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Solving the resource constrained 
project scheduling problem 
with quantum annealing
Luis Fernando Pérez Armas 1,5*, Stefan Creemers 1,3,4,5 & Samuel Deleplanque 2,5

Quantum annealing emerges as a promising approach for tackling complex scheduling problems 
such as the resource-constrained project scheduling problem (RCPSP). This study represents the 
first application of quantum annealing to solve the RCPSP, analyzing 12 well-known mixed integer 
linear programming (MILP) formulations and converting the most qubit-efficient one into a quadratic 
unconstrained binary optimization (QUBO) model. We then solve this model using the D-wave 
advantage 6.3 quantum annealer, comparing its performance against classical computer solvers. Our 
results indicate significant potential, particularly for small to medium-sized instances. Further, we 
introduce time-to-target and Atos Q-score metrics to evaluate the effectiveness of quantum annealing 
and reverse quantum annealing. The paper also explores advanced quantum optimization techniques, 
such as customized anneal schedules, enhancing our understanding and application of quantum 
computing in operations research.

Keywords Resource constrained project scheduling problem, Quantum optimization, Quantum annealing

In the realm of computational methodologies, quantum computing has emerged as a groundbreaking approach, 
promising revolutionary solutions to intricate optimization problems. At the forefront of this quantum revolu-
tion is the paradigm of quantum computing, a computational architecture harnessing the principles of quantum 
mechanics. At its core lies the quantum bit, or qubit, which exhibits unique properties such as superposition and 
entanglement, that pave the way for unprecedented computational capabilities. Currently residing in the Noisy 
Intermediate-Scale Quantum (NISQ)1 era, quantum computing is marked by limited-size and noise-sensitive 
quantum machines. This era acknowledges the ongoing challenges in quantum hardware while emphasizing the 
potential for valuable research and exploration of quantum advantages, even within the constraints of current 
technology.

In the landscape of optimization, two prominent approaches dominate the quantum-computing arena. Uni-
versal quantum computers that operate using the circuit gate model and showcase proven advantages in algo-
rithms such as Shor’s2 and Grover’s3, but with limited size (as of 2023, the biggest universal quantum computer 
has 433 physical qubits but only 414 are  available4–6). On the other hand, adiabatic quantum computers, grounded 
in the principle of adiabatic quantum computation, exhibit promising experimental results, particularly in terms 
of optimization problems by leveraging the ability to map them as energy minimization problems that allow the 
explotation of the natural tendency of the universe to seek states of minimum energy.

Diverging from gate-based quantum computers, quantum annealers carve a niche with a more focused 
application scope. These systems boast a higher qubit count (+5000) and enhanced noise resilience, fueling 
extensive research from both industry and academia. The versatility of quantum annealers is illustrated in their 
application to complex problems like graph  partitioning7,8,  transportation9,10, Job-Shop Scheduling Problem 
(JSSP)11,12,  etc13–16.

This paper delves into the realm of adiabatic quantum algorithms, with a specific focus on quantum annealing, 
to tackle one of the most challenging NP-Hard scheduling problems: the Resource Constrained Project Sched-
uling Problem (RCPSP). The significance of this choice arises from the inherent complexity of the problem, its 
broad applicability in projects’ makespan minimization, and the non-trivial nature of its formulation as input 
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of the quantum machine. Notably, this work represents the first exploration of applying quantum annealing 
techniques to the RCPSP.

The primary objective of this research is to present a comprehensive analysis of the potential applications 
and limitations of the current quantum annealing technology. Our study meticulously outlines a step-by-step 
approach to solving the RCPSP on the cutting-edge D-Wave Advantage quantum annealer featuring 5640 qubits. 
Through this exploration, we aim to contribute not only to the theoretical understanding of quantum annealing 
but also to the practical application of this technology in addressing real-world optimization challenges. Figure 1 
provides a comprehensive visual representation of the methodology and key processes employed in this study.

To the best of our knowledge, this is the first study to apply quantum annealing to the RCPSP, marking a 
significant advancement in the application of quantum computing to operations research. The three main con-
tributions of this paper are:

• Evaluation of Mixed Integer Linear Programming (MILP) formulations for the RCPSP: we analyze 12 well-
known MILP formulations for the RCPSP, we select the most suitable for QA, and we provide the first cor-
responding Quadratic Unconstrained Binary Optimization (QUBO) reformulation for this problem.

• Utilization of Time-to-Target (TTT) and Atos Q-score metrics: we introduce these metrics to compare the 
effectiveness of quantum annealing and reverse quantum annealing against classical optimization techniques. 
Additionally, we evaluate the largest problem size that can be effectively handled by a modern quantum 
annealer.

• We adopt advanced quantum optimization techniques: our work discusses advanced methods such as reverse 
quantum annealing and customized annealing schedules, which are particularly useful for addressing com-
plex combinatorial challenges.

This paper provides an in-depth exploration of quantum annealing’s theoretical and practical aspects, specifi-
cally in relation to the RCPSP. Initially, we examine the fundamentals of quantum annealing, focusing on the 
problem-embedding process into the annealer’s qubit graph. We then explain the RCPSP and detail the methods 
used in this study, including the selection of instance generators from existing literature, evaluation metrics for 
quantum heuristics and strategies for utilizing a quantum annealer for RCPSP (annealing time, shots, reverse 
schedule). The results section presents the QUBO model for solving the RCPSP. Finally, we present an extensive 
computational experiment to assess the efficacy of quantum annealing when solving the RCPSP and discuss 
key factors such as solution sampling, annealing duration, chain strength, and the use of advanced controls like 
reverse annealing. In addition to our conclusions, we also present several promising open research questions.

Figure 1.  Schematic overview of the methodology employed in this study. The study starts, by searching the 
most qubit efficient formulation for QA, then moves towards the search of adequate parameters and embedding, 
to then finally proceed to solve different instances of the RCPSP via QA.
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Quantum annealing and D-wave machines
Quantum Annealing stands as a quantum metaheuristic designed to tackle combinatorial optimization prob-
lems by leveraging the principles of quantum  mechanics17,18. This approach draws inspiration from simulated 
 annealing19, a classical metaheuristic where a system systematically cools to reach a state of minimum energy. 
In quantum annealing, quantum phenomena such as superposition and quantum  tunneling20 are harnessed to 
navigate through local minima efficiently, aiming to pinpoint the global minimum of a cost function. The efficacy 
of quantum annealing, as compared to its classical counterpart, can vary depending on the specific problem 
and hardware employed. The literature offers both theoretical  proofs17, highlighting the advantages of quantum 
annealing, as well as contrasting perspectives surrounding it in particular simulated  annealing21–23.

At the core of quantum annealing lies the profound concept of the natural tendency of the universe to seek 
for states of minimum energy. This method is grounded in the “adiabatic theorem” of quantum  mechanics24,25 
along with the time-dependent Schrödinger  equation26. It describes the evolution of any quantum system, thereby 
encapsulating the dynamics of its quantum states. The Hamiltonian, typically represented as a matrix, contains 
all the pertinent information regarding the quantized energy states available to a quantum system. The adiabatic 
theorem of quantum mechanics asserts that if a quantum system undergoes a slow and continuous change in its 
Hamiltonian, it will persist in its instantaneous eigenstate throughout the transformation. In simpler terms, if 
the system initiates in its ground state and the Hamiltonian changes sufficiently slowly, the system will maintain 
its ground state.

Applying the adiabatic evolution theorem to optimization problems involves initiating the process with a 
“simple” initial system represented by the Hamiltonian H0 , for which the ground state can be easily determined. 
The notations and symbols used throughout this work are reported in Table B1 of Appendix B. The system is then 
gradually transformed into the problem Hamiltonian H1 , an energetic mapping of an optimization problem P . 
As the adiabatic evolution concludes, the system originally described by H0 should have transitioned into the 
ground state of the problem Hamiltonian, representing the minimum value solution to the optimization problem 
P . The QA algorithm is physically implemented using analog control devices to manipulate a collection of qubit 
states following a time-dependent Hamiltonian represented as:

This algorithm orchestrates a gradual transition from an initial ground state in H0 to a state described by the 
problem Hamiltonian H1 . The H1 Hamiltonian mirrors the energy function of the optimization problem, ensur-
ing that the ground state for H1 corresponds to a minimum-cost solution to the optimization problem P . Intro-
duced by Farhi et al.27, QA and in more general the adiabatic quantum model of computation demonstrates that 
if the transition is executed slowly enough, the algorithm will, with high probability, converge to a ground state, 
i.e., an optimal solution.

D-Wave quantum annealing processors are purposefully engineered for the specific task of identifying mini-
mum-cost solutions to the Ising Minimization problem or, indirectly, to the QUBO–an isomorphic problem. The 
Ising problem, defined on a graph G = (V ,E) , entails the assignment of values from {−1,+1} to spin variables 
si with the objective of minimizing the following energy function H1:

Where h = hi : i ∈ V  represent weights, and J = Jij : (i, j) ∈ E is a set of coupling constants. In the physical 
context, spin variables si can be seen as magnetic poles, with negative Jij indicating ferromagnetic interactions, 
and positive values suggesting antiferromagnetic interactions. The optimal configuration of spin variables si 
that minimizes the energy function is denoted as a ground state, while alternative configurations are classified 
as excited states that do not have minimum energy. Upon broadening the computational scope, Ising problems 
are effortlessly transformed into QUBO problems via si = 2xi − 1 . This modification involves associating binary 
decision variables xi ∈ {0, 1} with spin variables si ∈ {−1,+1}.

A D-Wave Quantum Processor Unit (QPU) maintained at a few millikelvin exhibits quantum properties such 
as superposition and quantum tunneling. Despite the presence of a Faraday shield, the QPU remains susceptible 
to interference, which generally reduces the likelihood of attaining a ground state. Consequently, we categorize 
any D-Wave processor as a heuristic solver, that requires empirical methods for performance analysis. The cur-
rent most advanced D-Wave processor (Advantage 6.3) has more than 5000 active qubits, a connectivity of 15 
qubits (qubits are not fully connected), and 35000 active couplers, made of microscopic loops of niobium. These 
couplers are connected to a sophisticated analog control system through a network of Josephson  junctions28–30. 
Table 1 lists the properties of the different topologies made available by D-Wave: Chimera, Pegasus, and Zephyr.

Besides noise and interference, another major challenge is qubit connectivity. In order to solve any problem 
on a quantum annealer, the problem graph (QUBO/Ising) must be mapped into the physical hardware, which 

H(t) = A(t)H0 + B(t)H1

H1 =
∑

i

hisi +
∑

i,j

Jijsisj

Table 1.  Characteristics of available D-wave quantum devices.

Topology Chimera Pegasus Zephyr

Device designation 2000Q Advantage 6.3 Advantage 2 (Prototype)

Active qubit count 2041 5616 563

Connectivity measure 6 15 20
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has a limited number of qubits and interconnections. Consequently, it may be necessary to alter the structure of 
the QUBO/Ising problem to fit the constrained topology of the quantum  annealer31. This involves mapping the 
model onto a larger qubit graph, a critical step that stresses the importance of the machine’s inherent topology. 
This non-trivial process is known as “minor embedding”.

When the QUBO/Ising problem’s graph requires couplings among qubits not directly connected in a QPU 
topology, additional qubits are utilized to form connected sub-graphs representing the target graph. These addi-
tional qubits are referred to as “logical qubits”. For example, consider the QUBO/Ising graph K3 shown in Fig. 2a, 
where qubits x1 and x2 need to be coupled with x3 but lack direct physical connections in the QPU’s topology, 
as despicted by the dotted edges between these nodes. Figure 2b illustrates the minor embedding of K3 using a 
new logical qubit. To establish this logical link, the adjusted QUBO/Ising problem includes an additional penalty 
term, either ρ(z4 − z3)

2 or ρ(z4z3) , where ρ denotes the “chain strength parameter” which helps maintain the 
integrity of logical qubits during computation.

The new logical links established by the minor embedding process are termed “chains”. For the solution to be 
consistent, it is critical that all physical qubits within a chain attain the same value upon measurement; failure 
to do so indicates a broken chain. The “chain strength parameter” ρ manages a crucial trade-off: setting it too 
low risks frequent chain breaks, whereas a value that is set too high may restrict the qubits capacity to transition 
between states.

Sub-optimal embeddings can lead to unnecessarily long chains, as depicted in Fig. 2c. This embedding 
requires the use of two additional logical qubits, along with the inclusion of extra penalty terms ρ(y4y3) and 
ρ(y4y5) , thereby increasing the likelihood of chain breaks. The presence of multiple broken chains often indicates 
that the solutions yielded by the annealing process may not accurately represent the original problem. As dem-
onstrated by Marshal et al.32, poor embeddings, particularly those characterized by long chains, can complicate 
the solution sampling process. Although various post-processing techniques exist to mend broken chains, such 
as majority voting or Monte Carlo resampling, this work exclusively considers unbroken chains. Samples with 
broken chains were discarded, impacting only runtime performance and not the number of valid solutions, 
regardless of whether discarded samples were feasible or not.

A wide range of heuristics for finding embeddings are available in the literature. Moreover, the quest for better 
embedding algorithms remains an active area of  research33–35. Notably, Bernal et al.36 have demonstrated that 
more effective embeddings can be achieved through integer programming and decomposition methods. In this 
study, minor embeddings were identified using D-Wave’s available  heuristic37. Figure 3 illustrates an example of 
the embedding process using the “minor-miner” heuristic on the “Pegasus” topology.

Once the minor embedding process is successfully completed, the annealing process is initiated. While the 
adiabatic theorem suggests a potentially lengthy annealing duration to ensure the system stays in the ground 
state, practical constraints arise due to noise, which can elevate the system to (unwanted) higher energy states. 
Consequently, a brief annealing is conducted and repeated multiple times in a stochastic process that samples 
from the energy distribution of the problem. Determining the optimal annealing time and the number of samples 
depends on the specific problem and its energy distribution. Typical values fall within the range of 10 to 100 
microseconds for annealing times and 1 to 10000 for the number of samples.

While the traditional QA starts from the ground state of the “Ising Transverse field” Hamiltonian H0 , and 
therefore from an initial uniform superposition and evolves towards the target problem Hamiltonian H1 , a more 
sophisticated evolution approach can be applied. In Reverse Annealing (RA), the process departs from an already 
available solution. RA reintroduces partial segments of H0 by operating in reverse, thereby reinstating a partial 
quantum superposition. This unique reverse progression is employed to iteratively refine the initial  solution38–41.

x1 x2

x3

J1,3 J2,3

J1,2

(a) Complete graph K3

z1 z2

z3 z4

J1,3 J2,4

J1,2

J3,4

(b) Chain length = 1

y1 y2

y3 y4

y5

J1,3 J2,4

J1,2

J3,5 J4,5

(c) Chain length = 2

Figure 2.  Three graphs representing the same logical QUBO/Ising, but using different embeddings. (a) 
represents the K3 original QUBO/Ising problem. The dashed of the edges (x1–x3 ) and (x2–x3 ) indicate that the 
corresponding qubits are not physically connected in the QPU. (b) shows a minor embedding of (a) with the use 
of two logical qubits z3 and z4, that can be recognized by their dotted border. (c) is a sub-optimal embedding of 
(a) that uses three logical qubits instead of two.
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Resource-constrained project scheduling problem
The RCPSP is one of the most extensively studied scheduling problems and perhaps one of the easiest to describe; 
however despite this apparent simplicity, the RCPSP conceals its true complexity, as demonstrated by Blazewicz 
et al.42, who show that the RCPSP is NP-hard. This inherent complexity renders the RCPSP as one of the most 
intractable combinatorial optimization problems. Similar to the  JSSP43,44 the RCPSP falls into the category of 
problems classified as NP-hard “in the strong sense”45.

In essence, the RCPSP considers the scheduling of a single project comprising n non-dummy activities, 
subject to precedence and resource constraints, with the overarching objective of minimizing the project makes-
pan–the total time required for the completion of all activities. The RCPSP is typically represented by a graph 
G(A, E) with each node in A = {0, 1, ..., n+ 1} that corresponds to the different project activities and each edge 
in (i, j) ∈ E equivalent to a straightforward finish-to-start precedence relationship, meaning that the beginning 
of a successor activity j must await the completion of its predecessor activity i . Nodes 0 and n+ 1 serve as sym-
bolic milestones, representing the “project start” and “project finish”, respectively. These milestone activities are 
often referred to “dummy activities”. Each activity j ∈ A has a duration pj and resource consumption bjk , where 
k belongs to a set of renewable resources R . Each resource k has a maximum capacity Bk . A feasible solution to 
the RCPSP corresponds to a project schedule S = {S0, S1, . . . , Sn+1} comprised of start times Sj (for each activ-
ity j ∈ A ) that respect both precedence and resources constraints. An inherent characteristic of the RCPSP is 
the non-preemptive nature of activities, indicating that once an activity commences, it cannot be interrupted.

Figure 4a depicts the graphical representation of a small instance of RCPSP (known as a network diagram) 
composed of three activities (plus two “dummy” activities) and two renewable resources. The activity dura-
tion, denoted as pj , and resource consumption bjk are presented above and below each node j, respectively. 
Both renewable resources have a maximum capacity of three units. Figure 4b shows the optimal schedule 
S = {S0 = 0, S1 = 0, S2 = 1, S3 = 1, S4 = 3} for this instance.

Mixed integer linear programming formulations
Given the intrinsic significance of the RCPSP, it is unsurprising that the literature dedicated to Mixed Integer 
Linear Programing (MILP) formulations for the RCPSP is both prolific and dynamic, offering a myriad of 
approaches. For a given optimization problem, multiple formulations can be devised. These can be distinguished 
in three ways: first by the formulation size, notably concerning the number of variables; secondly, by the number 
of constraints they involve; and thirdly, by the strength of their Linear Programming (LP) relaxation. Typically, 
for a given problem, a discernible correlation exists between the problem size and the quality of the LP relaxation. 
Traditionally, enhancing the quality of the LP relaxation requires a new and extended formulation that introduces 
additional variables and constraints, thus increasing the problem size. With remarkable advancements in LP 
algorithms, which can now efficiently solve instances involving millions of  variables46–48, it comes as no surprise 
that, in the context of MILP formulations for the RCPSP, a significant emphasis has been placed on advancing 
and refining the quality of the LP  relaxations49,50.

Broadly classified, formulations for the RCPSP fall into three distinct families, as illustrated in Fig. 5. The first 
category encompasses time-index  formulations51–57, including works by Pritsker et al. 1969 (PRI69), Christofides 
et al. 1987 (CHR87), de Sousa and Wolsey 1997 (SOU97), Mingozzi et al. 1998 (MIN98), Klein and Kaplan 1998 
(KLE98), Klein 2000 (KLE00_1 and KLE00_2), Demeulemeester and Herroelen 2002 (DEM02), and Bianco 
and Caramia 2013 (BIA13). This is followed by sequence-based  formulations58,59, exemplified by Tamarit and 
Valdés 1993 (TAM93) and Artigues et al. 2003 (ART03).The third and final category comprises event-based 
 formulations60,61, including works by Koné et al. 2011 (KON11) and Artigues et al. 2013 (ART13). An analysis 

(a) Pegasus topology of the QPU.
(b) RCPSP problem mapped into the QPU
Pegasus topology.

Figure 3.  Minor embedding process with the Pegasus topology.
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by Koné and  Artigues61,62 reveals that sequence-based and event-based formulations tend to be more compact, 
requiring fewer variables, while time-index formulations, although larger in scale, offer superior Linear Pro-
gramming (LP) relaxations. It is noteworthy that the majority of time-index formulations tend to be binary and 
utilize exclusively binary variables, while event-based and sequence-based formulations employ a mix between 
integer and binary variables. For more general information regarding the different MILP formulations of the 
RCPSP, please refer to Artigues et al  201363.

In the context of employing a quantum annealer for solving the RCPSP, a pertinent question emerges: Which 
formulation should one choose among the available options? Specifically, which formulation aligns most effec-
tively with the capabilities of current commercially accessible quantum annealers? Addressing these inquiries 
necessitates an investigation into the transformation of these formulations into their corresponding QUBO 
form. This evaluation involves assessing each formulation based on factors such as the resulting QUBO size, 
the need for additional slack-supplementary variables, and the sparsity of the associated QUBO graph. These 
characteristics play a pivotal role in determining the suitability of each formulation for solving the RCPSP, par-
ticularly within the confines of NISQ-era quantum annealers. This study aims to provide comprehensive insights 
to answer these critical questions.

Methods
In the following section, we explain different aspects of the experimental methodology followed in this study.

RCPSP instance selection protocol
A classical study for assessing the performance of solving the RCPSP would normally involve instances from 
the well-known PSPLIB dataset of Kolisch et al.64,65 or alternatively, the more recent CV dataset of Coelho and 

(a) Network diagram.
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(b) RCPSP solution schedule S.
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Figure 4.  RCPSP instance example: (a) RCPSP instance graph G(A, E) with three non-dummy activities and 
two resources; (b) solution schedule for the instance; (c) resource profile for resource 1, and (d) resource profile 
for resource 2.
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 Vanhoucke66. Both datasets offer a large number of hard instances of varying sizes (where size is defined by the 
number of project activities, ranging from 20 to 120 activities). However, considering the limitations on the 
number of available qubits in the D-wave Advantage 6.3 Quantum Annealer, we decided to utilize the RanGen 
instance generator proposed by Demeulemeester, Vanhoucke, and  Herroelen67,68. This generator allows the crea-
tion of random instances with varying levels of difficulty.

The instances used on this work were generated following the well-established protocol proposed by Baptiste 
and Le  Pape69, which involves constructing both disjunctive and cumulative instances. Disjunctive instances 
are characterized by a large number of precedence constraints, resulting in a highly sequential schedule with 
limited opportunities for parallel execution. On the other hand, cumulative instances exhibit fewer precedence 
constraints and provide ample opportunities for parallelism and posing a greater challenge for solving.

The RanGen generator facilitates the generation of both disjunctive and cumulative instances using the “Order 
Strength” (OS) parameter, ranging from 0 to 1. A value of 0 indicates a fully cumulative instance, illustrated in 
Fig. 6a, while 1 represents a fully disjunctive instance, illustrated in Fig. 6b. The generator also allows tuning the 
resource constraints by specifying the number of resources, in addition to the level of constraint for renewable 
resources. This is done via a parameter called “Resource Constrainedness” (RC) that again ranges from 0 to 1, 
where 1 means that all activities consume the maximum resource capacity Bk , while 0 means that there is no 
resource consumption by the project activities.

In our study, we utilized RanGen to produce instances of the RCPSP across various dimensions determined 
by the number of non-dummy activities (i.e., n ∈ {3, 4, 5, 6, 7, 8} ). Within each size category, we generated three 
distinct instance types characterized by OS values of 0.1, 0.5, and 0.9. We refer to these instance types as “Cumula-
tive”, “Medium OS”, and “Disjunctive”, respectively. Each instance features two renewable resources (k = 2) with 

RCPSP

Time Index

PRI69

CHR87

SOU97

KLE98

MIN98

KLE00 1

KLE00 2

DEM02

BIA13

Sequence

TAM93 ART03

Events

KON11 ART13

Figure 5.  RCPSP MILP formulations reported in the literature categorized by their family type.
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Figure 6.  Baptiste and Le Pape instance types: (a) the left graph corresponds to a cumulative RCPSP instance; 
(b) right graph corresponds to a disjunctive RCPSP instance.
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a RC set to 0.5. The activity duration pj and resource consumption values bjk were constrained within the range 
of 1 to 2 units to further limit the number of qubits required by the quantum annealer. Furthermore, for every 
instance, the maximum resource capacity Bk was established at 3 units.

Benchmarking metrics for quantum optimization
Benchmarking metrics play a pivotal role in the evaluation of adiabatic evolution computing algorithms, par-
ticularly for quantum annealing. In the context of benchmarking, there are inherent challenges that arise from 
the unique nature of quantum annealers. First, QA blends quantum and analog elements that are devoid of dis-
crete instructions or basic operations that lend themselves to conventional counting methods used by classical 
computers. Consequently, given the transient and unstable nature of QA, relying on runtime as an evaluation 
metric becomes a pragmatic approach. Specially when considering that runtime is widely recognized as one of 
the most critical metrics for assessing algorithm performance.

A further complication arises from the juxtaposition of hardware-implemented quantum annealing algo-
rithms against their software-implemented counterparts (simulated quantum annealing). Traditional bench-
marks for computer platforms, software, and algorithms often fail to account for this mixed scenario, leading to 
a deficiency in standard guidelines for robust benchmarking.

Unlike classical benchmarks that often distill performance into a single metric, the evaluation of adiabatic 
evolution algorithms, particularly in the quantum realm, necessitates a more nuanced approach. The performance 
of a heuristic on a given input is aptly described by a curve delineating the trade-off between computation time 
and solution quality. This nuanced perspective requires a repertoire of metrics for comprehensive evaluation.

In the empirical evaluation of quantum annealing and adiabatic evolution algorithms, several performance 
metrics have surfaced in the literature. Notable among these is “Time-to-Solution”70 (TTS), which centers on the 
total time required for a solver to identify a ground state (optimal solution) with a sufficiently high probability. 
One of the biggest disadvantages of TTS, is that it relies on a priori knowledge of the optimal solution, potentially 
overlooking benefits derived from near-ground state solutions.

Alternatively, “Time-to-Target” (TTT)71 is a relevant metric that focuses on the overall time required by solv-
ers to attain a target solution energy, which is determined by the energy distribution of the quantum annealing 
processor. This metric provides a more versatile evaluation and acknowledges solutions that may not align with 
a predetermined optimal outcome.

Another recent interesting metric is the “Q-score”72 conceived by the technology consulting company Atos. 
The Q-score measures the maximum number of qubits effectively employed to solve combinatorial optimiza-
tion problem. Originally, the Q-score was developed to evaluate the solution of the Max-Cut problem using 
the Quantum Approximate Optimization  Algorithm73 (QAOA); however, this metric can be readily adapted to 
assess the performance of quantum annealing, demonstrated by Van der Schoot et al.67. The Q-score of a given 
problem can be then calculated using:

With β∗ = 0.2 (obtained empirically by studying the behavior of QAOA). and β(n) determined by the following 
ratio:

Where C̃(n) is the average energy output obtained from QA, Cr(n) is the average output value obtained from 
solving the QUBO/Ising problem with a random sampling method, and Cmax(n) equal to the energy of the 
ground state.

For achieving specific goals of this paper, metrics of interest include TTT and the Q-score. By concentrating 
on these, we aim to ascertain the potential for speed-ups and determine the largest instance of the RCPSP, meas-
ured in terms of the number of project activities, that can be effectively addressed using the current Advantage 
6.3 Quantum Annealing system from D-Wave.

QUBO penalty selection strategy
Adjusting the values of the multipliers by weighing the penalties due to relaxed constraints is an important but 
difficult step. Given a QUBO problem where E(x) = xTQx , with a number of n binary variables xi , ∀i ∈ X  , we 
can further divide it into two portions: E(x) = v(x)+ �c(x) , where v(x) corresponds to the energy contribution 
to the objective function, c(x) corresponds to the energy contribution due to the problem constraints, and � 
represents the penalty weight. The main goal this becomes finding the value of � such that the optimal solution 
to the penalised objective function is the optimal solution of the original constrained problem. Multiple strate-
gies have been proposed in the literature, each offering a unique approach to determining the most effective 
penalty coefficients.

One of the earliest and simplest strategies, proposed by Lucas in  201474, involves utilizing the upper bound 
of the pure objective function. This is mathematically represented as � = xTQx , where xi = 1,∀i ∈ X  (i.e., the 
solution where all binary decision values are set to 1 is used as an upper bound of the energy minimization 
problem). This approach provides a straightforward and easily computable penalty.

Lucas also introduced another possibility for penalty selection which involves using the maximum QUBO 
value; this is denoted as:

(1)n∗ ≡ max{n ∈ N,β(n) > β∗}.

(2)β(n) =
C̃(n)− Cr(n)

Cmax(n)− Cr(n)
.
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This method takes into account the highest interaction value between the variables, ensuring that the penalty is 
significant enough to enforce the constraints effectively.

More recently, Verma and  Lewis75 proposed a more sophisticated method in 2020. Their approach estimates 
the potential gain or loss in the objective function value that could result from switching a particular bit on or 
off. This method provides a more nuanced and dynamic way of calculating penalties, potentially leading to more 
accurate and efficient solutions, especially in complex scenarios where the impact of each binary variable on the 
objective function is not uniform.

Therefore the array of strategies discussed underscores the dynamic and continuously evolving landscape of 
penalty selection in QUBO problems. Each approach, distinct in its methodology, has its own set of strengths and 
is tailored to suit different problem types. As penalty selection stands as a vibrant and ongoing field of research, 
our study opts for a more foundational approach. We employ a simple penalty selection method where the penal-
ties are just a multiple of the sum of activity duration’s pi , � =

∑n
j=1 pi , leveraging the upper bound strategy, to 

ensure clarity and ease of implementation during our analysis.

Experimental setup
The experimental results presented in this study were derived from the utilization of the D-Wave Advantage 6.3 
Quantum Annealer, featuring 5640 qubits and a connectivity of 15 connections per qubit. The minor embeddings 
were established employing D-Wave’s “minor-miner” heuristic. Each instance generated using the approach 
explained in “Experimental results” section was solved on the QPU with a specific annealing time of 20µs (the 
decision to use 20µs is based on the analysis conducted in “Anneal time and pausing effects” section and is also 
shown in Fig. 18). Furthermore, for every instance, 10000 samples were recorded. It is important to note that the 
mentioned annealing time exclusively pertains to quantum annealing and does not extend to Reverse Quantum 
Annealing (RQA), since the latter uses an specific annealing schedule described next.

Figure 7 illustrates the implementation of RQA using a 4-point schedule: [[0.0, 1.0], [2.75, 0.45], [82.75, 
0.45], [83.025, 1.0]]. The schedule involves a reverse evolution from s = 1 to s = 0.45 within the initial 2.75 µ s, 
followed by an 80 µ s pause. Subsequently, a forward evolution of 1 µ s occurs, transitioning from s = 0.45 to 
s = 1 . Here, the variable s represents the percentage of implementation of the problem Hamiltonian H1 during 
the annealing evolution.

The impact of including pauses in the annealing schedule on the performance of QA was assessed in “Anneal time 
and pausing effects” section. An annealing time of 20µ s was employed, incorporating pauses of 2, 4, 6, 8, 12, 16, and 
18µ s, respectively. The resulting annealing schedules are visualized in Fig. 8. This analysis was comprehensive, and 
covered all instance types and sizes. The evaluation involved recording the relative difference between the energy of 
the ground state E0 and the minimum energy value achieved by QA, denoted as Emin . This difference is calculated as 
(

Emin−E0
E0

)

 . For each instance, 1000 samples were recorded. A similar analysis was conducted to evaluate the effect of 
different annealing times 1, 5, 10, 20, 50, and 100µs in the performance of QA.

(3)max(Qij) ∀ (i, j) ∈ X
2.

(4)Wc =

{

−Qii −
∑n

j = 1
j �= i

min{Qij , 0},Qii +
∑n

j = 1
j �= i

max{Qij , 0} ∀i ∈ X
}

,

(5)� =
n

max
i=1

Wci .
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Figure 7.  Reverse quantum annealing schedule used for the RQA numerical results of this work.
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To create a comprehensive benchmark for assessing the performance of QA and RQA in this study, we have 
selected the following classical optimization techniques: Random Sampling (RS) and Simulated  Annealing19 
(SA), along with classical solvers including GUROBI, COIN-CBC, and GLPK.

Results
In this section, we provide a detailed examination of several MILP formulations and discuss their applicability in 
quantum annealing. Initially, in “QUBO analysis of MILP formulations for the RCPSP” section, we explore twelve 
MILP formulations for the RCPSP to identify the most qubit-efficient model suitable for quantum annealing. 
This analysis leads us into “RCPSP QUBO” section, where the chosen MILP formulation is transformed into a 
QUBO form. “Experimental results” section then presents the experimental results obtained from evaluating the 
performance of QA and RQA across various RCPSP instances, based on the QUBO developed in the preceding 
section. Finally, “Anneal time and pausing effects” section showcases additional experimental tests that investigate 
the impact of pausing and annealing times on the effectiveness of the quantum annealing.

QUBO analysis of MILP formulations for the RCPSP
In this section, we identify the optimal QUBO formulation for the RCPSP, focusing on the formulation that 
requires the fewest qubits. The minimal number of qubits is directly related to the number of slack variables, the 
type of variables, and the sparsity of the QUBO graph. Initially, we examine these crucial elements across three 
types of RCPSP formulations. Subsequently, from the eight formulations studied within the selected type, we 
determine the most effective one.

Analysis of formulation types
Once transformed into QUBO formulations, time-index, sequence, and event formulations (see Fig. 5) are 
compared with the data presented in Table C2. The number of qubits required for each formulation is reported 
in Fig. 9, which shows that the time-index formulation PRI69 requires significantly fewer qubits compared to 
the sequence- and event-based formulations. Moreover, the gap between these formulations increases with the 
the instance size. These results may appear counter-intuitive when considering the original number of variables 
required by each formulation, as detailed in Table C2. Notably, sequence- and event-based formulations exhibit a 
lower number of original variables than time-index formulations; the compactness characteristic of event-based 
formulations has been documented well by Koné62.

The apparent discrepancy in the number of QUBO variables can be elucidated by closely inspecting the nature 
of the different formulations. The TAM93 formulation requires a priori knowledge of “forbidden sets” F  . These 
are sets of activities that share no precedence constraints and, when scheduled parallely, violate resource con-
straints. Demeulemeester and Herroelen  200676 demonstrated that generating the minimum forbidden sets entails 
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0 10 20

p = 4 µ s

0 10 20
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0.0

0.5

1.0
p = 12 µ s

0 10 20
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Figure 8.  Annealing schedules with pauses of different lengths (2,4,8,12,16, and 18µs ) for a fixed annealing 
time of 20µs . These pauses correspond then to a 10%, 20%, 40%, 60%, 80%, and 90% pause of the annealing 
time.
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a worst-case complexity of O(2n) . Consequently, it logically demands more qubits compared to PRI69. This is 
particularly the case when instance size increases, since the size of the forbidden sets F  increases accordingly.

In the ART03 resource flow formulation, instead of using forbidden sets F  , integer variables φk
ij (where 

i, j ∈ A2 and k ∈ R ) are employed, each requiring ⌊log2 φk
ij⌋ + 1 binary qubits for transformation. These variables 

take part of multiple inequalities for maintaining resource constraints, leading to the need for additional slack 
integer variables, which also require binary transformation. Similarly, event-based formulations KON11 and 
ART13 utilize integer variables te to represent event start times, with KON11 also incorporating extra integers 
bek for resource consumption. These variables, also used in several constraints, require further slack variables 
for binary conversion.

Analysis of time‑index formulations
Taking the same RCPSP instances as before, Table C3 presents the outcome resulting from the conversion of 
eight distinct RCPSP time-index MILP formulations into QUBO.

The number of qubits per formulation is represented by Fig. 10, which shows the efficiency of the PRI69 
formulation in comparison to other time-index formulations. This outcome is unsurprising given the inherent 
simplicity of PRI69 that is characterized by fewer variables, a diminished count of inequalities, and consequently, 
a reduced number of slack variables. The next favorable option is the MIN98 formulation; however, this choice 
entails the prerequisite knowledge of feasible sets I  . Similar to TAM93, the determination of these sets I  entails 
a worst-case complexity of O(2n).

For the other formulations, the various strategies aimed at optimizing solutions for a classical computer 
prove to be costly in terms of the number of qubits required. We can highlight a few of them here: the CHR87 
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Figure 9.  Maximum number of qubits required by the different families of the RCPSP MILP formulations. H 
refers to disjunctive instances that have high OS (i.e., OS = 0.9), while L refers to cumulative instances that have 
low OS (i.e., OS = 0.1).
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Figure 10.  Maximum number of qubits required by different time-index MILP formulations for the RCPSP. H 
refers to disjunctive instances that have high OS (i.e., OS = 0.9) and L refers to cumulative instances that have 
low OS (i.e., OS = 0.1).
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formulation modifies the PRI69 formulation by replacing its precedence constraint with additional inequalities; 
SOU97 introduces “step” variables to signal the start of an activity, while KLE98 considers a “step” formulation 
based on the MILP of a preemptive  RCPSP56; The KLE00_1 and KLE00_2 formulations incorporate “on/off ” 
variables; Lastly, BIA13 integrates continuous binary variables indicating the percentage of activity completion, 
while MIN98, bearing similarities to TAM93, requires prior knowledge of “feasible sets” I .

RCPSP QUBO
Pritsker et al.51 proposed PRI69 one of the first formulations for the RCPSP. Although it may initially seem 
counterintuitive, we have chosen this formulation as the basis for constructing our QUBO based on the analysis 
in the previous section. We use the notations given in Table 2 to introduce the parameters.

A single type of binary decision variable is considered, denoted as xit , with i ∈ A ∪ {0, n+ 1} and t ∈ H . 
This variable is indexed by both the activities and the associated time. Each element xit , ∀i ∈ A ∪ {0, n+ 1} and 
∀t ∈ H , takes a {0; 1} value such that:

The initial objective function  of51 minimizes the starting time of the dummy-end activity. This function is noted 
f(x) and its expression is given by (6). This is the basis of our QUBO, which will then be completed with penalties 
corresponding to the relaxations of the constraints.

Moreover, we also consider the work  of11,12 on the JSSP, especially for the precedence constraints and the one-
start constraint reformulation. For the latter, we force each activity to start exactly once with the following set 
of constraints (7).

We relax these constraints for all activities and turn them into one penalty P1 denoted by the expression (8). 
To ensure that the search for an optimal solution penalizes any infeasible solution, the expression is squared so 
that satisfying the constraint gives no penalty to the QUBO (i.e., remains 0), and that violating the constraint 
increases the objective value (which we try to minimize).

We can model the precedence constraints of two consecutive activities using their inequalities (9).

The reformulation of all precedence constraints into a single penalty, denoted as P2 , results in (10). Here, the 
need to square the decision variables does not arise since any quadratic expression involving two binary vari-
ables never yields a negative value. It is easy to understand that the only scenario where such a constraint is not 
satisfied occurs when two consecutive activities erroneously start at the same time.

xit =

{

1 if activity i starts at period t,
0 otherwise.

(6)f (x) =
∑

t

tx(n+1)t .

(7)
∑

t

xit = 1, ∀ i ∈ A.

(8)P1(x) =

n+1
∑

i=0

(

∑

t

xit − 1

)2

.

(9)
∑

t∈H

txjt ≤
∑

t∈H

txit + pi ∀ (i, j) ∈ E .

Table 2.  RCPSP parameters used in the PRI69 time-index formulation.

Notation Definition

n Number of activities (excluding the two dummy activities indexed by 0 and n+ 1).

T Maximum number of time periods.

A Set of activities.

H H = 0, 1, ...,T is the scheduling horizon.

E
Set of edges representing a precedence relationship between two activities. For instance, if i and j are two activities of A , and if 
activity i must be finished to start activity j, (i, j) ∈ E.

R Set of resources.

pi Processing time of the activity i ∈ A.

Bk Capacity of the resource k, k ∈ R.

bik Activity i consumption of the resource k ∈ R and its capacity Bk.
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The JSSP has machine-sharing constraints which can also be modeled by simple quadratic expressions, thus giv-
ing a penalty similar to P2. The RCPSP has another difficulty: resource constraints. The inequalities presented 
in (11) express these constraints, as modeled  in51.

Since we need a penalty for relaxing the resource constraints, we add slack variables in order to reach an equality 
for each inequality of (11). Slack variables are noted ztk , t ∈ H, k ∈ R , as a non-negative integer for reformulating 
resource constraints (11) with the quadratic penalties (12).

Since this reformulation aims to create a QUBO, the slack variables stk must correspond to binary variables. Here, 
we can consider the minimum value of ztk as zero and the maximum value as Bk . The related binary expression 
is given by equation (13), where y is a binary vector (each yi takes value in {0,1}) and where the integer function 
f (α) gives the required maximum power of 2 with α as the target integer.

We note that �1 , �2 , and �3 multipliers balance the penalties P1, P2, P3, respectively. The QUBO of the RCPSP 
can be formulated using the objective function fQUBO(x) with the quadratic constraints (8), (10), and (12), such 
that fQUBO(x) = f (x)+ �1P1(x)+ �2P2(x)+ �3P3(x) , as presented in equation (14).

Experimental results
Figure 11 illustrates the TTT evolution for a range of optimization methods applied to a specific cumulative 
instance involving six non-dummy activities and two resources. Accompanying this, Fig. 12 presents the network 
diagram relevant to this instance. The figures are organized into a tripartite panel, demonstrating the progres-
sion of the optimization process across different energy quantiles. This progression is depicted from left to right, 
indicating a transition from higher to lower energy levels.

It is noteworthy that QA and RQA exhibit discernible patterns, contrasting with the Random Sampling 
(RS) behavior observed in the evolution curve of RS. This observation suggests that QA and RQA are not mere 
random samplers.

For the specific instance presented in Fig. 11, RQA demonstrates exceptional performance and outperforms 
all other optimization methods, including the widely used commercial solver GUROBI. This superior perfor-
mance of RQA is particularly noticeable in the third panel of Fig. 11, where, the distinctive red line marked with 
“ △ ” symbols, representing RQA, reaches the ground state energy faster than any other method. Furthermore, 
Fig. 13 illustrates the optimal schedule derived using RQA. This schedule results in an optimal project make 
span of three days.

Despite the impressive performance of QA and RQA for the instance depicted in Fig. 11, it is crucial to 
remember that both QA and RQA are heuristic methods and consequently do not guarantee the finding of ground 
states or global optimal solutions. This limitation is evident in Fig. 14, which showcases the relative deviation 
(

Emin−E0
E0

)

 between the minimum energy solution obtained by QA and RQA (i.e., Emin ) and the ground state 
energy (i.e., E0 ) obtained by Gurobi. A value of 

(

Emin−E0
E0

)

= 0 in this metric indicates a successful sampling of 
the ground state. However, as illustrated in Fig. 7, both QA and RQA struggled to find the ground state energy 
solutions. Additional data in Figures H11 and H12 in Appendix H demonstrate the time-to-solution (TTS) in 
seconds for QA and RQA respectively.

(10)
P2(x) =

∑

(i,j)∈E

∑

t∈H

∑

t ′ ∈ H

t ′\t + pi > t ′

xitxjt′ .

(11)
n
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bik

t
∑

τ=t−pi+1
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Table 3 presents succinct results featuring the mean TTT values for solutions at different energy quantiles 
(0.9, 0.99, and 0.999). To provide further insight, Fig. 15 visually captures the distinctive mean TTT patterns 
and highlights the performance variations among the evaluated optimization methods for all instance types. 
Figure D2, D3, and D4 from Appendix D offer further insight by illustrating the individual TTT performance 
for the different instance types evaluated in this work (cumulative, medium OS, and disjunctive).

The results presented in Table 3 and Fig. D4, D2, and D3 reveal interesting dynamics. It is evident that QA and 
RQA face challenges in maintaining superiority, especially when tasked with finding ground states in instances of 
larger sizes. Despite this, in mere fractions of a second, both QA and, notably, RQA demonstrate their capability 
to provide high-quality solutions approaching the proximity of ground states.

Overall, for the high-energy quantiles, GUROBI exhibits consistent superiority over SA, QA, RQA, and other 
free solvers. However, this trend does not extend to certain freely available solvers, such as GLPK and CBC. 
Notably, in scenarios involving lower energy quantiles, both QA and RQA demonstrate significant advantages 
over these free solvers. This is particularly evident in the left ( q = 0.9 ) and middle ( q = 0.99 ) panels of Fig. 15, 
where QA and RQA outperform their counterparts in reaching lower energy states more efficiently.

Contrary to the findings reported by Carugno et al.12 in the context of the JSSP, our results indicate that 
SA surpasses both QA and RQA in terms of performance across most instance sizes and energy quantiles. In 
agreement with their observations, however, RQA does tend to show superior performance compared to QA, 
particularly in lower energy quantiles.

Adapting the Q-score methodology for QA, as proposed by Van der Schoot et al.67, we computed the β(n) 
values for various instance sizes and types examined in our study. Analysis of Fig. 16 reveals that the β(n) values 
for both QA and RQA consistently exceed the critical threshold of 0.2. However, is important to remind the 
reader that this threshold was empirically established based on the solution to instances of the the Max-Cut 
problem using QAOA. Therefore, its validity is based solely on these empirical findings and is without additional 
theoretical support.
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Figure 11.  Evolution of TTT in seconds for a cumulative instance (OS = 0.1) of six non-dummy activities and 
two resources. The three panels show the evolution for different energy ranges, where energy decreases from left 
to right. The right-most panel shows the energy range for the ground state of this instance. From the same panel, 
it can be seen that RQA is able to find the ground state energy equivalent to 1925 with a TTT of 0.2 seconds.
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We, therefore, conclude that the estimated maximum instance size of the RCPSP that can be solved using a 
D-Wave quantum annealer peaks at seven non-dummy activities. Although the β(n) values substantially exceed 
the critical threshold, we observe a rapid decline in solution quality beyond this activity count. This deterioration 
is evident when examining the mean “chain-break” percentage reported by the D-Wave system. For instances 
with eight activities or more, the average chain-break percentage escalates to approximately 74%, indicating a 
significant breakdown among the logical qubits that were utilized to map the original QUBO graph onto the 
QPU topology. With such a high percentage of chain breaks, the reliability of the annealer in solving the intended 
optimization problem becomes questionable, despite the higher β(n) values observed.

Anneal time and pausing effects
In the preceding section, our experimental approach was predicated on determining an optimal annealing 
time for QA. This determination was made empirically, analyzing the performance of QA across a spectrum of 
annealing times: 1, 5, 10, 20, 50, and 100µs.
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Figure 12.  Network diagram cumulative instance (OS = 0.1) with six non-dummy activities and two resources. 
The duration of each activity is displayed above each node, while the resource consumption is displayed below.
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Figure 13.  Optimal schedule obtained from RQA for the cumulative instance (OS = 0.1) with six non-dummy 
activities and two resources, described in Fig. 11. This optimal solution was obtained in a TTT of 0.2 seconds. 
The optimal schedule corresponds to a ground state energy of 1925. Please see table I4 in the appendix I for 
detailed values of the ground state energies for each instance.
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The performance evaluation of QA for each annealing time was determined based on a relative energy dif-
ference metric. This metric juxtaposes the minimum energy achieved through QA against the ground state energy 
for the given instances as 

(

Emin−E0
E0

)

 . Our analysis spanned instance with 3, 4, 5, 6, 7, and 8 non-dummy activities 
and all instance types (Cumulative, Medium OS, and Disjunctive). We collected 1000 samples for each 
configuration.

Insights into the mean behavior of QA across these different annealing times are presented in Fig. 17. This line 
graph illustrates the relationship between the instance size (x-axis) and the relative energy differences (y-axis), 
offering a visual representation of the performance variations across instance sizes.

Complementing this analysis, Fig. 18 presents a holistic view of the mean behavior across all instance sizes and 
types. Here, the annealing times are mapped along the x-axis, and the corresponding relative energy differences 
are charted on the y-axis. In accordance  with71, this graph reveals that an annealing time of approximately 20µs 
emerges as optimal. Beyond this threshold, there is a discernible decline in QA performance.

Given these findings, we chose to conduct our experiments with an annealing time fixed at 20µs . This deci-
sion was guided by empirical evidence, suggesting that this duration strikes an effective balance in optimizing 
QA performance. Figures E5, E6, and E7 illustrate the effect of annealing times for Cumulative, Medium OS, 
and Disjunctive instance types.

In continuation of our exploration into the multiple parameters involved in QA, we extended the investiga-
tion to assess the impact of annealing pauses on QA performance. This analysis aligns with the relative energy 
difference framework established earlier, comparing the minimum energy achieved via QA to the ground state 
energy for a particular instance.

Our focus centered on a fixed annealing time of 20µs to examine the effects of pauses at intervals of 2, 4, 8, 
12, 16, and 18µs (refer to Fig. 8 for a visual representation of the annealing schedules after incorporating these 
pauses).

This investigation was inspired by the findings of Marshal et al.77, who report performance enhancements 
in QA with the inclusion of annealing pauses. Our results, illustrated in Fig. 19, confirm this observation. Fig-
ure 19 presents a heat map that encapsulates the QA performance across various instance sizes (3, 4, 5, 6, 7, and 
8 non-dummy activities) and pause durations (shown on the y-axis as the percentage of pause relative to the 
total annealing time). Each cell in this heat map represents the average relative energy value derived from 1000 
samples across all instance types (Cumulative, Medium OS, and Disjunctive), providing a comprehensive view 
of the performance landscape.
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seen in table I4 from the Appendix I.
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Intriguingly, Fig. 20 highlights that annealing pauses constituting 20% to 40% of the overall schedule (equating 
to 4 µs and 8 µs in this context) yield the most favorable performance. Figure F8, F9, and F10 show the effect of 
annealing pauses for Cumulative, Medium OS, and Disjunctive instance types, respectively.

It is important to note, however, that the inherent nature of RQA always incorporates a pause in the anneal-
ing schedule. Consequently, the insights obtained from this analysis predominantly apply to conventional QA 
rather than RQA.

Discussion
In this work, we have conducted a comprehensive exploration into the practical implementation of the RCPSP 
using quantum annealing, specifically by leveraging D-Wave’s quantum-computing technology. Our investiga-
tion encompasses a range of aspects, from the basics of quantum annealing to advanced techniques like reverse 
quantum annealing.

To the best of our knowledge, we are the first to address the RCPSP using a quantum annealer, marking a 
significant contribution to the integration of quantum computing in the field of operations research. Our work 
underscores the importance of QUBO modeling for solving RCPSP instances on quantum annealing machines. 
We have conducted a thorough analysis of 12 well-known MILP formulations for RCPSP and converted them 
to a QUBO format. This includes identifying the most suitable formulation for quantum annealing, specifically 
the PRI69 formulation, and providing the corresponding QUBO model.

It is worth noting that the QUBO model (14) derived in “RCPSP QUBO” section can easily be adapted to 
other variants of the RCPSP, as in the case of the 1-preemptive resource-constrained project scheduling problem 
(1_PRCPSP). By adapting the formulation proposed by Ballestín et al.78, we obtain the QUBO f (x)1_PRCPSPQUBO  
(presented in Appendix G1). The problem does not suffer from the addition of new slack variables. The new 
constraints can be modeled as a quadratic product that must remain zero in order to be satisfied.

Other versions of the RCPSP can be based on the QUBO introduced in this study without the need to add 
many constraints. For example, if resources have periods of unavailability, or if their capacity is reduced ( Bk 
becomes Bkt ), it is sufficient to treat these periods as distinct activities with fixed variable values, as shown by 
 Hartmann79. This approach can also be applied when the use of resources needs to be stopped without a pre-
determined period (e.g., for maintenance operations). In such cases, these periods of unavailability should be 
considered as activities without setting fixed variables. In these scenarios, it is important to establish a prec-
edence constraint for each virtual activity to ensure that the identification of the unavailability period is properly 
included in the optimization process. However, this modification will require the inclusion of additional slack 
variables associated with the resource constraint.
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In this work, we solve three distinct categories of problem instances, as defined by the protocol of Baptiste and 
Le Pape, using RCPSP QUBO formulation (14) on a quantum annealer. Strategies such as developing a reverse 
quantum annealing schedule are employed. The results are then compared with those obtained from a classical 
solver. For this comparison, we conduct a detailed exploration of multiple metrics available for evaluating the 
performance of quantum annealing. Ultimately, we adopt the TTT and the Q-score for our evaluation. Addition-
ally, we determine the maximum instance size that can still be solved with a machine equipped with 5000 qubits. 
Another key discovery from our research underscores the potential benefits of quantum annealing, especially 
in scenarios with constrained time limits, such as those encountered in online operations research problems. 
In addition to our primary research focus, we conduct an extensive and meticulous analysis to understand the 
impact of annealing times and the role of pauses within annealing schedules on the performance of QA.

While our research offers valuable insights, it’s important to recognize its limitations. These include using 
problem instances of limited size, while excluding other promising quantum-computing techniques like  QAOA73 

Table 3.  TTT (s) mean results for disjunctive, cumulative, and medium OS instances.

Size Method q = 0.9 q = 0.95 q = 0.99 q = 0.999 q = 0.9999

3 CBC 0.25 0.25 1.67 2 2

3 GLPK 1 1 1 1 1

3 GUROBI 0.07 0.07 0.27 0.3 0.3

3 QA 0.04 0.09 0.19 0.2 0.2

3 RQA 0.04 0.08 0.19 0.2 0.2

3 RS 0.02 57600 86400 86400 86400

3 SA 0.01 0.01 0.34 48.60 59.66

4 CBC 0.25 0.25 3.5 4.67 4.67

4 GLPK 1 1 1 4 28801.33

4 GUROBI 0.07 0.07 0.12 0.27 0.5

4 QA 0.05 0.12 0.19 0.20 28800.13

4 RQA 0.04 0.11 0.20 57600.07 86400

4 RS 57600.01 86400 86400 86400 86400

4 SA 0.02 0.02 0.06 64.20 93.92

5 CBC 0.42 0.67 40 40 45

5 GLPK 1 1 1.33 28802 57601

5 GUROBI 0.1 0.1 0.1 0.47 0.75

5 QA 0.08 0.16 0.20 28800.13 86400

5 RQA 0.08 0.16 0.20 57600.07 86400

5 RS 86400 86400 86400 86400 86400

5 SA 0.02 0.02 2.39 44.41 136.76

6 CBC 5.5 28803.17 57603 57603 57615

6 GLPK 1 1 1 57601 57610

6 GUROBI 0.12 0.12 0.12 0.38 2.17

6 QA 0.13 0.17 0.20 86400 86400

6 RQA 0.09 0.15 0.20 57600.07 86400

6 RS 86400 86400 86400 86400 86400

6 SA 0.04 0.04 0.64 71.46 159.07

7 CBC 10.75 15.08 15.08 28810.08 28810.08

7 GLPK 2 2 2.33 28820 86400

7 GUROBI 0.17 0.17 0.17 2.5 16.17

7 QA 0.13 0.18 0.20 57600.07 86400

7 RQA 0.12 0.17 0.20 57600.07 57600.07

7 RS 86400 86400 86400 86400 86400

7 SA 0.05 0.05 0.05 32.65 108.17

8 CBC 0.42 0.42 5.17 10.17 28800.17

8 GLPK 2.67 2.67 6 86400 86400

8 GUROBI 0.22 0.22 0.47 3.08 5

8 QA 0.14 0.18 0.20 86400 86400

8 RQA 0.15 0.18 0.20 86400 86400

8 RS 86400 86400 86400 86400 86400

8 SA 0.07 0.07 0.07 121.81 441.25
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due to hardware constraints, as well as the dependence on the “minor-miner” heuristic for the embedding 
procedure.

In alignment with the work of Venturelli et al.11 and Carugno et al12 on the JSSP, we recognize the potential 
for significant reduction in time horizons for the RCPSP. This reduction can be achieved by pre-establishing 
upper bounds, derived from heuristics that can be calculated in polynomial  time80. Such bounds can consider-
ably reduce the number of variables required by time-index formulations like “PRI69”. However, in this study, 
our focus was centered on examining the intrinsic performance of QA and RQA without incorporating these 
heuristic techniques. We also did not explore the use of broken-chain correction techniques like the ones sug-
gested by Marshal et al.32.
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Figure 16.  β(n) for all instances with 3, 4, 5, 6, 7, and 8 non-dummy activities for all instance types 
(Cumulative, Medium OS, and Disjunctive).
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Figure 18.  The figure illustrates the impact of annealing times on QA performance, depicted across various 
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 on the 
y-axis. This relationship is represented by a green line, accompanied by its standard deviation delineated as a 
light green contour. The x-axis quantifies the annealing time. A value of 0 on the y-axis indicates an energy equal 
to the ground state energy. Please see table I4 in the appendix I for detailed values of the ground state energies 
for each instance.
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energies for each instance.
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These aspects warrant consideration in future research. Additionally, investigating alternative quantum-
computing technologies, such as the neutral atoms technology proposed by  Pasqal81, is promising and deserves 
further exploration.

Despite the acknowledged limitations, this work serves as a pioneering effort in applying quantum annealing 
to the RCPSP. We hope that our findings and methodologies will act as a catalyst for future benchmarks, fostering 
advancements towards practical applications of quantum computers in operations research.

Data availability
The input data and instances to replicate our results are made available in the following online directory: https:// 
github. com/ ceche 1212/ QA_ RCPSP.

Code availability
The code to replicate our results are made available in the following online directory: https:// github. com/ ceche 
1212/ QA_ RCPSP.
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