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Abstract

This paper deals with the modeling and stabilization of a flexible clamped
beam controlled with a piezoelectric actuator in the self-sensing config-
uration. We derive the model starting from general principles, using the
general laws of piezoelectricity. The obtained model is composed by a
PDE, describing the flexible deformations dynamics, interconnected with
an ODE describing the electric charge dynamics. Firstly, we show that
the derived linear model is well-posed and the origin is globally asymptot-
ically stable when a voltage control law, containing the terms estimated
in the self-sensing configuration, is applied. Secondly, we make the more
realistic assumption of the presence of hysteresis in the electrical domain.
Applying a passive control law, we show the well-posedness and the
origin’s global asymptotic stability of the nonlinear closed-loop system.

Keywords: Piezoelectric actuator, Nonlinear control, Partial Differential
Equations, Asymptotic stability
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Fig. 1 Clamped flexible beam with a piezoelectric actuation.

1 Introduction

Piezoelectricity is a reversible process that consists of the property of certain
materials of cumulating electric charge in response to mechanical stress, and
the generation of a mechanical strain resulting from an electrical field (Yang
et al, 2005). Therefore, piezoelectric materials can be used for different appli-
cations ranging from the stabilization of flexible structures (Choi and Han,
2016) to self-sensing actuation for nanopositioning applications (Liseli et al,
2019) or for energy harvesting (Erturk and Inman, 2008; Homayouni-Amlashi
et al, 2020).

In this paper, we consider the stabilization problem of a clamped flexible
beam controlled by a piezoelectric actuator in the self-sensing configuration.
Many studies have already been devoted to the modeling procedure and char-
acterization of this kind of system (Meirovitch, 1975; Destuynder, 1999). In
these works, the electrical dynamics are not taken into account in the model-
ing procedure, while more attention is devoted to the characterization of the
mechanical dynamics. The well-posedness and stabilization problems for this
system without the electrical dynamics have already been investigated in the
linear case (Le Gall et al, 2007b,a). Moreover, it is known that the system is
exactly controllable with respect to the moment generated on the beam by the
piezoelectric actuator (see e.g., (Tucsnak, 1996; Crépeau and Prieur, 2006)).
More recently, in (Prieur and Tarbouriech, 2019) the authors investigated the
case in which the input moment is subject to amplitude saturation.
In this paper, we extend the work of (Prieur and Tarbouriech, 2019) detailing
the modeling procedure (Section 2) when taking into account the electrical
dynamics of the piezoelectric actuator in the self-sensing actuation configu-
ration (Dosch et al, 1992), as shown in Fig. 1. The beam is assumed to be
clamped on one side and free on the other. The resulting dynamics are mod-
eled by the interconnection of an Euler-Bernoulli PDE describing the flexible
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dynamics with an ODE describing the electrical charge dynamics
ρwtt(x, t) = −EIwxxxx(x, t) +

α
Cp
qa(t)

d
dx (δη(x)− δξ(x))

w(0, t) = wx(0, t) = wxx(L, t) = wxxx(L, t) = 0

q̇a(t) = − 1
RCp

qa(t)− α [wxt(x, t)]
ξ
η +

1
Rua(t)

(1)

where w(x, t) corresponds to the beam deformation at point x ∈ [0, L] of
the beam and a time t ∈ R+, qa is the free electrical charge accumulated
in the piezoelectric actuator (with extremities η < ξ) minus the equivalent
charge due to polarization, while ua is the control input corresponding to the
voltage applied to the electric circuit. Here, δx∗ is the delta function, while
ρ,EI, α,R,Cp ∈ R+ are physical parameters of the beam and they correspond
to the density of the beam, the mechanical elasticity constant, the coupling
coefficient between the mechanical and electrical dynamics, the electrical resis-
tance and the electrical capacitance, respectively. Since the influence of the
piezoelectric actuator on the elastic beam results in an in-domain actuation,
the beam state w(x, t) should meet some compatibility conditions (defined in
Section 3.1) to obtain a well-posed PDE

[wxx]η =
α

EICp
qa(t) = −[wxx]ξ, [w3x]η = [w3x]ξ = 0, (2)

where [w]η = w(η+) − w(η−). In this paper, we make use of the so-called
strong dissipation feedback to stabilize the system in closed loop. Different
works have shown the effectiveness of using this control term, in particular for
boundary stabilization of hyperbolic equation (Mattioni et al, 2020, 2022). In
(d’ Andréa-Novel and Coron, 2000) and (Prieur and Tarbouriech, 2019), the
control strategy containing this term has been obtained using backstepping
techniques. Next, we study the well-posedness and global asymptotic stability
of the origin in closed loop with the control law

ua(t) = −γ
(
R[wxtt]

ξ
η +

1 + β

Cp
[wxt]

ξ
η

)
− β

Cp
qa (3)

where γ, β ∈ R. It is worth to remark that the term [wxt]
ξ
η is available thanks

to the self-sensing actuator configuration (Liseli et al, 2019), while the term
[wxtt]

ξ
η can be obtained by time differentiation of the previous term. The

term qa
Cp

corresponds to the voltage across the piezoelectric actuator that is

indeed available. There exists abundant literature regarding the control design
of flexible beams controlled by piezoelectric actuators in the self-sensing con-
figuration. A portion of these papers approaches the topic from a practical
standpoint: the control laws are directly applied to real benchmarks and results
are subsequently discussed as in (Dosch et al, 1992; Simmers Jr et al, 2004;
Rakotondrabe et al, 2014; Liseli et al, 2019) and references therein. Another
group of these papers focuses on control design and closed-loop analysis, but
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they do not account for the electrical dynamics introduced by the electrical cir-
cuit required in the self-sensing configuration (Prieur and Tarbouriech, 2019;
Rittenschober and Schlacher, 2012; Aldraihem et al, 1996; Dadfarnia et al,
2004). In this paper, we perform control design and stability analysis on a
model that includes a PDE for the mechanical vibrations and an ODE for the
electrical circuit dynamics.
The asymptotic stability result stated in the next theorem is obtained consid-
ering the non-critical positioning (defined at the beginning of Section 3) of the
piezoelectric actuator of length Lp = ξ − η, designing a weak Lyapunov func-
tion and making use of the LaSalle’s invariance principle (see e.g. (Luo et al,
2012) for an introduction on the LaSalle’s invariance principle). The proof of
Theorem 1 is given in Section 3.

Theorem 1 For all non-critical positioning η /∈ S(Lp), for γ > 0, β > −1 and for all
initial conditions (w(0), wt(0), qa(0)) in (H2(0, L)∩H4(0, η)∩H4(η, ξ)∩H4(ξ, L))×
H2(0, L)×R satisfying the boundary conditions in (1) together with the compatibility
conditions in (2), the solutions of (1) in closed-loop with (3) satisfy the following
stability property for all t ≥ 0

||w(t)||2H2 + ||wt(t)||2L2 + (qa(t)− [wxt(t)]
ξ
η)

2 ≤ ||w(0)||2H2 + ||wt(0)||2L2

+(qa(0)− [wxt(0)]
ξ
η)

2 (4)

together with the attractivity property

||w(t)||2H2 + ||wt(t)||2L2 + qa(t)
2 −−−−→

t→∞
0. (5)

Then, we consider the more realistic scenario where a hysteresis behaviour
is present in the piezoelectric actuator. The hysteresis can be modeled using
the Maxwell slip model, composed of a series of N linear capacitors in parallel
with as many nonlinear resistors (Yeh et al, 2008; Goldfarb and Celanovic,
1997). The resulting dynamical equations can be written as follows

ρwtt(x, t) = EIwxxxx(x, t) +
α
Cp
qa(t)

d
dx (δη(x)− δξ(x))

w(0, t) = wx(0, t) = wxx(L, t) = wxxx(L, t) = 0

q̇a(t) = − 1
R

(
qa(t)
Cp

+
∑N

j=1
qH,j(t)
CH,j

)
− α [wxt(x, t)]

ξ
η +

1
Rua(t).

q̇H,j(t) = − 1
R

(
qa(t)
Cp

+
∑N

j=1
qH,j(t)
CH,j

)
− iRH,j

(
qH,j(t)
CH,j

)
+ 1

Rua(t),

(6)

where the last equation has to be intended as a set of N equations, each
of which describes the charge qH,j dynamics of the j-th hysterion. CH,j cor-
responds to the linear capacitance of the j-th hysterion, while iRH,j is the
nonlinear current passing through the nonlinear resistor of the j-th hysterion.
The modeling procedure to obtain the above equations, together with the
explicit expression of iRH,j , is detailed in Section 2.3.

The introduction of the nonlinear function makes the stability study more
challenging since it is known that limit cycles and new equilibrium points may
be introduced (see for example (Teel and Zaccarian, 2011; Tarbouriech et al,
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2011)). The results of this work can be related to (Prieur et al, 2016) where the
wave equation with cone-bounded nonlinearities in the case of bounded and
unbounded control operators has been considered. Similarly, in (Singh et al,
2022) the authors proved the well-posedness of a nonlinear infinite dimensional
system obtained as the perturbation of a scattering passive linear system. We
refer to (Curtain and Zwart, 2020, Chapter 11) for a collection of results regard-
ing the well-posedness and the stability of semilinear differential equations with
Lipschitz nonlinearity. In this work, we study the well-posedness of system (6)
in closed-loop with the control law

ua = −β

(
qa(t)

Cp
+

N∑
j=1

qH,j(t)

CH,j

)
. (7)

It is worth mentioning that the term in the parenthesis corresponds to the
voltage across the piezoelectric actuator when considering the model with the
hysteresis. This means that this term is directly available from measurements.
Differently from the linear control law proposed in (3), in (7) are missing the
terms depending on [wxtt]

ξ
η, [wxt]

ξ
η. This is because the insertion of the strong

dissipation terms would require the elimination of the hysteresis contribution∑N
j=1

qH,j

CH,j
to obtain a stable closed-loop system. This could be done, for exam-

ple, through the use of a state observer and can be a possible topic of future
research. In this work, the well-posedness of system (6) in closed-loop with
(7) is investigated using the theory developed in (Miyadera, 1992), while the
closed-loop stability has been assessed using Lyapunov arguments. We refer the
interested reader to (Bastin and Coron, 2016; Krstic and Smyshlyaev, 2008),
for works using Lyapunov techniques for the stability analysis of nonlinear
PDE.

Theorem 2 For all non-critical positioning η /∈ S(Lp), β > −1 and for all initial
conditions (w(0), wt(0), qa(0), qH,j(0) in (H2(0, L)∩H4(0, η)∩H4(η, ξ)∩H4(ξ, L))×
H2(0, L) × RN+1 satisfying the boundary conditions in (6) together with the com-
patibility conditions in (2), the solutions of system (6) in closed loop with (7) satisfy
the following properties:

• Stability:

||w(t)||2H2 + ||wt(t)||2L2 + qa(t)
2 ≤ ||w(0)||2H2 + ||wt(0)||2L2 + qa(0)

2 (8)

• Attractivity:
||w(t)||2H2 + ||wt(t)||2L2 + qa(t)

2 −−−→
t→∞

0. (9)

This paper is organised as follows. In Section 2, we detail the modeling
procedure of the system under analysis. In Section 3, we introduce some nec-
essary notions for the non-controlled Euler-Bernoulli beam equation as well
as a result regarding the exact observability of the system. Then, we present
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the well-posedness result for the closed-loop linear system (1) as well as its
asymptotic stability proof. Similarly, in Section 4 is given the well-posedness
result as well as the asymptotic stability proof for the closed-loop nonlinear
system (6). Finally, some concluding remarks and comments on future works
are given in Section 5.

2 Modeling

2.1 Physical assumptions and energy definition

We consider the modeling problem of the system depicted in Figure 1. The
goal is to obtain distributed parameter dynamics for the mechanical part
while lumped parameter dynamics for the piezoelectric actuator (PA) and
the electrical actuation circuit. To do so, we consider distributed parame-
ters constitutive equations for the mechanical part while lumped parameters
constitutive equations for the PA (Dosch et al, 1992, eq. (10),(19)){

s1(x) = Ypε1(x)− Ypd31V (x)
vp =

qf
Cp

− qp
Cp

(10)

where s1 and ε1 are the stress and strain along the x direction, respectively;
V and vp are the electrical field in the PA and the voltage applied to the
PA, respectively; qf and qp are the free charge on the PA and the piezoelec-
tric polarization charge due to stress, respectively. Finally, Yp corresponds to
Young’s modulus while d31 is the piezoelectric constant. The electric field is
assumed to be proportional to the voltage vp and different to zero only in the
interval [η, ξ] where the PA is placed

V (x) =
vp

tb + tp
(Hη(x)−Hξ(x)). (11)

According to Euler-Bernoulli assumptions, the normal strain corresponds to

ε = −ywxx (12)

where w corresponds to the beam deformation. Using the Euler-Bernoulli
assumptions, the polarization charge qp is proportional to the beam slope
difference between η and ξ (Dosch et al, 1992, eq. (32))

qp = α[wx]
ξ
η α = Ypd31b

tb + tp
2

. (13)

The total potential energy of the system is defined as

Ep =
1

2

∫ L

0

∫ tb+tp

0

∫ b

0

{ε1s1} dzdydx+
1

2
vpqf . (14)
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Substituting (10)-(13) into (14) we obtain

Ep =
1

2

∫ L

0

∫ tb+tp

0

∫ b

0

{−ywxx(−Ypywxx

−Ypd31 qf−qp
Cp(ta+tp)

(Hη(x)−Hξ(x))
}
dzdydx+

qf−qp
2Cp

qf

=
1

2

∫ L

0

∫ tb+tp

0

{
bYpy

2w2
xx

+Ypd31by
qf−qp

Cp(tb+tp)
(Hη(x)−Hξ(x))wxx

}
dydx+

qf−qp
2Cp

qf

=
1

2

∫ L

0

{
EIw2

xx + α
qf − qp
Cp

(Hη(x)−Hξ(x))wxx

}
dx+

qf − qp
2Cp

qf

(15)
where in the last equality we have used the α definition in (13) and defined

EI = bYp
∫ tb
0
y2dy. Using the definition of the polarization charge in (13) we

obtain

Ep =
1

2

∫ L

0

EIw2
xxdx+

(qf − α[wx]
ξ
η)

2

2Cp
. (16)

The kinetic energy of the system can be described by

EK =
1

2

∫ L

0

ρw2
t dx. (17)

The overall energy of the system is defined as the sum of the kinetic EK and
potential EP energies Etot = EK + EP .

2.2 Derivation of governing equations

To derive the dynamic equations we first have to define the action

A =

∫ t2

t1

{EK − EP +Wnc}dt (18)

where t1, t2 are two arbitrary instants of time such that t2 > t1 whileWnc is the
work of non-conservative forces applied on the system. The principle of least
actions states that the true evolution of the system described by the action
(18) satisfies dAh = 0 for any h such that h(t1) = h(t2) = 0 and where dA is
the Fréchet derivative of the action functional and h is the variation function
(in the mechanics’ literature are usually referred to as virtual displacements).
According to the variational principle, we have that∫ t2

t1

{dEKh− dEPh+ dWnch} dt = 0. (19)
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We start by computing the Fréchet derivative of the Kinetic energy

dEKh =

∫ L

0

ρwthwt
dx. (20)

The Fréchet derivative of the Potential energy writes

dEPh =

∫ L

0

{(
EIwxx − α

Cp
(qf − α[wx]

ξ
η)(Hη −Hξ)

)
hwxx

}
dx

+ 1
Cp

(qf − α[wx]
ξ
η)hqf .

(21)

We plug equations (20) and (21) in (19) to obtain∫ t2

t1

∫ L

0

{
ρwthwt

−
(
EIwxx − α

Cp
(qf − α[wx]

ξ
η)(Hη −Hξ)

)
hwxx

}
dx

+
(

1
Cp

(qf − α[wx]
ξ
η)
)
hqf + dWnchdt = 0.

(22)

The Fréchet derivative of the work of the non-conservative forces is defined
such to obtain the electrical circuit dynamical equation represented in Figure 1.
To do so, we apply 2nd Kirchhoff’s law to be able to write

0 = Rq̇f + vpa − ua. (23)

Therefore, to obtain the same voltage balance in the Action’s Fréchet
derivative, we define

dWnch = (Rq̇f − ua)hqf . (24)

We plug (24) in (22) and assuming, without loss of generality, that hwt =
∂hw

∂t

and that hwxx
= ∂2hw

∂x2 , we perform two integrations by parts with respect to
x and one with respect to t on (22) to obtain

∫ t2
t1

∫ L

0

{
−ρwtt − EIwx4 +

α
Cp

(qf − α[wx]
ξ
η)

d
dx (δη − δξ)

}
hwdx− [EIwxxhwx ]

L
0

+ [EIwx3hw]
L
0 − α

Cp
(qf − α[wx]

ξ
η)
(
[(δη − δξ)hw]

L
0 − [(Hη −Hξ)hwx ]

L
0

)
+
(

1
Cp

(qf − α[wx]
ξ
η) +Rq̇f − ua

)
hqf dt+

∫ L

0
[ρwthw]

t2
t1
dx = 0.

(25)
We remark that the terms computed at the boundaries involving the Dirac
and Heaviside functions are zero by definition. The remaining boundary terms
are equal to zero as soon as we guarantee the boundary conditions

w(0, t) = wx(0, t) = wxx(L, t) = wx3(L, t) = 0. (26)

The last term in (22) is equal to zero because of the vanishing condition of func-
tions hw at t1, t2,i.e. hw(t2) = hw(t1) = 0. From the remaining terms, we can
extract the equations of motion and boundary conditions corresponding to the
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Fig. 2 Two equivalent lumped parameter electrical representations of the piezoelectric
actuation.

series between a capacitor and voltage generator piezoelectric representation,
represented in Figure 2,

ρwtt = −EIw4x + α
Cp

(qf − α[wx]
ξ
η)

d
dx (δη − δξ)

w(0, t) = wx(0, t) = wxx(L, t) = wx3(L, t) = 0
Rq̇f = − 1

Cp
(qf − α[wx]

ξ
η) + ua.

(27)

The second PA equivalent representation of a capacitor in parallel with a
current generator can be obtained through the following change of variable

qa = qf − α[wx]
ξ
η. (28)

The corresponding equations of motions are the ones given in (1). From a
physical point of view, q̇a(t) is the current passing through the capacitor Cp

in the right electrical circuit of Figure 2. The term 1
R

(
ua − qa

Cp

)
is the total

current in the circuit, while ip = α[wxt]
η
ξ is the current generated by the direct

piezoelectric effect.

2.3 Hysteresis model insertion in the equations of motion

Experimental observations indicate that the PA hysteresis behaviour lies in
the electrical domain between the applied actuator voltage and the result-
ing charge qa responsible for the mechanical stress (Goldfarb and Celanovic,
1997). The hysteresis behaviour can be modeled using the Maxwell slip model
which, from an electrical point of view, can be represented by a series of N
linear capacitors in parallel with as many nonlinear resistors (Yeh et al, 2008;
Goldfarb and Celanovic, 1997). An equivalent electrical representation con-
sists of the parallel of N inductors in series with as many nonlinear resistors
(Caballeria et al, 2021). In this work, we consider the capacitor-resistor rep-
resentation of the Maxwell-slip model depicted in Figure 3. From now on, we
denote with hysterion the element composed by a capacitor in parallel with a
nonlinear resistor. To obtain the electrical dynamical equations we write the
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Fig. 3 Electrical representation of the PA embedded with the Hysteresis Maxwell-slip
model.

1st Kirchhoff’s law for q̇a and q̇H,j for j ∈ {1, . . . , N}.{
q̇a = ia − ip
q̇H,j = ia − iRH,j(vH,j).

(29)

The current ia corresponds to the current flowing in the resistor R

ia = 1
R

(
ua − vpa −

∑N
j=1 vH,j

)
= 1

R

(
ua − qa

Cp
−
∑N

j=1
qH,j

CH,j

)
.

(30)

We embed the last equation in the 1st Kirchhoff’s law and ip = α[wxt]
η
ξ in

(29) to obtain q̇a = − 1
R

(
qa
Cp

+
∑N

j=1
qH,j

CH,j

)
− α[wxt]

η
ξ +

1
Rua

q̇H,j = − 1
R

(
qa
Cp

+
∑N

j=1
qH,j

CH,j

)
− iRH,j(

qH,j

CH,j
) + 1

Rua.
(31)

The relation between iRH,j and vH,j proposed in (Yeh et al, 2008; Goldfarb
and Celanovic, 1997) can be formalized by the following function

iH,j(vH,j) =


0 if |vH,j | < vj

GH(vH,j + vj) if vH,j ≤ −vj
GH(vH,j − vj) if vH,j ≥ vj .

(32)

where GH >> 1 is the common conductance to all the hysterions, while vj are
the limit voltages different between hysterions. In this paper, we consider that
each hysterion lets through leakage current when the voltage is in the interval
[−vj , vj ]. Therefore, introducing the conductance GH << 1, we consider the
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vH,j

qvj

-vj

vH,j

iH,j

Fig. 4 Graphical representation of the proposed current as nonlinear function of the voltage,
as well as the resulting hysteresis relation between voltage and charge. The dashed lines
correspond to the function in (32) and the corresponding hysteresis, while the solid lines
correspond to (33).

following nonlinear current function

iH,j(vH,j) =


GHvH,j if |vH,j | < vj

GHvH,j + vj(GH −GH) if vH,j ≤ −vj
GHvH,j − vj(GH −GH) if vH,j ≥ vj .

(33)

In Figure 4 we plot the comparison between the two different current nonlinear
functions, together with the resulting hysteresis between the voltage vH,j and

the charge q =
∫ t

0
ia(τ)dτ . It is easy to show that the current nonlinear function

in (33) has the following properties.

Proposition 3 For all j ∈ {1, . . . , N}, the nonlinear function iH,j : R → R in (33)
is

• continuous, monotonically increasing (i.e. (iH,j(vH,j1)−iH,j(vH,j2))(vH,j1−
vH,j2) ≥ 0) and such that iH,j(0) = 0

• such that iH,j(vH,j1)vH,j1 ≥ GHv
2
H,j1 for all vH,j1 ∈ R.

3 Well-posedness and asymptotic stability:
linear system

3.1 PA critical positioning and L2 beam equation analysis

In this subsection, we provide some useful preliminaries for studying the in-
domain stabilization of the Euler-Bernoulli beam equation. As already shown
in previous publications on stabilization of piezoelectric controlled flexible
beams (Prieur and Tarbouriech, 2019; Crépeau and Prieur, 2006), stabilization
is possible only in case the actuator is non-critical positioned. To understand
what are non-critical points, it is necessary to recall some useful facts about
the free evolution of the Euler-Bernoulli equations. To do that, we consider
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the homogeneous Cauchy problem

ϕtt(x, t) +
EI
ρ ϕx4(x, t) = 0, ϕ(·, 0) = ϕ0, ϕt(·, 0) = v0,

ϕ(0, t) = ϕx(0, t) = ϕxx(L, t) = ϕx3(L, t) = 0.
(34)

For the sake of compactness, we shall not explicit the time and space depen-
dency of the variables, unless it is not clear from the context. We define the
state z = (ϕ, ν) where ν = ϕt and let A0 : D(A0) → L2(0, L)2 be the open-loop
operator with domain

D(A0) := {(ϕ, ν) ∈ H4(0, L)×H2(0, L) | ν(0) = νx(0) = 0,
ϕ(0) = ϕx(0) = ϕxx(L) = ϕx3(L) = 0} (35)

and defined by A0z = (ν,−EI
ρ ϕx4). We define the set H = H2(0, L)×L2(0, L)

with inner product ⟨z1, z2⟩H =
∫ L

0
ϕ1,xxϕ2,xx+ϕt,1ϕt,2dx. The operator A

−1
0 is

compact and symmetric on H−1, hence there exists a countable orthonormal
basis of H consisting of eigenvectors of A−1

0 . In the following proposition, we
provide a result on the characterization of the A0 eigenvectors.

Proposition 4 (Lemma 2.1 in (Crépeau and Prieur, 2006)) The L2(0, L)-normalized
eigenfunctions of A0 are the functions (ψn)n≥1, defined for all x in (0, L) by

ψn(x) = γn(cos(αnx)− cosh(αnx) + µn(sinh(αnx)− sin(αnx))) (36)

where αn is the n-th positive root of

1 + cos(αnL) cosh(αnL) = 0 (37)

with µn =
cos(αnx)+cos(αnx)
sin(αnx)+sinh(αnx)

and γn = 1√
L
.

We are now in the position to define the critical set. To do that, let Lp =
ξ − η be the length of the PA. For any n ≥ 1 and any Lp ∈ (0, L], let

Sn(Lp) := {η ∈ [0, L− Lp], ψn,x(η)− ψn,x(η + Lp) = 0}, (38)

where ψn,x corresponds to the spatial derivative of the n − th eigenfunction
ψn, therefore the critical set can be defined as

S(Lp) = ∪n≥1Sn(Lp). (39)

The exact observability of (34) with respect to the output [νx]
η
ξ is shown in

the following lemma for any non-critical positioning (η, ξ) of the PA.

Lemma 5 If η /∈ S(Lp), the system (34) is exactly observable with respect to [νx]
η
ξ .
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Proof According to (Curtain and Zwart, 2020, Corollary 6.2.15), a system is exactly
observable on [0, τ ] if and only if

∫ τ
0 ||y(t)||2dt ≥ γ||z||2H for some γ > 0 and for all

z ∈ H. It is easily seen that if ϕ0 =
∑

n≥1 ϕ
0
nψn and ν0 =

∑
n≥1 ν

0
nψn, then the

solution ϕ = ϕ(x, t) to (34) reads

ϕ(x, t) =

∞∑
n=1

(
ϕ0n cos(α2

nt) +
v0n
α2
n
sin(α2

nt)

)
ψn(x). (40)

Using the former equation in the output definitions we obtain

[νx(x, t)]
η
ξ =

+∞∑
n=1

(
−ϕ0nα2

n sin(α2
nt) + v0n cos(α2

nt)
)
(ψn,x(η)− ψn,x(ξ)). (41)

Since α2
n+1−α2

n → ∞ we infer from a generalization of Ingham’s inequality that for
any τ > 0∫ τ
0 |[νx(x, t)]ηξ |

2dt =
∫ τ
0

(∑+∞
n=1

(
−ϕ0nα2

n sin(α2
nt) + v0n cos(α2

nt)
)
(ψn,x(η)− ψn,x(ξ))

)2
dt

≥ Cτ
∑+∞

n=1

(
(ϕ0nα

2
n)

2 + (v0n)
2
)
(ψn,x(η)− ψn,x(ξ))

2.

(42)
Therefore, since η /∈ S then ψn,x(η)−ψn,x(ξ) ̸= 0 and from the previous inequalities
we obtain that

∫ τ
0 ||σ(t)||2dt ≥ γ||z||2H, that indeed concludes the proof. □

Now, we introduce the necessary tools to obtain that both hands of the PDE
in (6) belong to L2(0, L). If w is any function in H1(0, η)∩H1(η, ξ)∩H1(ξ, L),
we define {wx} ∈ L2(0, L) by

{wx}(x) :=


w

D′(0,η)
x (x) if x ∈ (0, η)

w
D′(η,ξ)
x (x) if x ∈ (η, ξ)

w
D′(ξ,π)
x (x) if x ∈ (ξ, L).

(43)

We set also [w]η := w(η+)−w(η−), and [w]ξ := w(ξ+)−w(ξ−). Then it follows
that

wx = {wx}+ [w]ηδη + [w]ξδξ in D′(0, L). (44)
Assume now that w ∈ H2(0, L) and that v ∈ H2(0, L), and define ϖ =
−EI

ρ wx4 + ε d
dx (δη − δξ). If ϖ ∈ L2(0, L), then the restriction of ϖ to each of

the intervals (0, η), (η, ξ) and (ξ, L) has also to be a square integrable function.
The same conclusion holds for wx4, hence w ∈ H4(0, η) ∩H4(η, ξ) ∩H4(ξ, L).
We may then compute the first space derivatives of w and then ϖ. We obtain

wx = {wx}+ [w]ηδη + [w]ξδξ = {wx}
wxx = {wxx}+ [wx]ηδη + [wx]ξδξ = {wxx}
wx3 = {wx3}+ [wxx]ηδη + [wxx]ξδξ

wx4 = {wx4}+ [wx3]ηδη + [wx3]ξδξ + [wxx]η
d

dx
δη + [wxx]ξ

d

dx
δξ (45)

and

ϖ = −EI
ρ

(
{wx4}+ [wx3]ηδη + [wx3]ξδξ + [wxx]η

d
dxδη + [wxx]ξ

d
dxδξ

)
+ε d

dx (δη − δξ).
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Then, ϖ is in L2(0, L) provided that all the coefficients in front of the Dirac
functions vanish, i.e. [wxx]η = ρ

EI ε = −[wxx]ξ and [wx3]η = [wx3]ξ = 0.

3.2 Well-posedness and stability analysis

In this subsection, we show the well-posedness and the asymptotic stability of
solutions generated by the linear system (1) in closed loop with the control
law (3). System (1) in closed loop with (3) writes:

ρwtt(x, t) = −EIwxxxx(x, t) +
α
Cp
qa(t)

d
dx (δη(x)− δξ(x))

w(0, t) = wx(0, t) = wxx(L, t) = wxxx(L, t) = 0

q̇a(t) = − 1+β
RCp

qa(t)− α [wxt(x, t)]
ξ
η − γ[wxtt]

ξ
η −

γ(1+β)
RCp

[wxt]
ξ
η

(46)

that, after the change of variables qa = qa + γ[wxt]
η
ξ , can be rewritten as

ρwtt(x, t) = −EIwxxxx(x, t) +
α
Cp

(qa(t)− γ [wxt(x, t)]
ξ
η)

d
dx (δη(x)− δξ(x))

w(0, t) = wx(0, t) = wxx(L, t) = wxxx(L, t) = 0

q̇a(t) = − 1+β
RCp

qa(t)− α [wxt(x, t)]
ξ
η .

(47)
Therefore, we define the space

V = {v ∈ H2(0, L) | v(0) = vx(0) = 0} (48)

with inner product ⟨v1, v2⟩V = ⟨v1,xx, v2,xx⟩L2 and associated norm ||v||V =√
⟨v1, v2⟩V . Then, we can define the operator

A1z =

 v

−EI
ρ wx4 +

α
ρCp

(
qa − γ [vx]

ξ
η

)
d
dx (δη − δξ)

− 1+β
RCp

qa − α [vx]
ξ
η

 (49)

with state z = (w, v, qa) ∈ Z1 = V × L2(0, L)× R and domain

D(A1) = {z ∈ Z | w ∈ H4(0, η) ∩H4(η, ξ) ∩H4(ξ, L), v ∈ H2(0, L)
w(0) = wx(0) = wxx(L) = wx3(L) = 0, v(0) = vx(0) = 0,

[wxx]η = α
EICp

(
qa − γ [vx]

ξ
η

)
= −[wxx]ξ, [wx3]η = [wx3]ξ = 0}.

(50)
We remark that the compatibility conditions necessary to obtain an L2(0, L)
right-hand side of the beam PDE obtained in Section 3.1 are present in D(A1).
For the linear system’s analysis, we equip the state space Z1 with the energy
inner product

⟨z1, z2⟩1 =

∫ L

0

{EIw1,xxw2,xx + ρv1v2} dx+
1

Cp
q1,aq2,a (51)
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and the associated norm ||z||1 =
√

⟨z, z⟩1. The energy inner product (51)
corresponds to the standard inner product on Z1 and therefore is well-posed.
Here we present the well-posedness result for operator A1 with domain D(A1).

Theorem 6 The closed-loop operator A1 defined in (49), with domain D(A1) in
(50), generates a contraction C0-semigroup in the state space Z.

Proof By the Lumer-Phillips Theorem, we have to show that the operator A1 is
dissipative and that Ran(λI −A1) = Z1. We start with the dissipativity of operator
A1, and applying two times integration by parts we obtain

⟨A1z, z⟩1 =
∫ L
0

{
EIvxxwxx + ρ

(
−EI

ρ wx4 + α
ρCp

(qa

−γ [vx]ηξ
)

d
dx

(
δη − δξ

))
v
}
dx

+ 1
Cp

(
− 1+β

RCp
qa − α [vx]

η
ξ

)
qa

=
∫ L
0 {EIvxxwxx − EIwxxvxx} dx− [wx3v]

L
0 + [wxxvx]

L
0

αqa
ρCp

∫ L
0 v d

dx

(
δη − δξ

)
dx− αγ[vx]

ξ
η

ρCp

∫ L
0 v d

dx

(
δη − δξ

)
dx

+ 1
Cp

(
− 1+β

RCp
qa − α [vx]

ξ
η

)
qa.

(52)

Using the boundary conditions in (50) together with the definition of the Dirac and
Heaviside functions, we obtain

⟨A1z, z⟩1 = − αγ

ρCp

(
[vx]

ξ
η

)2
− 1 + β

RC2
p
q2a ≤ 0 (53)

The range condition Ran(λI − A1) = Z1 consists on finding for a certain λ > 0,
z̃ = (w̃, ṽ, q̃a) ∈ D(A1) such that (λI −A)z̃ = f for all f ∈ Z1. Let us first note that
the latter equation is equivalent to

λw̃ − ṽ = fw

λṽ −
(
−EI

ρ w̃x4 + α
ρCp

(
q̃a − γ [ṽx]

ξ
η

)
d
dx

(
δη − δξ

))
= fv

λq̃a − (− 1+β
RCp

q̃a − α [vx]
ξ
η) = fqa

(54)

that can be rewritten as
ṽ = λw̃ + fw

λ2w̃ + EI
ρ w̃x4 − α

ρCp

(
q̃a − γ [ṽx]

ξ
η

)
d
dx

(
δη − δξ

)
= fv − λfw

q̃a = 1
λ+ 1+β

RCp

fqa − α
λ+ 1+β

RCp

[ṽx]
ξ
η

(55)

and therefore ṽ and q̃ are uniquely determined by w̃. Then, we replace the term w̃x4

by the expression in (45), and using the conditions in D(A1) we obtain that the
second equation of (55) is equivalent to

λ2w̃ +
EI

ρ
{w̃x4} = fv − λfw. (56)

We write the weak form of (56) for all ϕ ∈ V (with V defined in (48)), that since
{w̃x4} ∈ L2(0, L) we can split the integral in three different parts∫ L

0
λ2w̃ϕdx+

EI

ρ

3∑
i=1

∫
Ii

w̃x4ϕdx =

∫ L

0
f̃ϕdx (57)
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with I1 = (0, η−), I1 = (η+, ξ−) and I1 = (ξ+, L) and f̃ = fv − λfw. Using two
times integration by parts on the second term and the boundary and compatibility
conditions in D(A1) we obtain∫ L

0 f̃ϕdx =
∫ L
0 λ2w̃ϕdx+ EI

ρ

∫ L
0 {w̃xx}ϕxxdx

+ α
ρCp

(
q̃a − γ [ṽx]

ξ
η

)
(ϕx(η)− ϕx(ξ))∫ L

0 f̃ϕdx− κ1fqa[ϕx]
η
ξ =

∫ L
0 λ2w̃ϕdx+ EI

ρ

∫ L
0 {w̃xx}ϕxxdx

−κ2[ṽx]ξη[ϕx]ηξ

(58)

where κ1 = Rα
ρ(RλCp+1+β)

and κ2 =
Rα(α+γ(λ+ 1+β

RCp
))

ρ(RCpλ+1+β)
. Using the last relation in (55)

together with the fact that {w̃xx} = w̃xx we get∫ L
0 f̃ϕ dx− κ1fqa[ϕx]

η
ξ − κ2[fw,x]

ξ
η[ϕx]

η
ξ =

∫ L
0 {λ2w̃ϕ+ EI

ρ w̃xxϕxx}dx
+κ2λ[w̃x]

η
ξ [ϕx]

η
ξ .

(59)

We define the bilinear form

a(w̃, ϕ) =

∫ L

0
{λ2w̃ϕ+

EI

ρ
w̃xxϕxx}dx+ κ2λ[w̃x]

η
ξ [ϕx]

η
ξ (60)

and since κ2 > 2, we remark that this bilinear form is coercive in V . Indeed, we have
that

a(w̃, w̃) =
∫ L
0

{
λ2w̃2 + EI

ρ w̃2
xx

}
dx+ κ2λ

(
[w̃x]

η
ξ

)2

≥ EI
ρ

∫ L
0 w̃2

xxdx = EI
ρ ||w̃||2V .

(61)

For showing that a(w̃, ϕ) is continuous we begin by using Cauchy-Swartz and
Poincaré inequalities

a(w̃, ϕ) ≤ λ2
(∫ L

0 w̃2dx
) 1

2
(∫ L

0 ϕ2dx
) 1

2
+ EI

ρ

(∫ L
0 w̃2

xxdx
) 1

2
(∫ L

0 ϕ2xxdx
) 1

2

+κ2λ
∫ η
ξ wxxdx

∫ η
ξ ϕxxdx

≤
(
λ2 + EI

ρ

)(∫ L
0 w̃2

xxdx
) 1

2
(∫ L

0 ϕ2xxdx
) 1

2
+ κ2λ

(∫ η
ξ w

2
xxdx

) 1
2
(∫ η

ξ ϕ
2
xxdx

) 1
2
.

(62)
Then, by increasing the integration intervals of the last terms, we obtain a(w̃, ϕ) ≤
(λ2 + EIρ−1 + κ)||w̃||V ||ϕ||V , that indeed proves that the bilinear form a(w̃, ϕ)

is continuous. Therefore, we define the linear functional
∫ L
0 f̃ϕ dx − κ1fqa[ϕx]

η
ξ −

κ2[fw,x]
ξ
η[ϕx]

η
ξ , and we apply the Lax-Milgram Theorem to conclude that there exists

a unique solution w̃ ∈ V to the weak formulation of (55). Now we show that w̃ ∈
H4(0, η) ∩H4(η, ξ) ∩H4(ξ, L). To do that we start by showing that w̃ ∈ H4(0, η).
Therefore we select the test function such that ϕ ∈ C∞

c (0, η) ⊂ V and from (56) we
obtain ∫ η

0
λ2w̃ϕdx+

EI

ρ

∫ η

0
w̃x4ϕdx =

∫ η

0
f̃ϕdx (63)

from which we know that there exists a unique solution w̃ ∈ V . Since ϕ ∈ C∞
c (0, η) ⊂

V , using two integrations by parts, the previous equation can be rewritten as∫ η

0
w̃xxϕxxdx =

ρ

EI

∫ η

0
(f̃ − λ2w̃)ϕdx (64)

that indeed proves that w̃xx ∈ H2(0, η) and therefore w̃x4 ∈ L2(0, η) according to the
H2 definition (Brezis, 2011, page 216). Similar arguments can be used to prove that
w̃x4 ∈ L2(η, ξ) and w̃x4 ∈ L2(ξ, L). To summarize we have proven that there exists
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a w̃ ∈ L2(0, η) ∩ L2(η, ξ) ∩ L2(ξ, L) that satisfies the boundary and compatibility
conditions unique solution to (56). From the first and last equations of (55), ṽ and
q̃ can be uniquely determined from w̃. Hence, we proved the range condition and
using the Lumer-Phillips Theorem we can conclude that A1 generates a contraction
C0-semigroup in Z1. □

In order to conclude about the global asymptotic stability of the origin of
system (1) with (3), we first introduce the two following technical lemmas.

Lemma 7 The canonical embedding from D(A1) to Z1 is compact.

Proof The statement is equivalent to the fact that for each sequence in D(A1), which
is bounded with the graph norm, there exists a subsequence that (strongly) converges
in Z1. Recalling the definition of the graph norm ||z||2D(A1)

:= ||z||21 + ||A1z||21

||z||2D(A1)
=

∫ L
0

{
EI(wxx)

2 + ρv2 + EI(vxx)
2 + ρ

(
−EI

ρ wx4

+ α
ρCp

(
qa − γ [vx]

ξ
η

)
d
dx

(
δη − δξ

))2
}
dx

+ 1
Cp
q2a + 1

Cp

(
− 1+β

RCp
qa − α[vx]

ξ
η

)2

(65)

We substitute the wx4 expression in (45) to obtain

||z||2D(A1)
≥

∫ L
0 EI(wxx)

2 + ρv2 + EI(vxx)
2 + EI2

ρ {wx4}2dx
1
Cp
q2a + 1

Cp

(
− 1

RCp
qa − α[vx]

ξ
η

)2
,

(66)

From the previous inequality, we get

||z||2D(A1)
≥ min

{
EI, EI2

ρ

}∫ L
0 (wxx)

2 + {wx4}2dx,

||z||2D(A1)
≥ min {EI, ρ}

∫ L
0 v2 + (vxx)

2dx,

||z||2D(A1)
≥ 1

Cp
q2a.

(67)

Consider now a sequence (zn)n∈N in D(A1) bounded for the graph norm D(A1).
From (67) we deduce that the sequence (wn)n∈N is bounded in H4(0, η)∩H4(η, ξ)∩
H4(ξ, L), the sequence (vn)n∈N is bounded inH2(0, L) and the sequence (qa,n)n∈N is

bounded in R. It follows that there exist v ∈ L2(0, L) and q ∈ R such that extracting
a subsequence from each sequence we obtain that (vn′)n′∈N → v in L2(0, L) and
(qa,n′)n′∈N → qa in R. Then, we extract a subsequence from (wn′)n′∈N, calling

it (wn′)n′∈N, such that (wn′)n′∈N → w1 in H2(0, η). We successively extract a
sequence such that (wn′)n′∈N → w2 in H2(η, ξ), and a final subsequence such that
(wn′)n′∈N → w3 in H2(ξ, L). Then, we define w ∈ H2(0, L)

w =


w1 for x ∈ (0, η)
w2 for x ∈ (η, ξ)
w3 for x ∈ (ξ, L).

(68)

Therefore we conclude that there exists a subsequence (wn′)n′∈N → w in V . It follows
that there exists a subsequence (zn′)n′∈N that strongly converges in Z1. □
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Lemma 8 (Lemma 3.1.1 in (Mattioni, 2021)) For a linear system

Σ =


zt(t) = Az(t)
y = Cz(t)
z(0) = z0

(69)

where A is the generator of a C0-semigroup and C is an admissible output operator,
the following two statements are equivalent

• if y(t) is constant then z0 = 0.
• Σ is approximately observable and its only equilibrium point is zero.

We are now in the position to prove Theorem 1.
Proof of Theorem 1. The stability property follows from the contraction

semigroup generation of Theorem 6. For concluding the attractivity property,
we define the candidate Lyapunov functional V(z) = 1

2 ⟨z, z⟩1 for all z ∈ Z1.
Since the defined Lyapunov function corresponds to half the square of the
norm in the space Z1, its time-derivative along the solutions to system (1) are
given by

V̇ = ⟨A1z, z⟩1 ≤ − αγ

ρCp

(
[vx]

ξ
η

)2
− 1 + β

RC2
p

q2a. (70)

To prove the asymptotic stability we make use of LaSalle’s invariance princi-
ple. We notice that according to Lemma 7 the embedding of D(A1) in Z1 is
compact and using (Miyadera, 1992, Corollary 3.7) it follows that ||A1z(t)|| is
decreasing. Therefore the trajectory set {z(t) | t ≥ 0} is pre-compact in Z1.
Therefore, according to LaSalle’s invariance principle, the solutions converge
to the largest invariant set Ω0 of Ω = {z ∈ Z1 | V̇ = 0}. According to (70), we

have that Ω = {z ∈ Z1 | qa = 0, [vx]
ξ
η = 0}. To find its largest invariant set Ω0,

we apply the conditions qa = 0, [vx]
ξ
η = 0 to (47) to obtain that the problem

of finding Ω0 consists of finding the solution to the over-constrained system
wt = v, vt = −EI

ρ wx4

[vx]
ξ
η = 0

w(0) = wx(0) = wxx(L) = wx3(L) = 0, v(0) = vx(0) = 0,
[wxx]η = [wxx]ξ = 0, [wx3]η = [wx3]ξ = 0.

(71)

This corresponds to the over-constrained Euler-Bernoulli beam equation with
homogeneous boundary conditions and output defined as y = [vx]

ξ
η. First of

all, we notice that the output y is a linear bounded operator from D(A1) to R
and therefore is admissible. Then, it is possible to prove that the operator in
(71) generates a contraction C0-semigroup and that its only equilibrium is the
origin. Since η /∈ S, according to Lemma 5, system (71) is exactly observable

with respect to [vx]
ξ
η and therefore it is also approximately observable with

respect to the same output. Hence, since we know that the output y(t) is
constrained to be constant, thanks to Lemma 8 we can conclude that the only
solution to the over-constrained problem (71) is the origin. Hence, we obtain
that Ω0 = {0} and by LaSalle’s invariance principle we can conclude that the
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origin of Z1 is a globally asymptotically stable equilibrium, and therefore we
obtain the following attractivity property

w(t)2H2 + v(t)2L2 + (qa(t) + γ[vx(t)]
ξ
η)

2 −−−→
t→∞

0. (72)

We assume that z(0) = z0 ∈ D(A1) and therefore z(t) ∈ D(A1) for all t.
Defining the operator Cez(t) = [vx]

ξ
η, we remark that the operator CeA−1

1 is
bounded. Therefore, we can rewrite

[vx(t)]
ξ
η = CeA−1

1 A1z(t). (73)

Since in Theorem 6 we have shown that A1 is the generator of a contraction
semigroup, we can write z(t) = T (t)z0, where T (t) is the semigroup generated
by A1. If z0 ∈ D(A1), we can use linearity to have A1T (t)z0 = T (t)A1z0, and
therefore

[vx(t)]
ξ
η = CeA−1

1 A1T (t)z0 = CeA−1
1 T (t)A1z0. (74)

Since we have already shown that T (t) is an asymptotically stable semigroup,
we have that T (t)A1z0 −−−→

t→∞
0 and therefore

[vx(t)]
ξ
η = CeA−1

1 T (t)A1z0 −−−→
t→∞

0 (75)

because of the boundedness of CeA−1
1 . Since qa(t) = qa(t)+γ[vx(t)]

ξ
η and since

qa(t) −−−→
t→∞

0 we obtain that qa(t) −−−→
t→∞

0 for z0 ∈ D(A1).

4 Well-posedness and asymptotic stability:
nonlinear system

In this section, we first give the proof of the well-posedness of the nonlinear
system (6) in closed loop with (7). The equations of system (6) in closed-loop
with (7) corresponds to

ρwtt(x, t) = EIwxxxx(x, t) +
α
Cp
qa(t)

d
dx (δη(x)− δξ(x))

w(0, t) = wx(0, t) = wxx(L, t) = wxxx(L, t) = 0

q̇a(t) = − 1+β
R

(
qa(t)
Cp

+
∑N

j=1
qH,j

CH,j

)
− α [wxt(x, t)]

ξ
η

q̇H,1(t) = − 1+β
R

(
qa(t)
Cp

+
∑N

j=1
qH,j

CH,j

)
− iRH,1

(
qH,1

CH,1

)
...

q̇H,N (t) = − 1+β
R

(
qa(t)
Cp

+
∑N

j=1
qH,j

CH,j

)
− iRH,N

(
qH,N

CH,N

)
.

(76)

We now define the state z = (w, v, qa, qH,1, . . . , qH,N ) ∈ Z2 = V ×L2(0, L)×
RN+1 where V = {v ∈ H2(0, L) | v(0) = vx(0) = 0}, v = wt and the
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corresponding nonlinear operator is defined as

ż = A2z =



v
−EI

ρ wx4 +
α

ρCp
qa

d
dx (δη − δξ)

− 1+β
R

(
qa
Cp

+
∑N

j=1
qH,j

CH,j

)
− α [vx]

ξ
η

− 1+β
R

(
qa
Cp

+
∑N

j=1
qH,j

CH,j

)
− iRH,1

(
qH,1

CH,1

)
...

− 1+β
R

(
qa
Cp

+
∑N

j=1
qH,j

CH,j

)
− iRH,N

(
qH,N

CH,N

)


(77)

with domain

D(A2) = {z ∈ Z2 | w ∈ H4(0, η) ∪H4(η, ξ) ∪H4(ξ, L), v ∈ H2(0, L)
w(0) = wx(0) = wxx(L) = wx3(L) = 0, v(0) = vx(0) = 0,
[wxx]η = α

EICp
qa = −[wxx]ξ, [wx3]η = [wx3]ξ = 0}.

(78)

We remark that, similarly to the linear case, the compatibility conditions of
Section 3.1 are present in D(A2). We equip the state space Z2 with the inner
product

⟨z1, z2⟩2 =

∫ L

0

{EIwxx,1wxx,2+ρv1v2}dx+
1

Cp
qa,1qa,2+

N∑
j=1

qH,j,1qH,j,2

CH,j
(79)

and the corresponding norm ||z||2 =
√

⟨z, z⟩2. Therefore, we rewrite (77) as
an abstract Cauchy problem {

zt(t) = A2z(t)
z(0) = z0.

(80)

In the next theorem, we show that there exists a unique solution for the for-
mer Cauchy problem, characterized by some non-increasing properties, for all
initial conditions taken in z0 ∈ D(A2). We would like to point out that in order
to demonstrate the range condition required to establish the m-dissipativity
of the operator A2, we employ a novel approach inspired by the methodology
utilized in (Vanspranghe et al, 2022).

Theorem 9 For each z0 ∈ D(A2) there exists a unique absolutely continuous z :
[0,∞) → Z2 such that z(0) = z0 and (80) holds at a.e t > 0. Moreover, if z(t) ∈
D(A2) then ||z(t)||2, ||A2z(t)||2 are non-increasing.

Proof According to (Showalter, 2013, Proposition 3.1 p.174), the Cauchy problem
(80) has a unique solution with the properties listed in the statements if the operator
−A2 is m-accretive or equivalently if A2 is m-dissipative. To be m-dissipative, an
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operator needs to satisfy the dissipativity condition ⟨A2z−A2z̃, z− z̃⟩2 ≤ 0 together
with the fact that Ran(I − λA2) = Z2 for some λ > 0. We start by computing the
dissipativity inner product

⟨A2z −A2z̃, z − z̃⟩2 =
∫ L
0

{
EI ∂2

∂x2 (v − ṽ) ∂2

∂x2 (w − w̃)− EI ∂4

∂x4 (w − w̃) (v − ṽ)

+ α
Cp

(qa − q̃a)
d
dx

(
δη − δξ

)
(v − ṽ)

}
dx

− 1+β
R

(
qa−q̃a
Cp

+
∑N

j=1
qH,j−q̃H,j

CH,j

)
qa−q̃a
Cp

− α
Cp

[vx − ṽx]
ξ
η(qa − q̃a)

−
∑N

j=1
1+β
R

(
qa−q̃a
Cp

+
∑N

j=1
qH,j−q̃H,j

CH,j

)
qH,j−q̃H,j

CH,j

−
∑N

j=1

(
iRH,j

(
qH,j

CH,j

)
− iRH,j

(
q̃H,j

CH,j

))
qH,j−q̃H,j

CH,j

(81)
Using integration by parts together with the homogeneous boundary conditions
makes the first two terms eliminate each other. Therefore we obtain

⟨A2z −A2z̃, z − z̃⟩2 = − α
Cp

(qa − q̃a)
∫ L
0 (δη − δξ)(vx − ṽx)dx

− α
Cp

[vx − ṽx]
ξ
η(qa − q̃a)

− 1+β
R

(
qa−q̃a
Cp

+
∑N

j=1
qH,j−q̃H,j

CH,j

)
qa−q̃a
Cp

− 1+β
R

(
qa−q̃a
Cp

+
∑N

j=1
qH,j−q̃H,j

CH,j

)∑N
j=1

qH,j−q̃H,j

CH,j

−
∑N

j=1

(
iRH,j

(
qH,j

CH,j

)
− iRH,j

(
q̃H,j

CH,j

))
qH,j−q̃H,j

CH,j
.

(82)

Using the Dirac function properties and collecting the third and fourth terms we
obtain

⟨A2z −A2z̃, z − z̃⟩2 = − 1+β
R

(
qa−q̃a
Cp

+
∑N

j=1
qH,j−q̃H,j

CH,j

)2

−
∑N

j=1

(
iRH,j

(
qH,j

CH,j

)
− iRH,j

(
q̃H,j

CH,j

))
qH,j−q̃H,j

CH,j
.

(83)

Using the monotonically increasing property of the nonlinear functions iH,j we get
Using the Dirac function properties and collecting the third and fourth terms we
obtain

⟨A2z −A2z̃, z − z̃⟩2 ≤ −1 + β

R

qa − q̃a
Cp

+

N∑
j=1

qH,j − q̃H,j

CH,j

2

, (84)

and therefore ⟨A2z −A2z̃, z − z̃⟩2 ≤ 0. Let us now show the range condition, i.e. for
some λ > 0 we must find z̃ ∈ D(A2) such that (λI − A2)z̃ = g for all g ∈ Z2. The
latter equation is equivalent to

λw̃ − ṽ = gw in V

λṽ + EI
ρ w̃x4 − α

ρCp
q̃a

d
dx (δη − δξ) = gv in L2(0, L)

λq̃a + 1+β
R

(
q̃a
Cp

+
∑N

j=1
q̃H,j

CH,j

)
+ α [ṽx]

ξ
η = ga in R

λq̃H,j +
1+β
R

(
q̃a
Cp

+
∑N

j=1
q̃H,j

CH,j

)
+ iRH,j

(
q̃H,j

CH,j

)
= gH,j in R

(85)

where the last equation has to be intended as a set of N equations from j = 1 to
j = N . We take the weak form of the second equation, with v ∈ V (with V defined
in (48))

λ⟨ṽ, v⟩L2 +
EI

ρ
⟨w̃x4, v⟩L2 − α

ρCp
⟨q̃a

d

dx
(δη − δξ), v⟩L2 = ⟨gv, v⟩L2 . (86)
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Using two times integration by parts on the second term, one time on the third
together with the boundary conditions in D(A2), the former equation is equivalent to

λ⟨ṽ, v⟩L2 +
EI

ρ
⟨w̃xx, vxx⟩L2 − α

ρCp
q̃a[ṽx]

ξ
η = ⟨gv, v⟩L2 . (87)

We obtain w̃ = 1
λ (ṽ+ gw) from the first equation in (85) and we substitute it in the

former equation to obtain

λ⟨ṽ, v⟩L2 +
EI

λρ
⟨ṽxx, vxx⟩L2 − α

ρCp
q̃a[ṽx]

ξ
η = ⟨gv, v⟩L2 +

1

λ
⟨gw,xx, vxx⟩L2 . (88)

Taking the inner product in R of the last N + 1 equations with the test-elements
qa, qH,1, . . . , qH,N ∈ R, the range condition transforms on finding z̃ ∈ D(A2) such
that for all v ∈ V and qa, qH,1, . . . , qH,N ∈ R

w̃ = 1
λ (ṽ + gw)

λ⟨ṽ, v⟩L2 + EI
λρ ⟨ṽxx, vxx⟩L2 − α

ρCp
q̃a[vx]

ξ
η = ⟨gv, v⟩L2 + 1

λ ⟨gw,xx, vxx⟩L2

λ⟨q̃a, qa⟩R + 1+β
R ⟨

(
q̃a
Cp

+
∑N

j=1
q̃H,j

CH,j

)
, qa⟩R + α⟨[ṽx]ξη, qa⟩R = ⟨ga, qa⟩R

λ⟨q̃H,j , qH,j⟩R + 1+β
R ⟨

(
q̃a
Cp

+
∑N

j=1
q̃H,j

CH,j

)
, qH,j⟩R + ⟨iRH,j

(
qH,j

CH,j

)
, qH,j⟩R = ⟨gH,j , qH,j⟩R

(89)
To simplify the notation we define r = (v, qa, qH,1, . . . , qH,N ) ∈ V × RN+1. We now

define ∀r̃ ∈ V × RN+1 the function ϕ(r̃) ∈ (V × RN+1)′, using the duality product
and ∀r ∈ V × RN+1:

⟨ϕ(r̃), r⟩(V×RN+1)′×(V×RN+1) =

ρλ⟨ṽ, v⟩L2 + EI
λ ⟨ṽxx, vxx⟩L2 − α

Cp
⟨q̃a, [vx]ξη⟩R + λ

Cp
⟨q̃a, qa⟩R

+ 1+β
RCp

⟨
(

q̃a
Cp

+
∑N

j=1
q̃H,j

CH,j

)
, qa⟩R + α

Cp
⟨[ṽx]ξη, qa⟩R + λ

∑N
j=1

⟨q̃H,j ,qH,j⟩R
CH,j

+ 1+β
R ⟨

(
q̃a
Cp

+
∑N

j=1
q̃H,j

CH,j

)
,
∑N

j=1
qH,j

CH,j
⟩R +

∑N
j=1⟨iRH,j

(
q̃H,j

CH,j

)
,
qH,j

CH,j
⟩R

(90)

and similarly, the function ξ(g) as

⟨ξ(g), r⟩(V×RN+1)′×(V×RN+1) =

ρ⟨gv, v⟩L2 + ρ
λ ⟨gw,xx, vxx⟩L2 + 1

Cp
⟨ga, qa⟩R +

∑N
j=1

1
CH,j

⟨gH,j , qH,j⟩R
(91)

such that to rewrite the last two equations of (89) as ϕ(r̃) = ξ(g) for all r̃ ∈ V ×RN+1.
It is worth noticing that ϕ(r̃) ∈ (V × RN+1)′ is a continuous linear function on
V × RN+1. To show the range condition, we have to prove that ϕ is onto.

Claim 10 The function ϕ is onto if the following conditions are satisfied

1. There exists C > 0 such that

⟨ϕ(r̃1)− ϕ(r̃2), r̃1 − r̃2⟩(V×RN+1)′×(V×RN+1) ≥ C||r̃1 − r̃2||2V×RN+1 ; (92)

2. For any r̃1, r̃2 ∈ V × R, the scalar function

t→ ⟨ϕ(r̃1 + tr̃2), r̃2⟩(V×RN+1)′×(V×RN+1) (93)

is continuous;
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3. ϕ maps bounded sets in V × RN+1 into bounded sets in (V × RN+1)′.

Proof of Claim 1. According to Lemma 2.1 and Theorem 2.1 in Chapter 2 of
(Showalter, 2013), ϕ is onto if conditions 2 and 3 hold together with

1. ϕ is monotone, i.e. ⟨ϕ(r̃1)− ϕ(r̃2), r̃1 − r̃2⟩(V×RN+1)′×(V×RN+1) ≥ 0.
2. there exists α > 0 such that

⟨ϕ(r̃), r̃⟩(V×R)′×(V×R) > ⟨ξ(g), r̃⟩(V×R)′×(V×R) (94)

for all r̃ ∈ V × RN+1 : ||r̃|| > α.

Therefore, to prove Claim 10, it suffices to derive items 1 and 2. Item 1 follows
trivially from condition 1. In order to get item 2 from condition 1, we remark
that (92) implies ⟨ϕ(r̃), r̃⟩(V×RN+1)′×(V×RN+1) ≥ C||(r̃)||2V×RN+1 . Then, since

⟨ξ(g), r̃⟩(V×RN+1)′×(V×RN+1) is linear for r̃ ∈ V × RN+1, we obtain that

⟨ξ(g), r̃⟩(V×RN+1)′×(V×RN+1) ≤ ||ξ(g)||(V×R)′ ||r̃||V×R. (95)

Using the previous two inequalities, it is possible to get that

⟨ϕ(r̃), r̃⟩(V×RN+1)′×(V×RN+1) − ⟨ξ(g), r̃⟩(V×RN+1)′×(V×RN+1)

≥ C||r̃||2V×RN+1 − ||ξ(g)||(V×RN+1)′ ||r̃||V×RN+1 .
(96)

Selecting ||r̃||V×RN+1 sufficiently big, we can finally retrieve condition (94), con-
cluding the proof of Claim 10.

We now check the three conditions in the previous claim. From the ϕ definition
in (90), rearranging the nonlinear terms, it is possible to obtain

⟨ϕ(r̃1)− ϕ(r̃2), r̃1 − r̃2⟩(V×RN+1)′×(V×RN+1)

= ρλ⟨ṽ1 − ṽ2, ṽ1 − ṽ2⟩L2 + EI
λ ⟨ṽ1,xx − ṽ2,xx, ṽ1,xx − ṽ2,xx⟩L2

− α
Cp

⟨q̃1,a − q̃2,a, [ ˜v1,x]
ξ
η − [ ˜v2,x]

ξ
η⟩R + λ

Cp
⟨q̃1,a − q̃2,a, q̃1,a − q̃2,a⟩R

1+β
R ⟨

(
q̃1,a−q̃2,a

Cp
+

∑N
j=1

q̃1,H,j−q̃2,H,j

CH ,j

)
,
q̃1,a−q̃2,a

Cp
⟩R

+ α
Cp

⟨[ ˜v1,x]
ξ
η − [ ˜v2,x]

ξ
η, q̃1,a − q̃2,a⟩R + λ

∑N
j=1

⟨q̃1,H,j−q̃2,H,j ,q̃1,H,j−q̃2,H,j⟩
CH,j

1+β
R ⟨

(
q̃1,a−q̃2,a

Cp
+

∑N
j=1

q̃1,H,j−q̃2,H,j

CH ,j

)
,
∑N

j=1
q̃1,H,j−q̃2,H,j

CH ,j ⟩R∑N
j=1⟨iRH,j

(
q̃1,H,j

CH,j

)
− iRH,j

(
q̃2,H,j

CH,j

)
,
q̃1,H,j

CH,j
− q̃2,H,j

CH,j
⟩R

(97)

Simplifying the equal terms with opposite signs, grouping the fifth and eighth terms
and using the monotonicity of the nonlinear current we get

⟨ϕ(r̃1)− ϕ(r̃2), r̃1 − r̃2⟩(V×RN+1)′×(V×RN+1)

≥ ρλ⟨ṽ1 − ṽ2, ṽ1 − ṽ2⟩L2 + EI
λ ⟨ṽ1,xx − ṽ2,xx, ṽ1,xx − ṽ2,xx⟩L2

+ λ
Cp

⟨q̃1,a − q̃2,a, q̃1,a − q̃2,a⟩R + 1+β
R

(
q̃1,a−q̃2,a

Cp
+

∑N
j=1

q̃1,H,j−q̃2,H,j

CH ,j

)2

+λ
∑N

j=1
⟨q̃1,H,j−q̃2,H,j ,q̃1,H,j−q̃2,H,j⟩

CH,j

≥ EI
λ ⟨ṽ1,xx − ṽ2,xx, ṽ1,xx − ṽ2,xx⟩L2 + λ

Cp
⟨q̃1,a − q̃2,a, q̃1,a − q̃2,a⟩R

+λ
∑N

j=1
⟨q̃1,H,j−q̃2,H,j ,q̃1,H,j−q̃2,H,j⟩

CH,j

(98)
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Defining C = min(EI
λ , λ

Cp
, λ
CH,1

, . . . , λ
CH,N

) proves condition 1 of Claim 10. To prove

condition 2 of Claim 10, we remark that the scalar function

⟨ϕ(r̃ + tr̃, r̃⟩(V×RN+1)′×(V×RN+1) = ρλ⟨ṽ + tṽ, ṽ⟩L2 + EI
λ ⟨ṽxx + tṽxx, ṽxx⟩L2

− α
Cp

⟨q̃a + tq̃a, [ṽx]
ξ
η⟩R + λ

Cp
⟨q̃a + tq̃a, q̃a⟩R

1+β
R ⟨

(
q̃a+tq̃a

Cp
+

∑N
j=1

q̃H,j+tq̃H,j

CH ,j

)
, q̃a
Cp

⟩R
+λ

∑N
j=1

⟨q̃H,j+tq̃H,j ,q̃H,j⟩
CH,j

+ α
Cp

⟨[ṽx]ξη + t[ṽx]
ξ
η, q̃a⟩R

1+β
R ⟨

(
q̃a+tq̃a

Cp
+

∑N
j=1

q̃H,j+tq̃H,j

CH ,j

)
,
∑N

j=1
q̃H,j

CH ,j ⟩R∑N
j=1⟨iRH,j

(
q̃H,j

CH,j

)
+ t iRH,j

(
q̃H,j

CH,j

)
,
q̃H,j

CH,j
⟩R

(99)
is continuous because of the continuity of the nonlinear functions iRH,j . To prove
condition 3 of Claim 10, it is sufficient to show that for all bounded sets B of V ×R,
there exists M ∈ R such that ||ϕ(B)|| ≤M where

||ϕ(B)|| = sup
r̃∈B

sup
r∈V×RN+1

|⟨ϕ(r̃), r⟩(V×RN+1)′×(V×RN+1)|
||r||V×RN+1

. (100)

Using the ϕ(r̃) definition in (90), we get that

|⟨ϕ(r̃), r⟩(V×RN+1)′×(V×RN+1)| ≤
|
(
ρλ+ EI

λ

)
⟨ṽxx, vxx⟩L2 − α

Cp
q̃a[v]

ξ
η + α

Cp
[ṽ]ξη q̃a + λ

Cp
q̃aqa + λ

∑N
j=1

q̃H,jqH,j

CH,j

1+β
R

(
q̃a
Cp

+
∑N

j=1
q̃H,j

CH,j

)(
qa
Cp

+
∑N

j=1
qH,j

CH,j

)
+

∑N
j=1 iRH,j

(
q̃H,j

CH,j

)
qH,j

CH,j
|

= |
(
ρλ+ EI

λ

)
⟨ṽxx, vxx⟩L2 − α

Cp
⟨q̃a, vxx⟩L2 + α

Cp
⟨ṽxx, qa⟩L2

+
(
λq̃a + 1+β

R

(
q̃a
Cp

+
∑N

j=1
q̃H,j

CH,j

))
qa
Cp

+
∑N

j=1

(
qH,j

CH,j
+ 1+β

R

(
q̃a
Cp

+
∑N

j=1
q̃H,j

CH,j

)
+ iRH,j

(
q̃H,j

CH,j

))
qH,j

CH,j
|.

(101)
Then, we split the absolute value and apply Cauchy-Schwarz to obtain

|⟨ϕ(r̃), r⟩(V×RN+1)′×(V×RN+1)| ≤(
ρλ+ EI

λ

)
||ṽxx||L2 ||vxx||L2 + α

Cp
|q̃a|||vxx||L2 ++ α

Cp
||ṽxx||L2 |qa|

+ 1
Cp

|λq̃a + 1+β
R

(
q̃a
Cp

+
∑N

j=1
q̃H,j

CH,j

)
||qa|

+
∑N

j=1

∣∣∣ qH,j

CH,j
+ 1+β

R

(
q̃a
Cp

+
∑N

j=1
q̃H,j

CH,j

)
+ iRH,j

(
q̃H,j

CH,j

)∣∣∣ ∣∣∣ qH,j

CH,j

∣∣∣ .
(102)

Since ||vxx||L2 , |qa|, |qH,j | ≤ ||r||V×RN+1 , we obtain that

|⟨ϕ(r̃), r⟩(V×RN+1)′×(V×RN+1)| ≤((
ρλ+ EI

λ + α
Cp

)
||ṽxx||L2 + α

Cp
|q̃a|+ 1

Cp

∣∣∣λq̃a + 1+β
R

(
q̃a
Cp

+
∑N

j=1
q̃H,j

CH,j

)∣∣∣
+
∑N

j=1

∣∣∣ qH,j

CH,j
+ 1+β

R

(
q̃a
Cp

+
∑N

j=1
q̃H,j

CH,j

)
+ iRH,j

(
q̃H,j

CH,j

)∣∣∣) ||r||V×RN+1

(103)
Since r̃ ∈ B and the continuous nonlinear currents iRH,j map compact sets (in R)
into bounded sets (in R), we can conclude that ||ϕ(B)|| is bounded, and condition 3
of Claim 10 holds. Therefore, applying Claim 10, we deduce that ϕ is onto, which
implies that there exists r̃ ∈ V ×RN+1 such that the last N+2 equations in (89) are
satisfied. Using the first equation in (89) we obtain that w̃ is uniquely determined by
ṽ. Then, using (86) and similar arguments as in the proof of Theorem 6, it is possible
to prove that w̃ ∈ H4(0, η) ∩H4(η, ξ) ∩H4(ξ, L). Finally, we use Proposition 3.1 in
Chapter 3 of (Showalter, 2013) to conclude the proof of Theorem 9. □
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As in the previous section, to conclude about the pre-compactness of
trajectories in the state space Z2, we introduce the following lemma.

Lemma 11 The canonical embedding from D(A2) to Z2 is compact.

Proof Similarly to Lemma 7, we have to prove that for each sequence (zn)n∈N in
D(A2) which is bounded with the operator norm, there exists a subsequence that
strongly converges in Z2. We compute the operator norm ||z||2D(A2)

:= ||z||22+||A2z||22

||z||2D(A2)
=

∫ L
0 {EI(wxx)

2 + ρv2 + EI(−EI
ρ wx4 + α

ρCp
qa

d
dx (δη − δξ))

2

+ρ(vxx)
2}dx+ 1

Cp
q2a + 1

Cp

(
− 1+β

R

(
qa(t)
Cp

+
∑N

j=1
qH,j

CH,j

)
− α [vx]

ξ
η

)2

+
∑N

j=1
q2H,j

CH,j
+

∑N
j=1

1
CH,j

(
− 1+β

R

(
qa
Cp

+
∑N

j=1
qH,j

CH,j

)
− iRH,j

(
qH,j

CH,j

))2

(104)
that using the wx4 definition in (45) transforms into

||z||2D(A2)
=

∫ L
0 {EI(wxx)

2 + ρv2 + EI3

ρ wx4
2 + ρ(vxx)

2}dx+ 1
Cp
q2a

+ 1
Cp

(
− 1+β

R

(
qa(t)
Cp

+
∑N

j=1
qH,j

CH,j

)
− α [vx]

ξ
η

)2
+

∑N
j=1

q2H,j

CH,j

+
∑N

j=1
1

CH,j

(
− 1+β

R

(
qa
Cp

+
∑N

j=1
qH,j

CH,j

)
− iRH,j

(
qH,j

CH,j

))2

≥
∫ L
0 {EI(wxx)

2 + ρv2 + EI3

ρ wx4
2 + ρ(vxx)

2}dx+ 1
Cp
q2a +

∑N
j=1

q2H,j

CH,j

(105)
Then, similarly as in the proof of Lemma 7, we can conclude that for each subsequence
(zn)n∈N there exists a subsequence (zn′)n′∈N that strongly converges in Z2. □

We can now prove the global asymptotic stability of the origin of the
nonlinear closed-loop system (80).

Proof of Theorem 2. The stability condition directly follows from
Theorem 9. To show the attractivity property we define the Lyapunov func-
tional V = 1

2 ⟨z, z⟩2 and computing its time-derivative along the system
trajectories we obtain

V̇ = − 1+β
R

(
qa
Cp

+
∑N

j=1
qH,j

CH,j

)2
−
∑N

j=1 iRH,j

(
qH,j

CH,j

)
qH,j

CH,j

≤ − 1+β
R

(
qa
Cp

+
∑N

j=1
qH,j

CH,j

)2
−
∑N

j=1Gj
q2H,j

C2
H,j
.

(106)

Similarly as in the proof of Theorem 1, to show the origin’s global asymp-
totic stability, we make use of LaSalle’s invariance principle. Firstly, we note
that according to Lemma 11 and the fact that ||A2z(t)||2 is decreasing, the
trajectory set {z(t) | t ≥ 0} is pre-compact in Z2. Moreover, the ω-limit set
w(z0) ∈ D(A2) is not empty and invariant for the nonlinear semigroup gener-
ated by A2 (see (Slemrod, 1989, Theorem 3.1)).The set Ω for which Ω = {z ∈
Z2 | V̇ = 0} corresponds to Ω = {z ∈ Z2 | qa = 0, qH,j = 0, j = {1 . . . , N}}.
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To search for its largest invariant subspace, we substitute the relations in Ω in
the closed-loop system to obtain

ẇ = v
v̇ = −EI

ρ wx4

[vx]
ξ
η = 0

w̃(0) = w̃x(0) = w̃xx(L) = w̃x3(L) = 0, v(0) = vx(0) = 0,
[w̃xx]η = [w̃xx]ξ = 0, [w̃x3]η = [w̃x3]ξ = 0.

(107)

Since η /∈ S, according to Lemma 5 the Euler Bernoulli equation is exactly
observable for [vx]

ξ
η. Therefore, according to Lemma 8, the only solution of the

over-constrained system (107) is the origin. Then, the largest invariant subset
of Ω is the origin. Therefore, according to LaSalle’s invariance principle, we
can conclude that the origin is a globally asymptotically stable equilibrium of
system (80).

5 Conclusions and perspectives

This paper is devoted to the modeling and stability analysis of a flexible beam
controlled by a collocated piezoelectric actuator in the self-sensing configura-
tion. A linear model describing the system dynamics, composed of a set of
PDE-ODE equations, has been obtained from general principles. The obtained
linear model is well-posed and its origin is globally asymptotically stable when
a voltage control law composed of the PA voltage and the available terms from
the self-sensing configuration is applied. Furthermore, the more realistic case
of a piezoelectric actuator affected by hysteresis has been considered. Finally,
a passive control law that globally asymptotically stabilizes the origin of the
closed-loop system has been proposed.
Possible future research can be focused on the design of a nonlinear observer
capable of estimating the hysteresis effect. The observed state can then be
used to cancel the hysteresis effect and the application of the strong feedback
terms can become possible.
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