
HAL Id: hal-04659083
https://hal.science/hal-04659083

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Let Them Drop: Scalable and Efficient Federated
Learning Solutions Agnostic to Stragglers

Riccardo Taiello, Melek Önen, Clémentine Gritti, Marco Lorenzi

To cite this version:
Riccardo Taiello, Melek Önen, Clémentine Gritti, Marco Lorenzi. Let Them Drop: Scalable and
Efficient Federated Learning Solutions Agnostic to Stragglers. ARES 2024 - International Conference
on Availability, Reliability and Security, ACM, Jul 2024, Vienna, Austria. �hal-04659083�

https://hal.science/hal-04659083
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Let Them Drop: Scalable and Efficient Federated Learning
Solutions Agnostic to Stragglers

Riccardo Taiello
Inria / EURECOM / Université Côte d’Azur

Sophia Antipolis, France
riccardo.taiello@inria.fr

Melek Önen
EURECOM

Sophia Antipolis, France
melek.onen@eurecom.fr

Clémentine Gritti
INSA Lyon / Inria

Villeurbanne, France
clementine.gritti@insa-lyon.fr

Marco Lorenzi
Inria / Université Côte d’Azur

Sophia Antipolis, France
marco.lorenzi@inria.fr

ABSTRACT
Secure Aggregation (SA) stands as a crucial component in modern
Federated Learning (FL) systems, facilitating collaborative training
of a global machine learning model while protecting the privacy
of individual clients’ local datasets. Many existing SA protocols
described in the FL literature operate synchronously, leading to no-
table runtime slowdowns due to the presence of stragglers (i.e. late-
arriving clients). To address this challenge, one common approach
is to consider stragglers as client failures and use SA solutions that
are robust against dropouts. While this approach indeed seems to
work, it unfortunately affects the performance of the protocol as
its cost strongly depends on the dropout ratio and this ratio has
increased significantly when taking stragglers into account. An-
other approach explored in the literature to address stragglers is to
introduce asynchronicity into the FL system. Very few SA solutions
exist in this setting and currently suffer from high overhead. In this
paper, similar to related work, we propose to handle stragglers as
client failures but design SA solutions that do not depend on the
dropout ratio so that an unavoidable increase on this metric does
not affect the performance of the solution. We first introduce Eagle,
a synchronous SA scheme designed not to depend on the client
failures but on the online users’ inputs only. This approach offers
better computation and communication costs compared to existing
solutions under realistic settings where the number of stragglers
is high. We then propose Owl, the first SA solution that is suit-
able for the asynchronous setting and once again considers online
clients’ contributions only. We implement both solutions and show
that: (i) in a synchronous FL with realistic dropout rates (taking
potential stragglers into account), Eagle outperforms the best SA
solution, namely Flamingo, by ×4; (ii) In the asynchronous setting,
Owl exhibits the best performance compared to the state-of-the-art
solution LightSecAgg .

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ARES 2024, July 30-August 2, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1718-5/24/07
https://doi.org/10.1145/3664476.3664488

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols; Secu-
rity protocols.

KEYWORDS
Secure Aggregation, Synchronous and Asynchronous Federated
Learning

ACM Reference Format:
Riccardo Taiello, Melek Önen, Clémentine Gritti, and Marco Lorenzi. 2024.
Let Them Drop: Scalable and Efficient Federated Learning Solutions Ag-
nostic to Stragglers. In The 19th International Conference on Availability,
Reliability and Security (ARES 2024), July 30-August 2, 2024, Vienna, Austria.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3664476.3664488

1 INTRODUCTION
Federated Learning (FL) [18] is a popular framework enabling mul-
tiple clients to collaborate in training a common machine learning
model without sharing their local data. In centralized FL, the pri-
mary server initializes the parameters of a global model and sends
them to the clients for optimization with respect to the local data.
The locally trained parameters are transmitted to the server and
aggregated (e.g. through weighted averaging) to produce a new
global model for the next FL round.

Recent studies [19, 28] show that even sharing local model pa-
rameters may expose some information about the clients’ training
data, through various attacks such as membership inference or
model inversion. A popular solution to tackle such attacks is Secure
Aggregation (SA), which ensures that the global model’s parame-
ters are computed through the aggregation of the individual ones
without disclosing them individually. Informally, each client first
protects its local parameters and sends them to the server, and
the server computes the aggregated parameters and shares them
back to all the clients. The underlying privacy protection technique
usually consists of either secure masking, additively homomorphic
encryption, or differential privacy mechanisms [17].

As pointed out in [17], initial SA solutions were strongly relying
on the online presence of all FL clients and even a single client
failure, referred to as client dropout, was resulting in the complete
failure of the aggregation protocol. To cope with this problem of
robustness, many works [1, 3, 9, 15, 16, 29] propose to initially se-
cret share clients’ keying material with the others so that whenever

https://orcid.org/0000-0002-9890-9639
https://orcid.org/0000-0003-0269-9495
https://orcid.org/0000-0002-0835-8678
https://orcid.org/0000-0003-0521-2881
https://doi.org/10.1145/3664476.3664488
https://doi.org/10.1145/3664476.3664488

ARES 2024, July 30-August 2, 2024, Vienna, Austria Riccardo Taiello, Melek Önen, Clémentine Gritti, and Marco Lorenzi

Client Comp. Client Comm. Online Rounds FL Type

SecAgg [3] 𝑂 (𝑛2 + 𝑛𝑑) 𝑂 (𝑛 + 𝑑) 4 SyncFL
FTSA [16] 𝑂 (𝑛2 + 𝑛 log(𝑛)𝑑) 𝑂 (𝑛 + 𝑑) 3 SyncFL
Eagle 𝑶 (𝒏 log(𝒏) + 𝒅) 𝑂 (𝑛 + 𝑑) 3 SyncFL

LightSecAgg [30] 𝑂 (𝑛2 𝑑
(1−𝛿)𝑛−𝑡 + 𝑑) 𝑂 (𝑛 𝑑

(1−𝛿)𝑛−𝑡 + 𝑑) 3 AsyncFL
Owl 𝑶 (𝒏2 + 𝒅) 𝑶 (𝒏 + 𝒅) 3 AsyncFL

Table 1: Complexity analysis for one round (𝑛: number of clients; 𝛿 : fraction of dropped clients; 𝑡 : threshold value; 𝑑: input
dimension).

a client failure occurs, the remaining online clients can collabo-
rate to reconstruct the dropped client’s material and complete the
aggregation operation correctly.

While these solutions have indeed been proven robust against
client dropouts, their security is only valid when clients are syn-
chronized and share their parameters on an FL-round basis. Unfor-
tunately, a synchronous FL (SyncFL) setting encounters challenges
in heterogeneous environments whereby slow, late-arriving clients,
known as stragglers [7, 20, 32], can be detrimental to the overall
system performance.

Very few solutions under SyncFL settings, namely [2, 33], address
this challenge and employ a technique known as over-selection. In
this approach, a larger pool of clients is initially engaged so that po-
tential stragglers are inherently avoided. If this approach is adopted
in the context of SA in SyncFL, then the dropout rate needs to be set
as the sum of the potential ratio of stragglers and the actual client
failures. In practical FL deployments, a dropout rate, including the
ratio of stragglers, is expected to be around 30% [2, 20]. Unfortu-
nately, this non-negligible ratio will result in a significant increase
in SA parameters and consequently in a significant overhead both
at the server [1, 3] and at the client [15, 16].

Asynchronous FL (AsyncFL) [7, 20, 32]modifies SyncFL by taking
into account clients’ model updates as soon as they arrive to the
server. This allows to leverage the impact of stragglers, that do not
block the system. Nevertheless, as previously mentioned in [30],
existing SA solutions become insecure in such AsyncFL settings.

Contributions. In this paper1, we cope with the problem of strag-
glers and propose two new SA protocols that address the aforemen-
tioned challenges inherent to realistic FL systems. More specifically:
- In the context of SyncFL, we significantly reduce the computation
and communication overheads of FL clients and server through
a new protocol named Eagle. More specifically, Eagle ignores
dropped clients (including stragglers) and hence supports realistic
dropout rates (from 10% to 30%). The performance improvement
comes from a variant of the Threshold Joye-Libert scheme (TJL)
proposed in [16].
- We develop a second protocol, namedOwl, tailored to the AsyncFL
setting. Similar to Eagle,Owl does not need to be aware of dropped
clients and stragglers to complete the aggregation. We show that
Owl is more efficient than the unique existing work [30]. Moreover,

1The full version is available here.

Owl is particularly suitable for deep learning models with large
numbers of parameters.
- We conduct an extensive performance study and compare these
two newly proposed schemes with relevant state-of-the-art solu-
tions. Table 1 shows the asymptotic improvements of our two solu-
tions compared to existing SA schemes. Especially, Eagle theoreti-
cally outperforms SecAgg and FTSA, whereas Owl asymptotically
and experimentally shows better performance than LightSecAgg .

Road Map. The paper is organized as follows. Section 2 provides
an overview of the so-called stragglers in synchronous and asyn-
chronous FL settings, along with SA definition and threat model.
Section 3 describes the required cryptographic primitives, including
our new version of the TJL scheme. Section 4 and 5 describe our
solutions, namely Eagle and Owl. Section 6 presents the works
related to ours. Section 7 provides the complexity analysis of both
our solutions and related works. Section 8 reports the experimental
results of Eagle and Owl. Section 9 concludes our paper.

Notations. We provide the notations used throughout our paper in
Table 2.

2 BACKGROUND
Synchronous Federated Learning. As introduced by McMahan et
al. [18], FL consists of a distributed machine learning paradigm
where a setU of clients (|U| = 𝑛𝑡𝑜𝑡) collaboratively trains a global
model ®𝑥 ∈ R𝑑 under the guidance of a server. One of the first and
popular methods used to train a FL model is FedAvg [18]. Within
FedAvg, at each FL round 𝜏 , the server defines a subsetU (𝜏) ⊆ U
of clients (|U (𝜏) | = 𝑛 ≤ 𝑛𝑡𝑜𝑡) through client selection [6, 7, 18].
Each client 𝑢 ∈ U (𝜏) trains the model ®𝑥𝑢,𝜏 on its private local
data D𝑢 , for example, through Stochastic Gradient Descent (SGD)
[26]. Upon completion of the local training, the client forwards
its updated model ®𝑥𝑢,𝜏+1 to the server. When the server receives
all the updated models from all clients in U (𝜏) , it proceeds to
the aggregation step by computing the average of these models:
®𝑥𝜏+1 ← 1

𝑛

∑
𝑢∈U (𝜏) ®𝑥𝑢,𝜏+1. This iterative process proceeds until

the global model ®𝑥 reaches some desired level of accuracy. This
approach to FL works under the Synchronous FL (SyncFL) setting
whereby FL clients are synchronized and participate on a round-
by-round basis. Usually, 𝑛𝑡𝑜𝑡 ∈ [106, 1010] and 𝑛 ∈ [50, 5000] [10].

Asynchronous Federated Learning. Asynchronous FL (AsyncFL) al-
lows clients not to synchronise when training their local models.

https://eprint.iacr.org/2024/942

Let Them Drop: Scalable and Efficient Federated Learning Solutions Agnostic to Stragglers ARES 2024, July 30-August 2, 2024, Vienna, Austria

Symbol Description
𝑛𝑡𝑜𝑡 total number of clients
𝑛 number of selected clients/ buffer size
𝛿 fraction of dropped clients
𝑡 number of honest online clients
𝑑 size of input
Δ value set as equal to 𝑛!
U set of clients
U (𝜏) set of selected clients
U𝑜𝑛 set of online clients
U𝑠ℎ𝑎𝑟𝑒𝑠 set of honest online clients

𝑥𝑢 client’s (scalar) input
®𝑥𝑢 client’s (vector) input
𝑦𝑢 protected client’s (scalar) input
®𝑦𝑢 protected client’s (vector) input
𝑦′ protected (scalar) zero value
®𝑦′ protected (vector) of zero values
𝑥 aggregate (scalar)
®𝑥 aggregate (vector)
𝜏 current FL round
𝜏0 value set as equal to 0
𝜏𝑢 current FL round of client 𝑢
[𝑠] share produced by secret sharing scheme
𝑁 modulus
𝑅 plaintext size
𝜆 security parameter
𝑅←− chosen uniformly at random

Table 2: Notations.

FedBuff [20] is introduced as a buffered asynchronous framework
whereby the server stores local models received from clients in a
buffer and updates the global model whenever this buffer is full.
Each client 𝑢 defines its local 𝜏𝑢 and each local update is denoted as
®𝑥𝑢,𝜏𝑢 . Note that the training round is specific to each client: namely,
for another client 𝑣 ≠ 𝑢, 𝜏𝑣 ≠ 𝜏𝑢 . To enhance readability, we denote
𝑛 as the buffer size in the context of AsyncFL.

Stragglers. In a SyncFL setting, all participating clients first update
their local model, and then the server obtains a new global model by
aggregation. This, in practice, means that all clients must synchro-
nize with respect to the same FL round 𝜏 . As a result, potentially
wasted resources and important network delays might be caused
by stragglers who require longer training times. Over-selection (typ-
ically by 30%) is a way to manage stragglers [2]. For example, if
𝑛 = 1000 selected clients are needed to produce an accurate global
model, 𝑛′ = 1300 clients should be over-selected. The FL round 𝜏

ends when the fastest 1000 clients submit their local model updates
while the slowest 300 clients are treated as dropped. In a buffered
AsyncFL setting, the global model is simply updated as soon as the
buffer is full with new local models, without specifically waiting
for the stragglers [7, 32].

Secure Aggregation. Although FL clients keep their own datasets
D𝑢 private during training, adversaries who have access to the
clients’ updated model parameters can infer information about
D𝑢 [19, 28]. Hence, the local models should remain confidential
even against the FL server. As already shown in [1, 3, 9, 16, 29], a
potential solution for this problem is Secure Aggregation (SA). SA
typically involves multiple clients and one aggregator. Each client

possesses some private input and the aggregator calculates the
sum of these inputs. The aggregator learns nothing more than the
aggregated sum, thereby preserving the privacy of individual inputs.
SA has easily found applications in FL since clients’ local model
parameters are protected and the only information the FL server
(i.e. the aggregator) has access to is the global model parameters.
Note that all FL protocols implementing SA only work with the
assumption of SyncFL. So et al. [30] show that existing SA-based FL
solutions do not work in an AsyncFL setting since clients’ individual
inputs can be leaked if there is no synchronisation.

SA Threat Model and Security. Similar to the related work [3, 15, 16,
30], we consider two potential adversaries:
• The aggregator (i.e. the FL server): (i) in the honest-but-curious
model, the aggregator does not modify any inputs to the proto-
col but still tries to learn private information about clients’ local
models, (ii) in the active model, the aggregator may manipulate the
exchanged data in order to learn the clients’ individual inputs.
• The FL client: There are 𝑡 honest clients and up to 𝑛−𝑡 clients may
collude with each other and/or with the aggregator. We assume
that colluding clients only share their private information with
each other and do not consider the case whereby they also try to
manipulate the aggregated outcome.

3 BUILDING BLOCKS
3.1 Joye-Libert Secure Aggregation Scheme
The Joye-Libert scheme (JL) [8], involving a Trusted Dealer (TD), 𝑛
clients and one aggregator, is defined as follows:
• (𝑠𝑘0, {𝑠𝑘𝑢 }𝑢∈[1,𝑛] , 𝑁 , 𝐻) ← JL.Setup(𝜆): Given security pa-

rameter 𝜆, this algorithm generates two large and equal-size prime
numbers 𝑝 and 𝑞 and sets 𝑁 = 𝑝𝑞. It randomly generates 𝑛 secret
keys 𝑠𝑘𝑢

𝑅←− Z𝑁 2 and sets the aggregator key 𝑠𝑘0 = −∑𝑛𝑢=1 𝑠𝑘𝑢 .
Then, it defines a cryptographic hash function 𝐻 : Z → Z∗

𝑁 2 . It
outputs the 𝑛 + 1 keys and the public parameters (𝑁,𝐻).
• 𝑦𝑢,𝜏 ← JL.Protect(𝑝𝑝, 𝑠𝑘𝑢 , 𝜏, 𝑥𝑢,𝜏): This algorithm encrypts

the private input 𝑥𝑢,𝜏 ∈ Z𝑁 for time period 𝜏 using secret key
𝑠𝑘𝑢 ∈ Z𝑁 2 . It outputs the cipher 𝑦𝑢,𝜏 = (1 + 𝑥𝑢,𝜏𝑁) · 𝐻 (𝜏)𝑠𝑘𝑢
mod 𝑁 2.
• 𝑥𝜏 ← JL.Agg(𝑝𝑝, 𝑠𝑘0, 𝜏, {𝑦𝑢,𝜏 }𝑢∈[1,𝑛]): This algorithm aggre-

gates the 𝑛 ciphers received at time period 𝜏 to obtain 𝑦𝜏 =
∏𝑛

1 𝑦𝑢,𝜏

and decrypts the result 𝑥𝜏 =
∑𝑛
1 𝑥𝑢,𝜏 =

𝐻 (𝜏)𝑠𝑘0 ·𝑦𝜏−1
𝑁

mod 𝑁 .
The JL scheme ensures Aggregator Obliviousnes under the Deci-

sion Composite Residuosity (DCR) assumption [22] in the random
oracle model and assuming that each client encrypts only one value
per time period [8].

3.2 Threshold Joye-Libert SA Scheme
In this section, we elaborate on a new variant of the Threshold JL
scheme (TJL) [16]. In the original TJL, clients assist the aggregator
in recovering the inputs of failed clients, which consist of the pro-
tected zero value encrypted under the failed client’s individual key.
This process allows for the computation of the final aggregate value.
The TJL proposed here is a slightly modified version that utilizes
the same primitive but instead of reconstructing the encrypted zero
value for dropped clients, it reconstructs the aggregated zero-value

ARES 2024, July 30-August 2, 2024, Vienna, Austria Riccardo Taiello, Melek Önen, Clémentine Gritti, and Marco Lorenzi

for online clients. This approach helps us remove the need for defin-
ing an aggregation key in advance. Instead, an on-the-fly, per-round
aggregation key is built based on the actual online clients at the
specific round.

TJL cannot directly use the standard Shamir Secret Sharing
scheme (SS) [27] because 𝑠𝑘𝑢 is defined in Z∗

𝜙 (𝑁 2) and 𝜙 (𝑁
2) is not

known to the clients (see Section 3.1 [16]). Hence, the solution uses
the Integer version of SS (ISS) [25], which is defined over integers
rather than in a field (see Section 3.2 [16]). Informally, ISS.Share
is run to split the secret key 𝑠𝑘𝑢 into 𝑛 shares while ISS.Recon is
called to recover the key given at least 𝑡 shares.

The TJL scheme consists of the following PPT algorithms:
• (𝑠𝑘0, {𝑠𝑘𝑢 }𝑢∈[1,𝑛] , 𝑁 , 𝐻) ← TJL.Setup(𝜆, 𝜎): Given a security

parameter 𝜆, this algorithm essentially calls the original JL.Setup(𝜆)
and outputs the aggregator key, one secret key per client, and the
public parameters. Additionally, it sets the security parameter of
the ISS scheme to 𝜎 .
• {(𝑣, [Δ𝑠𝑘𝑢]𝑣)}∀𝑣∈U ← TJL.SKShare(𝑠𝑘𝑢 , 𝑡,U): Upon input

of client 𝑢’s secret key 𝑠𝑘𝑢 , this algorithm calls ISS.Share where
the interval of the secret is Z𝑁 2 .
• 𝑦𝑢,𝜏 ← TJL.Protect(𝑝𝑝, 𝑠𝑘𝑢 , 𝜏, 𝑥𝑢,𝜏): This algorithm primarily

calls JL.Protect(𝑝𝑝, 𝑠𝑘𝑢 , 𝜏, 𝑥𝑢,𝜏) and outputs the ciphertext 𝑦𝑢,𝜏 .
• [𝑦′𝜏]𝑢 ← TJL.ShareProtect(𝑝𝑝, {[Δ𝑠𝑘𝑣]𝑢 }𝑣∈U𝑜𝑛

, 𝜏): This
algorithm protects a zero-value using client 𝑢’s shares of
all online clients secret keys (i.e. 𝑣 ∈ U𝑜𝑛). It calls
JL.Protect(𝑝𝑝,−∑𝑣∈U𝑜𝑛

[Δ𝑠𝑘𝑣]𝑢 , 𝜏, 0) and outputs [𝑦′𝜏]𝑢 =

𝐻 (𝜏)−
∑

𝑣∈U𝑜𝑛 [Δ𝑠𝑘𝑣]𝑢 mod 𝑁 2.
• 𝑦′𝜏 ← TJL.ShareCombine({(𝑢, [𝑦′𝜏]𝑢 , 𝑛)}𝑢∈U𝑠ℎ𝑎𝑟𝑒𝑠

,U𝑠ℎ𝑎𝑟𝑒𝑠 ,
𝑡): This algorithm combines 𝑡-out-of-𝑛 protected shares of the pro-
tected zero-value for time period 𝜏 and clients inU𝑠ℎ𝑎𝑟𝑒𝑠 ⊆ U𝑜𝑛
such that |U𝑠ℎ𝑎𝑟𝑒𝑠 | ≥ 𝑡 and Δ = 𝑛!. It executes the Lagrange in-
terpolation on the exponent to get 𝑦′𝜏 =

∏
𝑢∈U𝑠ℎ𝑎𝑟𝑒𝑠

([𝑦′𝜏]𝑢)𝜇𝑢 =

𝐻 (𝜏)−Δ2 ∑
𝑣∈U𝑜𝑛 𝑠𝑘𝑣 where the 𝜇𝑢 coefficients are defined in

ISS.Recon.
• 𝑥𝜏 ← TJL.Agg(𝑝𝑝, 𝑠𝑘0, 𝜏, {𝑦𝑢,𝜏 }𝑢∈U𝑜𝑛

, 𝑦′𝜏): Given the public
parameters 𝑝𝑝 , the aggregation key 𝑠𝑘0 (set to 0), the individual
ciphertexts of online clients (i.e. 𝑢 ∈ U𝑜𝑛), and the ciphertexts of
the zero-value corresponding to the clients U𝑜𝑛 , this algorithm
aggregates the ciphertexts for time period 𝜏 . It first multiplies the
inputs for all clients inU𝑜𝑛 , raises them to the power of Δ2, and
multiplies the result with the ciphertext of the zero-value to get
𝑦𝜏 = (∏

𝑢∈U𝑜𝑛

𝑦𝑢,𝜏)Δ
2 · 𝑦′𝜏 · 𝐻 (𝜏)𝑠𝑘0 mod 𝑁 2. To decrypt the final

result, the algorithm calculates 𝑥𝜏 =
𝑦𝜏−1
𝑁Δ2 mod 𝑁 .

The TJL scheme provides AO under the DCR assumption in the
random oracle model if the number of corrupted clients is strictly
less than 𝑡 [16].

4 EAGLE IN SYNCFL
We present Eagle, a fault-tolerant SA solution in the context of a
synchronous setting. The design principles are the following: (1)
The first aim is to not depend on dropped clients/stragglers anymore
and to consider online clients’ inputs only. We hence eliminate
the need for blinding masks as in existing SA solutions [1, 3] and
significantly reduce the communication cost at the client side. (2)

Parties: Server and selected clients inU (𝜏) , such that |U (𝜏) | = 𝑛

Public Parameters: Generate the public parameters
𝑝𝑝𝐾𝐴 ← KA.Param(𝜆), (⊥,⊥, 𝑁0, 𝐻0, 𝜎) ← TJL.Setup(𝜆) and
(⊥,⊥, 𝑁1, 𝐻1) ← JL.Setup(𝜆) s.t. 𝑁0 ≥ 2 · 𝑁1 + log2 (𝑛) and set
𝑝𝑝 = (𝑝𝑝𝐾𝐴, 𝑁0, 𝑁1, 𝐻0, 𝐻1, 𝜏0, 𝜎, 𝑡, 𝑛, 𝑑, 𝑅)
Prerequisites: Each client 𝑢 ∈ U generates a key pair
(𝑐𝑃𝐾𝑢 , 𝑐𝑆𝐾𝑢) ← KA.gen(𝑝𝑝𝐾𝐴) and registers 𝑐𝑃𝐾𝑢 to Server or to a
PKI
Setup - Key Setup:
Client 𝑢 ∈ U (𝜏) : // Generate TJL key and secret share

(1) ∀𝑣 ∈ U (𝜏) \ {𝑢}, 𝑐𝑢,𝑣 ← KA.agree(𝑝𝑝𝐾𝐴, 𝑐𝑆𝐾𝑢 , 𝑐𝑃𝐾𝑣). // Establish pairwise
channel keys with each client

(2) 𝑠𝑘𝑢
𝑅←− Z𝑁 2

0
. // Generate TJL secret key

(3) {(𝑣, [𝑠𝑘𝑢]𝑣)}𝑣∈U (𝜏) ← TJL.SKShare(𝑠𝑘𝑢 , 𝑡,U (𝜏)). // Generate 𝑡-out-of-𝑛
shares

(4) ∀𝑣 ∈ U (𝜏) \ {𝑢}, 𝜖𝑢,𝑣 ← AE.enc(𝑐𝑢,𝑣, 𝑢 | | 𝑣 | | [𝑠𝑘𝑢]𝑣). // Encrypt each share
with the corresponding public key

(5) Send {(𝑢, 𝑣, 𝜖𝑢,𝑣)}𝑣∈U (𝜏) to Server.
Server: // Collect encrypted shares of TJL keys and forward them to destined clients

(1) Collect {(𝑢, 𝑣, 𝜖𝑢,𝑣)}𝑣∈U (𝜏) .
(2) ∀𝑣 ∈ U (𝜏) \ {𝑢}, send {(𝑢, 𝑣, 𝜖𝑢,𝑣)}𝑢∈U (𝜏) .

Client 𝑢 ∈ U (𝜏) : // Decrypt the received shares
(1) ∀𝑣 ∈ U (𝜏) \ {𝑢}, [𝑠𝑘𝑣]𝑢 ← AE.dec(𝑐𝑢,𝑣, 𝑣 | | 𝑢 | | 𝜖𝑣,𝑢). // Decrypt each share

with the corresponding public key
Online - Protection (step 𝜏):
Client 𝑢 ∈ U (𝜏) : // Protect the private input using JL key, the per-round JL secret key

using TJL key, and send them to the server

(1) 𝑠𝑘𝑢,𝜏
𝑅←− Z𝑁 2

1
. // Generate the per-round JL secret key

(2) ®𝑦𝑢,𝜏 ← JL.Protect(𝑝𝑝, 𝑠𝑘𝑢,𝜏 , 𝜏0, ®𝑥𝑢,𝜏). // Protect private input ®𝑥𝑢,𝜏 ∈ Z𝑑𝑅
using JL

(3) ⟨𝑠𝑘𝑢,𝜏 ⟩ ← TJL.Protect(𝑝𝑝, 𝑠𝑘𝑢 , 𝜏, 𝑠𝑘𝑢,𝜏). // Protect the per-round JL secret
key 𝑠𝑘𝑢,𝜏 ∈ Z𝑁 2

1
using TJL

(4) Send ®𝑦𝑢,𝜏 and ⟨𝑠𝑘𝑢,𝜏 ⟩ to Server.
Server: // If the number of online clients (U (𝜏)𝑜𝑛 ⊆ U (𝜏)) is less than 𝑡 , abort; otherwise,

collect the protected secret keys, the protected inputs, and broadcastU (𝜏)𝑜𝑛 to all
clients

(1) Collect {⟨𝑠𝑘𝑢,𝜏 ⟩}∀𝑢∈U (𝜏)𝑜𝑛
and {®𝑦𝑢,𝜏 }∀𝑢∈U (𝜏)𝑜𝑛

.

(2) If |U (𝜏)𝑜𝑛 | < 𝑡 , abort; otherwise broadcastU (𝜏)𝑜𝑛 .
Online - Consistency Check (step 𝜏): // See Figure 4 (Consistency Check) of [3]
Online - Reconstruction (step 𝜏):

Client 𝑢 ∈ U (𝜏)𝑜𝑛 : // Compute the share of the per-round JL server key, and send it to
the server

(1) [⟨𝑠𝑘′0,𝜏 ⟩]𝑢 ← TJL.ShareProtect(𝑝𝑝, {[𝑠𝑘𝑣]𝑢 }𝑣∈U (𝜏)𝑜𝑛
, 𝜏).

(2) Send [⟨𝑠𝑘′0,𝜏 ⟩]𝑢 to Server.
Server:// If the number of honest clients (U (𝜏)

𝑠ℎ𝑎𝑟𝑒𝑠
⊆ U (𝜏)𝑜𝑛) is less than 𝑡 abort;

otherwise collect 𝑡 shares, reconstruct the per-round JL server key and complete
the aggregation

(1) Collect {[⟨𝑠𝑘′0,𝜏 ⟩]𝑢 }𝑢∈U (𝜏)
𝑠ℎ𝑎𝑟𝑒𝑠

.

(2) If |U (𝜏)
𝑠ℎ𝑎𝑟𝑒𝑠

| < 𝑡 , abort; otherwise, proceed.
(3) 𝑠𝑘′0,𝜏 ← TJL.ShareCombine({[⟨𝑠𝑘′0,𝜏 ⟩]𝑢 }𝑢∈U (𝜏)

𝑠ℎ𝑎𝑟𝑒𝑠

, 𝑡) . // Reconstruct the
zero-scalar value of the online clients

(4) 𝑠𝑘0,𝜏 ← TJL.Agg(𝑝𝑝, 0, 𝜏, {𝑠𝑘𝑢,𝜏 }𝑢∈U (𝜏)𝑜𝑛
, 𝑠𝑘′0,𝜏) . // Reconstruct the per-round

JL server key
(5) ®𝑥𝜏 ← JL.Agg(𝑝𝑝,−𝑠𝑘0,𝜏 , 𝜏0, {®𝑦𝑢,𝜏 }𝑢∈U (𝜏)𝑜𝑛

) . // Complete the aggregation

Figure 1: Eagle in SyncFL.

Let Them Drop: Scalable and Efficient Federated Learning Solutions Agnostic to Stragglers ARES 2024, July 30-August 2, 2024, Vienna, Austria

Instead of reconstructing the actual model parameters (which are
usually assumed to be numerous), only one key is periodically
reconstructed. Each client protects its private input using a freshly
generated per-round JL key and this key is then protected with
the TJL key. Thanks to this approach, Eagle exhibits a quasi-linear
computation cost at the client. The solution is defined in two phases:
the setup phase during which clients first register to the server and
receive their keying material, and the online phase during which
aggregation occurs.

4.1 Description
The protocol is depicted in Figure 1. It starts with the setup phase,
where each FL client first generates a pair of secret and public keys
and transmits its public key to the FL server who then broadcasts
them to all FL clients together with the public parameters 𝑝𝑝 . Dele-
gating the public parameter generation to a TD is common in other
existing works2. At the Key Setup step, each client independently
computes 𝑡 out of 𝑛 shares of its secret key 𝑠𝑘𝑢 using TJL.SKShare.
Subsequently, similar to FTSA [16], these shares are one-by-one
sent to the appropriate clients, via the server, through authenticated
encrypted (AE) channels. The online phase, is broken down into
three steps for each round:

(1) At the protection step, online clients generate one per-round
JL secret key 𝑠𝑘𝑢,𝜏 that is then used to protect their private input
vectors ®𝑥𝑢,𝜏 using JL.Protect at round 𝜏 , such that the protection
with JL uses a fixed 𝜏 = 𝜏0. This key is further protected using
TJL.Protect and all this information is sent to the FL server. The
server gathers both the protected inputs (vectors) and the protected
per-round clients’ keys (scalars).

(2) The consistency check step is the same as for SecAgg [3].
(3) At the reconstruction step, the clients receive the list of the

online clientsU (𝜏)𝑜𝑛 . Their goal is to help compute/reconstruct the
per-round aggregation key for the server in order to have access
to the actual sum of private inputs in plaintext. This aggregation
key basically consists of the sum of the per-round keys of online
clients that will be reconstructed with the collaboration of at least
𝑡 online clients using TJL.ShareCombine. Then, the actual model
parameters ®𝑥𝜏 can be computed using JL.Agg.

4.2 Security Analysis (Sketch)
We briefly analyse the security3 of Eagle by following the approach
given in [16].
• In the honest-but-curious model, we assume that the server

correctly follows the protocol but can collude with (or corrupts)
up to 𝑛 − 𝑡 clients. Let U𝑐𝑜𝑟𝑟 be the set of corrupted clients and
C = U𝑐𝑜𝑟𝑟 ∪S whereS represents the server. The view of C is com-
putationally indistinguishable from a simulated view if the number
of corrupted clients is less than the threshold 𝑡 (i.e., |U𝑐𝑜𝑟𝑟 | < 𝑡).
Based on that, the minimum number of honest clients 𝑡 should be
strictly larger than half of the number of clients in the protocol
(i.e., 𝑡 > 𝑛

2). Hence the protocol can recover from up to 𝑛
2 − 1

client failures. The security of the TJL ensures that parties in C
cannot distinguish the protected temporary JL key of an honest

2Note that the generation of public parameters 𝑝𝑝 depends on the existence of a TD.
Nevertheless, there exist methods in the decentralized setting [5, 21, 31].
3The full security proof can be found here.

Parties: Server and all clients inU, such that |U| = 𝑛𝑡𝑜𝑡 , and
clients in the bufferU𝑜𝑛 , such that |U𝑜𝑛 | = 𝑛

Public Parameters: Generate the public parameters
𝑝𝑝𝐾𝐴 ← KA.Param(𝜆) and (⊥,⊥, 𝑁 , 𝐻,⊥) ← JL.Setup(𝜆) and
set 𝑝𝑝 = (𝑝𝑝𝐾𝐴, 𝑁 , 𝐻, 𝜏0, 𝑡, 𝑛𝑡𝑜𝑡 , 𝑑, F𝑝 , 𝑅)
Prerequisites: Each client 𝑢 ∈ U generates a key pair
(𝑐𝑃𝐾𝑢 , 𝑐𝑆𝐾𝑢) ← KA.gen(𝑝𝑝𝐾𝐴) and registers 𝑐𝑃𝐾𝑢 to Server or to a
PKI
Setup - Key Setup:
Client 𝑢 ∈ U:

(1) ∀𝑣 ∈ U \ {𝑢}, 𝑐𝑢,𝑣 ← KA.agree(𝑝𝑝𝐾𝐴, 𝑐𝑆𝐾𝑢 , 𝑐𝑃𝐾𝑣). // Establish pairwise
channel keys with each client

Online - Protection:
Client 𝑢: // Protect private input using JL key, secret share per-client-round JL secret

key

(1) 𝑠𝑘𝑢,𝜏𝑢
𝑅←− Z𝑁 2 . // Generate JL secret key for round 𝜏𝑢

(2) ®𝑦𝑢,𝜏𝑢 ← JL.Protect(𝑝𝑝, 𝑠𝑘𝑢,𝜏𝑢 , 𝜏0, ®𝑥𝑢,𝜏𝑢). // Protect private input ®𝑥𝑢,𝜏𝑢 using
JL key

(3) {(𝑣, [𝑠𝑘𝑢,𝜏𝑢]𝑣)}∀𝑣∈U ← SS.Share(𝑠𝑘𝑢,𝜏𝑢 , 𝑡,U). // Generate shares of the
per-client JL secret key for round 𝜏𝑢

(4) 𝑣 ∈ U \ {𝑢}, 𝜖𝑢,𝑣 ← AE.enc(𝑐𝑢,𝑣, 𝑢 | | 𝑣 | | [𝑠𝑘𝑢,𝜏𝑢]𝑣). // Encrypt each share
with the corresponding public key

(5) Send ®𝑦𝑢,𝜏𝑢 and {(𝑢, 𝑣, 𝜖𝑢,𝑣)}𝑢∈U to Server.
Server: // If the number of clients is less than 𝑡 , abort; otherwise, collect protected

inputs, encrypted shares of secret keys, forward encrypted shares to destined
clients and broadcastU𝑜𝑛

(1) Collect {®𝑦𝑢,𝜏𝑢 }𝑢∈U𝑜𝑛
and {(𝑢, 𝑣, 𝜖𝑢,𝑣)}𝑢∈U𝑜𝑛

.
(2) If |U𝑜𝑛 | < 𝑡 , abort; otherwise, broadcast U𝑜𝑛 and ∀𝑣 ∈ U𝑜𝑛 send
{(𝑢, 𝑣, 𝜖𝑢,𝑣)}𝑢∈U𝑜𝑛

.
Online - Consistency Check: // See Figure 4 (Consistency Check) of [3]
Online - Reconstruction:
Client 𝑢: // Compute the share of the JL aggregation key

(1) ∀𝑣 ∈ U𝑜𝑛 \ {𝑢}, [𝑠𝑘𝑣,𝜏𝑣]𝑢 ← AE.dec(𝑐𝑢,𝑣, 𝑣 | | 𝑢 | | 𝜖𝑣,𝑢). // Decrypt each
share

(2) [𝑠𝑘0]𝑢 ←
∑
∀𝑣∈U𝑜𝑛

[𝑠𝑘𝑣,𝜏𝑣]𝑢 . // Compute share of per-round aggregation key
(3) Send [𝑠𝑘0]𝑢 to Server.

Server: // If the number of honest clients is less than 𝑡 , abort; otherwise, collect 𝑡 shares,
reconstruct the per-client-round JL server key and complete the aggregation

(1) Collect {[𝑠𝑘0]𝑢 }𝑢∈U𝑠ℎ𝑎𝑟𝑒𝑠
.

(2) If |U𝑠ℎ𝑎𝑟𝑒𝑠 | < 𝑡 , abort; otherwise, proceed.
(3) 𝑠𝑘0 ← SS.Recon({[𝑠𝑘0]𝑣}𝑣∈U𝑠ℎ𝑎𝑟𝑒𝑠

, 𝑡). // Reconstruct JL aggregation key
(4) ®𝑥 ← JL.Agg(𝑝𝑝,−𝑠𝑘0, 𝜏0, {®𝑦𝑢,𝜏𝑢 }𝑢∈U𝑜𝑛

). // Compute aggregate value

Figure 2: Owl in BAsyncFL.

client ⟨𝑠𝑘𝑢,𝜏 ⟩ from random values. It also ensures that if parties
in C have access to at most 𝑡 − 1 shares of 𝑠𝑘𝑢 (i.e., |U𝑐𝑜𝑟𝑟 | < 𝑡),
then, they cannot distinguish the shares held by the honest clients
from random values. Therefore, the view of parties in C at the end
of each FL round 𝜏 is computationally indistinguishable from a
simulated view. Thus, the server learns nothing more than the sum
of the online clients’ inputs if |U (𝜏)𝑜𝑛 | ≥ |U

(𝜏)
𝑠ℎ𝑎𝑟𝑒𝑠

| ≥ 𝑡 and hence
AO is ensured.
• In the active model, S can additionally manipulate its inputs

to the protocol. The only messages S distributes, other than the
clients’ public keys, are the protected shares that are forwarded
from and to the clients. S cannot modify the values of these en-
crypted shares thanks to the underlying authenticated encryption
scheme AE. Therefore, S’s power in the protocol is limited to not
forwarding some of the shares. This may make clients reach some
false conclusions about the set of online clientsU (𝜏)𝑜𝑛 . It is impor-
tant to note that S can present different views to different clients

https://eprint.iacr.org/2024/942

ARES 2024, July 30-August 2, 2024, Vienna, Austria Riccardo Taiello, Melek Önen, Clémentine Gritti, and Marco Lorenzi

regarding their online/dropped status. This capability enables S
to easily acquire the individual temporary JL key 𝑠𝑘𝑢,𝜏 of a client
𝑢. More precisely, S can convince a subset of honest clients that
the set of online clients isU (𝜏)𝑜𝑛 while indicating to another subset
that the online clients’ set isU (𝜏)

′
𝑜𝑛 = U (𝜏)𝑜𝑛 \ {𝑢} (i.e., 𝑢 is dropped).

If this occurs, S can aggregate the protected inputs fromU (𝜏)𝑜𝑛 to
derive the per-round aggregation key 𝑠𝑘𝜏 , and also aggregate in-
puts fromU (𝜏)

′
𝑜𝑛 to derive 𝑠𝑘′𝜏 , and then calculate 𝑠𝑘𝑢,𝜏 = 𝑠𝑘𝜏 − 𝑠𝑘′𝜏 .

Considering the scenario where S may collude with 𝑛− 𝑡 corrupted
clients, it can obtain 𝑛 − 𝑡 shares of ⟨𝑠𝑘𝜏 ⟩ and ⟨𝑠𝑘′𝜏 ⟩ and hence 𝑛 − 𝑡
shares of 𝑠𝑘𝑢,𝜏 . Furthermore, S has the ability to convince 𝑡2 honest
clients that client𝑢 is online, and the other 𝑡2 honest clients that𝑢 is
dropped, thereby collecting shares of ®𝑦𝜏 and ®𝑦′𝜏 respectively. Hence,
in total, the server can learn a maximum number of 𝑛 − 𝑡 + 𝑡2 shares
of ⟨𝑠𝑘𝜏 ⟩ and ⟨𝑠𝑘′𝜏 ⟩. Therefore, to prevent such attacks and still en-
sure AO, we additionally require that 𝑛 − 𝑡 + 𝑡2 < 𝑡 =⇒ 𝑡 > 2𝑛

3 .
Hence the protocol can recover from up to 𝑛

3 − 1 client failures in
the active model.

To conclude, if the server operates under anhonest-but-curious
model, selecting 𝑡 > 𝑛

2 ensures security. However, if the server
actively manipulates protocol messages, the threshold should be
set to 𝑡 > 2𝑛

3 . Additional details about the threat model and the
rationale behind these thresholds can be found in [3] (Sections 6.1
and 6.2). Note that we achieve the same threshold values as those
in SecAgg [3] and FTSA [16].
• A new type of attack, called model inconsistency attack,

launched by an active aggregator is defined and studied in [23].
This attack consists of a malicious server sending carefully crafted
models to specific clients instead of the actual global model param-
eters, with the aim of extracting private clients’ parameters. Eagle
can easily prevent such attacks by adopting the same approach pro-
posed in [23]. In more details, using the hash of the global model to
set the server’s value 𝜏0, which needs to be the same for all clients,
allows to overcome the aforementioned attack.

5 OWL IN ASYNCFL
In the asynchronous setting, we propose Owl, defined with a setup
phase and an online phase. As opposed to the case in SyncFL, in
the context of AsyncFL, clients cannot be expected to be synchro-
nized with respect to the same round 𝜏 . Consequently, by design,
the TJL scheme cannot be used directly. To counter this problem,
one common round 𝜏0 is defined per client 𝑢 and each client uses
JL.Protect with its own per-round key 𝑠𝑘𝑢,𝜏𝑢 . On the other hand,
the FL server also defines its own round 𝜏0 (which, in fact, never
changes) and is still able to aggregate all values thanks to the use of
JL.Agg with 𝜏0 to get the per-round aggregate key and to further
obtain the aggregate model.

5.1 Description
The protocol is depicted in Figure 2. It starts with the setup phase,
similar to Eagle, where each FL client generates a pair of secret and
public keys and transmits its public key to the FL server who then
broadcasts it to all FL clients, together with the public parameters
𝑝𝑝 . The online phase, consists of three steps:

(1) During the protection step, each online client 𝑢 generates
one JL secret key at round 𝜏𝑢 , denoted as 𝑠𝑘𝑢,𝜏𝑢 . The client then
computes 𝑛 shares of this secret key such that any 𝑡 shares can
reconstruct it, using the SS scheme. Subsequently, the private input
®𝑥𝑢,𝜏𝑢 (vector) is protected using JL.Protect which takes as inputs
𝑠𝑘𝑢,𝜏𝑢 and a fixed 𝜏0 defined by the server. The server collects both
the protected inputs and the encrypted shares of the protection key
from the online clients.

(2) The consistency check step is the same as for SecAgg [3].
(3) At the reconstruction step, each client𝑢 receives the encrypted

shares of each other client’s protection key and computes the share
of the server’s JL aggregation key

∑
∀𝑣∈U𝑜𝑛

[𝑠𝑘𝑣,𝜏𝑣]𝑢 . This global
share is forwarded to the server. The server should receive at least
𝑡 shares to reconstruct the aggregation key 𝑠𝑘0. Finally, the server
aggregates the inputs of the online clients using JL.Agg.

5.2 Security Analysis (Sketch)
We briefly analyse the security4 of Owl by following the approach
given in [16].
• In the honest-but-curiousmodel, the JL scheme ensures that

the server together with clients in C cannot distinguish protected
inputs ®𝑦𝑢,𝜏𝑢 from random values. Furthermore, the SS scheme en-
sures that if parties in C have access to less than 𝑡 − 1 shares of
the client’s secret key 𝑠𝑘𝑢,𝜏𝑢 (i.e. |U𝑐𝑜𝑟𝑟 | < 𝑡), then they cannot dis-
tinguish the shares held by the honest clients from random values.
Therefore, the view of clients in C is computationally indistinguish-
able from a simulated view. Thus, the server learns nothing more
than the sum of the online clients’ inputs if |U (𝜏)𝑜𝑛 | ≥ |U

(𝜏)
𝑠ℎ𝑎𝑟𝑒𝑠

| ≥ 𝑡 .
•When S is an active adversary, it can try to convince a subset

of honest clients that the set of online clients isU𝑜𝑛 while indicating
to another subset that the set of online clients isU′𝑜𝑛 = U𝑜𝑛 \ {𝑢}
for a client 𝑢. If this occurs, S can reconstruct 𝑠𝑘0 and 𝑠𝑘′0 and then,
it can compute 𝑠𝑘𝑢,𝜏𝑢 = 𝑠𝑘0 − 𝑠𝑘′0. Because we assume that there
are 𝑛 − 𝑡 corrupted clients, S can obtain 𝑛 − 𝑡 shares of 𝑠𝑘0 and 𝑠𝑘′0
respectively. Furthermore, S has the ability to convince 𝑡

2 honest
clients that the client𝑢 is online, and the other 𝑡2 honest clients that
𝑢 is dropped, thereby collecting shares of 𝑠𝑘0 and 𝑠𝑘′0 respectively.
Therefore, to ensure AO, we require that 𝑛 − 𝑡 + 𝑡2 < 𝑡 =⇒ 𝑡 > 2𝑛

3 .
To conclude, if S is honest-but-curious, selecting 𝑡 > 𝑛

2 en-
sures security. However, if S actively manipulates protocol mes-
sages, the threshold should be 𝑡 > 2𝑛

3 . We get the same threshold
values obtained in [30].
• As mentioned in [23], defenses against model inconsistency

attacks in AsyncFL settings are a difficult task and no one has yet
proposed a potential solution. Consequently, those attacks are out
of scope for Owl.

6 RELATEDWORK
Secure Aggregation for SyncFL. Bonawitz et al. [3] propose SecAgg,
a fault-tolerant SA approach that employs securemasking. Each pair
of clients creates a shared mask through a key agreement scheme
and uses this mask to protect clients’ inputs. Additionally, before
this protection, clients also combine their input data with another
blinding mask. The purpose of this blinding mask is to prevent any

4The full security proof can be found here.

https://eprint.iacr.org/2024/942

Let Them Drop: Scalable and Efficient Federated Learning Solutions Agnostic to Stragglers ARES 2024, July 30-August 2, 2024, Vienna, Austria

active, malicious server from discovering one individual input at the
reconstruction step. To address the potential issue of client dropout,
the protocol implements secret sharing: the clients secretly share
their respective shared masks and blinding masks. Then, the server
computes the sum of the masked inputs and further recovers the
shared masks of the failed clients and the blinding masks of the
online clients, thereby completing the aggregation. Compared to
SecAgg, Eagle does not use any blinding mask and consequently
is more efficient in terms of computation and communication costs.

Mansouri et al. [16] develop a fault-tolerant SA solution called
FTSA, which uses the TJL scheme to protect client inputs and
reconstruct the aggregate in case of client failures, reducing the
online communication rounds from 4 to 3 rounds compared to
SecAgg. To address the issue of potential client dropouts, the clients
secretly share their respective secret keys using the ISS scheme.
Similar to SecAgg, FTSA also uses blindingmasks for clients’ inputs
which once again increases the communication cost compared to
our protocol. Furthermore, FTSA cannot directly support client
selection as the non-selected clients would be considered as failed
clients and this would significantly increase the computation and
communication overhead. Our solution instead only depends on
the number of online client.

Ma et al. [15] introduce Flamingo, a fault-tolerant SA proto-
col employing secure masking. The authors construct connected
graphs of clients (as opposed to fully connected clients) such that
the shared mask is created among the connected clients. Flamingo
introduces the concept of decryptors to help the server reconstruct
the aggregate, as opposed to distribute the reconstruction to all
clients. Its functioning is as follows: each pair of connected clients
generates a shared seed through key agreement and creates a shared
pairwise mask using a Pseudo-Random Function (PRF). Moreover,
a blinding mask is created. To address the potential issue of client
dropout, the protocol implements Threshold ElGamal asymmet-
ric encryption (TEG). In Flamingo, clients encrypt the pairwise
mask using TEG, while the blinding mask is secretly shared with
the decryptors. If a client fails, the server asks the decryptors to
reconstruct the pairwise mask using the partial decryption of TEG.
Otherwise, they reconstruct the blinded mask for the online clients.
Consequently, Flamingo incurs three client-server trips. Similar
to previously explained protocols, the computational complexity
increases with the use of the blinding mask. Additionally, its com-
plexity scales with the number of dropped clients, impacting the
number of connected clients in the sparse graph. Furthermore,
dropped clients have a negative impact during the reconstruction
led by the decryptors, as the more they drop, the more pairwise
masks the decryptors and the server have to reconstruct.

Bell et al. [1] enhance the scalability of SecAgg [3]. Their method
does not require the clients to secretly share secret keys with ev-
ery other client to ensure resilience against dropouts. Instead, the
authors build connected graphs of clients (as opposed to fully con-
nected clients) in which SA is exclusively carried out among the
connected clients. We did not provide a detailed experimental com-
parison, as [15] already demonstrated that [1] requires 6 online
communication rounds compared to 3 for Flamingo and Eagle.

Several protocols provide slight improvements either on the
computation cost [9] or on the communication cost [29]. We do not

extensively compare Eagle with these solutions, mainly because
they do not offer the same privacy guarantees.

A recent work [14] proposes a SA method, called Lerna, for
a large number of clients and which shows a similar DCR con-
struction to Eagle. However, their work focuses only on a large
number of clients, without considering dropped clients/stragglers
and AsyncFL settings. Therefore, we choose to not include Lerna
in our comparisons.

Secure Aggregation for AsyncFL. So et al. [30] propose a SA method,
calledLightSecAgg, that is designed to be compatiblewithAsyncFL
and is the closest solution to Owl. In LightSecAgg, each client
independently generates a random mask which is further secretly
shared (using Lagrange code computing [34]) among other clients.
At the protection step, each client adds the mask to protect its
local model and sends the masked model to the server. At the
reconstruction step, the server can reconstruct and cancel out the
aggregated masks of the online clients through one-shot decoding.
This decoding is performed using the aggregated shared masks
received in a second round of communication. Owl offers better
scalability mainly because, instead of secretly sharing the random
mask, it only requires the secret sharing of a single value, the
client’s JL secret key. This optimization significantly reduces both
the runtime and communication costs associated with the protocol.

Other protocols, such as FedBuff [20], rely on the use of a
Trusted Execution Environment (TEE). While such solutions may
be more efficient, such a memory-constrained technology cannot
be assumed available in all FL settings.

7 COMPLEXITY ANALYSIS
7.1 Eagle
We evaluate the computation and communication costs of Eagle
and we compare them with SecAgg [3] and FTSA [16]. Table 1
on page 2 summarizes this study. Note that our analysis considers
the size of the secret shares since this metric has a non-negligible
impact on the reconstruction step.
• Client computation: Firstly, at the protection step, the client pro-

tects its 𝑑-size input ®𝑥𝑢,𝜏 which results in a cost worth 𝑂 (𝑑). Then,
at the reconstruction step, the client executes TJL.ShareProtect
which consists of: (i) computing the sum of the secret shares of
online clients which requires a computational cost of 𝑂 (𝑛) as op-
posed to 𝑂 (𝑛2) for FTSA and SecAgg, mainly because both the
latter compute the secret shares of the blinding mask; (ii) protect-
ing the zero-scalar value using this sum of secret shares through
ISS, and hence incurring an overhead of 𝑂 (𝑛 log(𝑛)), as opposed
to 𝑂 (𝑛 log(𝑛)𝑑) for FTSA. Thus, the overall computation cost for
this step is 𝑂 (𝑛 log(𝑛) + 𝑑), which is a quasi-linear complexity.
• Client communication: There are two communication rounds.

Firstly, at the protection step, the client sends its protected input ®𝑦𝑢,𝜏
to the server, which has a size of 𝑂 (𝑑). Then, at the reconstruction
step, the client receives the information on other online clients
which is of size 𝑂 (𝑛), and sends one zero-scalar value protected
with the combination of their shares, namely 𝑠𝑘′0,𝜏 , to the server,
which has a constant size 𝑂 (1). Hence, the communication cost at
the client is𝑂 (𝑛+𝑑) which is asymptotically the same as FTSA and
SecAgg. Nevertheless, in FTSA, during the reconstruction step, a

ARES 2024, July 30-August 2, 2024, Vienna, Austria Riccardo Taiello, Melek Önen, Clémentine Gritti, and Marco Lorenzi

zero-vector value is sent which has the same size as of the protected
input, that is𝑂 (𝑑). When client dropouts occur, our solution would
outperform FTSA mainly because Eagle does not depend on the
number of client failures. This is also experimentally studied and
evaluated in Section 8.
• Server computation: The server performs two main operations:

(i) at the reconstruction step, it reconstructs the protected zero-
scalar value 𝑠𝑘′0,𝜏 from the 𝑡 shares of the online clients, requiring
a computation cost of 𝑂 (𝑛2 + 𝑛) (from Lagrange coefficients); (ii)
the server aggregates the protected values and unmasks the result,
which requires a computation cost of 𝑂 (𝑛𝑑). The overall cost is
the same as in FTSA, worth 𝑂 (𝑛2 + 𝑛𝑑). As at the clients, the
computation cost at the server is not impacted by dropouts. On the
other side, in FTSA and SecAgg, the server needs to reconstruct
the blinding masks of dropped clients. In particular, in FTSA, the
computation of the protected zero-vector value of the dropped
clients incurs a cost of𝑂 (𝑛2 +𝑛𝑑), and in SecAgg, the masks of the
dropped clients are reconstructed with a complexity 𝑂 (𝑛2𝑑). This
is also experimentally studied and evaluated in Section 8.
• Server communication: Similar to SecAgg and FTSA, since the

message exchanges in the protocol only occur between the server
and the clients, the server’s communication cost is equal to 𝑛 times
each client’s communication cost.

Flamingo [15] Eagle

Client Comp. Regular client: 𝑂 (𝑘2 + 𝑎𝑑) Regular client: 𝑂 (𝑑)
Decryptor: 𝑂 (𝛿𝑎𝑛 + (1 − 𝛿)𝑛) Decryptor: 𝑂 ((1 − 𝛿)𝑛 + 𝑘 log𝑘)

Client Comm. Regular client: 𝑂 (𝑎 + 𝑘 + 𝑑) Regular client: 𝑂 (𝑑)
Decryptor: 𝑂 (𝛿𝑎𝑛 + (1 − 𝛿)𝑛) Decryptor: 𝑂 (𝑛)

Table 3: Complexity analysis for one SyncFL round with de-
cryptors (𝑛: number of clients, 𝑑 : input dimension; 𝑘 : number
of decryptors; 𝛿 : dropout rate; 𝑎: upper bound on the number
of neighbors per client).

Eagle with decryptors. We conduct a comparative complexity anal-
ysis of Eaglewhen decryptors are involved, and compare the online
phase against Flamingo [15]. We distinguish regular clients (who
contribute to the global model) from decryptors (who help the
server obtain this global model). Let the dimension of the model be
𝑑 , the dropout rate be 𝛿 , the number of neighbors for a given client
be 𝑎, the number of decryptors be 𝑘 and the number of regular
clients be 𝑛. Note that the number of neighbors 𝑎 is determined by
the dropout rate 𝛿 , as shown in [15] (see Appendix C). The results
are summarized in Table 3.
• Client Computation: For regular clients in Eagle, the primary

computational cost is attributed to the protection step, worth 𝑂 (𝑑).
In the case of Flamingo, the protection cost is 𝑂 (𝑎𝑑). This cost
involves the secret sharing of the blinding mask with 𝑘 decryptors,
incurring an expense of 𝑂 (𝑘2), and the TEG encryption of the
pairwise masks worth 𝑂 (𝑎).

For decryptors in Eagle, the computational requirements resem-
ble those without decryptors, with the different being the size of
the TJL secret key share, which is 𝑘 log𝑘 . Consequently, the cost as-
sociated with protecting the zero-scalar value becomes 𝑂 (𝑘 log𝑘),
resulting in a total cost of𝑂 (𝑛+𝑘 log𝑘) . In the context of Flamingo,
the overhead incurred by decryptors is proportional to the fraction

of dropped clients 𝛿 , since decryptors partially decrypt 𝛿𝑎𝑛 TEG
ciphertexts and decrypt (1 − 𝛿)𝑛 secret shares.
• Client Communication: For regular clients in Eagle, the com-

munication cost worth 𝑂 (𝑑) depends on the protected input size
𝑑 . In the case of Flamingo, in addition to the protected input,
the communication also involves sending 𝑎 TEG ciphertexts and 𝑘
encrypted secret shares of the blinding mask.

For decryptors in Eagle, the only required information is the
set of online clients, which has to be reconstructed, incurring a
cost of 𝑂 ((1 − 𝛿)𝑛). In the context of Flamingo, the decryptors
receive from the server 𝛿𝑎𝑛 TEG ciphertexts and (1−𝛿)𝑛 encrypted
blinding masks, costing 𝑂 (𝛿𝑎𝑛 + (1 − 𝛿)𝑛).
• Server Computation:During the reconstruction step in Eagle, the

server reconstructs the protected zero-scalar value using 𝑡 shares
from the decryptors, requiring a computational cost of 𝑂 (𝑘2 +
𝑘) (due to Lagrange coefficients’ computation). Subsequently, the
server aggregates the protected values and unmasks the result,
which requires a computational cost of 𝑂 (𝑛𝑑).

In Flamingo, the reconstruction step requires the cost of the
Lagrange coefficients’ computation, worth 𝑂 (𝑘2), in addition to
the reconstruction of (1 − 𝛿)𝑛 blinding masks, incurring a cost of
𝑂 ((1 − 𝛿)𝑛𝑘). The reconstruction of the pairwise masks implies
a cost of 𝑂 (𝛿𝑎𝑛𝑘), and then the aggregation and unmasking cost
𝑂 (𝑘2 + 𝛿𝑎𝑛𝑘 + (1 − 𝛿)𝑛𝑘 + 𝑛𝑑).
• Server Communication: In both protocols, the communication

cost is equal to 𝑛 times the client’s communication cost.

7.2 Owl
We evaluate our protocol Owl tailored for AsyncFL and compare
its costs with LightSecAgg [30]. Table 1 on page 2 summarizes our
study and shows that our solution outperforms LightSecAgg. We
set the complexity of polynomial evaluation and interpolation as
𝑂 (𝑛2) for all solutions. Note that this complexity can be reduced to
𝑂 (𝑛 log𝑛) as pointed out in [30] and acknowledged in [27].
• Client computation: At the protection step, the client generates

𝑡 out of 𝑛 shares of the secret key 𝑠𝑘𝑢,𝜏𝑢 , which requires a computa-
tion cost of 𝑂 (𝑛2). Also, the client protects its message ®𝑥𝑢,𝜏𝑢 using
the secret key 𝑠𝑘𝑢,𝜏𝑢 , which requires a computation cost of 𝑂 (𝑑).
Finally, at reconstruction step, the client computes the sum of the
secret key shares of other online clients, which requires a computa-
tion cost of𝑂 (𝑛). This cost is better than in LightSecAgg , which is
𝑂 (𝑛2 𝑑

(1−𝛿)𝑛−𝑡 + 𝑑), mainly due to their underlying encoding [34].
• Client communication: At the protection step, the client sends

𝑂 (𝑛) shares of its secret key 𝑠𝑘𝑢,𝜏𝑢 and receives 𝑂 (𝑛) shares in
return. The client further sends the encrypted input ®𝑦𝑢,𝜏𝑢 to the
server, which is of size 𝑂 (𝑑). Finally, at the reconstruction step,
the client sends its share of the server’s secret key [𝑠𝑘0]𝑢 which
has a size of 𝑂 (1). The total cost, worth 𝑂 (𝑛 + 𝑑), is better than
𝑂 (𝑛 𝑑

(1−𝛿)𝑛−𝑡 + 𝑑) from LightSecAgg.
• Server computation: At the reconstruction step, the server con-

structs the server key 𝑠𝑘0 from its 𝑡 shares, which requires a com-
putation cost of 𝑂 (𝑛2). Additionally, the server aggregates the ci-
phertexts received from each client and unmasks the result, which
requires a computation cost of 𝑂 (𝑛𝑑).
• Server communication: Similar to Eagle, since the message

exchanges in the protocol only occur between the server and the

Let Them Drop: Scalable and Efficient Federated Learning Solutions Agnostic to Stragglers ARES 2024, July 30-August 2, 2024, Vienna, Austria

N. Clients Dim. Drop. Client Server
Wall-clock running time (s) Total data transfer (sent/received) (MB) Wall-clock running time (s)

SecAgg [3] FTSA [16] Eagle SecAgg [3] FTSA [16] Eagle SecAgg [3] FTSA [16] Eagle

512

105
0.0 35.32 7.81 7.15 0.49 0.71 0.64 496.12 52.08 18.08
0.1 35.39 48.77 7.14 0.49 1.35 0.64 2167.81 6516.23 17.61
0.3 35.48 48.79 7.13 0.49 1.34 0.64 5527.75 5020.67 16.81

106
0.0 336.23 72.99 70.86 3.30 6.47 6.40 2376.32 390.31 120.21
0.1 336.91 404.82* 71.11 3.30 12.87* 6.40 19994.62 > 7d. 116.59
0.3 340.87 403.86* 70.71 3.30 12.87* 6.40 52499.26 > 7d. 107.28

1024

105
0.0 73.02 8.90 7.55 0.67 0.79 0.66 2904.75 187.34 45.94
0.1 72.67 94.21 7.36 0.67 1.45 0.66 9449.02 29534.22 45.03
0.3 72.61 93.79 7.40 0.68 1.43 0.66 22853.70 23470.55 43.08

106
0.0 667.20* 75.46 72.75 3.60* 6.70 6.57 > 7d. 861.19 193.16
0.1 655.43* 739.85* 72.81 3.60* 13.20* 6.57 > 7d. > 7d. 185.30
0.3 658.34* 743.77* 72.49 3.60* 13.20* 6.57 > 7d. > 7d. 164.72

Table 4: Computation and communication costs per client and computation costs for the server, for one SyncFL round.
Comparison with SecAgg and FTSA. Values highlighted with "*" are the result of an estimation since the underlying experiments
took more than seven days and hence were aborted.

clients, the server’s communication cost is equal to 𝑛 times each
client’s communication cost.

8 EXPERIMENTAL STUDY
We also conduct an experimental study of the performance of Eagle
and Owl, with respect to the number of selected clients and buffer
size respectively, the size of the machine learning model, while
considering realistic dropout rates and over selection. We also study
use cases of training a machine learning model for MNIST, CIFAR-
10 and Shakespeare datasets.

8.1 Experimental Setting
All our implementations use the Python programming language5.
Experiments were carried out on a single-threaded process, using
a machine equipped with an Intel(R) Core(TM) i7-7800X CPU @
3.50GHz processor and 126 GB of RAM. For the sake of fair com-
parison, our solutions along with SecAgg, FTSA, Flamingo, and
LightSecAgg are implemented using the same building blocks and
libraries mentioned in [16] (see Appendix C).

We consider different settings that simulate realistic environ-
ments. The number of selected SyncFL clients and the size of the
AsyncFL buffer is set to 𝑛 = {512, 1024}, and the model size is
𝑑 = {105, 106}. Similar to previous works, the client dropout and
over-selection rates are set to 𝛿 = {0.0, 0.1, 0.3}, and the chosen
threshold to 𝑡 = 2𝑛

3 . We assume that client dropouts happen before
the clients send their protected inputs. This is essentially the “worst
dropout case”, since the server must perform an expensive recov-
ery computation to correctly compute the aggregate. Regarding
the packing technique, we adopt the vector encoding approach
proposed by [16].

We measure the execution time (i.e. computation cost) and the
bandwidth (i.e. communication cost) at both the client and the
server sides. The values shown for each experiment are the result
of an average of measurements from 5 independent executions. We
report performance results of the the setup phase in Figure 3. Below,
we detail the performance results of the online phase below.
5The code of the paper can be found at GitHub repository.

8.2 Eagle
We evaluate the performance of Eagle by first comparing it with
SecAgg and FTSA since these three solutions have similar settings.
Since Flamingo considers the involvement of some decryptors
who help reconstruct clients’ material (see Section 7.1), we conduct
additional experiments that simulate these decryptors for Eagle
and enable a fair comparison with Flamingo.

Eagle vs. SecAgg and FTSA. Table 4 depicts the running time of
one FL client as well as the total data transfer for various realistic
settings. As expected, we observe that the best running time is
obtained with Eagle, which is independent of the dropout rates.
While there is a significant difference with SecAgg due to its strong
dependence on the number of clients 𝑛, it is lighter in the case
of FTSA when there is no dropout, since Eagle does not require
any sharing of blinding masks. Even if only one client drops, the
running time at the client in FTSA increases significantly because
the reconstruction of dropped clients’ inputs is performed over all
model parameters and not over a key such as in Eagle (see Section
7). When 𝑛 = 1024, 𝑑 = 106 and 𝛿 = 0.1, Eagle is approximately 10×
faster than the two other solutions. Regarding the communication
cost, when dealing with large client inputs, SecAgg exhibits the
best communication cost, as also identified in [16]. This is primarily
because FTSA and Eagle use vector encoding, whereas SecAgg
implements securemasking. On the other hand, our protocol always
shows better results compared with FTSA. This is achieved thanks
to theTJL protection of a scalar instead of a vector. In conclusion, on
the client’s side, we believe that Eagle shows its best performance
when dropouts would most probably happen.

We have also evaluated the computation cost of the FL server
for one SyncFL round, and depict the results in Table 4. We do
not show the communication cost as this would correspond to 𝑛
times the communication cost of one FL client. We observe that
the running time of the FL server in SecAgg and FTSA increases
with the dropout rate, while this trend is reversed when it comes
to Eagle. The reason behind this performance comes from the fact
that the number of online clients decreases, and consequently the
aggregation time, when the dropout rate increases.

https://github.com/rtaiello/let_them_drop/tree/main

ARES 2024, July 30-August 2, 2024, Vienna, Austria Riccardo Taiello, Melek Önen, Clémentine Gritti, and Marco Lorenzi

N. Clients Dim. Drop. Regular client / Decryptor Server
Wall-clock running time (s) Total data transfer (sent/received) (MB) Wall-clock running time (s)

Flamingo [15] Eagle Flamingo [15] Eagle Flamingo [15] Eagle

512

105
0.0 0.30 / 0.06 7.13 / 0.02 0.31 / 0.04 0.64 / 0.01 239.91 11.47
0.1 6.44 / 3.67 7.14 / 0.02 0.31 / 0.38 0.64 / 0.01 742.09 11.00
0.3 15.53 / 20.33 7.09 / 0.02 0.31 / 1.95 0.64 / 0.01 2936.63 10.15

106
0.0 2.50 / 0.11 70.57 / 0.02 3.12 / 0.04 0.64 / 0.01 2049.78 113.83
0.1 64.78 / 3.84 70.65 / 0.02 3.12 / 0.38 0.64 / 0.01 4799.36 109.76
0.3 156.50 / 20.69 70.93 / 0.02 3.12 / 1.95 0.64 / 0.01 18720.37 101.48

1024

105
0.0 0.07 / 0.13 7.33 / 0.02 0.33 / 0.08 0.64 / 0.01 66.12 16.38
0.1 12.13 / 14.90 7.30 / 0.02 0.33 / 1.44 0.64 / 0.01 1807.76 15.48
0.3 28.54 / 79.57 7.41 / 0.02 0.33 / 7.49 0.64 / 0.01 10381.25 13.54

106
0.0 4.38 / 0.35 72.46 / 0.02 3.25 / 0.08 0.64 / 0.01 683.48 163.41
0.1 129.91 / 14.94 72.44 / 0.02 3.25 / 0.08 0.64 / 0.01 12703.08 154.31
0.3 300.20 / 78.74 72.26 / 0.02 3.25 / 7.46 0.64 / 0.01 75420.51 135.11

Table 5: Computation and communication costs per regular client and decryptor, and computation costs for the server, for one
SyncFL round. Comparison with Flamingo with a number of decryptors set to 60.

N. Clients Dim. Drop. Client Server
Wall-clock running time Total data transfer (sent/received) (MB) Wall-clock running time

LightSecAgg [30] Owl LightSecAgg [30] Owl LightSecAgg [30] Owl

512

105
0.0 > 7d 7.72s − 0.96 > 7d 12.85s
0.1 > 7d 7.66s − 0.96 > 7d 12.13s
0.3 > 7d 7.78s − 0.96 > 7d 10.77s

106
0.0 > 7d 71.28s − 6.72 > 7d 116.60s
0.1 > 7d 72.00s − 6.72 > 7d 111.80s
0.3 > 7d 71.60s − 6.72 > 7d 102.58s

1024

105
0.0 > 7d 12.88s − 1.31 > 7d 22.29s
0.1 > 7d 9.48s − 1.30 > 7d 20.31s
0.3 > 7d 9.46s − 1.30 > 7d 16.65s

106
0.0 > 7d 74.76s − 7.21 > 7d 171.74s
0.1 > 7d 75.12s − 7.21 > 7d 159.11s
0.3 > 7d 74.50s − 7.21 > 7d 137.53s

Table 6: Computation and communication costs per client and computation costs for the server, for one AsyncFL round.
Comparison with LightSecAgg. "> 7d" denotes experiments with an overall execution taking more than seven days.

Eagle vs. Flamingo. To compare the performance of Eagle with
Flamingo, we have emulated Flamingo’s environment and re-
implemented Eagle accordingly. As detailed in Section 6, Flamingo
employs a pairwise masking scheme built upon the creation of a ran-
dom sparse graph and introduces 𝑘 decryptors, which correspond

Figure 3: Computation and communication costs
(sent/received) per client during the setup phase of
Eagle and Owl.

to special clients helping the server reconstruct the aggregate. We
incorporate the concept of decryptors in Eagle by involving them
during the reconstruction phase. Accordingly, the threshold value 𝑡
is set to 2

3𝑘 . We have conducted similar experiments as above, with
the addition of the value 𝑘 = 60 as in [15].

Table 5 shows our experimental results for regular clients, de-
cryptors and server. As expected, Flamingo is the preferred choice
when the dropout rate is null. However, as the dropout rate in-
creases (𝛿 ≥ 0.1), Flamingo becomes more costly in terms of regu-
lar client computation. This is mainly due to the increasing number
of the clients’ neighbors, as detailed in Section 7.1. On the other
hand, Flamingo is always better in term of communication since
its plaintext space is smaller than Eagle. Regarding decryptors,
Eagle is consistently better for both computation and communica-
tion, primarily due to the costly reconstruction operations for the
pairwise masks in Flamingo. To summarize, Eagle shows its best
performance with 𝑛 = 1024, 𝑑 = 105 and a dropout rate exceeding
𝛿 = 0.1 when compared with Flamingo. Specifically, Eagle is ×4
better for computation and ×3 better for communication in the
aforementioned scenario.

Let Them Drop: Scalable and Efficient Federated Learning Solutions Agnostic to Stragglers ARES 2024, July 30-August 2, 2024, Vienna, Austria

Figure 4: FL training simulation of Eagle, SecAgg and FTSA (𝛿 is the dropout rate).

Figure 5: FL training simulation of Eagle and Flamingo with
60 decryptors (𝛿 is the dropout rate).

8.3 Owl
We also run the previously described experiments for Owl and
LightSecAgg [30] in the asynchronous setting. In Table 6, we report
the wall-clock time and size of the data transferred within a single
FL round, for one FL client and one FL server respectively. Firstly,
we observe that Owl always exhibits better computation time, as
already identified in the asymptotic analysis (see Section 7.2). In
LightSecAgg, the computation time increases with the dropout
rate, mainly because the reconstruction step is conducted by fewer
online clients. Furthermore, the computation and communication
costs of LightSecAgg, with a model size larger than 105 and a
buffer size larger than 512, could not be measured as the execution
took more than seven days. To conclude, Owl exhibits the best
performance in AsyncFL.

8.4 Realistic Use Cases
In Figures 4 and 5, we report the results of experiments conducted
on three FL tasks, namely MNIST [13] (𝑑 = 61𝑘 parameters, 0.99

accuracy), CIFAR-10 [12] (𝑑 = 270𝑘 parameters, 0.83 accuracy),
and Shakespeare [4] (𝑑 = 819𝑘 parameters, 0.56 accuracy). We
consider a first scenario without client failure and another scenario
with client failure with a dropout rate set to 30%. We first compare
Eagle against SecAgg and FTSA. When decryptors are available,
we compare Eagle against Flamingo. Neural network training is
performed using Python in PyTorch framework [24] without GPU
acceleration. For each online communication round, we consider a
timeout of 10 seconds as in [15]. We set 𝑛 = 400 and use SGD as
the training algorithm with learning rate 𝜂, number𝑇 of FL rounds,
batch size 𝐵, number 𝐸 of epochs, and number 𝑆 of samples. More
precisely: (𝑖) for MNIST: 𝑇 = 300, 𝜂 = 0.1, 𝐵 = 32, 𝐸 = 5 and
𝑆 = 150; (𝑖𝑖) for CIFAR-10: 𝑇 = 300, 𝜂 = 0.1, 𝐵 = 8, 𝐸 = 4 and
𝑆 = 125; (𝑖𝑖𝑖) for Shakespeare: 𝑇 = 60, 𝜂 = 0.3, 𝐵 = 8, 𝐸 = 1 and
𝑆 = 2000. Model parameter updates are converted to 8-bit fixed
point values by applying 8-bit probabilistic quantization with 7
fractional bits [11]. The results show that in all three datasets, with
a dropout rate 𝛿 = 0.3, Eagle always outperforms previous works
in terms of total computation.

9 CONCLUSION
We have studied the problem of stragglers in FL, which have a
non-negligible impact on the performance and robustness of SA
protocols. To cope with this problem, we have considered stragglers
as client dropouts and developed two new SA protocols, namely
Eagle and Owl. Eagle in SyncFL does not depend on dropouts
anymore, and hence is more efficient than existing works, especially
when the number stragglers is non-negligible.Owl in AsyncFL does
not suffer from stragglers inherently, and is thus more efficient than
the only existing solution in asynchronous settings.

As part of future work, we aim to optimize the cost of Owl and
to consider stronger threat models whereby both FL clients and
the server can be malicious and modify the actual aggregate model.
In such a setting, honest FL clients should be able to verify the
correctness of the computation of the aggregate value.

ACKNOWLEDGMENTS
We thank the ARES reviewers for their comments. We also thank
Mohamed Mansouri for his help with FTSA, Yiping Ma for his
assistance with Flamingo, and Lucia Innocenti for the helpful
discussions about client selection and dropouts. This work has

ARES 2024, July 30-August 2, 2024, Vienna, Austria Riccardo Taiello, Melek Önen, Clémentine Gritti, and Marco Lorenzi

been supported by the French government, through the 3IA Côte
d’Azur Investments in the Future project managed by the National
Research Agency (ANR) with the reference number ANR-19-P3IA-
0002, by the TRAIN project ANR-22-FAI1-0003-02, and by the ANR
JCJC project Fed-BioMed 19-CE45-0006-01.

REFERENCES
[1] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Lepoint, andMar-

iana Raykova. 2020. Secure Single-Server Aggregation with (Poly)Logarithmic
Overhead. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security – CCS ’20. 1253–1269.

[2] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
Brendan McMahan, et al. 2019. Towards federated learning at scale: System
design. Proceedings of machine learning and systems 1 (2019), 374–388.

[3] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Practi-
cal Secure Aggregation for Privacy-Preserving Machine Learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security –
CCS ’17. 1175–1191.

[4] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ,
H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. 2018. Leaf: A
benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018).

[5] Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele Micciancio,
Tarik Riviere, Abhi Shelat, Muthu Venkitasubramaniam, and Ruihan Wang. 2021.
Diogenes: lightweight scalable RSAmodulus generationwith a dishonestmajority.
In 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 590–607.

[6] Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. 2021. Clustered
sampling: Low-variance and improved representativity for clients selection in
federated learning. In Proceedings of the International Conference on Machine
Learning – ICML ’21. 3407–3416.

[7] Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. 2023. A Gen-
eral Theory for Federated Optimization with Asynchronous and Heterogeneous
Clients Updates. Journal of Machine Learning Research 24, 110 (2023), 1–43.

[8] Marc Joye and Benoît Libert. 2013. A Scalable Scheme for Privacy-Preserving
Aggregation of Time-Series Data. In Proceedings of the International Conference
on Financial Cryptography and Data Security – FC ’13. 111–125.

[9] Swanand Kadhe, Nived Rajaraman, OOzan Koyluoglu, and Kannan Ramchandran.
2020. Fastsecagg: Scalable secure aggregation for privacy-preserving federated
learning. arXiv preprint arXiv:2009.11248 (2020).

[10] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. 2021. Advances and open problems in federated learning.
Foundations and Trends® in Machine Learning 14, 1–2 (2021), 1–210.

[11] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies
for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).

[12] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. 2014. The CIFAR-10 dataset.
online: http://www. cs. toronto. edu/kriz/cifar. html 55, 5 (2014).

[13] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[14] Hanjun Li, Huijia Lin, Antigoni Polychroniadou, and Stefano Tessaro. 2023.
LERNA: Secure Single-Server Aggregation via Key-Homomorphic Masking. In
International Conference on the Theory and Application of Cryptology and Infor-
mation Security. Springer, 302–334.

[15] Yiping Ma, Jess Woods, Sebastian Angel, Antigoni Polychroniadou, and Tal Rabin.
2023. Flamingo: Multi-round single-server secure aggregation with applications
to private federated learning. Cryptology ePrint Archive, Paper 2023/486 (2023).

[16] Mohamad Mansouri, Melek Önen, and Wafa Ben Jaballah. 2022. Learning from
Failures: Secure and Fault-Tolerant Aggregation for Federated Learning. In Pro-
ceedings of the 38th Annual Computer Security Applications Conference – ACSAC
’22. 146–158.

[17] Mohamad Mansouri, Melek Önen, Wafa Ben Jaballah, and Mauro Conti. 2023.
Sok: Secure aggregation based on cryptographic schemes for federated learning.
Proceedings on Privacy Enhancing Technologies – PoPETS ’23 (2023), 140–157.

[18] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Net-
works fromDecentralized Data. In Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics – AISTATS ’17, Vol. 54. 1273–1282.

[19] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive Privacy
Analysis of Deep Learning: Passive and Active White-box Inference Attacks
against Centralized and Federated Learning. In Proceedings of the 2019 IEEE
Symposium on Security and Privacy – SP ’19. 739–753.

[20] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat,
Mani Malek, and Dzmitry Huba. 2022. Federated learning with buffered asyn-
chronous aggregation. In Proceedings of the International Conference on Artificial
Intelligence and Statistics – AISTATS ’22. 3581–3607.

[21] Takashi Nishide and Kouichi Sakurai. 2011. Distributed Paillier Cryptosystem
without Trusted Dealer. In Proceedings of the International Workshop on Informa-
tion Security Applications – WISA ’11. 44–60.

[22] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In Proceedings of the International Conference on the Theory
and Application of Cryptographic Techniques – EUROCRYPT ’99. 223–238.

[23] Dario Pasquini, Danilo Francati, and Giuseppe Ateniese. 2022. Eluding secure
aggregation in federated learning via model inconsistency. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security.
2429–2443.

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[25] Tal Rabin. 1998. A Simplified Approach to Threshold and Proactive RSA. In
Proceedings of the 18th Annual International Cryptology Conference on Advances
in Cryptology – CRYPTO ’98. 89–104.

[26] Sebastian Ruder. 2016. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747 (2016).

[27] Adi Shamir. 1979. How to Share a Secret. Commun. ACM (1979), 612–613.
[28] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-

bership Inference Attacks Against Machine Learning Models. In Proceedings of
the 2017 IEEE Symposium on Security and Privacy – SP ’17. 3–18.

[29] Jinhyun So, Başak Güler, and A. Salman Avestimehr. 2021. Turbo-aggregate:
Breaking the quadratic aggregation barrier in secure federated learning. IEEE
Journal on Selected Areas in Information Theory 2, 1 (2021), 479–489.

[30] Jinhyun So, Chaoyang He, Chien-Sheng Yang, Songze Li, Qian Yu, Ramy E Ali,
Basak Guler, and Salman Avestimehr. 2022. Lightsecagg: a lightweight and
versatile design for secure aggregation in federated learning. Proceedings of
Machine Learning and Systems 4 (2022), 694–720.

[31] Thijs Veugen, Thomas Attema, and Gabriele Spini. 2019. An implementation of
the Paillier crypto system with threshold decryption without a trusted dealer.
Cryptology ePrint Archive, Paper 2019/1136 (2019).

[32] Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2019. Asynchronous federated
optimization. arXiv preprint arXiv:1903.03934 (2019).

[33] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas
Kong, Daniel Ramage, and Françoise Beaufays. 2018. Applied federated learning:
Improving google keyboard query suggestions. arXiv preprint arXiv:1812.02903
(2018).

[34] Qian Yu, Netanel Raviv, Jinhyun So, and Amir Salman Avestimehr. 2018. Lagrange
Coded Computing: Optimal Design for Resiliency, Security and Privacy. CoRR
abs/1806.00939 (2018). arXiv:1806.00939

https://arxiv.org/abs/1806.00939

	Abstract
	1 Introduction
	2 Background
	3 Building Blocks
	3.1 Joye-Libert Secure Aggregation Scheme
	3.2 Threshold Joye-Libert SA Scheme

	4 Eagle in SyncFL
	4.1 Description
	4.2 Security Analysis (Sketch)

	5 Owl in AsyncFL
	5.1 Description
	5.2 Security Analysis (Sketch)

	6 Related Work
	7 Complexity Analysis
	7.1 Eagle
	7.2 Owl

	8 Experimental Study
	8.1 Experimental Setting
	8.2 Eagle
	8.3 Owl
	8.4 Realistic Use Cases

	9 Conclusion
	Acknowledgments
	References

