
HAL Id: hal-04658584
https://hal.science/hal-04658584v1

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Novel March Test Algorithm for Testing 8T
SRAM-based IMC Architectures

Lila Ammoura, Marie-Lise Flottes, Patrick Girard, Jean-Philippe Noel,
Arnaud Virazel

To cite this version:
Lila Ammoura, Marie-Lise Flottes, Patrick Girard, Jean-Philippe Noel, Arnaud Virazel. A Novel
March Test Algorithm for Testing 8T SRAM-based IMC Architectures. DATE 2024 - Design,
Automation & Test in Europe Conference & Exhibition, Mar 2024, Valence, Spain. pp.1-6,
�10.23919/DATE58400.2024.10546583�. �hal-04658584�

https://hal.science/hal-04658584v1
https://hal.archives-ouvertes.fr

A Novel March Test Algorithm
for Testing 8T SRAM-based IMC Architectures

Lila Ammoura 1 Marie-Lise Flottes 1 Patrick Girard 1 Jean-Philippe Noel 2 Arnaud Virazel 1

 1 LIRMM – Univ. of Montpellier / CNRS 2 Univ. Grenoble Alpes, CEA, LIST
 F-34392 Montpellier, France F-38000 Grenoble, France

 <name>@lirmm.fr jean-philippe.noel@cea.fr

Abstract—The shift towards data-centric computing
paradigms has given rise to new architectural approaches aimed
at minimizing data movement and enhancing computational
efficiency. In this context, In-Memory Computing (IMC)
architectures have gained prominence for their ability to
perform processing tasks within the memory array, reducing
the recourse to data transfers. However, the susceptibility of
these new paradigms to manufacturing defects poses a critical
test challenge. This paper presents a novel March-like test
algorithm for 8T SRAM-based IMC architectures, addressing
the imperative need for comprehensive read port related defect
coverage. The proposed algorithm achieves complete coverage
of potential read port defects while maintaining the level of
complexity equivalent to existing state-of-the-art test solutions.

Keywords— In-Memory Computing, 8T SRAM bitcell,
Testing, March test algorithm, DfT.

I. INTRODUCTION
The field of high-performance computing is undergoing a

transformative evolution with the emergence of a new
conceptual framework. This framework calls for a move
away from the conventional compute-centric model towards
an innovative data-centric approach [1]. At its core, this new
methodology seeks to optimize the design of computer
systems by minimizing data transfers. This optimization is
achieved by strategically executing processing tasks close to
data storage locations inside the memory architecture of the
system [2]. The primary objective of this paradigm shift is to
enhance computational efficiency by reducing the latency
and energy consumption associated with frequent data
transfers [3].

Within this evolving paradigm, a range of alternative
architectural concepts have been investigated. Notable
among these is the “Near-memory” concept, which aims to
execute data processing operations in immediate proximity to
dedicated storage nodes [4]. Furthermore, a particularly
promising strategy to address the challenges posed by data-
intensive applications involves the adoption of In-Memory
Computing (IMC) architectures [5-9]. These architectures
promote the execution of processing tasks within the memory
array itself, thereby circumventing the necessity for extensive
data transfers. By intimately interweaving processing and
memory functionalities, IMC architectures strive to surmount
the limitations that have constrained conventional
computation-centric models.

However, a critical aspect requiring particular attention in
the exploration of these pioneering paradigms concerns the
susceptibility of these systems to manufacturing defects [10].
Similarly to conventional memories designed using identical
technologies, these innovative computing approaches are not
immune to the imperfections that can arise during

manufacturing processes [11]. As these cutting-edge
paradigms move on to practical implementation in
contemporary data processing units, it is imperative to
develop specific effective test solutions. These solutions will
be crucial in solving the specific challenges associated with
integrating logic and processing components directly into the
memory part of the IMC architecture. Through the
development of specialized test methodologies, these
solutions will effectively address the increased complexities
of IMC-based architectures and contribute to guaranteeing
their reliability.

To the best of our knowledge, there exists only one paper
that proposes a March-like algorithm for testing 8T SRAM-
based IMC architectures [12]. In this paper, the authors
demonstrate the need to test IMC architectures in both their
memory and computation configurations and propose a
March-like test algorithm. However, it's worth noting that
this previously proposed testing solution primarily focuses on
testing typical functional faults, without addressing the
structural aspect of the IMC architecture. In fact, recent
works have shown that this proposed test solution does not
encompass all the possible defects that can affect the read port
of the IMC 8T SRAM bitcell [13-15]. Consequently, the
analysis of resistive-short and resistive-open defects injected
into the read port was conducted in [15]. Results of this
analysis revealed that performing global computation on all
bitcells within the same column enhances the detectability of
specific defects.

In this paper, we develop a novel March test algorithm for
testing 8T SRAM-based IMC architectures. The proposed
March test solution is rooted in the insights gained from
defect modeling and fault modeling research reported in [15].
Notably, our algorithm achieves a complete coverage of
potential read port defects, even in their worst-case scenarios,
all while maintaining an equivalent level of complexity
compared to state-of-the-art test solutions. The execution of
our proposed test algorithm requires a specific global access
per memory column. Therefore, a Design for Testability
(DfT) solution is mandatory to adapt the function of the
address decoder. The DfT requirements are discussed at the
end of the paper.

The remainder of this paper is structured as follows.
Section II provides a comprehensive overview of the
structural aspects and the operating of an 8T SRAM bitcell in
both memory and computing modes. Section III presents
background information on existing test solutions and reports
the latest defect modeling and fault modeling results, which
serve as the foundation for developing the dedicated March
test algorithm. Section IV presents the different development
steps of the novel March-like test algorithm for 8T SRAM-
based IMC architectures and discusses the DfT requirement

2024 Design, Automation & Test in Europe Conference (DATE 2024)	

	

that must be embedded in the address decoder. Finally,
Section V concludes the paper and gives future perspectives.

II. 8T SRAM-BASED IMC OVERVIEW

A. IMC 8T SRAM bitcells principle
IMC architectures enable the execution of computations

directly within the memory, reducing the need to transfer data
to an external computing node. These architectures can
function in two distinct modes: memory mode and computing
mode. Within the memory mode, the memory carries out read
or write operations on a targeted word. Conversely, in the
computing mode, the memory undertakes operations
involving a minimum of two addressed words.

Fig. 1. a) An example of 8T SRAM bitcells for in-memory computing, b) a
waveform showing the execution of a NOR operation and c) the resulting
truth table on IMC_result output.

1) Memory mode
a) Write operation

Under the memory mode, the process of writing in an 8T
SRAM bitcell operates in two sequential steps:

• Step 1: In the initial step, as depicted in Fig. 1.a, the
write driver sets the bit lines to the desired values by
configuring the Bit Line (BL) to carry a specific state
and its complementary state on the Bit Line Bar
(BLB).

• Step 2: Subsequently, the address decoder activates
the appropriate Write Word Line (WWL) to a high
state. Given the significant size disparity between the
access transistors and the bitcell inverters, the internal
signals within the bitcell are compelled to align with
the values present on the bit lines. This compels the
bistable circuit to transition into a new stable
configuration.

b) Read operation
For the purpose of reading the contents of the 8T SRAM

bitcell, the Read Bit Line (RBL), initially charged to Vdd,
starts the operation with a floating ‘1’. Subsequently, the
activation of the Read Word Line (RWL) takes place. Let us
examine the following two scenarios:

• Scenario 1 - The read bitcell stores a logical ‘0’ (S =
‘0’): The NMOS transistor TN2 within the read port
remains in an off-state. This leads to maintain the RBL
at Vdd, resulting in the observation of a logical ‘0’ at
the read output port (accounting for the presence of an
inverter at the “Read” output of RBL).

• Scenario 2 – The read bitcell stores a logical ‘1’ (S =
‘1’): The discharge of RBL occurs through TN1 and
TN2. Consequently, after the output inverter, a logic
‘1’ is observed on the Read output port.

2) Computing mode
The computing mode involves conducting a read

operation concurrently among a minimum of two (or more)
8T SRAM bitcells by simultaneously activating their
respective RWL signals. This leads to the output of the read
port exhibiting a NOR behavior from the selected 8T SRAM
bitcells.

Let us detail the computing mode by considering Fig. 1.
Suppose RWL0 and RWL1, aligned with operand X and
operand Y respectively, are concurrently activated, as
depicted in Fig. 1.a. The precharged RBL remains at its Vdd
state solely when both operands X and Y (i.e., logic content
of each bitcell) are in logic ‘0’. In essence, as illustrated in
Fig. 1.b, by jointly triggering RWL0 and RWL1 signals for a
duration of T0, the RBL retains a high state only when both
X = ‘0’ and Y = ‘0’, and it fully discharges as soon as at least
one of the operands is in logic state ‘1’. This process
computes the NOR operation of both operands X and Y, and
the result is inferred from the voltage level of the RBL.

An inverter (Inv1) is connected to the RBL, causing the
output of the inverter to drop low if the RBL remains high.
Consequently, the output IMC_result of the successive
inverter (Inv2) exhibits a NOR behavior (the truth table is
outlined in Fig. 1.c). It is noteworthy that when the
complementary state is stored within the bitcells (i.e., node
SB holds the input data for computation), the output
IMC_result of the successive inverter (Inv2) demonstrates an
AND behavior.

Fig. 2. Considered 128x128 matrix model with layout extraction of
parasitic capacities.

B. Considered IMC SRAM array
Our study aimed to understand the electrical behavior in

real-world scenarios. To achieve this, we employed a model,
illustrated in Fig. 2, representing a 128x128 bitcell array
developed using the 28 nm FD-SOI process technology.
Within this model, we integrated write drivers designed to
manage writing operations within bitcells. Additionally,
precharge circuits were incorporated to sustain the RBL
signals at Vdd levels, a prerequisite for executing read
operations and array-level computations. Further enhancing

a)

b)

c)

the authenticity of our model, we conducted a layout
extraction process targeting the parasitic capacitances of key
signals (such as BL/BLB, RBL, and RWL). This meticulous
inclusion contributes to results that closely emulate those
attainable in an actual silicon implementation.

III. BACKGROUND ON 8T SRAM-BASED IMC TESTING

A. Existing 8T SRAM Test solutions

1) Memory mode testing
In memory mode, IMC architecture performs read/write

operations, mirroring the behavior of conventional memory.
This operational resemblance allows for IMC memory to
undergo testing using identical methods as those employed
for conventional memory testing [12, 16, 17].

The identification and assessment of defects in memory
chips typically involve representing them as functional faults,
with their detection achieved through the application of
functional tests based on specific Functional Fault Models
(FFMs) [18]. A systematic approach is crucial for enhancing
the performance and reliability of memory devices. The
typical test development process for SRAMs encompasses
three primary stages:

• Defect Analysis: This phase involves utilizing a
physical model of the memory, where defect injection
campaigns are conducted to analyze and characterize
defects.

• Fault Modeling: During this stage, the objective is to
identify an appropriate FFM for each type of analyzed
defect.

• Test Algorithm Development: This step entails the
development of test algorithms, such as March-like
tests, designed to encompass all potential FFMs
encountered within a particular memory technology
[19].

In [12], the authors consider the well-known March C- as
test algorithm of IMC 8T SRAM in memory mode. This
algorithm presents a sequence of March Elements (ME).
Each ME is a sequence of memory operations, denoted as:

March C- = {⇕ (w0); ⇑ (r0, w1); ⇑ (r1, w0); ⇓	(r0, w1);
	 													⇓ (r1, w0); ⇕ (r0)}.

March C- possesses a complexity proportional to 10N,
where N represents the number of memory bitcells. It ensures
comprehensive coverage of various static FFM, including
Stuck-At-Faults (SAF), Transition Faults (TF), idempotent
and inversion Coupling Faults (CFid, CFin, respectively),
and Address decoder Faults (AF).

However, in [13-15], it is demonstrated that March C-
operations does not encompass detection of all potential
resistive defects located within the read port of the IMC 8T
SRAM bitcell. Consequently, it is imperative to consider all
defects located in the isolated read port during the generation
process of the test algorithm.

2) Computing mode testing
In [12], a March-like test algorithm, denoted as March C-

8, was introduced specifically for testing 8T SRAM-based
IMC architectures in computing mode. Notably, the IMC
architecture employed in [12] is configured to execute NOR,
NAND and XOR operations during computing mode, by
deploying two threshold inverters positioned at the output of
the read port. So, to test computing operations, two specific
requirements are considered:

1. Requirement #1 entails executing either a read
operation or a NOR operation, in order to identify
faults stemming from excessive leakage current when
all data bits are ‘0’.

2. Requirement #2 involves the execution of NAND
operations, particularly in scenarios with operands
(0,1) or (1,0), to address worst-case situations.

The initial requirement aligns with the first two operations
inherent in the March C- test algorithm. To fulfill the second
requirement, March C- algorithm has been extended by
incorporating two additional NAND operations between the
cell currently being processed i and the next one i+1 in the 2nd
and 4th ME, thereby becoming March C-8, denoted as:

March C-8 = {⇕ (w0); ⇑ (r0, w1, 𝐍𝐀𝐍𝐃𝒊𝒊"𝟏); ⇑ (r1, w0);
																									⇓	(r0, w1,	𝐍𝐀𝐍𝐃𝒊𝒊$𝟏); ⇓ (r1, w0); ⇕ (r0)}.

The proposed March C-8 algorithm primarily focuses on
functional testing, ensuring that the IMC architecture
functions correctly under normal operational conditions in
computing mode. However, it falls short in addressing the
critical aspect of structural testing, particularly concerning
defects that could potentially impact the read port of the IMC
8T SRAM bitcells, as demonstrated in [15]. While functional
testing is essential for verifying the intended operation of the
IMC architecture, structural testing is crucial for identifying
and diagnosing physical defects that might compromise its
reliability [16]. Thus, it remains a significant gap in the
testing approach, as it fails to comprehensively account for
the potential defects that may affect the read port's integrity
and overall performance, hence the need for a comprehensive
testing approach. Therefore, the goal outlined in [15] aimed
at systematically injecting and analyzing all resistive defects
capable of impacting the read port. This objective served as
the foundation for deducing fault models, that describe the
faulty behavior in the presence of each injected defect. The
following two subsections outline the structural approach
adopted in [15] to analyze the resistive defects introduced at
the read port. Additionally, it provides a short summary of the
findings obtained from this analysis.

B. Defect modeling approach
The structural approach considered in [15] aims to assess

the potential impact of each defect on read/write/computing
operations on the defective bitcell as well as globally on the
array. In the framework for injecting resistive-short and
resistive-open defects (illustrated in Fig. 3), a monitoring
bitcell denoted as (i; j) (indicating its position in row i and
column j) was selected as the target for the injection of a
single defect at its read port. The defect analysis was
proceeded hierarchically as follows:

• Stand Alone Analysis (SA_Analysis): This assesses the
local impact of the defect on the defective bitcell itself
during memory mode operations.

• Neighborhood Analysis (N_Analysis): It consists of
two stages: i) Evaluation of the impact on defect-free
surrounding bitcells when performing memory mode
operations on the defective bitcell. ii) Assessment of
the localized impact on the defective bitcell during
memory mode operations performed on defect-free
surrounding bitcells.

• Computation Analysis (C_Analysis): This comprises
two phases:

i) Examination of the influence on computing mode
operations between the defective (aggressor) bitcell

and at least one defect-free (victim) bitcell in the same
column (i.e., NOR(ca;cv)).

ii) Evaluation of the impact on computing mode
operations between at least two victim bitcells located
in the same column as the defective one (i.e.,
NOR(cv;cv)).

Fig. 3. Resistive-short & resistive-open defects injection in the read port of
an 8T SRAM bitcell.

C. Fault modeling results
Throughout the structural analysis introduced in the

previous subsection, the extraction of information concerning
the influence of each defect on read/write/computing
operations was derived. Subsequently, Hspice simulation
were conducted to determine the critical resistances (i.e., Rc)
at which the defects (shorts/opens) became detectable.
Following this analysis, Fault Primitives (FP) for each defect
were derived. As detailed in [19], an FP is represented as
follows:

• <S/F/R> when a single bitcell is involved in
sensitizing a fault where it appears. Here, “S” signifies
the Sensitizing Operation Sequence (SOS) responsible
for triggering the fault; S Î {0, 1, w0, w1, w, w¯, r0,
r1}.

• <Sa,Sv/F/R> when two bitcells are engaged in
sensitizing the fault. “Sa” describes the sensitizing
operation or state of the aggressor bitcell, while “Sv”
describes the sensitizing operation or state of the
victim bitcell. Si Î {0, 1, X, w0, w1, w, w¯, r0, r1}
(iÎ{a, v}), where X is the don’t care value XÎ{0, 1}.

In both notations, “F” characterizes the value or behavior
of the faulty bitcell, which can be any of {0, 1, , ¯, -} where
 (resp. ¯) indicating that the faulty bitcell undergoes a
transition. “R” pertains to the logic output level of a read
operation when “S” includes read operations. Typically, it
assumes one of the values {0, 1, -}, with ‘-’ signifying that no
read operation is required for the SOS.

For each injected defect, we have deduced the
sensitization sequence required for its detection in the worst-
case scenario. From these deduced sensitization sequences,
we have gathered essential information on the optimal
detectability conditions of each defect. The results obtained
from the fault modeling process are summarized in Table 1.
The first column addresses defects related to the read port
(c.f. Fig. 3), while the second column presents the best-case
fault primitives required for detecting these defects under
their worst-case conditions. This implies that the execution of
these fault primitives allows the detection of smaller

resistive-open defects or, conversely, larger resistive-short
defects.

From data reported in Table 1, we can identify two
distinct case studies:

Case 1: There are defects, such as df3, df6, and df12, that
can be sensitized in their worst-case conditions through the
execution of a conventional read operation. To illustrate, let
us consider the case of resistive-short defect df3 (as shown in
the fourth row of Table 1). This defect can be detected with a
straightforward read operation applied to the bitcell initially
set to a logical ‘0’. If the execution of the r0 operation is
incorrect, the read port will provide a logical ‘1’ instead of
logical ‘0’. Thus, the corresponding fault primitive is denoted
as FP3: <0r0 /0/ 1> to describe this scenario.

Case 2: There are defects, such as df2 and df7, for which
sensitization in their worst-case scenarios requires a
computational operation involving two bitcells. On the other
hand, certain defects present greater complexity in detection
under worst-case conditions. For instance, df1, df9, df13-
df18 necessitate a global NOR operation (i.e., a NOR
operation involving all bitcell of the column), while the group
consisting of df4, df5, df8, and df11 requires a global NOR
operation with the exception of aggressor bitcell. To illustrate
this case, let us consider the first group of defects reported in
Table 1, including the resistive-short defects df1 and df9, as
well as all resistive-open defects ranging from df13 to df18.
Their best-case FP occurs when considering all bitcells within
the same column for a NOR operation, with all the bitcells
initialized to logical ‘0’ except one bitcell initialized to
logical ‘1’. So, the corresponding FP is denoted as FP1:

<1, 0Nc-1 NOR(1;0Nc-1) /0Nc-1/1>
where Nc represents to the total number of bitcells within the
column. Further details of this FP are elaborated below. A
logic ‘1’ is initially stored in the defective bitcell. A logic ‘0’
is initially stored in Nc-1 bitcells of the same column as the
defective one. Then, a NOR(1;0Nc-1) operation is performed
on Nc selected bitcells. The Nc-1 bitcells remain at logic ‘0’.
The output level of the logical operation is a logic ‘1’.

TABLE I. SUMMARY OF THE FAULT MODELING RESULTS

Defects FP: <S/F/R> / <Sa, Sv/F/R>

df1, df9, df13-df18 FP1: <1, 0Nc-1 NOR (1;0Nc-1) /0Nc-1/ 1>
df2, df7 FP2: <0, 01 NOR (0;01) /01/ 1>
df3 FP3: <0r0 /0/ 1>
df4, df5, df8, df11 FP4: <1, 0Nc-1 NOR (0;0Nc-2) /0Nc-1/ 1>
df6, df12 FP5: <1, 1r1 /1/ 0>

IV. TEST DEVELOPMENT

A. Principle
Development of the dedicated test algorithm is based on

the integration of insights obtained through defect analysis
and fault modeling. These insights provide us with crucial
information concerning the optimal conditions for effective
defect detections. This information is subsequently translated
into a sequence of memory and computing operations,
serving as the foundation of our test algorithm. By executing
this algorithm, we will systematically assess the functionality
of the IMC memory, ensuring its reliable operation in
computing mode, and promptly detecting any potential
defect.

B. Proposed Test Algorithms
The process of developing the dedicated algorithm involves
the steps where we translate the FPs into a sequence of
memory and computing operations as well. This
transformation effectively converts the FP into a structured
March-like test, optimized for covering potential defects
within the read port of IMC 8T SRAM bitcell. This March,
named March 8T-Read Port Defect (RPD), is denoted as
follows:

March 8T-RPD = {⇕ (w0); ⇑ (r0, w1, NOR(0; 0%&$'), w0);
																													⇓(NOR(0; 0())* ,w1, NOR(1; 0%&$(), w0)}.

with i = 1; then i = i+2 & j = 2; then j = j+2.

March 8T-RPD test algorithm comprises three key MEs:
• The first element, a w0 operation, aims to initialize the

entire memory array to the ‘0’ state.
• Within the second element, we first act a r0 operation,

which already includes the FP3 (see Table 1).
Subsequently, a w1 operation is added to change the
state of a bitcell to ‘1’. This operation satisfies the
integration of the FP4 by inserting the NOR(0; 0%&$')
computing operation. To conclude this element,
another operation, w0, is employed to reset the bitcell
state back to ‘0’ before selecting the next address. This
second Mach element embedded FP1 and FP4.

• In the last element, a NOR(0; 0())* computing
operation is introduced, performed between two
bitcells, namely 𝑐𝑒𝑙𝑙* and 𝑐𝑒𝑙𝑙), initially with i = 1 and
j=2. This computing operation is conducted iteratively
on two different bitcells by adjusting the step to 2. It
satisfies the FP2. Subsequently, a W1 operation is
added to change the state of one bitcell, enabling the
integration of the global NOR(1; 0%&$() operation
(i.e., FP1). Finally, a W0 operation is utilized to
restore the bitcell state to ‘0’. This last March element
embedded FP2 and FP1.

Conventional March algorithms are designed for
comprehensive testing of the memory array and its periphery
(e.g., address decoder). They primary focus on detecting
static faults in memory bitcells (e.g., stuck-at faults) and
double-cell faults such as coupling faults (e.g., CFin/CFid).
The March C- test algorithm is widely used thanks to its fault-
coverage capabilities. In assessing the effectiveness of the
March 8T-RPD algorithm, it is noteworthy that this algorithm
delivers complete coverage for Static Faults including SAF,
AF, TF, CFin (with the exception of CFid), and all read port-
related defects within 8T SRAM-based IMC architectures.

The possibility of merging dedicated March 8T-IMC with
March C- test algorithm offers an opportunity to combine the
specialized detection capabilities of the dedicated March 8T-
RPD with the extensive static fault coverage provided by
March C-. This integration results in a novel test algorithm,
named March IMC-8T. To achieve this, we developed March
IMC-8T through the following steps:

1) The initial March Element (i.e., ME0) of March C-
remains unchanged.

2) As previously explained in section II.2, a computing
operation is equivalent to read simultaneously two
bitcells (at least) within the same column. Therefore,
we replaced the r0 operation in the second ME1 of
March C- with a 𝐍𝐎𝐑(𝟎; 𝟎𝟏)𝒋𝒊 operation performed
between 𝑐𝑒𝑙𝑙* and 𝑐𝑒𝑙𝑙), initially with i = 1 and j = 2.

This NOR operation is applied iteratively to different
bitcell pairs, with the step of 2. This modification
saves time by eliminating redundancy, and achieves
50% less execution time.

3) Elements ME2, ME3, and ME4 remain unchanged as
they are responsible for testing TFs, AFs, and
CFin/CFid static faults.

4) In ME5, r0 is replaced by a global NOR operation,
which is performed only once per column. The
address symbol (i.e., ⇕) is replaced by “|” to indicate
the once-per-column operation. This effectively
reduces test time by dividing it over Nc.

At this point, the fault detection capabilities of March C-
are not modified. Nevertheless, the modifications from
memory operation to computing operations allow us to
integrate part of the test conditions related to the read port
defects (FP2, FP3 and FP5) and optimize the test time.

5) Lastly, a new element, ME6, is introduced. ME6
serves as an integration point for incorporating defects
detection conditions specific to FP1 and FP4.

The dedicated March IMC-8T test algorithm is outlined
below. Its complexity can be expressed as follows:

C = (12 + (
'
 +	 (

%&
) N ≈ 12N.

March IMC-8T = {
ME0:	⇕ (w0);
ME1:	⇑ (NOR(0; 0())* , w1);
ME2:	⇑ (r1, w0);
ME3:	⇓ (r0, w1);
ME4:	⇓ (r1, w0);
ME5:	| (NOR(0; 0%&$());
ME6:	⇓ (w1, NOR(1; 0%&$(), NOR(0; 0%&$'),w0)
}; with i = 1; then i = i+2 & j = 2; then j = j+2.

C. Comparison
In the context of 8T SRAM-based IMC architectures

testing, we compare our two dedicated March-like
algorithms, i.e., March 8T-RPD and March IMC-8T, with
March C-8 [12], as well as the widely adopted March C- test
algorithm. Table 2 provides a comparison that highlights the
static faults coverage (SAF, AF, TF, CFin/CFid,
respectively), Read Port Defects (RPD) coverage, and also
the coverage in their worst-case scenario (see the penultimate
column). The last column shows the complexity of the quoted
algorithms.

March IMC-8T and the proposed March C-8 test
represent two distinct approaches in the development of test
algorithms for 8T SRAM-based IMC architectures. Notably,
March C-8 primarily concentrates on testing typical
functional faults without addressing the structural aspect of
the IMC architecture. With a complexity of 12N, March C-8
shares the same fault coverage as March C-. It falls short in
handling read port defects, achieving only 77.8% coverage.
Furthermore, it tests only 16.7% of read port defects under
their critical conditions. In contrast, our dedicated March
IMC-8T algorithm, despite sharing an equivalent complexity
of 12N, distinguishes itself through its comprehensive testing
approach. It integrates the detection of static faults and
achieves full coverage of read port related defects, even under
worst-case conditions.

TABLE II. ALGORITHM COMPARISON: STATIC FAULT AND READ
PORT DEFECT COVERAGE FOR 8T SRAM-BASED IMC ARCHITECTURES

March
Algorithm

SAF
%

AF
%

TF
%

CFin
CFid

%
RPD (Worst-

Case) %
C

C- 100 100 100 100 77.8 (16.7) 10N
C-8 [12] 100 100 100 100 77.8 (16.7) 12N
8T-RPD 100 100 100 50 100 (100) ~8N
IMC-8T 100 100 100 100 100 (100) ~12N

Fig. 4. The complexity variation of the quoted March test algorithms based
on total memory bitcells.

D. Required DfT
The dedicated March IMC-8T algorithm includes

conventional memory operations as well as computing
operations (i.e., NOR operations). These computing
operations involve either two bitcells or the entire column
(i.e., ME5, ME6), while others exclude a single bitcell from
the column (i.e., ME6). Therefore, to implement these
computing operations, two new functionalities must be
integrated into the address decoder: one functionality to
ensure the simultaneous activation of all RWLs, and a second
one to activate all RWLs except one. To achieve this, a crucial
prerequisite is the incorporation of a Design for Testability
(DfT) approach to customize the functionality of the address
decoder to enable the application of March IMC-8T.

Typically, a conventional address decoder can access one
address at once. However, in the context of IMC, a dedicated
address decoder has been proposed in [20]. It allows the
simultaneous activation of two address rows at once by
exploiting two different row decoders and registers. Another
solution is based on the use of address registers to select two
or more address rows. However, none of these mentioned
architectures offers the two functionalities required to adopt
the March IMC-8T test.

V. CONCLUSION
In this study, we first introduced March 8T-RPD, a novel

test algorithm conceived for addressing isolated read port
defects in 8T SRAM-based IMC architectures. With a
complexity of 8N, this algorithm effectively meets these
challenges. Subsequently, we expanded our work by
integrating its capabilities with the March C- algorithm,
resulting in March IMC-8T. Notably, March IMC-8T
maintains an equivalent complexity to the existing March C-

8 algorithm while achieving comprehensive coverage. It
detects static faults, and isolated read port defects, even under
worst-case conditions. However, to implement this dedicated
algorithm, a DfT solution is crucial to embed new functions
in the address decoder.

REFERENCES
[1] S. Hamdioui et al., “Memristor based computation-in-memory

architecture for data-intensive applications,” Design, Automation &
Test in Europe, 2015, pp. 1718-1725.

[2] A. Agrawal et al., “X-SRAM: Enabling In-Memory Boolean
Computations in CMOS Static Random Access Memories,” in IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 65, no.
12, pp. 4219-4232, Dec. 2018.

[3] A. Jaiswal et al., “8T SRAM Cell as a Multibit Dot-Product Engine for
Beyond Von Neumann Computing,” in IEEE Trans. on VLSI Systems,
vol. 27, no. 11, pp. 2556-2567, Nov. 2019.

[4] G. Singh et al., “A Review of Near-Memory Computing Architectures:
Opportunities and Challenges,” Euromicro Conference on Digital
System Design, Prague, Czech Republic, pp. 608-617, 2018.

[5] A. Jaiswal et al., “8T SRAM cell as a multibit dot-product engine for
beyond von Neumann computing,” IEEE Trans. VLSI Syst., vol. 27,
no. 11, pp. 2556-2567, Nov 2019.

[6] A. Biswas et al., “CONV-SRAM: An energy-efficient SRAM with in-
memory dot-product computation for low-power convolutional neural
networks,” IEEE J. Solid-State Circuits, vol. 54, no. 1, pp. 217-230, Jan
2018.

[7] J. Zhang et al., “In-memory computation of a machine-learning
classifier in a standard 6T SRAM array,” IEEE Jour. of Solid-State
Circuits, vol. 52, no. 4, pp. 915–924, Apr. 2017.

[8] https://www.eejournal.com/article/in-memory-computing/, In-
Memory Computing, No Fewer than Four Approaches, by Bryon
Moyer, 2019.

[9] M. Kooli et al., “Smart instruction codes for in-memory computing
architectures compatible with standard SRAM interfaces,” Design,
Automation & Test in Europe Conference & Exhibition, 2018.

[10] M. Fieback et al., “Structured Test Development Approach for
Computation-in-Memory Architectures,” IEEE International Test
Conference in Asia, Taipei, Taiwan, pp. 61-66, 2022.

[11] M. Fieback et al., “Testing Scouting Logic-Based Computation-in-
Memory Architectures,” IEEE European Test Symposium, Tallinn,
Estonia, pp. 1-6, 2020.

[12] T.L. Tsai et al., “Testing of In-Memory Computing 8T SRAMs,” Proc.
IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems, 2019.

[13] L. Ammoura et al., “Preliminary Defect Analysis of 8T SRAM Cells
for In-Memory Computing Architectures,” 16th International
Conference on Design & Technology of Integrated Systems in
Nanoscale Era, pp. 1-4, 2021.

[14] L. Ammoura et al., “Intra-cell Resistive-Open Defect Analysis on a
Foundry 8T SRAM-based IMC Architecture,” IEEE European Test
Symposium, Venezia, Italy, 2023, pp. 1-4.

[15] L. Ammoura et al., “Analysis of resistive defects on a foundry 8T
SRAM-based IMC architecture,” Microelectronics Reliability,”
Volume 147, 2023.

[16] S. Hamdioui et al., “Testing Computation-in-Memory Architectures
Based on Emerging Memories,” IEEE International Test Conference,
Washington, 2019, pp. 1-10.

[17] J.-F. Li et al., “Testing of Configurable 8T SRAMs for In-Memory
Computing,” IEEE Asian Test Symposium, 2020.

[18] A. Bosio, et al., “Advanced Test Methods for SRAMs,” ISBN 978-1-
4419-0938-1, Springer, 2009.

[19] A.J. van de Goor et al., “Functional Memory Faults: A Formal Notation
and a Taxonomy”, VLSI Test Symposium, pp. 281-289, 2000.

[20] K. Monga et al., “A Novel Decoder Design for Logic Computation in
SRAM: CiM-SRAM,” IEEE India Council International Conference,
Guwahati, India, 2021

