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Abstract—In this article, we address the organization of
external care in multiple sites and, in particular, the planning
of the accompaniment of a group of patients with disabilities
by a service. To model this VRP-TW, a mixed integer linear
programming model is proposed and allows to optimize the travel
time of professionals between care sites (schools), taking into
account different constraints. These constraints include respect of
patient and professional availabilities (time-windows), matching
between patient need and professional competencies, capacities
of the facilities where the care takes place, as well as scheduling
rules specific to this problem. High computation time of the MILP
has been observed when the size of the problem increases. In
this paper, Large Neighborhood Search is investigated to reduce
model computation time and propose an efficient resolution
method.

Index Terms—home health care, large neighborhood search,
vehicle routing problem

I. INTRODUCTION

In France, healthcare systems and the medico-social sector
are undergoing rapid changes that require greater efficiency
and better control of resources. With the aim of inclusion,
SESSAD-type structures (”Service d’Education Spéciale et
de Soins A Domicile”, or Special education and home care
service) provide individualized support to children and adoles-
cents with disabilities in their normal living and educational
environment. Multidisciplinary teams are responsible for this
support, including speech and language therapists (SLTs),
physiotherapists, and psychologists.

Our aim in this paper is to propose a model enabling
efficient scheduling of SLTs activities within a SESSAD. We
focus on the accompaniment of children (named patients in the
remainder of the paper) by SLTs which takes place only within
the schools. Our objective is to minimize the travel time of the
SLTs but also to minimize the waiting time before the start
of a session while taking into account different constraints in
terms of schedules, competencies, and admission capacities of
the facilities.

This problem can be modeled as a Vehicle Routing Problem
with Time Windows (VRP-TW). Each patient is represented
by its location and requires treatment with a specific frequency

and a minimum number of days between sessions, as well as a
specific skill. SLTs are also represented by their location and
each has daily work hours. Availability time slots are defined
for each patient and each SLT according to their schedule. The
time is then divided into slots of one hour. One SLT cares for
one patient per slot. The main goal is to minimize the travel
time of the SLTs by finding a match between the schedules
and the skills of each SLT and taking into account the capacity
of the schools.

We can find numerous references on planning and schedul-
ing in the home healthcare sector, which includes our problem.
Most articles consider different objectives and methods for
solving the home healthcare planning problem. A summary of
all these articles is presented in the following literature review
[2].

Note that our problem is at the intersection of different kinds
of VRP problems, namely the periodic vehicle routing problem
(P-VRP), the multi-depot vehicle routing problem (MD-VRP),
and the vehicle routing problem with multiple time windows
(VRP-MTW), with the addition of a specific, rarely studied
demand for skills, which is very similar to a multi-product
VRP (studies of this kind of problem focus essentially on the
distribution of products in the vehicle, and never take into
account any maximum customer capacity). In addition to all
this, we take into account the rest time between each treatment
for patients, the maximum working time for professionals, and
the treatment time typical of all home healthcare problems.
To illustrate how specific our skill requirements are, note that
in our problem, a patient may need two different treatments
requiring different skills, each requiring a dedicated visit.

Based on [2], as well as on other recent articles dealing
with problems with similarities, it can be seen that most of the
techniques specific to VRP do not work in our case. Especially,
using a genetic algorithm seems to be very difficult in our
case. Indeed, due to the time division in slots and the small
number of patient slots it is almost impossible to change a
piece of a route by day or to shift it in the day, and, due to
the consideration of required skills, it is difficult to change the
professional performing a task, since the skills and requests



may not match. Also, as it will be illustrated later, clustering
methods are quite limited in this problem, again due to the
low number of available patient slots.

In general, the few techniques that consider slots are not
suitable for this problem, either because of the number of days
and/or rest time, the skill constraint, or the multiplicity of these
slots.

We could find an algorithm in the literature that seems to
be adaptable to the problem, namely the Inferior First Bidi-
rectional Searching Algorithm (IFBSA), which is described in
[4]. However, adjusting it to consider rest times seems tricky.

In this paper, we will rely on some of our previous works on
the subject, and especially [3], in which we proposed a MILP
(mixed integer linear programming) model to organize health
care activities outside the home. It allows us to determine
which professional is responsible for each action, where it
takes place, and how to organize the schedule to reduce
costs. This model proposes to optimize the travel time of
professionals through a lexicographic approach while reducing
the waiting time before the start of sessions, but it has the
disadvantage of exponential complexity, which makes the
calculation time very high above six employees in the in-
stance. We thus proposed, in [1], some approximate resolution
techniques based on different ways of creating clusters and
improving these clusters by incrementally changing some of
the patients in their clusters. We thus managed to find rather
accurate results for real instances, but still with an excessive
computation time.

The objective of this paper is thus to explore new meth-
ods, based on LNS (Large Neighborhood Search) to solve
efficiently our specific problem, by providing accurate results
within a reasonable computation time.

The remainder of this paper is organized as follows: Section
II, gives an exact MILP model, which is an improvement of
the one presented in [3], that enables solving small instances of
the problem. In Section III, we describe the new methods we
propose in this paper. These methods are then applied to real
data and the experiments and results are presented in Section
IV. Some concluding remarks and research issues are finally
given is Section V.

II. MATHEMATICAL MODEL

Here is the MILP model, which will be used in the
reconstruction part of the LNS presented in Section III.
It is an improvement of the one found in [3]. The main
improvement relies on the inclusion of capacities facilities
constraints (Constraints 22).

Data

P : Set of patient sites.
E : Set of starting points of professionals.
R = P ∪ E : Set of all locations.
D : Set of days.
S : Set of care types.
W : Set of time slots considered.

Tr1r2 : Travel time between locations r1 and r2.
Demps : Patient’s p request in care s.
Disprdw : 1 if r is available at slot w on day d, 0 otherwise.
QEes : 1 if professional e is qualfied for care s, 0 otherwise.
TTime : Processing time.
WTime : Total time of a slot.
MTime : Margin time for start a treatment.
Kp : Rest time of p, minimum number of days required

between two treatment.
M : Big M, a number large enough to be considered infinite

if not multiplied by 0.
SQES′ : set of professionals who all have at least one skill

in the S′ set (Calculated from QEes).
Cr,d,w : capacity of institution r, on day d, slot w.
Vr′,r : equal to 1 if r and r′ are in the same school, 0

otherwise

Variables

Xr1r2edw : 1 if the professional e move from r1 to r2
at day d on slot w.
Yerd : time of arrival of professional e on day d at slot w.
Tfed : time of arrival of professional e at his home on the

days d.

Objective

optTrav = min
∑
r1∈R

∑
r2∈R

∑
e∈E

∑
d∈D

∑
w∈W

Xr1r2edw ∗ Tr1r2

(1)

optWaitT = min
∑
e∈E

∑
d∈D

(Tfed − Yeed)

−
∑
r∈R

∑
s∈S

Demrs ∗ TTime

−
∑
r1∈R

∑
r2∈R

∑
e∈E

∑
d∈D

∑
w∈W

Xr1r2edw ∗ Tr1r2

(2)

Constraints

Xe1re2dw = 0 ∀e1 ∈ E, r ∈ R, e2 ∈ E, d ∈ D,w ∈ W
(3)

Xre1e2dw = 0 ∀r ∈ R, e1 ∈ E, e2 ∈ E, d ∈ D,w ∈ W
(4)

Xrredw = 0 ∀r ∈ R, e ∈ E, d ∈ D,w ∈ W (5)

Xrpedw ≤ Avaipdw ∗Avaiedw

∀e ∈ E, r ∈ R, p ∈ P, d ∈ D,w ∈ W
(6)

Xeped0 ≤ Avaipd0 ∗Avaied0 ∀e ∈ E, p ∈ P, d ∈ D (7)



∑
r2∈R

∑
e∈E

∑
w∈W

Xr2r1edw ≤ 1 ∀r1 ∈ R, d ∈ D (8)

∑
r∈R

∑
w∈W

Xeredw ≤ 1 ∀e ∈ E, d ∈ D (9)

∑
r∈R

∑
w∈W

Xreedw ≤ 1 ∀e ∈ E, d ∈ D (10)

∑
r1∈R

∑
r2∈R

Xr1r2edw ≤ 1 ∀e ∈ E, d ∈ D,w ∈ W (11)

Yp1ed + TTime+ Tp1p2 ≤

Yep2d +M ∗
∑
w∈W

(1−Xp1p2edw)

∀e ∈ E, p1 ∈ P, p2 ∈ P, d ∈ D

(12)

Yeed + Tep ≤ Yepd +M ∗ (1−
∑
w∈W

Xepedw)

∀e ∈ E, p ∈ P, d ∈ D
(13)

Yepd − Tep ≤ Yepd +M ∗ (1−
∑
w∈W

Xepedw)

∀e ∈ E, p ∈ P, d ∈ D
(14)

(w ∗
∑
r∈R

Xrpedw ∗WTime)−MTime ≤ Yepd

∀e ∈ E, p ∈ P, d ∈ D
(15)

Yepd ≤ M ∗ (1−
∑
r∈R

Xrpedw)w +
∑
r∈R

Xrpedw ∗WTime

+MTime ∀e ∈ E, p ∈ P, d ∈ D
(16)

Yer1d ≤ M ∗
∑
r2∈R

∑
w∈W

Xr2,r1edw

∀e ∈ E, d ∈ D
(17)

∑
r1∈R

∑
w∈W

Xr2r1edw =
∑
r2∈R

∑
w∈W

Xr1r2edw

∀e ∈ E, r1 ∈ R, d ∈ D

(18)

M ∗ (1−
∑
r∈R

|W |∑
w2=w

Xpredw2) ≤ M ∗ (1−
∑
r∈R

Xr1r2edw)

∀e ∈ E, p ∈ P, d ∈ D,w ∈ W
(19)

∑
r2∈R−{r1}

∑
e∈E

d+Kr1∑
f=d

∑
w∈W

Xr1r2efw ≤ 1

∀r1 ∈ R, d ∈ [0, ..., |D| −Kr1 ]

(20)

Yerd +
∑
w∈W

(Xreedw ∗ (Tre + TTime)) ≤ Tfed

∀e ∈ E, r ∈ R, d ∈ D

(21)

∑
r1∈R

∑
r2∈P

∑
e∈E

Xr1r2edw ∗ Vpr2 ≤ Cpdw

∀p ∈ P, d ∈ D,w ∈ W
(22)

∑
e∈SQES′

∑
r∈R

∑
d∈D

∑
w∈W

Xrpedw ≥
∑
s∈S′

Demps

∀p ∈ P, S′ ⊆ S
(23)

Xr1r2edw ∈ {0, 1} ∀r1 ∈ R, r2 ∈ R, e ∈ E, d ∈ D (24)

Yerd ∈ N ∀r ∈ R, e ∈ E, d ∈ D (25)

Tfed ∈ N ∀e ∈ E, d ∈ D (26)

Objective 1 corresponds to the minimization of the total travel
time, while Objective 2 corresponds to the minimization of
the total waiting time, i.e. the time when the professionals
are neither at home, nor performing a treatment, nor on a
journey.
Constraints 3 to 7 initialize some variables to 0 to prevent
inconsistencies in the solution.
Constraints 8 to 11 make sure that each professional starts
and finishes the round at his own place, does only one
treatment per slot, and doesn’t treat the same patient twice
on the same day.
Constraints 12 to 17 are used to ensure that available slots
are respected, taking into account both treatment and travel
times.
Constraints 18 and 19 ensure the conservation of path flow.
Constraint 20 checks that the time between two treatments
for the same patient is respected.
Constraint 21 correctly defines the professionals’ end-of-work
time.
Constraint 22 limits visits to patients in the same institution
to the capacity of that institution. Capacities depend on the
day and the slot, which gives our model flexibility without
losing performance.
Contraint 23 constraint, which is rather atypical, checks that
patient demand is met for each type of care, i.e. a type of
care can be associated with each visit the patient receives,
such that demand is met. It is inspired by Hall’s theorem



and has the advantage of not introducing any new variables,
but the disadvantage of being exponential depending on the
number of different types of care required by a patient. As
in our real-life case (and certainly in most concrete cases of
Home Healthcare), patients don’t require many types of care,
and this constraint is quite advantageous.
Constraints 24 to 26 define the variable domain.

III. SOLVING METHOD

The MILP model presented in the previous section has
been tested on real data including patients and healthcare
professionals. When the size of the instance increases, the
computation time of the optimal solution increases exponen-
tially. The computation time of the optimal solution becomes
too high from 6 professionals and 40 patients. To overcome
this problem, we propose to develop a heuristic based on Large
Neighborhood Search (LNS) [7] [6] .

The principle of local search (LS) is to start from a single
solution, and destroy it to rebuild it differently. This allows to
visit a certain neighborhood of the first solution. The major
risk of LS is to get stuck in local optimal and have very
low diversity in the solutions created. In Large Neighborhood
Search (LNS), a large part of the solution is destroyed and
repaired. In one iteration, a transformation by a Destroy-Repair
method can give many more different solutions than LS.

A. Destruction heuristics

In most LNS algorithms, some nodes (in this case visits)
are destroyed based on a heuristic or completely at random.
However, for the problem we tackle, this may not be sufficient,
given the relatively small space of feasible solutions, due
to low patient availability and skill constraints. Indeed, it is
probable that most of the nodes destroyed will be rebuilt
identically. To avoid this, we propose to destroy entire portions
of a route, entire routes, or even the entire schedule of certain
professionals, randomly. Another proposal to destroy a large
part of the solution is to use a random based on gradient noise.

To perturb the solution, a heuristic that associates a score or
weight to each arc or node is used. An arc is a link between
two nodes of the graph (either a patient or a professional). We
then destroy as many arcs as possible, so that the destroyed
arcs all have a score strictly higher than all the arcs kept,
however destroying fewer arcs than a certain limit.

Different heuristics have been studied to associate a weight
to each node or arc. Those weigths are then used to select the
part of the solution destroyed:

1) Random node: Associates a positive random weight to
each patient, and a weight equal to 0 to each professional.
The weight associated with each arc is the greatest weight
associated with the nodes of the arc.

2) Random visit: Associates a positive random weight with
each visit. The weight associated with each arc is the greatest
weight associated with the patients concerned, 0 if it is an arc
from a professional to himself, meaning an empty day.

3) Random edge: Associates a positive random weight with
each arc.

4) Worst deviation: Associates with each visit the travel
time ”lost” because of the visit, i.e. the travel time passing
through the visit minus the travel time skipping the visit.
The weight associated with each arc is the greatest weight
associated with the patients concerned, 0 if it is an arc from
a professional to himself, meaning an empty day.

5) Longest tour: Associates with each arc the travel time
for the tour in which it appears.

6) Random tour: Randomly selects one of the tours and
removes it completely from the current solution.

7) Random cluster: Randomly selects a pa-
tient/professional and associates each patient/professional
with the opposite of the distance to the selected patient.
The weight associated with each arc is the greatest weight
associated with the nodes of the arc.

8) Intersection: Associates with each patient the number of
professionals who visit them, 0 to professionals. The weight
associated with each arc is the greatest weight associated with
the nodes of the arc.

9) Random based on gradient noise: Associates a positive
random weight to each arc, based on gradient noise in order
to destroy ”by portion” and not ”by bit”. This random-based
gradient noise relies on Perlin theory [5], which introduces
a method for generating pseudo-random and continuous
functions based on gradient noise, definable on real spaces
of any dimension. By summing several of those noises with
different amplitudes and frequencies, we obtain new, more
complex functions called fractal noises. We empirically
choose to sum 20 noises, each with a frequency half that of
the previous one and an amplitude a half that of the previous
one, a being calculated as a function of a factor we call
g granularity (the closer g is to 0, the closer the result is
to Perlin noise, the larger g is, the closer the result is to a
random function):

a =


1

1 +
1

g

If g > 0

0 If g = 0

This allows us to generate Boolean functions with varying
degrees of consistency, as in Fig. 1. This Perlin noise acts
as a filter to choose whether the arc is destroyed or not. In
the experiments, we choose a granularity g that is equal to 1.
This allows the destruction of a larger part of the solution.

B. Reconstruction

For the reconstruction, only an optimal reconstruction using
the MILP model presented in section II was used. The main
reason for this choice was based on the problem’s complexity.
The number of very different constraints is high, which makes
it difficult to implement a heuristic that provides a correct
solution relatively often. However, in future work, we could
consider heuristics based on classic heuristics (cheapest inser-
tion, optimal local insertion, etc.) with ”preliminary steps”.



(a) g = 1 (b) g = 2 (c) g = 4

Fig. 1: some examples of fractal noise of different granularity
on the same seed (in red), and the associated Boolean function
(in blue)

For example, if a request can only be met by a professional
in a certain time slot, we add this visit to the solution. The
benefit of using only one reconstruction method is to show
the absolute potential of each destruction method, regardless
of the reconstruction heuristic.

IV. EXPERIMENTS AND RESULTS

Using data from a SESSAD, we generated instances that
took into account the actual schedules of speech therapists,
the average duration of treatment (45 min), patient demands,
and availabilities. Travel time values were calculated using
queries made on the OSRM website (Open Source Routing
Machine, http ://project-osrm.org/) using GPS coordinates of
patients’ schools and professionals’ homes. We analyzed the
schedules of schoolchildren, college students, and high-school
pupils, to work out the availability of patients, targeting free
periods.

We aim to test the LNS’s ability to find high-performance
solutions within a reasonable computation time. Thus, and as
the problem is NP-hard, it is impossible to guarantee finding
the optimal solution for problems whose size corresponds to
that of the real problem. So, our aim is to find solutions close
to the optimal solution with a reduced computation time and
respecting all constraints.

To determine which destruction operators are useful, we
also wanted to test the impact of these various operators. This
impact is both on the quality of the solution found, which
essentially depends on the ability of the meta-heuristic to
extract itself from a local optimum. The impact of operators
can also be seen from the point of view of LNS convergence
speed. This speed illustrates the ability to find a good solution
in a reduced computation time.

Initially, we tested all 9 destruction operators. We found that
operators with very little impact on the current solution were
systematically dominated by operators with a wider impact. So
in this paper, we have focused our presentation on the 3 most
promising operators which are the ones that lead to a wider
neighborhood: (1) Random based on gradient noise (red line
in figures 2 and 3), (2) Random tour (green line), and (3)
Random cluster (blue line).

(a) Instance with 60 patients

(b) Instance with 80 patients

Fig. 2: Convergence curves for instances with 60 and 80
patients - Random based on gradient noise (red line), Random
tour (green line), Random cluster (blue line)

Figures 2 and 3 show convergence curves for instances
ranging from 60 to 120 patients.

We can conclude that the LNS approach can propose
solutions with a reasonable computation time. LNS is also
able to handle larger problems than exact methods, which were
restricted to problems with only 40 patients.

In terms of solution quality and in terms of convergence
speed, the destruction operator that dominates the other ones
is the Random cluster that consists of randomly deleting all
patients of a professional. Random cluster is the operator that
most extensively destroys the current solution. This operator,
combined with an optimal reconstruction process, drives to
better solutions. This approach allows a broader destruction
of the current solution and facilitates the exit from the search
for a local optimum.



(a) Instance with 100 patients

(b) Instance with 120 patients

Fig. 3: Convergence curves for instances with 100 and 120
patients - Random based on gradient noise (red line), Random
tour (green line), Random cluster (blue line)

V. CONCLUSIONS

We have proposed a model for solving the problem of
assigning and routing speech therapists to children with dis-
abilities. As this problem is NP-hard, we used a heuristic
approach to solve it in a reasonable computation time. The
LNS meta-heuristic was tested and specific operators were
proposed. Tests have demonstrated the ability of this approach
to tackle problems whose size is similar to those of the initial
real-life problem.

The operator that destroys the complete program of a speech
therapist seems the most interesting if coupled with an exact
reconstruction process.

A more in-depth study involving the combination of several
operators would be useful to take advantage of the strengths
of each.
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