_{w,xx}, v_{xx} \rangle_{L^2}
\lambda \langle \tilde{q}_a, q_a \rangle_{\mathbb{R}} + \frac{1+\beta}{R} \langle \left(\frac{\tilde{q}_a}{C_p} + \sum_{j=1}^{N} \frac{\tilde{q}_{H,j}}{C_{H,j}} \right), q_a \rangle_{\mathbb{R}} + \alpha \langle [\tilde{v}_x]_{\eta}^{\xi}, q_a \rangle_{\mathbb{R}} = \langle g_a, q_a \rangle_{\mathbb{R}}
\lambda \langle \tilde{q}_{H,j}, q_{H,j} \rangle_{\mathbb{R}} + \frac{1+\beta}{R} \langle \left(\frac{\tilde{q}_a}{C_p} + \sum_{j=1}^{N} \frac{\tilde{q}_{H,j}}{C_{H,j}} \right), q_{H,j} \rangle_{\mathbb{R}} + \langle i_{RH,j} \left(\frac{q_{H,j}}{C_{H,j}} \right), q_{H,j} \rangle_{\mathbb{R}} = \langle g_{H,j}, q_{H,j} \rangle_{\mathbb{R}}$$
(89)

To simplify the notation we define $r = (v, q_a, q_{H,1}, \dots, q_{H,N}) \in V \times \mathbb{R}^{N+1}$. We now define $\forall \tilde{r} \in V \times \mathbb{R}^{N+1}$ the function $\phi(\tilde{r}) \in (V \times \mathbb{R}^{N+1})'$, using the duality product and $\forall r \in V \times \mathbb{R}^{N+1}$:

$$\langle \phi(\tilde{r}), r \rangle_{(V \times \mathbb{R}^{N+1})' \times (V \times \mathbb{R}^{N+1})} = \rho \lambda \langle \tilde{v}, v \rangle_{L^{2}} + \frac{EI}{\lambda} \langle \tilde{v}_{xx}, v_{xx} \rangle_{L^{2}} - \frac{\alpha}{C_{p}} \langle \tilde{q}_{a}, [v_{x}]_{\eta}^{\xi} \rangle_{\mathbb{R}} + \frac{\lambda}{C_{p}} \langle \tilde{q}_{a}, q_{a} \rangle_{\mathbb{R}} + \frac{1+\beta}{RC_{p}} \langle \left(\frac{\tilde{q}_{a}}{C_{p}} + \sum_{j=1}^{N} \frac{\tilde{q}_{H,j}}{C_{H,j}}\right), q_{a} \rangle_{\mathbb{R}} + \frac{\alpha}{C_{p}} \langle [\tilde{v}_{x}]_{\eta}^{\xi}, q_{a} \rangle_{\mathbb{R}} + \lambda \sum_{j=1}^{N} \frac{\langle \tilde{q}_{H,j}, q_{H,j} \rangle_{\mathbb{R}}}{C_{H,j}} + \frac{1+\beta}{R} \langle \left(\frac{\tilde{q}_{a}}{C_{p}} + \sum_{j=1}^{N} \frac{\tilde{q}_{H,j}}{C_{H,j}}\right), \sum_{j=1}^{N} \frac{q_{H,j}}{C_{H,j}} \rangle_{\mathbb{R}} + \sum_{j=1}^{N} \langle i_{RH,j} \left(\frac{\tilde{q}_{H,j}}{C_{H,j}}\right), \frac{q_{H,j}}{C_{H,j}} \rangle_{\mathbb{R}}$$

$$(90)$$

and similarly, the function $\xi(g)$ as

$$\langle \xi(g), r \rangle_{(V \times \mathbb{R}^{N+1})' \times (V \times \mathbb{R}^{N+1})} = \rho \langle g_v, v \rangle_{L^2} + \frac{\rho}{\lambda} \langle g_{w,xx}, v_{xx} \rangle_{L^2} + \frac{1}{C_p} \langle g_a, q_a \rangle_{\mathbb{R}} + \sum_{j=1}^N \frac{1}{C_{H,j}} \langle g_{H,j}, q_{H,j} \rangle_{\mathbb{R}}$$

$$(91)$$

such that to rewrite the last two equations of (89) as $\phi(\tilde{r}) = \xi(g)$ for all $\tilde{r} \in V \times \mathbb{R}^{N+1}$. It is worth noticing that $\phi(\tilde{r}) \in (V \times \mathbb{R}^{N+1})'$ is a continuous linear function on $V \times \mathbb{R}^{N+1}$. To show the range condition, we have to prove that ϕ is onto.

Claim 10 The function ϕ is onto if the following conditions are satisfied

1. There exists C > 0 such that

$$\langle \phi(\tilde{r}_1) - \phi(\tilde{r}_2), \tilde{r}_1 - \tilde{r}_2 \rangle_{(V \times \mathbb{R}^{N+1})' \times (V \times \mathbb{R}^{N+1})} \ge C ||\tilde{r}_1 - \tilde{r}_2||_{V \times \mathbb{R}^{N+1}}^2; \quad (92)$$

2. For any $\tilde{r}_1, \tilde{r}_2 \in V \times \mathbb{R}$, the scalar function

$$t \to \langle \phi(\tilde{r}_1 + t\tilde{r}_2), \tilde{r}_2 \rangle_{(V \times \mathbb{R}^{N+1})' \times (V \times \mathbb{R}^{N+1})}$$
(93)

is continuous;

3. ϕ maps bounded sets in $V \times \mathbb{R}^{N+1}$ into bounded sets in $(V \times \mathbb{R}^{N+1})'$.

Proof of Claim 1. According to Lemma 2.1 and Theorem 2.1 in Chapter 2 of (Showalter, 2013), ϕ is onto if conditions 2 and 3 hold together with

- 1. ϕ is monotone, i.e. $\langle \phi(\tilde{r}_1) \phi(\tilde{r}_2), \tilde{r}_1 \tilde{r}_2 \rangle_{(V \times \mathbb{R}^{N+1})' \times (V \times \mathbb{R}^{N+1})} \geq 0$.
- 2. there exists $\alpha > 0$ such that

$$\langle \phi(\tilde{r}), \tilde{r} \rangle_{(V \times \mathbb{R})' \times (V \times \mathbb{R})} > \langle \xi(g), \tilde{r} \rangle_{(V \times \mathbb{R})' \times (V \times \mathbb{R})} \tag{94}$$

for all $\tilde{r} \in V \times \mathbb{R}^{N+1} : ||\tilde{r}|| > \alpha$.

Therefore, to prove Claim 10, it suffices to derive items 1 and 2. Item 1 follows trivially from condition 1. In order to get item 2 from condition 1, we remark that (92) implies $\langle \phi(\tilde{r}), \tilde{r} \rangle_{(V \times \mathbb{R}^{N+1})' \times (V \times \mathbb{R}^{N+1})} \geq C ||(\tilde{r})||_{V \times \mathbb{R}^{N+1}}^2$. Then, since $\langle \xi(g), \tilde{r} \rangle_{(V \times \mathbb{R}^{N+1})' \times (V \times \mathbb{R}^{N+1})}$ is linear for $\tilde{r} \in V \times \mathbb{R}^{N+1}$, we obtain that

$$\langle \xi(g), \tilde{r} \rangle_{(V \times \mathbb{R}^{N+1})' \times (V \times \mathbb{R}^{N+1})} \le ||\xi(g)||_{(V \times \mathbb{R})'} ||\tilde{r}||_{V \times \mathbb{R}}. \tag{95}$$

Using the previous two inequalities, it is possible to get that

$$\langle \phi(\tilde{r}), \tilde{r} \rangle_{(V \times \mathbb{R}^{N+1})' \times (V \times \mathbb{R}^{N+1})} - \langle \xi(g), \tilde{r} \rangle_{(V \times \mathbb{R}^{N+1})' \times (V \times \mathbb{R}^{N+1})}$$

$$\geq C ||\tilde{r}||_{V \times \mathbb{R}^{N+1}}^2 - ||\xi(g)||_{(V \times \mathbb{R}^{N+1})'} ||\tilde{r}||_{V \times \mathbb{R}^{N+1}}.$$

$$(96)$$

Selecting $||\tilde{r}||_{V \times \mathbb{R}^{N+1}}$ sufficiently big, we can finally retrieve condition (94), concluding the proof of Claim 10.

We now check the three conditions in the previous claim. From the ϕ definition in (90), rearranging the nonlinear terms, it is possible to obtain

$$\langle \phi(\tilde{r}_{1}) - \phi(\tilde{r}_{2}), \tilde{r}_{1} - \tilde{r}_{2} \rangle_{(V \times \mathbb{R}^{N+1})' \times (V \times \mathbb{R}^{N+1})}$$

$$= \rho \lambda \langle \tilde{v}_{1} - \tilde{v}_{2}, \tilde{v}_{1} - \tilde{v}_{2} \rangle_{L^{2}} + \frac{EI}{\lambda} \langle \tilde{v}_{1,xx} - \tilde{v}_{2,xx}, \tilde{v}_{1,xx} - \tilde{v}_{2,xx} \rangle_{L^{2}}$$

$$- \frac{\alpha}{C_{p}} \langle \tilde{q}_{1,a} - \tilde{q}_{2,a}, [\tilde{v}_{1,x}]_{\eta}^{\xi} - [\tilde{v}_{2,x}]_{\eta}^{\xi} \rangle_{\mathbb{R}} + \frac{\lambda}{C_{p}} \langle \tilde{q}_{1,a} - \tilde{q}_{2,a}, \tilde{q}_{1,a} - \tilde{q}_{2,a} \rangle_{\mathbb{R}}$$

$$\frac{1+\beta}{R} \langle \left(\frac{\tilde{q}_{1,a} - \tilde{q}_{2,a}}{C_{p}} + \sum_{j=1}^{N} \frac{\tilde{q}_{1,H,j} - \tilde{q}_{2,H,j}}{C_{H,j}} \right), \frac{\tilde{q}_{1,a} - \tilde{q}_{2,a}}{C_{p}} \rangle_{\mathbb{R}}$$

$$+ \frac{\alpha}{C_{p}} \langle [\tilde{v}_{1,x}]_{\eta}^{\xi} - [\tilde{v}_{2,x}]_{\eta}^{\xi}, \tilde{q}_{1,a} - \tilde{q}_{2,a} \rangle_{\mathbb{R}} + \lambda \sum_{j=1}^{N} \frac{\langle \tilde{q}_{1,H,j} - \tilde{q}_{2,H,j}, \tilde{q}_{1,H,j} - \tilde{q}_{2,H,j} \rangle}{C_{H,j}} \rangle_{\mathbb{R}}$$

$$\frac{1+\beta}{R} \langle \left(\frac{\tilde{q}_{1,a} - \tilde{q}_{2,a}}{C_{p}} + \sum_{j=1}^{N} \frac{\tilde{q}_{1,H,j} - \tilde{q}_{2,H,j}}{C_{H,j}} \right), \sum_{j=1}^{N} \frac{\tilde{q}_{1,H,j} - \tilde{q}_{2,H,j}}{C_{H,j}} \rangle_{\mathbb{R}}$$

$$\sum_{j=1}^{N} \langle i_{RH,j} \left(\frac{\tilde{q}_{1,H,j}}{C_{H,j}} \right) - i_{RH,j} \left(\frac{\tilde{q}_{2,H,j}}{C_{H,j}} \right), \frac{\tilde{q}_{1,H,j}}{C_{H,j}} - \frac{\tilde{q}_{2,H,j}}{C_{H,j}} \rangle_{\mathbb{R}}$$

Simplifying the equal terms with opposite signs, grouping the fifth and eighth terms and using the monotonicity of the nonlinear current we get

$$\langle \phi(\tilde{r}_{1}) - \phi(\tilde{r}_{2}), \tilde{r}_{1} - \tilde{r}_{2} \rangle_{(V \times \mathbb{R}^{N+1})' \times (V \times \mathbb{R}^{N+1})} \\
\geq \rho \lambda \langle \tilde{v}_{1} - \tilde{v}_{2}, \tilde{v}_{1} - \tilde{v}_{2} \rangle_{L^{2}} + \frac{EI}{\lambda} \langle \tilde{v}_{1,xx} - \tilde{v}_{2,xx}, \tilde{v}_{1,xx} - \tilde{v}_{2,xx} \rangle_{L^{2}} \\
+ \frac{\lambda}{C_{p}} \langle \tilde{q}_{1,a} - \tilde{q}_{2,a}, \tilde{q}_{1,a} - \tilde{q}_{2,a} \rangle_{\mathbb{R}} + \frac{1+\beta}{R} \left(\frac{\tilde{q}_{1,a} - \tilde{q}_{2,a}}{C_{p}} + \sum_{j=1}^{N} \frac{\tilde{q}_{1,H,j} - \tilde{q}_{2,H,j}}{C_{H,j}} \right)^{2} \\
+ \lambda \sum_{j=1}^{N} \frac{\langle \tilde{q}_{1,H,j} - \tilde{q}_{2,H,j}, \tilde{q}_{1,H,j} - \tilde{q}_{2,H,j} \rangle}{C_{H,j}} \\
\geq \frac{EI}{\lambda} \langle \tilde{v}_{1,xx} - \tilde{v}_{2,xx}, \tilde{v}_{1,xx} - \tilde{v}_{2,xx} \rangle_{L^{2}} + \frac{\lambda}{C_{p}} \langle \tilde{q}_{1,a} - \tilde{q}_{2,a}, \tilde{q}_{1,a} - \tilde{q}_{2,a} \rangle_{\mathbb{R}} \\
+ \lambda \sum_{j=1}^{N} \frac{\langle \tilde{q}_{1,H,j} - \tilde{q}_{2,H,j}, \tilde{q}_{1,H,j} - \tilde{q}_{2,H,j} \rangle}{C_{H,j}} \right)$$
(98)

Defining $C = \min(\frac{EI}{\lambda}, \frac{\lambda}{C_p}, \frac{\lambda}{C_{H,1}}, \dots, \frac{\lambda}{C_{H,N}})$ proves condition 1 of Claim 10. To prove condition 2 of Claim 10, we remark that the scalar function

$$\langle \phi(\tilde{r} + t\tilde{r}, \tilde{r})_{(V \times \mathbb{R}^{N+1})' \times (V \times \mathbb{R}^{N+1})} = \rho \lambda \langle \tilde{v} + t\tilde{v}, \tilde{v} \rangle_{L^{2}} + \frac{EI}{\lambda} \langle \tilde{v}_{xx} + t\tilde{v}_{xx}, \tilde{v}_{xx} \rangle_{L^{2}} - \frac{\alpha}{C_{p}} \langle \tilde{q}_{a} + t\tilde{q}_{a}, [\tilde{v}_{x}]_{\eta}^{\tilde{q}} \rangle_{\mathbb{R}} + \frac{\lambda}{C_{p}} \langle \tilde{q}_{a} + t\tilde{q}_{a}, \tilde{q}_{a} \rangle_{\mathbb{R}}$$

$$\frac{1+\beta}{R} \langle \left(\frac{\tilde{q}_{a} + t\tilde{q}_{a}}{C_{p}} + \sum_{j=1}^{N} \frac{\tilde{q}_{H,j} + t\tilde{q}_{H,j}}{C_{H,j}} \right), \frac{\tilde{q}_{a}}{C_{p}} \rangle_{\mathbb{R}}$$

$$+\lambda \sum_{j=1}^{N} \frac{\langle \tilde{q}_{H,j} + t\tilde{q}_{H,j}, \tilde{q}_{H,j} \rangle}{C_{H,j}} + \frac{\alpha}{C_{p}} \langle [\tilde{v}_{x}]_{\eta}^{\tilde{q}} + t[\tilde{v}_{x}]_{\eta}^{\tilde{q}}, \tilde{q}_{a} \rangle_{\mathbb{R}}$$

$$\frac{1+\beta}{R} \langle \left(\frac{\tilde{q}_{a} + t\tilde{q}_{a}}{C_{p}} + \sum_{j=1}^{N} \frac{\tilde{q}_{H,j} + t\tilde{q}_{H,j}}{C_{H,j}} \right), \sum_{j=1}^{N} \frac{\tilde{q}_{H,j}}{C_{H,j}} \rangle_{\mathbb{R}}$$

$$\sum_{j=1}^{N} \langle i_{RH,j} \left(\frac{\tilde{q}_{H,j}}{C_{H,j}} \right) + t i_{RH,j} \left(\frac{\tilde{q}_{H,j}}{C_{H,j}} \right), \frac{\tilde{q}_{H,j}}{C_{H,j}} \rangle_{\mathbb{R}}$$

$$(99)$$

is continuous because of the continuity of the nonlinear functions $i_{RH,j}$. To prove condition 3 of Claim 10, it is sufficient to show that for all bounded sets B of $V \times \mathbb{R}$, there exists $M \in \mathbb{R}$ such that $||\phi(B)|| \leq M$ where

$$||\phi(B)|| = \sup_{\tilde{r} \in B} \sup_{r \in V \times \mathbb{R}^{N+1}} \frac{|\langle \phi(\tilde{r}), r \rangle_{(V \times \mathbb{R}^{N+1})' \times (V \times \mathbb{R}^{N+1})}|}{||r||_{V \times \mathbb{R}^{N+1}}}.$$
 (100)

Using the $\phi(\tilde{r})$ definition in (90), we get that

$$\begin{split} &|\langle\phi(\tilde{r}),r\rangle_{(V\times\mathbb{R}^{N+1})'\times(V\times\mathbb{R}^{N+1})}|\leq\\ &|\left(\rho\lambda+\frac{EI}{\lambda}\right)\langle\tilde{v}_{xx},v_{xx}\rangle_{L^{2}}-\frac{\alpha}{C_{p}}\tilde{q}_{a}[v]_{\eta}^{\xi}+\frac{\alpha}{C_{p}}[\tilde{v}]_{\eta}^{\xi}\tilde{q}_{a}+\frac{\lambda}{C_{p}}\tilde{q}_{a}q_{a}+\lambda\sum_{j=1}^{N}\frac{\tilde{q}_{H,j}q_{H,j}}{C_{H,j}}\\ &\frac{1+\beta}{R}\left(\frac{\tilde{q}_{a}}{C_{p}}+\sum_{j=1}^{N}\frac{\tilde{q}_{H,j}}{C_{H,j}}\right)\left(\frac{q_{a}}{C_{p}}+\sum_{j=1}^{N}\frac{q_{H,j}}{C_{H,j}}\right)+\sum_{j=1}^{N}i_{RH,j}\left(\frac{\tilde{q}_{H,j}}{C_{H,j}}\right)\frac{q_{H,j}}{C_{H,j}}|\\ &=|\left(\rho\lambda+\frac{EI}{\lambda}\right)\langle\tilde{v}_{xx},v_{xx}\rangle_{L^{2}}-\frac{\alpha}{C_{p}}\langle\tilde{q}_{a},v_{xx}\rangle_{L^{2}}+\frac{\alpha}{C_{p}}\langle\tilde{v}_{xx},q_{a}\rangle_{L^{2}}\\ &+\left(\lambda\tilde{q}_{a}+\frac{1+\beta}{R}\left(\frac{\tilde{q}_{a}}{C_{p}}+\sum_{j=1}^{N}\frac{\tilde{q}_{H,j}}{C_{H,j}}\right)\right)\frac{q_{a}}{C_{p}}\\ &+\sum_{j=1}^{N}\left(\frac{q_{H,j}}{C_{H,j}}+\frac{1+\beta}{R}\left(\frac{\tilde{q}_{a}}{C_{p}}+\sum_{j=1}^{N}\frac{\tilde{q}_{H,j}}{C_{H,j}}\right)+i_{RH,j}\left(\frac{\tilde{q}_{H,j}}{C_{H,j}}\right)\right)\frac{q_{H,j}}{C_{H,j}}|. \end{split}$$

Then, we split the absolute value and apply Cauchy-Schwarz to obtain

$$\begin{aligned} & |\langle \phi(\tilde{r}), r \rangle_{(V \times \mathbb{R}^{N+1})' \times (V \times \mathbb{R}^{N+1})}| \leq \\ & \left(\rho \lambda + \frac{EI}{\lambda} \right) ||\tilde{v}_{xx}||_{L^{2}} ||v_{xx}||_{L^{2}} + \frac{\alpha}{C_{p}} |\tilde{q}_{a}|||v_{xx}||_{L^{2}} + + \frac{\alpha}{C_{p}} ||\tilde{v}_{xx}||_{L^{2}} |q_{a}| \\ & + \frac{1}{C_{p}} |\lambda \tilde{q}_{a} + \frac{1+\beta}{R} \left(\frac{\tilde{q}_{a}}{C_{p}} + \sum_{j=1}^{N} \frac{\tilde{q}_{H,j}}{C_{H,j}} \right) ||q_{a}| \\ & + \sum_{j=1}^{N} \left| \frac{q_{H,j}}{C_{H,j}} + \frac{1+\beta}{R} \left(\frac{\tilde{q}_{a}}{C_{p}} + \sum_{j=1}^{N} \frac{\tilde{q}_{H,j}}{C_{H,j}} \right) + i_{RH,j} \left(\frac{\tilde{q}_{H,j}}{C_{H,j}} \right) |\left| \frac{q_{H,j}}{C_{H,j}} \right|. \end{aligned}$$

$$(102)$$

Since $||v_{xx}||_{L^2}, |q_a|, |q_{H,j}| \leq ||r||_{V \times \mathbb{R}^{N+1}}$, we obtain that

$$\begin{aligned} & |\langle \phi(\tilde{r}), r \rangle_{(V \times \mathbb{R}^{N+1})' \times (V \times \mathbb{R}^{N+1})}| \leq \\ & \left(\left(\rho \lambda + \frac{EI}{\lambda} + \frac{\alpha}{C_p} \right) ||\tilde{v}_{xx}||_{L^2} + \frac{\alpha}{C_p} |\tilde{q}_a| + \frac{1}{C_p} \left| \lambda \tilde{q}_a + \frac{1+\beta}{R} \left(\frac{\tilde{q}_a}{C_p} + \sum_{j=1}^N \frac{\tilde{q}_{H,j}}{C_{H,j}} \right) \right| \\ & + \sum_{j=1}^N \left| \frac{q_{H,j}}{C_{H,j}} + \frac{1+\beta}{R} \left(\frac{\tilde{q}_a}{C_p} + \sum_{j=1}^N \frac{\tilde{q}_{H,j}}{C_{H,j}} \right) + i_{RH,j} \left(\frac{\tilde{q}_{H,j}}{C_{H,j}} \right) \right| \right) ||r||_{V \times \mathbb{R}^{N+1}} \end{aligned}$$

$$(103)$$

Since $\tilde{r} \in B$ and the continuous nonlinear currents $i_{RH,j}$ map compact sets (in \mathbb{R}) into bounded sets (in \mathbb{R}), we can conclude that $||\phi(B)||$ is bounded, and condition 3 of Claim 10 holds. Therefore, applying Claim 10, we deduce that ϕ is onto, which implies that there exists $\tilde{r} \in V \times \mathbb{R}^{N+1}$ such that the last N+2 equations in (89) are satisfied. Using the first equation in (89) we obtain that \tilde{w} is uniquely determined by \tilde{v} . Then, using (86) and similar arguments as in the proof of Theorem 6, it is possible to prove that $\tilde{w} \in H^4(0, \eta) \cap H^4(\eta, \xi) \cap H^4(\xi, L)$. Finally, we use Proposition 3.1 in Chapter 3 of (Showalter, 2013) to conclude the proof of Theorem 9.

As in the previous section, to conclude about the pre-compactness of trajectories in the state space Z_2 , we introduce the following lemma.

Lemma 11 The canonical embedding from $D(A_2)$ to Z_2 is compact.

Proof Similarly to Lemma 7, we have to prove that for each sequence $(z_n)_{n\in\mathbb{N}}$ in $D(A_2)$ which is bounded with the operator norm, there exists a subsequence that strongly converges in Z_2 . We compute the operator norm $||z||_{D(A_2)}^2 := ||z||_2^2 + ||A_2z||_2^2$

$$||z||_{D(A_{2})}^{2} = \int_{0}^{L} \{EI(w_{xx})^{2} + \rho v^{2} + EI(-\frac{EI}{\rho}w_{x4} + \frac{\alpha}{\rho C_{p}}q_{a}\frac{d}{dx}(\delta_{\eta} - \delta_{\xi}))^{2} + \rho(v_{xx})^{2}\}dx + \frac{1}{C_{p}}q_{a}^{2} + \frac{1}{C_{p}}\left(-\frac{1+\beta}{R}\left(\frac{q_{a}(t)}{C_{p}} + \sum_{j=1}^{N}\frac{q_{H,j}}{C_{H,j}}\right) - \alpha\left[v_{x}\right]_{\eta}^{\xi}\right)^{2} + \sum_{j=1}^{N}\frac{q_{H,j}^{2}}{C_{H,j}} + \sum_{j=1}^{N}\frac{1}{C_{H,j}}\left(-\frac{1+\beta}{R}\left(\frac{q_{a}}{C_{p}} + \sum_{j=1}^{N}\frac{q_{H,j}}{C_{H,j}}\right) - i_{RH,j}\left(\frac{q_{H,j}}{C_{H,j}}\right)\right)^{2}$$

$$(104)$$

that using the w_{x4} definition in (45) transforms into

$$||z||_{D(A_{2})}^{2} = \int_{0}^{L} \{EI(w_{xx})^{2} + \rho v^{2} + \frac{EI^{3}}{\rho} w_{x4}^{2} + \rho(v_{xx})^{2} \} dx + \frac{1}{C_{p}} q_{a}^{2}$$

$$+ \frac{1}{C_{p}} \left(-\frac{1+\beta}{R} \left(\frac{q_{a}(t)}{C_{p}} + \sum_{j=1}^{N} \frac{q_{H,j}}{C_{H,j}} \right) - \alpha \left[v_{x} \right]_{\eta}^{\xi} \right)^{2} + \sum_{j=1}^{N} \frac{q_{H,j}^{2}}{C_{H,j}^{2}}$$

$$+ \sum_{j=1}^{N} \frac{1}{C_{H,j}} \left(-\frac{1+\beta}{R} \left(\frac{q_{a}}{C_{p}} + \sum_{j=1}^{N} \frac{q_{H,j}}{C_{H,j}} \right) - i_{RH,j} \left(\frac{q_{H,j}}{C_{H,j}} \right) \right)^{2}$$

$$\geq \int_{0}^{L} \{EI(w_{xx})^{2} + \rho v^{2} + \frac{EI^{3}}{\rho} w_{x4}^{2} + \rho(v_{xx})^{2} \} dx + \frac{1}{C_{p}} q_{a}^{2} + \sum_{j=1}^{N} \frac{q_{H,j}^{2}}{C_{H,j}^{2}}$$

$$(105)$$

Then, similarly as in the proof of Lemma 7, we can conclude that for each subsequence $(z_n)_{n\in\mathbb{N}}$ there exists a subsequence $(z_{n'})_{n'\in\mathbb{N}}$ that strongly converges in Z_2 .

We can now prove the global asymptotic stability of the origin of the nonlinear closed-loop system (80).

Proof of Theorem 2. The stability condition directly follows from Theorem 9. To show the attractivity property we define the Lyapunov functional $\mathcal{V} = \frac{1}{2}\langle z, z \rangle_2$ and computing its time-derivative along the system trajectories we obtain

$$\dot{\mathcal{V}} = -\frac{1+\beta}{R} \left(\frac{q_a}{C_p} + \sum_{j=1}^{N} \frac{q_{H,j}}{C_{H,j}} \right)^2 - \sum_{j=1}^{N} i_{RH,j} \left(\frac{q_{H,j}}{C_{H,j}} \right) \frac{q_{H,j}}{C_{H,j}} \\
\leq -\frac{1+\beta}{R} \left(\frac{q_a}{C_p} + \sum_{j=1}^{N} \frac{q_{H,j}}{C_{H,j}} \right)^2 - \sum_{j=1}^{N} \underline{G}_j \frac{q_{H,j}^2}{C_{H,j}^2}.$$
(106)

Similarly as in the proof of Theorem 1, to show the origin's global asymptotic stability, we make use of LaSalle's invariance principle. Firstly, we note that according to Lemma 11 and the fact that $||A_2z(t)||_2$ is decreasing, the trajectory set $\{z(t) \mid t \geq 0\}$ is pre-compact in Z_2 . Moreover, the ω -limit set $w(z_0) \in D(A_2)$ is not empty and invariant for the nonlinear semigroup generated by A_2 (see (Slemrod, 1989, Theorem 3.1)). The set Ω for which $\Omega = \{z \in Z_2 \mid \mathcal{V} = 0\}$ corresponds to $\Omega = \{z \in Z_2 \mid q_a = 0, q_{H,j} = 0, j = \{1, ..., N\}\}$.

To search for its largest invariant subspace, we substitute the relations in Ω in the closed-loop system to obtain

$$\begin{cases} \dot{w} = v \\ \dot{v} = -\frac{EI}{\rho} w_{x4} \\ [v_x]_{\eta}^{\xi} = 0 \\ \tilde{w}(0) = \tilde{w}_x(0) = \tilde{w}_{xx}(L) = \tilde{w}_{x3}(L) = 0, v(0) = v_x(0) = 0, \\ [\tilde{w}_{xx}]_{\eta} = [\tilde{w}_{xx}]_{\xi} = 0, [\tilde{w}_{x3}]_{\eta} = [\tilde{w}_{x3}]_{\xi} = 0. \end{cases}$$

$$n \notin \mathcal{S}, \text{ according to Lemma 5 the Euler Bernoulli equation is exactly}$$

Since $\eta \notin \mathcal{S}$, according to Lemma 5 the Euler Bernoulli equation is exactly observable for $[v_x]_{\eta}^{\xi}$. Therefore, according to Lemma 8, the only solution of the over-constrained system (107) is the origin. Then, the largest invariant subset of Ω is the origin. Therefore, according to LaSalle's invariance principle, we can conclude that the origin is a globally asymptotically stable equilibrium of system (80).

5 Conclusions and perspectives

This paper is devoted to the modeling and stability analysis of a flexible beam controlled by a collocated piezoelectric actuator in the self-sensing configuration. A linear model describing the system dynamics, composed of a set of PDE-ODE equations, has been obtained from general principles. The obtained linear model is well-posed and its origin is globally asymptotically stable when a voltage control law composed of the PA voltage and the available terms from the self-sensing configuration is applied. Furthermore, the more realistic case of a piezoelectric actuator affected by hysteresis has been considered. Finally, a passive control law that globally asymptotically stabilizes the origin of the closed-loop system has been proposed.

Possible future research can be focused on the design of a nonlinear observer capable of estimating the hysteresis effect. The observed state can then be used to cancel the hysteresis effect and the application of the strong feedback terms can become possible.

6 Declarations

Funding This work has been received funding from MIAI@Grenoble Alpes project (grant ANR-19-P3IA-0003) and by the ANR Labex CIMI (grant ANR-11-LABX- 0040).

Conflict of interest The authors have no conflicts of interest to declare that are relevant to the content of this article.

References

Aldraihem O, Wetherhold R, Singh T (1996) Intelligent beam structures: Timoshenko theory vs. Euler-Bernoulli theory. In: Proceeding of the 1996

- IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro, IEEE, pp 976–981
- Bastin G, Coron J (2016) Stability and boundary stabilization of 1-D hyperbolic systems, vol 88. Springer
- Brezis H (2011) Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer
- Caballeria J, Ramirez H, Le Gorrec Y (2021) An irreversible port-hamiltonian model for a class of piezoelectric actuators. IFAC-PapersOnLine 54(14):436–441
- Choi S, Han Y (2016) Piezoelectric actuators: control applications of smart materials. CRC Press
- Crépeau E, Prieur C (2006) Control of a clamped-free beam by a piezoelectric actuator. ESAIM: Control, Optimisation and Calculus of Variations 12(3):545-563
- Curtain R, Zwart H (2020) Introduction to Infinite-Dimensional Linear Systems Theory, a State-Space Approach, 1st edn. Springer
- Dadfarnia M, Jalili N, Xian B, et al (2004) A Lyapunov-based piezoelectric controller for flexible cartesian robot manipulators. J Dyn Sys, Meas, Control 126(2):347–358
- Destuynder P (1999) A mathematical analysis of a smart-beam which is equipped with piezoelectric actuators. Control and Cybernetics 28(3):503–530
- Dosch J, Inman DJ, Garcia E (1992) A self-sensing piezoelectric actuator for collocated control. Journal of Intelligent Material Systems and Structures 3(1):166–185
- d' Andréa-Novel B, Coron J (2000) Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach. Automatica 36(4):587-593
- Erturk A, Inman DJ (2008) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. Journal of vibration and acoustics 130(4)
- Goldfarb M, Celanovic NL (1997) A lumped parameter electromechanical model for describing the nonlinear behavior of piezoelectric actuators. Journal of Dynamic Systems Measurement and Control-transactions of The Asme 119:478–485

- Homayouni-Amlashi A, Mohand-Ousaid A, Rakotondrabe M (2020) Analytical modelling and optimization of a piezoelectric cantilever energy harvester with in-span attachment. Micromachines 11(6):591
- Krstic K, Smyshlyaev A (2008) Boundary control of PDEs: A course on backstepping designs. SIAM
- Le Gall P, Prieur C, Rosier L (2007a) Output feedback stabilization of a clamped-free beam. International Journal of Control 80(8):1201–1216
- Le Gall P, Prieur C, Rosier L (2007b) Stabilization of a clamped-free beam with collocated piezoelectric sensor/actuator. Int J Tomogr Stat 6(S07):104–109
- Liseli JB, Agnus J, Lutz P, et al (2019) An overview of piezoelectric self-sensing actuation for nanopositioning applications: Electrical circuits, displacement, and force estimation. IEEE Transactions on Instrumentation and Measurement 69(1):2–14
- Luo Z, Guo B, Morgül Ö (2012) Stability and stabilization of infinite dimensional systems with applications. Springer Science & Business Media
- Mattioni A (2021) Modelling and stability analysis of flexible robots: a distributed parameter port-Hamiltonian approach. PhD thesis
- Mattioni A, Wu Y, Le Gorrec Y, et al (2020) Stabilisation of a rotating beam clamped on a moving inertia with strong dissipation feedback. In: 2020 59th IEEE Conference on Decision and Control (CDC), IEEE, pp 5056–5061
- Mattioni A, Wu Y, Le Gorrec Y, et al (2022) Stabilization of a class of mixed ODE-PDE port-Hamiltonian systems with strong dissipation feedback. In press in Automatica
- Meirovitch L (1975) Elements of vibration analysis
- Miyadera I (1992) Nonlinear Semigroups. Translations of mathematical monographs, American Mathematical Society
- Prieur C, Tarbouriech S (2019) Beam equation with saturating piezoelectric controls. IFAC-PapersOnLine 52(16):66–71
- Prieur C, Tarbouriech S, Gomes da Silva Jr. JM (2016) Wave equation with cone-bounded control laws. IEEE Transactions on Automatic Control 61(11):3452–3463
- Rakotondrabe M, Ivan IA, Khadraoui S, et al (2014) Simultaneous displacement/force self-sensing in piezoelectric actuators and applications to robust control. IEEE/ASME Transactions on Mechatronics 20(2):519–531

- Rittenschober T, Schlacher K (2012) Observer-based self sensing actuation of piezoelastic structures for robust vibration control. Automatica 48(6):1123–1131
- Showalter RE (2013) Monotone operators in Banach space and nonlinear partial differential equations, vol 49. American Mathematical Soc.
- Simmers Jr GE, Hodgkins JR, Mascarenas DD, et al (2004) Improved piezoelectric self-sensing actuation. Journal of Intelligent Material Systems and Structures 15(12):941–953
- Singh S, Weiss G, Tucsnak M (2022) A class of incrementally scattering-passive nonlinear systems. Automatica To appear
- Slemrod M (1989) Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control. Mathematics of Control, Signals and Systems 2(3):265–285
- Tarbouriech S, Garcia G, Gomes da Silva Jr. JM, et al (2011) Stability and stabilization of linear systems with saturating actuators. Springer Science & Business Media
- Teel AR, Zaccarian L (2011) Modern Anti-Windup Synthesis: Control Augmentation for Actuator Saturation. Princeton University Press
- Tucsnak M (1996) Regularity and exact controllability for a beam with piezoelectric actuator. SIAM Journal on Control and Optimization 34(3):922–930
- Vanspranghe N, Ferrante F, Prieur C (2022) Stabilization of the wave equation through nonlinear dirichlet actuation. arXiv https://doi.org/10.48550/ARXIV.2208.13530
- Yang J, et al (2005) An introduction to the theory of piezoelectricity, vol 9. Springer
- Yeh TJ, Ruo-Feng H, Shin-Wen L (2008) An integrated physical model that characterizes creep and hysteresis in piezoelectric actuators. Simulation Modelling Practice and Theory 16(1):93–110