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Abstract

This paper provides a comprehensive review of the use of computational bioacoustics as

well as signal and speech processing techniques in the analysis of primate vocal

communication. We explore the potential implications of machine learning and deep

learning methods, from the use of simple supervised algorithms to more recent

self-supervised models, for processing and analyzing large datasets obtained within the

emergence of passive acoustic monitoring approaches. In addition, we discuss the

importance of automated primate vocalization analysis in tackling essential questions on

animal communication and highlighting the role of comparative linguistics in bioacoustic

research. We also examine the challenges associated with data collection and annotation

and provide insights into potential solutions. Overall, this review paper runs through a set

of common or innovative perspectives and applications of machine learning for primate

vocal communication analysis and outlines opportunities for future research in this rapidly

developing field.

Keywords: computational bioacoustics, primate vocal communication, passive

acoustic monitoring, deep learning.
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Applying machine learning to primate bioacoustics: review and
perspectives

1 Introduction1

Acoustic communication can be observed in many animal species and offers a2

diverse set of cues in the study of their behavior as well as a prolific insight for the3

monitoring of their activity. Primates are certainly no exception in this context, and the4

study of their vocalizations has been of great interest for the scientific community in recent5

years. Directly following their success in processing speech and audio, deep learning (DL)6

models were introduced to the field of computational bioacoustics through the ever growing7

availability of datasets allowed by technical advances in data recording, sharing and8

storage. This led to the now widely spread Passive Acoustic Monitoring (PAM) approach9

and, in turn, to an increasing need for efficient automated workflows in addition to10

hand-made annotations and analysis. This can be seen as a slight change of paradigm in11

the way primate vocal communication is treated and understood by researchers, which is12

also fairly recent and prone to evolve. In fact, deep learning methods developed for speech,13

audio or image processing as we currently understand them were seldom mentioned in14

computational bioacoustics reviews (Ganchev, 2017) until Stowell (2019, 2022). Fifteen15

years after the exploratory perspective paper from Zimmermann et al. (1995), one of the16

first studies mentioning the direct use of artificial neural networks applied to primate17

vocalizations was carried out by Pozzi et al. (2010). Besides that, simpler machine learning18

approaches developed for the processing of large unsegmented PAM datasets were not19

explored, to our knowledge, before the work by Kalan et al. (2015). The computational20

analysis of primate vocal communication systems is thus a young and rapidly growing field21

of study.22

We hereby present a concise survey of the latest trends and approaches in machine23

learning applied to primate vocal communication research. In this perspective, we carefully24
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selected experiments, mostly published in the last three years, with additional earlier25

papers that we deemed interesting for a contextualized discussion. After introducing the26

key concepts and the general approach found in the literature, we describe three different27

approaches and the type of results they can provide to better understand primate vocal28

communication or to be used as monitoring tools. We then put forward different29

perspectives following the development of high-performance weakly supervised acoustic30

models and their potential use in primate communication research. Finally, we discuss data31

availability and ongoing efforts in collecting and sharing new exploitable datasets.32

2 General considerations and methods33

2.1 Passive Acoustic Monitoring34

Directly observing primates in the scope of studying their communicative behavior35

in the wild can prove to be challenging depending on their species and the natural36

conditions encountered in their habitat. An essential limiting factor is their common37

tendency to flee on contact and the fact that human presence may affect their natural38

behavior upon direct observation (Crofoot et al., 2010). One solution to this problem is to39

focus on habituated or captive animals, but recent advances in technology also allowed40

researchers to resort to more passive behavioral data collection methods such as camera41

traps, drone technology or Passive Acoustic Monitoring (PAM). The emergence of42

high-storage and energy-efficient recording hardware and the rapid development of machine43

learning software is now turning PAM into a promising scientific tool to indirectly monitor44

either wild or captive animals. This approach can be summarized as follows: one or45

several, usually synchronized, microphones are placed at specific locations to record46

soundscapes over large spatiotemporal scales. This can be applied to any animal species47

displaying acoustic signals (Sugai et al., 2018) from insects such as mosquitoes (Kiskin48

et al., 2021) to birds (Pérez-Granados & Traba, 2021) and mammals including cetaceans49
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(Zimmer, 2011), deers (Enari et al., 2017) or primates (Do Nascimento et al., 2021).50

A drawback of PAM experimental setups is that the collected data is inherently51

unimodal. However, it can be coupled with visual data from cameras, or an array of52

additional information (time of the day, meteorological conditions, location or expert53

annotations). PAM may be restricted in terms of modality, but it also presents some54

advantages. Regarding primate monitoring activities, for instance, it has been shown that55

PAM data is more valuable for the detection of primates than visual recordings from56

camera traps, as shown by Enari et al. (2019) for Japanese macaques (Macaca fuscata) and57

by Crunchant et al. (2020) for chimpanzees (Pan troglodytes). The approach may also58

allow researchers to rely on the extensive work, methods and software technologies59

developed for signal and speech processing. This makes PAM data a reliable source of60

answers for an array of ecological questions (Ross et al., 2023). In the perspective of61

primatology, computational bioacoustics can thus lead to significant discoveries regarding62

primate communication and vocal behavior. It allows researchers to process and filter large63

collections of sounds by relying on so-called machine learning methods which help them64

automatically analyze and interpret acoustic signals. Applied to primate vocalizations,65

these methods show impressive results in an array of essential tasks such as the denoising66

of recordings, the selection and segmentation of said recordings to extract meaningful or67

primate-only vocalizations from lengthy recordings, the detection and classification of68

species, individuals or specific types of calls, etc. (see Figure 1). We hereby present the69

different trends, approaches and benefits related to the application of machine learning to70

PAM datasets. To get a deeper understanding at the functioning of machine and deep71

learning algorithms, one may refer to specialized reviews such as Pichler and Hartig (2023).72

2.2 Machine learning for bioacoustics73

Machine learning is the implementation of artificial intelligence through algorithms74

and computer models trained to autonomously make predictions from data. This process75
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may be summarized as a search for parameters in mathematical functions that minimize76

the difference between predicted outcomes and actual (human) observations, enabling77

systems to generalize and make accurate decisions on new, unseen data. Deep learning is a78

subset of machine learning involving the use of artificial neural networks characterized by79

their large number of parameters interacting with data in hierarchical, complex and80

unforeseeable ways. For a more comprehensive exploration of machine learning, readers are81

encouraged to refer to James et al. (2023), which provides both introductory and in-depth82

coverage of the topic. Deep learning (DL) is thus particularly well-suited to handle large83

datasets containing complex patterns and unstructured information, such as those84

encountered in PAM datasets. For bioacoustics, machine and deep learning can be seen as85

a way to automatize, reproduce or enhance human annotations with computer models.86

These are built through the selection and development of algorithms adapted to the task at87

hand, and always rely on annotated data for their training and evaluation. Training a88

machine learning model consists in optimizing a system to reproduce a labeling process89

through trial and error by maximizing correct predictions and minimizing mistakes. Its90

performance is thus heavily dependent on the quality of the training data and on its ability91

to generalize the labeling procedure to previously unseen data. Experiments involving the92

use of machine and DL models trained on acoustic recordings of primates often follow93

standardized workflows. These, in turn, resemble methods developed for the study of other94

species and can show strong parallels with computational linguistics and speech processing95

research. As stated by Stowell (2022), “classification is indeed the main use of deep96

learning seen in computational bioacoustics.” Although the task of classifying sound can be97

divided in various sub-tasks ranging from segmentation to labeling (see Section 3), it98

usually implies training a computational model on a given set of data for a specific task99

and evaluating its ability to perform the task when presented a different subset of the data.100

This common approach, which can be found in most of the experiments we hereby review,101

unfolds as follows (see Figure 2 for a visual description):102
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1. Acoustic data is collected from either captive or wild settings. This implies technical103

subtleties in terms of location of the recordings, number of acoustic sensors deployed,104

specific recording configurations such as sampling rate or frequency range, and the105

amount of data which can be obtained.106

2. The data is then turned into processable inputs. It may be segmented into short107

clips, specifically tailored for the use of some DL models. It may also be transformed108

through feature extraction to facilitate its processing by the computer models (see109

Section 2.2).110

3. Depending on the task at hand, annotation is needed to provide target labels which111

will be learned and predicted by the model. These can include several classes such as112

species, individual identities or call types, but also binary labels such as presence and113

absence of vocalizations, as well as dimensional labels.114

4. The model architecture mostly depends on the task it needs to perform but also on115

the type of data it will be trained on. For instance, acoustic data in the form of116

spectrograms is efficiently processed by Convolutional Neural Networks (CNN). A117

CNN is an artificial neural network constructed as a stack of layers (the so-called118

convolutional filters) which efficiently extract meaningful information from audio or119

image inputs by recognizing patterns in the data. CNNs are by far the most popular120

choice in computational bioacoustics. With the advent of new DL models developed121

in the scope of processing longer sequences of speech or audio, some experiments now122

rely on state-of-the-art architectures such as Recurrent Neural Networks (RNN), or123

the popular transformer networks (Lin et al., 2022) which leverage attention124

mechanisms and further exploit longer and variable-rate relations in the data. Much125

simpler machine learning models such as Multi-Layer Perceptrons (MLP), Hidden126

Markov Models (HMM), Support Vector Machines (SVM) or clustering algorithms127

(see Pichler and Hartig (2023) for a typology of existing algorithms) can also show128
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interesting results. These simpler models may also be used as baselines, a voluntarily129

simple reference model used for comparison purposes.130

5. The dataset is divided into train, development and test sets. The train set will be131

used during training to present examples of target labels associated with input data132

to the model, from which it will learn to extract cues and informative features. The133

development set is also used during training to make design choices that cannot be134

optimized using the machine learning method. It provides information in order to135

select from different models or tune functional aspects of the learning algorithm itself136

(often referred to as hyper-parameters). Finally, the test set, unseen by the model137

during training, will be used at the inference step to evaluate said performances. It is138

usually taken from a separate pool of data (different microphone, location or139

vocalizing individual) to ensure true generalisability of the model and avoid biased140

evaluations.141

6. The evaluation of the model requires the selection of appropriate metrics depending142

on the task at hand. These are chosen to be as informative as possible in the context143

of the experiment and must reflect the prediction performance but also potential144

flaws in terms of false positives or false negatives. It must be chosen according to the145

way labels are balanced in the dataset as well as its size. To evaluate the automatic146

segmentation of acoustic data over time, for instance, authors will often rely on147

accuracy (the number of correctly predicted segments divided by the total number of148

segments). They may also use the F1-score to account for the balance between false149

negatives and false positives, which is ignored by the accuracy metric.150

A great majority of computational bioacoustics experiments rely on spectral151

representations of sound prior to their automatic processing by machine learning models or152

their manual annotation. These spectral representations, relying on the short-time Fourier153

transform, encode the temporal evolution of acoustic energy over a range of frequencies in154
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a sound signal. Although several types of spectral transformations may be found in the155

literature, some can be turned into images to ease the manual analysis of acoustic material156

(as in the spectrogram from Figure 4). This type of sound representation is often used to157

speed up the manual annotation of bioacoustic data by human annotators. It can also be158

directly employed as the input of vision-based DL models which can reach high159

performances on a variety of tasks by processing sound as images. No particular160

representation of sound has been proven to work best across all species and tasks, and the161

use of a given method must be carefully justified because of its important implications on162

the performances of a computational model. Within spectral representations, a first163

distinction can be made between linear and logarithmic spectrograms, the latter being164

designed to mimic the way human ears process sound by emphasizing discriminability of165

lower frequencies and de-emphasizing it in higher ones. In this perspective, bioacoustic166

researchers often rely on mel-spectrograms, which tend to show promising results when167

used as features for animal vocalizations processing. Nonetheless, and despite their168

popularity, spectral representations are not always a preferred solution and other acoustic169

representation methods exist. As can be seen in Kiskin et al. (2020), wavelets can also170

show great benefits compared to the short-time Fourier transform, due to their ability to171

capture both fine details and broad trends in acoustic data. Although a less conventional172

solution, the authors show the advantages of wavelets when facing weak and noisy signals173

(such as mosquito sounds) and their ability to perform better across datasets compared to174

spectral solutions (with bird species classification).175

With the advent of more powerful computational technologies, the use of the raw176

waveform also presents an array of advantages compared to spectral-based representations.177

Although directly using a waveform as input usually requires larger datasets and more178

computing power to efficiently train DL models, the approach allows researchers to bypass179

yet another manual pre-processing step. This also means a model can learn to extract any180

informative cues without the risk of loosing information through spectral transformations of181
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its training dataset. Additionally, training classifiers directly on the waveform can greatly182

simplify a classification pipeline, going from the acoustic data to the bioacoustic predictions183

in a straightforward manner, usually referred to as an “end-to-end” approach. Although it184

was not used on primate vocalizations to our knowledge, end-to-end approaches are gaining185

popularity in bioacoustics, an sound processing in general, with successful applications such186

as in Bravo Sanchez et al. (2021) on birds and Xie, Hu, et al. (2021) on frogs.187

Finally, as we will further discuss in Section 4, acoustic representations may be188

extracted by pre-trained upstream models (see Figure 3). This is referred to as pre-trained189

representation learning, an increasingly popular solution in recent speech and audio190

processing research. The approach relies on the pre-training of large generalistic foundation191

models to enhance the performance of smaller task-specific ones. Once the pre-trained192

representations are learned and extracted, they may be used as traditional features193

containing useful information for an array of tasks.194

A second optional step, directly preceding feature extraction, is signal enhancement,195

or denoising, a process which consists in filtering out non-informational signal from raw196

data. This signal processing method is quite popular in bioacoustics where clear recording197

conditions are rarely encountered (Xie, Colonna, & Zhang, 2021). The amount of noise198

which can affect the performances of computational models in processing primate199

vocalizations greatly depends on the recording location or microphone sensitivity, and may200

stem from an array of acoustic sources, from anthropogenic noise (vehicles, speech...) and201

natural soundscapes (rain, wind...) to other species or conspecifics vocalizations. Although202

denoising can be an essential tool, it is not always beneficial, as it may deprive the signal203

from essential information which could potentially be extracted by a computational model.204

The general approach consists in using simple fixed signal processing tools to perform the205

so-called signal enhancement directly on a spectrogram. Such tools have been extensively206

studied and engineered and are widely available through public softwares such as207

noisereduce, a spectral gating algorithm developed by Sainburg et al. (2020). A more208
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refined option from which computational bioacoustics could greatly benefit is DL-based209

denoising, a popular area of research in speech processing (Germain et al., 2019).210

3 Tasks and applications211

We hereby describe three main categories of tasks which can be tackled through the212

use of machine learning for primate vocalization analysis. For an overview of these213

categories and their applications in primate bioacoustics, see Figure 1.214

3.1 Detection and segmentation215

The most practical application of machine learning in bioacoustics, when facing216

large unlabeled recordings of natural soundscapes, is the detection of animal vocalizations217

among ambient noise. As we previously mentioned when introducing the PAM approach,218

the ever-increasing storage and battery life capabilities of microphones may result in219

recordings lasting several hours or days. Primates, however, are not constantly vocalizing220

and their calls usually span specific segments of time which need to be identified and221

extracted for their subsequent analysis. The manual segmentation of recordings (i.e.222

annotating start and end times of primate calls among a continuous audio clip) is an223

essential step in processing PAM data. An efficient way to carry out this segmentation is to224

directly inspect spectrograms of the recording in a specialized software such as PRAAT1 or225

Raven Pro2. Although it results in precise annotations, manual segmentation may prove to226

be quite time-consuming depending on the length of the audio files and the nature of the227

recorded vocalizations in terms of frequency ranges, unit-rates, distances to the microphone228

and amounts of background noise. Automatic detection and segmentation were proposed as229

1 Boersma, Paul & Weenink, David (2023). Praat: doing phonetics by computer [Computer program].
Version 6.3.17, retrieved 10 September 2023 from http://www.praat.org/
2 K. Lisa Yang Center for Conservation Bioacoustics at the Cornell Lab of Ornithology. (2023). Raven
Pro: Interactive Sound Analysis Software (Version 1.6.4) [Computer software]. Ithaca, NY: The Cornell
Lab of Ornithology. Available from https://ravensoundsoftware.com/
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an answer to this issue. It may take at least three different forms:230

• binary detection: the machine learning algorithm is given a segment of audio as input231

and outputs the probability of this segment containing a call. This may be referred232

to as “occupancy” or “presence” prediction.233

• time-wise segmentation: the task can still be developed as a binary one but it results234

in a more fine-grained annotation of the input file with start and end time-codes of235

each call. This is often solved by making an occupancy prediction in short windows236

(10 or 50 ms) and merging consecutive positive decisions into a single segment.237

• time and frequency-wise detection: directly inspired by image object detection, this238

task usually implies the use of spectrograms. The model is constructed as an object239

detector and outputs time and frequency boundaries of the target call as in Figure 4.240

To our knowledge, this approach was never explored for primate vocalizations and is241

scarcely applied to other species as well, although it could be used to identify various242

simultaneously vocalizing species in single segments.243

Automatic segmentation is undoubtedly one of the most studied aspects of244

automatic detection in bioacoustics. The following examples exclusively focus on detecting245

gibbons, but similar directions are being explored on other primate species (Anders et al.,246

2021; Bonafos et al., 2023). Recently, approaches involving the use of deep learning are247

being predominantly adopted in automatic audio recognition and tend to replace the use of248

hand-crafted features and simpler machine learning algorithms. This scientific trend is249

widely adopted across bioacoustics, specifically through the use of CNN-based solutions250

from spectral inputs, as can be seen in the evolution of the DCASE challenge over the251

years (Mesaros et al., 2017, 2019). Although rarely explicitly compared with more simple252

statistical approaches, CNNs present an array of advantages in these tasks. Their primary253

benefit lies in their ability to generalize predictions across varying recording conditions.254

They also allow efficiently tackling tasks with noisy and unbalanced annotated datasets of255
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limited size (Anders et al., 2021), as is often the case with PAM recordings of primates in256

the wild. As we will see, they may also be coupled with so-called RNNs to account for the257

sequentiality of primates’ vocalisations. This makes them especially effective at detecting258

primates with temporally dynamic calls, as is the case with gibbons. Finally, CNNs being a259

very popular option in the deep learning community, extensive research, publicly available260

resources and off-the-shelf solutions can be accessed with little expertise to develop fast261

and efficient models. All these advantages made CNNs a go-to solution in bioacoustic262

detection (Stowell, 2022), progressively replacing the use of simpler statistical algorithms.263

As we will see throughout this review, machine learning for primate bioacoustics follows a264

similar trend. Nonetheless, the efficiency and advantages of deep learning solutions come265

with some drawbacks, specifically in the interpretability of a model’s predictions as well as266

in their need for higher computational ressources and larger datasets (see Figure 5). In267

recent bioacoustics papers, the specific reasons for choosing large deep learning models over268

lightweight statistical solutions are rarely explicited. However, they are often implicitly269

shown through comparison with simpler baseline performances.270

An illustrative example in this perspective is a model developed by Dufourq et al.271

(2021) applied to the highly endangered Hainan Gibbons (Nomascus hainanus) from the272

Bawangling National Nature Reserve. The proposed model is a common one in bioacoustic273

event detection as it relies on the popular CNN architecture. In this case, the model is274

designed to differentiate between two classes of sounds : non-primate background noise and275

primate vocalizations. It is trained on mel-spectrogram representations of short sound276

segments which were previously labeled as such. The authors additionally resort to data277

augmentation, which consists in increasing the size and diversity of a dataset by slightly278

modifying it to create additional synthetic data. This method permits rendering the279

models robust to certain transformations that we know should not affect the system’s280

prediction. Here, each segment is shifted in time to double the size of the initial dataset.281

The authors evaluate two types of architectures, namely a one-dimensional CNN leveraging282
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temporal patterns, and a two-dimensional one which captures frequency as well as time283

from the input spectrograms. One last step consists in post-processing the model284

predictions by removing unrealistic detections (such as isolated or very short calls). The285

2-D CNN with data-augmentation paired with the post-processing step achieves 99.37%286

accuracy (compared to 97.60% without post-processing and 92.32% without287

data-augmentation as well)/. This shows that the CNN approach can be highly efficient in288

facilitating the segmentation of large PAM recordings of Gibbons, with an eight hours long289

test recording taking six minutes on average to be processed by the model. In addition to290

its high performance, this automated procedure also provides exhaustive quantitative291

information about Hainan gibbon’s vocal behavior, including their preferred vocalization292

times, the amount of calls they produce in a day and their geographical distribution over293

the study site. By coupling the detections with additional metadata such as meteorological294

information and environmental parameters, this approach could lead to many more295

interesting observations.296

As is common in machine learning experiments, the work by Dufourq et al. (2021)297

constitutes a baseline performance which was promptly improved by Ruan et al. (2022)298

with a slightly different architecture. This “baseline” can be considered as a performance299

milestone aimed at being improved upon and was included in one of the only bioacoustics300

benchmarks available to date: the Benchmark of Animal Sounds by Hagiwara et al. (2023).301

Ruan et al. (2022) approach relies on deep learning solutions, namely Residual Networks (a302

former state-of-the-art model, known for its high performances in image classification),303

SpecAugment (the random masking and warping of portions of the input spectrogram to304

improve the generalization ability of the model) and label smoothing (a method with305

similar results based on the addition of noise to the label distribution during training).306

These methods were originally developed for speech and image classification and allow the307

authors to propose BPDnet, a model with high performance on Hainan Gibbon’s presence308

detection carried out on the same dataset as used by Dufourq et al. (2021) without the309
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need for manual intervention and post-processing. When compared with the baseline310

experimental setup, this new model improves the F1-score by 0.16 without post-processing311

and by 0.09 with post-processing.312

The approach selected by Dufourq et al. (2021) corresponds to the most313

recommended and wide-spread approach for the segmentation of bioacoustic data. It relies314

on years of research into the CNN architecture and tackles major limitations through315

post-processing and data-augmentation in addition to the use of traditional spectral316

representations. Comparatively, Y. Wang et al. (2022) work on the same dataset with a317

rather innovative perspective relying on more complex state-of-the-art models. They318

implemented two solutions: a CNN stacked with a Hidden Markov Model (HMM) and a319

Convolutional Recurrent Neural Network (CRNN). The HMM architecture works as a320

post-processing step and allows for a correction of the CNN decision from contextual321

information of neighboring segments. The CRNN, in contrast, outputs decisions from322

sequential information rather than from a fixed segment. It still relies on a CNN for feature323

extraction which is subsequently passed to Gated Recurrent Units accounting for the324

temporal information. These particular types of models have been shown to be more325

effective at modeling long-term dependencies in sequential data (like sound), while also326

being computationally more efficient than traditional RNNs. Here, the choice of this327

architecture is motivated by the sequential nature of gibbon vocalizations which are known328

to produce varying sequences of notes combined into phrases. The authors show that the329

CRNN architecture improves performance compared to the CNN-HMM and that it is330

resistant to low Sound to Noise Ratio (SNR), a metric used to account for the amount of331

background noise in a given audio segment. Although the results are not comparable with332

previously mentioned experiments because of distinct evaluation metrics and dataset333

processing, CRNNs are a viable option for automatically processing large PAM recordings334

of gibbons and their resistance to noise can be seen as a major asset in the bioacoustic335

context.336
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Following both previously described frameworks, Tzirakis et al. (2020) conducted337

somewhat similar experiments on large recordings of Müller gibbons (Hylobates muelleri)338

from Malaysian Borneo. The authors built a publicly available model consisting of a 2-D339

CNN followed by a RNN which also capture longer-term temporal dynamics of the input340

signal. To validate their approach, the proposed architecture is compared to two publicly341

available toolkits for audio representation and analysis: End2You (a simpler yet similar342

model comprised of CNNs followed by Gated Recurrent Units) and openXBOW (based on343

the bag of words approach from computational linguistics and several machine learning344

models, including the Random Forest algorithm). The dataset was processed as a345

collection of positive (gibbon’s presence) and negative (background noise) audio clips. The346

results indicate that the author’s model reaches an Unweighted Average Recall of 93.3% on347

the test set compared to 84.8% for the best openXBOW model.348

Although we only discussed three experiments on a single taxon, we can see that349

state-of-the-art segmentation of primate vocalization datasets mostly resort to closely350

related approaches and tend to show high performance if sufficient annotated data is351

provided. CNN solutions can be found successful for an array of other primates and352

animals: Stowell (2022) surveyed 83 such experiments for a variety of tasks including353

segmentation; and RNNs seem to be a viable option in further improving their354

performance. This approach also shows the benefit of potentially relying on off-the-shelf355

models made available by researchers in other fields. The limitation here is the availability356

of annotated data itself and the potential complexity of usage of such publicly available357

models for non-specialist practitioners.358

3.2 Identification and density estimation359

We have seen that segmentation and detection tasks relying on state-of-the-art deep360

learning architectures can be very effective for primate species shown to communicate361

vocally like gibbons, even in their noisy natural environment. Although the obtained362
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results and performances can be used in quantitative analysis of their vocal behavior and363

are essential for qualitative studies of the segmented calls, they lack in conservation value.364

In this perspective, identifying vocalizing individuals to estimate primate population365

density from their vocalizations and studying individual vocal signatures are both complex366

but potentially significant tasks. Few studies can be found exploring automatic density367

estimation relying on DL models, although human based detection seems to be a good368

option for this task. Using humans as acoustic detectors has indeed been proven successful369

in estimating the density of yellow-cheeked gibbons (Nomascus gabriellae) in Cambodia by370

Kidney et al. (2016). This means that acoustic data contains enough information to371

develop similar experiments with computational models.372

In a similar perspective, several studies were conducted in developing automatic373

classifiers for caller identification. These often rely on recordings in captivity, during374

mark-recapture events or by focal recordings of individuals to allow for an easier extraction375

of the caller identity and the constitution of an annotated dataset. In fact, obtaining376

identity annotations from PAM data is a difficult process due to low control possibilities377

over the recordings. In captivity however, some solutions were explored by Bayestehtashk378

et al. (2014) who recorded groups of captive rhesus macaques (Macaca mulatta) using379

individual collars. The authors provide an interesting semi-automatic pipeline for the380

constitution of an ID-labeled corpus. To process the obtained data from multiple collars,381

they construct a segmentation model based on manually designed acoustic features often382

used in music and speech from the OpenSmile toolkit (Eyben et al., 2010). Their best383

performing model is a Support Vector Machine (SVM). SVMs are machine learning384

algorithms designed to separate samples of different class labels in the feature space. They385

are light machine learning models, easy to train, and show good performances on simple386

tasks. In this case, the SVM architecture reaches 88.9% accuracy on a manually segmented387

subset of the data. Once segmented, the obtained set of vocalizations is to be matched to388

the recordings from each collar in order to detect the one which most likely emitted a389
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specific vocalization. The authors rely on Dynamic Time Warping (Müller, 2007) to390

compute the acoustic similarity of each segment and show good results compared to391

manually aligned data. The obtained dataset can then be used to train classifiers for the392

automatic identification of individual monkeys.393

In an opposite approach, highly territorial primates like Northern grey gibbons394

(Hylobitae funereus) can provide interesting datasets to perform this type of task on wild395

PAM recordings. By placing microphones inside individual group territories, Clink et al.396

(2017) successfully identified the acoustic parameters contributing to individuality in397

female’s great calls. The authors manually extracted acoustic features from their PAM398

dataset and computed a Mahalanobis acoustic distance measure between pairs of399

vocalizations. They were able to discriminate between pairs of 33 females with a 95.7%400

accuracy using linear Discriminant Function Analysis, a method consisting in searching for401

linear combinations of the extracted features to separate the different individuals.402

Machine learning algorithms such as Discriminant Function Analysis do not rely on403

deep learning, contrary to the CNNs and RNNs discussed in the previous section. For404

vocal signature classification, they seem to be a preferred approach with the advantage of405

demanding less computational power and data all the while yielding competitive results.406

We want to stress that resorting to deep learning solutions in bioacoustics is not always a407

preferred approach, especially when facing scarce annotated data, as is the case for408

identification of primate voice prints.409

With a similar dataset of Northern grey gibbons and an approach involving Support410

Vector Machines and Mel-Frequency Cepstral Coefficients (MFCC), Lakdari et al. (2024)411

reached high performance on classifying female great calls by recognizing their emitter412

from a pool of 12 individuals. They further examined the performance of their approach by413

recording the calls in playback at varying distances to account for its resilience on low414

sound to noise ratios. They find that MFCCs are outperforming other feature extraction415

methods, namely acoustic indices or pre-trained DL models, when calls are recorded at416
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larger distances.417

Another example of such solutions can be found in a study by Fedurek et al. (2016).418

The authors examine chimpanzees (Pan troglodytes schweinfurthii) pant-hoots and attempt419

at identifying the type of information acoustically embedded in them. Their experiment420

also relies on Support Vector Machines trained on MFCCs. They find that all four phases421

of the pant-hoot (introduction, build-up, climax and let-down) are associated with a422

variety of information, including individual identity, which is more specifically encoded in423

the introduction and climax. Despite these promising results, there seems to be a lack in424

the implementation of state-of-the-art DL models for vocal signature classification in425

primates. We have seen that this shortfall can be explained by difficulties in annotating426

data accordingly. It may also be explained by the more consistent amount of work put into427

identifying primates from visual data with face recognition (Guo et al., 2020; Schofield428

et al., 2019). Yet, few experiments relying on complex and innovative DL architectures429

from sound show promising results. We have mentioned Lakdari et al. (2024) who430

compared MFCCs feature extraction with deep learning models pre-trained on birds,431

speech or general sound. Leroux et al. (2021) also introduce transfer learning from DL432

models pre-trained on speech for chimpanzees voice print recognition. Both approaches will433

be further discussed in Section 4.434

Nonetheless, a parallel task involving multi-label classification and voice prints with435

interesting machine learning solutions is primate species identification. As we have seen,436

most bioacoustic studies carried out on primates focus on single datasets from one species437

of interest. However, wild environments may host various cohabiting species which often438

end up overlapping in single PAM recordings. A first interesting study in this regard was439

conducted by Mielke and Zuberbühler (2013) with a combination of classification tasks for440

species, call type and caller identification. It relies on a MLP trained on a dataset of441

Stuhlman’s blue monkey (Cercopithecus mitis stuhlmanni) vocalizations. This particular442

species allows for identity labeling because each group hosts a single male which also443



MACHINE LEARNING FOR PRIMATE BIOACOUSTICS 20

happens to be the only producer of “pyow” calls. Additionally, other species’ calls found in444

the same environment were added for the species discrimination task (olive baboons, Papio445

anubis; redtail monkeys, Cercopithecus ascanius schmidti, and guereza colobus monkeys,446

Colobus guereza occidentalis). After extracting MFCCs and training various MLPs with447

distinct hyperparameters, male identity classification resulted in 73% accuracy in average448

and species recognition resulted in 96% accuracy for the four classes. Despite the promising449

results, we must point out that substantial manual work had to be allocated for the450

pre-processing, segmentation and identification of the calls prior to the automated451

classification. Other early experiments by Kalan et al. (2015) and Heinicke et al. (2015)452

also showed interesting approaches with simpler algorithms including SVMs and Gaussian453

Mixture Models. Both papers focus on the identification of chimpanzees (Pan troglodytes454

verus), diana monkeys (Cercopithecus diana), red colobus (Procolobus badius) and king455

colobus (Colobus polykomos). Both SVMs and Gaussian Mixture Models were trained on456

MFCCs and other spectral information extracted PAM recordings. The algorithms show457

relatively low results with less than 5% of detected segments being true-positives for the458

best model.459

A more recent approach involving Kernel Extreme Learning Machine was adopted460

by Zwerts et al. (2021). This particular type of model is a supervised learning algorithm461

using a kernel function to map input data into a high-dimensional space and allows for the462

learning of complex and non-linear relationships between input features and output targets.463

It was trained on MFCC representations of vocalizations from captive chimpanzees (Pan464

troglodytes), mandrills (Mandrillus sphinx), red-capped mangabeys (Cercocebus torquatus)465

and a mixed group of guenons (Cercopithecus sp.), with an additional class of background466

noise. The performances of the model are above chance (25% for the four species) with467

76.7% accuracy in a four class setup and 69.7% accuracy with the addition of the noise468

class, but stay relatively low compared to more recent approaches.469

As we have mentioned with other experiments, the publication of this new dataset470
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and baseline model may be seen as a benchmark which was promptly integrated as part of471

the INTERSPEECH 2021 Computational Paralinguistics Challenge (Schuller et al., 2021).472

In an attempt to tackle the species identification problem with state-of-the-art473

architectures (similar to what we have seen in Section 3.1), Pellegrini (2021) compared474

several DL models including CNNs, MobileNet and ResNets. They also revolved to data475

augmentation methods like SpecAugment and MixUp (another technique for data476

augmentation relying on the blending of pairs of training examples). The main difference477

between each model lies in the definition of their convolutional blocks. The first two478

models are standard CNN architectures with 6 and 10 layers respectively. The479

MobileNetV1 model relies on depthwise separable convolutions to reduce computational480

costs and gain efficiency, usually in the scope of being used in mobile and embedded481

devices. Finally, two CNN ResNet models make use of residual connections, allowing for a482

deeper network architecture to be trained without suffering from the vanishing gradient483

problem which affects models with many stacked layers, such as standard CNNs. The484

results show good improvement compared to Zwerts et al. (2021) baseline with an485

unweighted average recall of 92.5% achieved by the 10 layer CNN, closely followed by the486

large ResNet model. In this case, the 10 layer CNN is preferable to ResNet as it achieves487

better performance with a much smaller model size. The authors also note that the most488

common confusion made by their models regards the background noise class versus the489

primate vocalizations one. This confirms the importance of ongoing efforts in resolving490

“low level” tasks, such as the identification of primate vocalizations among natural noise.491

3.3 Vocal repertoires and clustering492

Despite this, “high level” tasks can be found in computational bioacoustics493

literature, with many relying on machine and deep learning-based solutions. One such task494

with great scientific value for primatology is the discovery or the classification of call types495

(i.e., the categories of calls produced by a species). This task may be carried out through496
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different approaches, including supervised classification (each class corresponding to a497

predefined call type) and unsupervised clustering (the grouping of similar acoustic objects498

into undefined call type categories). Each of these has been explored for various primate499

species using an array of machine learning algorithms. The relative success of one500

approach, especially in unsupervised contexts, is often seen as a form of validation of501

predefined expert descriptions of a species vocal repertoire. Call type classification thus502

serves the purpose of automatically processing large amounts of data while potentially503

questioning human bias in the definition of vocal repertoires and fostering replicable results504

across studies.505

We hereby refer to “unsupervised” approaches to account for all experiments506

involving the training of a model with little to no reliance on expert labels and507

annotations. In the context of call type discovery, for instance, this means that a clustering508

model is trained on unlabeled acoustic samples and should discover its own typography of509

calls in order to categorize them. The related “semi-supervised” approach is one where a510

limited amount of information is given to the model prior to clustering, such as the number511

of categories to be discovered. Evaluating the results of such clustering approaches is a512

highly debated topic in computer science, as no single solution can objectively quantify the513

validity of a set of clusters compared to another. Von Luxburg et al. (2012) review the514

different issues related to clustering and its evaluation. Although not centered around515

bioacoustics, the paper draws inherent limits specific to the idea of automatic clustering:516

• Evaluating clustering results is not problem-independent and must be related to the517

end-user intent and their scientific scope.518

• As is always the case with high-dimensional data, selecting the features on which519

clustering will be carried out can greatly modify the output typology.520

• A given clustering output can be found to be qualitatively reasonable for a specific521

research question but may be meaningless to others.522
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• Computing internal clustering quality scores (centrality of the clusters, likelihood523

scores, silouhette values, etc.) can be informative at the algorithm level but does not524

provide an objective and domain-specific evaluation of the results.525

• Comparing the results of unsupervised clustering with predefined categories of calls526

should not be seen as undisputable proof of the validity of said “expert” categories,527

as both may be biased in different ways.528

Clustering primate call-types should thus be seen as an exploratory approach, and529

experiments using it as a confirmatory solution to predefined human vocal repertoires530

should be taken with care.531

To our knowledge, the first paper mentioning the use of Artificial Neural Networks532

for primate vocalization analysis, over and above the preliminary work of Zimmermann533

et al. (1995), is, in fact, aimed at call type classification on black lemurs (Eulemur macaco).534

Pozzi et al. (2010) compare the performances of supervised neural networks, statistical535

models and clustering algorithms in recognizing a set of predefined call types. They show536

that basic artificial neural networks trained to classify seven call types from which spectral537

(F0 and formants) and temporal (duration) acoustic features were extracted, can show high538

performances with a general accuracy of approximately 94%. Statistical analysis with539

Discriminant Function Analysis and K-means clustering showed slightly lower540

performances, with large disparities in classification accuracies for some call-types,541

potentially due to the unbalanced classes context. The authors thus give a first example of542

some advantages presented by deep learning methods compared to statistical approaches.543

They mention their ability to handle noisy recordings, to generalize human annotations to544

unseen data, and the reusability of a model’s weights once it has been successfully trained.545

The authors also mention a set of limitations that can still be found in such experiments.546

These include the over-fitting problem where neural networks learn dataset-specific547

information related to individuals or to their sex rather than universal cues generalizable to548

the entire species. They also mention the problem of biases in the manual annotation of549



MACHINE LEARNING FOR PRIMATE BIOACOUSTICS 24

datasets, which may greatly affect the evaluation of clustering.550

As previously mentioned, statistical and machine learning algorithms that do not551

involve neural networks can show promising results in the analysis of call types. Turesson552

et al. (2016) investigated the use of seven different such models in addition to DL ones for553

the categorization of common marmoset (Callithrix jacchus) calls. The automatic554

identification of call types appears as an essential tool for marmosets, as they produce large555

amounts of characteristically complex and overlapped vocalizations on which annotation is556

rather tedious and time-consuming. The authors collected a dataset from captive monkeys’557

recordings with approximately 30 examples for each of the 11 call types investigated. They558

chose linear predictive coding as a feature extractor. This technique, traditionally used to559

encode the timbre of human voice signals in speech compression for telephony, consists of560

modeling the spectral envelope of sound samples as the weighted sum of previous samples561

from a given acoustic sample. The extracted features are used as an input to train several562

classifiers, namely an Optimum-Path Forest, an MLP, an SVM, a k-Nearest Neighbors563

clustering algorithm, etc. In addition, various proportions of the training set were tested to564

understand performance trade-offs relative to training size. The SVM, k-Nearest Neighbors565

and Optimum-Path Forest were found to be the best performing algorithms in both the566

smallest and largest training set sizes, with Optimum-Path Forest being parameter-free and567

requiring less computational resources. This suggests that simple statistical algorithms can568

show high performances when facing limited amounts of clean data, although we could569

argue that larger training datasets would increase performances in general and might be in570

favor of other more complex deep learning-based models.571

The task of automatically discriminating between different types of calls may prove572

useful in quickly processing large amounts of data but it can also be used to infer new573

properties of primate communicative systems, especially when tackled with clustering. Erb574

et al. (2023) adapted different models to the classification of Bornean orangutans (Pongo575

pygmaeus wurmbii) pulse-types to investigate problematic elements in the specie’s576
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predefined vocal repertoire. They collected a dataset of focal recordings from 23 individual577

males. Comparing human annotations and the unsupervised predictions of an SVM as well578

as soft and hard clustering algorithms, they showed that a set of six pulse-types gives579

rather poor results in terms of inter-annotator agreement as well as automatic predictions580

in this specific experimental setup. This negative result allows them to propose a new581

repertoire comprised of only three pulse-types, which shows higher classification accuracy582

and reproducibility. Finally, they highlight the importance of graded categories of signals,583

in opposition to strictly separated call types, in the typology of orangutan call types. This584

type of experiment shows how automatic clustering and classification, although not585

sufficient to objectively refute a predefined vocal repertoire, can still be used as an586

exploratory tool to identify its potential biases. Similarly, Wadewitz et al. (2015) question587

the discreetness of chacma baboons’ (Papio ursinus) call type categories by investigating588

the results of a “fuzz” clustering algorithm. They argue that labeling primate vocal589

repertoires as being either fully discrete or fully graded may be considered an590

oversimplification. Hard clustering (found in K-means algorithms, for example) assigns591

each call to a single cluster or call-type. Fuzzy clustering (such as the C-means algorithm),592

allows separating different classes of calls in a gradual manner rather than a sharp one.593

Each call is given a membership value, ranging from 0 to 1, assigning it to each cluster.594

Intermediate membership values characterize calls ambiguously pertaining to multiple595

clusters. The authors find that, although hard K-mean clustering shows good alignment596

with predefined human labeled call types on chacma baboons, fuzzy clustering gives597

additional information regarding the atypicality of some of the species’ calls. Again, when598

used as an exploratory tool, fuzzy clustering may question unforseen biases in the599

constitution of a species vocal repertoire.600

We have seen that call-type classification and clustering can be carried out for601

different reasons with different algorithms, but the outcome of call-type clustering also602

greatly depends on the choice of acoustic features it is built on. A preferred approach is the603
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dimensionality reduction of spectral features, as in an experiment proposed by Sainburg604

et al. (2020) relying on the Uniform Manifold Approximation and Projection algorithm605

(UMAP), among others. This popular method has the benefits of being relatively efficient606

in discovering significant sound features and can result in informative visual607

representations of clusters. UMAP is one of the many dimensionality reduction algorithms608

used to classify vocalizations by taking high-dimensional features (like deep, spectral, or609

acoustic features) and mapping them to a lower-dimensional space while maintaining the610

underlying distances between different sounds. By reducing the dimensionality of611

spectrograms with said algorithm, the authors show the implications of automatic612

unsupervised clustering in a variety of topics related to primate vocalization analysis,613

including the discreteness of macaques vocal signatures (see Figure 6) or the apparent614

continuity of gibbon (Hylobates sp.) syllables (see Figure 7).615

This approach should both be extended to other primates and explored through the616

use of different algorithms and input features. In fact, UMAP may struggle with capturing617

the global structure of acoustic data, particularly when dealing with complex and highly618

varied vocalizations, as is the case for primates. In addition, UMAP’s performance may be619

strongly affected by the presence of outliers and noise in the data (as is often the case with620

PAM recordings), potentially leading to distorted representations and the absence of621

interpretable results.622

As an alternative, Best et al. (2023) were inspired by deep representation learning623

and extended this methodological framework to an array of animal species, showing once624

again the great flexibility of the approach in validating vocal repertoires and alleviating625

their manual annotation. Contrary to the latter experiment, the features extracted prior to626

clustering are derived from a self-supervised CNN-based auto-encoder trained to encode627

informative components of a spectrogram through a bottleneck approach in order to628

subsequently decode input signals with minimal loss of information. This method, inspired629

by speech and image processing techniques, yields significant results in the unsupervised630
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clustering of call-types for a variety of taxa ranging from birds to marine mammals. The631

authors showed the benefits of working with UMAP and clustering algorithms based on632

deep representations of sound rather than spectral or handcrafted features. As was633

previously mentioned, the evaluation of clustering results through their comparison with634

pre-defined expert categories is rather exploratory and does not prove the objective validity635

of a given algorithm or feature extraction method (nore of said expert categories).636

Nevertheless, clustering solutions can be compared in terms of their alignment with human637

typologies to provide interesting insights on their ability to extract information deemed638

important by expert labelers. The authors thus demonstrate the ability of models639

pre-trained on non-bioacoustic datasets to extract features that encode sufficient640

information for an efficient unsupervised clustering of call-types. Although their641

Autoencoder architecture yields better results in most datasets, models like wav2vec642

(Schneider et al., 2019) and OpenL3 (Cramer et al., 2019), a model trained on audio/video643

correspondence from YouTube data, also show comparable agreement scores between found644

clusters and expert labels. This innovative paradigm, i.e., using large DL models645

pre-trained on non-bioacoustic data for bioacoustic tasks, seems to be an increasingly646

popular one in a variety of experiments, although it stays quite seldom explored for647

primate vocalizations. In the next section, we will discuss recent papers making use of this648

approach and see the potential implications and perspectives it may offer for the study of649

primate vocal communication.650

4 Transfer learning and promising approaches651

Fairly recently, the advent of so-called “Pre-Trained Models” (PTM) has652

undoubtedly revolutionized the use of deep learning for text, image and speech processing.653

For Natural Language Processing, PTMs such as BERT (Devlin et al., 2019) or GPT654

(Radford et al., 2018) have become a milestone in the field of artificial intelligence with655

large language models like ChatGPT showing impressive applications way beyond656
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computer science research by leveraging an ever-increasing access to high computational657

power and large amounts of data.658

These models often rely on a self-supervised learning pre-training step, consisting in659

storing and extracting information from massive datasets which can then be reemployed in660

a variety of downstream tasks with great performance benefits compared to more661

traditional supervised approaches (X. Liu et al., 2023; Mohamed et al., 2022). In the662

acoustic domain, self-supervised models have also shown impressive capabilities in663

generalizing knowledge with performance gains across a wide range of domains. The664

typical approach in this regard is to pre-train a model on large unannotated datasets665

(which should be relatively close in nature to the target domain data) and to use the666

learned representation for downstream tasks on smaller manually labeled datasets. This667

process involves transfer learning, i.e., relying on the knowledge learned during the668

pre-training task for a new, potentially different, downstream task (see Figure 3). This669

approach was successfully carried out in a variety of domains including music or biomedical670

signal processing (Banville et al., 2021; Wu et al., 2021).671

Bioacoustic tasks and use-cases are no exception here. Researchers in animal vocal672

communication progressively turned to this new paradigm in recent years by adapting673

methods initially developed for speech and sound processing to the analysis of acoustic674

data produced by animals. When it comes to primates, however, the success of675

self-supervised and transfer-learning approaches is yet to be confirmed and widely adopted.676

However, several such experiments can be found relying on a variety of parallel approaches,677

each showing its own benefits. We hereby discuss three main solutions that arise from678

using transfer learning for automatic primate vocalizations processing.679

4.1 Retraining680

In the field of machine learning, transfer learning refers to the pre-training of a681

model on a given dataset or task and the development of a downstream model aimed at682
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performing a specific downstream task on a different (annotated) dataset. In bioacoustics,683

however, a slightly different popular approach, partly relying on knowledge transfer, is the684

retraining of a model initially developed for similar tasks but on a different species. This685

retraining approach is not to be confused with the pre-training of a single foundation686

model in which previously learned weights may be reused for several applications. For687

primate vocalizations, a good example of knowledge transfer through retraining is the work688

by Romero-Mujalli et al. (2021). Here, the authors show the benefits of retraining the689

ultrasonic vocalization detector model DeepSqueak (originally developed for rodents) on a690

gray mouse lemur (Microcebus murinus) vocalizations dataset. Both taxa, rodents and691

gray mouse lemurs, show relative similarity in the frequency range and general spectral692

dynamics of their vocal communication. This similarity, the simplicity of the retraining693

approach, the efficiency of DeepSqueak’s Faster-RCNN and the user-friendly environment694

of the software allows yielding competitive results by training DeepSqueak on lemur’s695

vocalization for their segmentation, classification and the unsupervised clustering of call696

types. The approach reaches high accuracy in the detection of calls (with 91% of correctly697

identified calls from a training set containing ≈ 2,000) with interesting insights on the698

effects of recording quality and inter-individual variation.699

In a second part of the experiment, the authors also turn to transfer learning700

through pre-training. After having trained DeepSqueek on a gray mouse lemur dataset,701

they test its robustness in the detection of calls from Goodmans mouse lemurs (M.702

lehilahytsara), a closely related species which was never seen by the model during its703

training, achieving very similar results. This is thus a first example of how a model trained704

on one species or one dataset can be leveraged in processing a second species or dataset705

with the assumption that information extracted from the first task can be efficiently706

reemployed in the latter.707
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4.2 Pre-training708

Surprisingly, relying on pre-trained models knowledge from taxonomically related709

primates is not a preferred approach in computational bioacoustics. Rather, most transfer710

learning experiments are built upon speech-based models with the underlying assumption711

that human and non-human primates share, at least, some vocal characteristics and that712

models are sufficiently resistant to such a domain shift. In addition to this, pre-trained713

self-supervised models for speech have been extensively explored in recent years and714

state-of-the-art solutions are now publicly available and easy to access through dedicated715

APIs like HuggingFace, S3PRL or SpeechBrain. We hereby give some of the few examples716

of how large speech-based PTM such as HuBERT (Hsu et al., 2021), wav2vec2 (Schneider717

et al., 2019) or DeepTone can be used to efficiently process primate vocalizations, either as718

frozen feature extractors replacing mel-spectrograms and engineered features or as719

foundation models aimed at offering a unified solution to multiple tasks and species.720

An essential part in the development of transfer learning models is the comparison721

of their performance with more traditional approaches, as was done by Jiang et al. (2023).722

Here, the authors train a Long Short-Term Memory (LSTM) model and a transformer723

model on sound event detection: the segmentation and the automatic identification of call724

sequences from continuous vocalizations of bonobos (Pan paniscus), chimpanzees (Pan725

troglodites) and orangutans (Pongo pygmaeus). They focus their experiment on comparing726

performances across three feature extraction processes as input to the models: the raw727

waveform, spectrograms and wav2vec embeddings. Wav2vec (Schneider et al., 2019) is a728

speech based PTM, relying on self-supervised representation learning from raw audio and729

initially developed for speech recognition. The model consists in a multi-layer CNN trained730

on a noise contrastive binary classification task: it learns to extract informative731

representations of short sound frames of 30 ms from their context by differentiating them732

from other, randomly sampled, sound frames. This learned “latent representation”, also733

known as pre-trained embedding, can be seen as a fixed-length vector of 768 elements (for734

https://huggingface.co
https://github.com/s3prl/s3prl
https://speechbrain.github.io
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wav2vec LARGE), supposedly encoding essential information from the input audio data.735

The encoded information was proven to be useful for its initial intended purpose of736

automatic speech recognition, but it may also incorporate other acoustic properties from737

speech such as the identity of a speaker or voice print, language information or even738

emotional expressivity from prosodical content (Y. Wang et al., 2021).739

In the paper by Jiang et al. (2023), the assumption is that a wav2vec representation,740

although initially trained on speech, can also encode enough acoustic information to741

distinguish between great apes call types or to differentiate them from background forest742

noise. The authors find that training an LSTM on these embeddings yields better results743

compared to spectrograms or the raw waveform. They show the benefits of balancing744

classes when facing small annotated datasets and give an example of how pre-trained745

representation can also be used in zero-shot classification contexts by training a model on746

the orangutan dataset and using it to classify bonobo’s call types without further training.747

These results thus show how the use of speech-based models is a promising solution for748

zero or few-shot learning from small primate datasets, even for cross-species classification.749

Leroux et al. (2021) give an example of transfer learning from speech for primate750

vocal signature classification. They formulate a hypothesis for the existence of an751

acoustically encoded unique individual signature across call types in chimpanzees (Pan752

troglodytes) and test it through automatic classification of individuals. In doing so, the753

authors train several shallow classifiers on top of DeepTone Identity embeddings, a model754

pre-trained on 10,000 unique utterances from human IDs, and compare performances with755

MFCC inputs (a spectral representation often used for speaker identification). Despite the756

classifier relying on a simple SVM architecture and being trained on a rather unbalanced757

dataset of calls from three individual chimpanzees including three different call types, they758

reach 80% accuracy with consistently higher performances from DeepTone embeddings759

compared to MFCCs. Additionally, the transfer learning approach tends to show higher760

results compared to the spectral approach in low training data contexts, reaching a761
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maximally higher accuracy when using only 40 training examples. Again, this shows the762

value of pre-trained embeddings for few-shot learning when annotated data is scarce. The763

approach also gives a hint into the potential acoustic similarity between great apes764

vocalizations and human speech as well as the great generalizability and domain transfer765

abilities of speech based PTMs. In contrast, Lakdari et al. (2024) show that MFCCs can766

outperform pre-trained embeddings from wav2vec when used as input to an SVM for767

gibbon vocal identity classification. Yet, their experiment relies on modified verions of said768

embeddings (with embeddings averaged on several dimensions) which may result in an769

important loss of information prior to classification. We think that these modifications and770

the use of a single model may impair fair comparisons and do not properly reflect the771

abilities of pre-trained speech models (Jiang et al., 2023; Leroux et al., 2021; Sarkar &772

Doss, 2023).773

4.3 Pretext tasks and pre-training data774

We have seen that relying on learned representations from self-supervised PTMs can775

boost primate vocalization classification performances compared to using the raw waveform776

or spectral representations, even when said PTMs were initially trained on speech. With777

this in mind, an open question remains on the influence of different PTM architectures and778

pre-training datasets on the performances of downstream classifiers. Currently, speech779

processing state-of-the-art models are mostly self-supervised PTMs, and recent years have780

seen the emergence of innovative architectures frequently improving benchmark781

performance with new pre-training datasets, larger numbers of parameters or different782

“pretext tasks”.783

These pretext tasks are proxy tasks used to pre-train models on raw acoustic784

datasets without the need for human supervision (hence the self-supervised nature of these785

models). They consist in generating supervision from the data itself, requiring informative786

data representation learning from the model which will automatically learn to capture787
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structural information and acoustic patterns to reach low losses and higher predictive788

performances during training. A first example of such a pretext task is masked modeling,789

an approach introduced for the textual language model BERT (Devlin et al., 2019), which790

consists in masking portions of the data (either text, images or sound) and reconstructing791

said portions from their surrounding context. This approach was successfully implemented792

for speech in HuBERT by Hsu et al. (2021). As we have already seen for wav2vec,793

contrastive predictive coding is another pretext task consisting in predicting future sound794

frames from previous ones, and yields similar results compared to HuBERT.795

Many such examples exist in the literature and could result in different performances796

gains when adapted to bioacoustic classification. This was tested by Sarkar and Doss797

(2023) who compared 11 speech-based PTMs, all trained on similar speech datasets (i.e.,798

Librispeech for 10 of them and Libri-Light for Modified-CPC) on a common marmoset799

(Callithrix jacchus) caller detection task. These models include wav2vec and HuBERT as800

well as other state-of-the-art models including APC (Chung & Glass, 2020), Mockingjay801

(A. T. Liu et al., 2020) or WavLM (Chen et al., 2022), each presenting some specificity in802

their architecture, sizes and pretext tasks. As in both previously mentioned experiments,803

all PTM weights are kept frozen (the models are not further trained on unlabeled data)804

and used as feature extractors for downstream classifiers: SVMs and an LSTM for binary805

caller classification. The downstream models thus predict if two calls are uttered from the806

same individual or not. As can be seen in Figure 8, the authors test the performance of the807

downstream model in terms of Area Under the Curve and compare it with PTM size and808

pretext task (also referred to as the pre-training objective). The autoregressive809

reconstruction implemented in APC (Chung & Glass, 2020) and its vector quantized810

variant VQ-APC (Chung et al., 2020) seem to perform slightly better despite smaller model811

sizes. Surprisingly, Data2vec (Baevski et al., 2022) which was the most successful masked812

model for several speech tasks at the time of the experiment, performs lower than the rest,813

thus showing weaker representation learning capabilities in a domain adaptation context.814
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Following the question of model architectures and pretext tasks, the nature of the815

pre-training dataset could be considered as an essential part of the process, for the reason816

that PTMs are inherently conditioned to capture knowledge dependent on their training817

data. We should point out that the idea of using pre-training models from speech to818

perform bioacoustic tasks is not solely related to a theoretical similarity between speech819

and animal vocalizations. The approach can also be explained by the extensive availability820

of speech data in recent years, when the size of a pre-training dataset is an essential821

prerequisite to the success of self-supervised models. Yet, the effect of the nature of a822

pre-training dataset on bioacoustic tasks performances remains an open question.823

Although an intuitive answer to this second question would be that the closest in domain a824

pre-training dataset is to the downstream one, the preliminary results recently showcased825

by Hagiwara (2023) seem to indicate a more complicated situation. With their826

self-supervised model AVES, the authors go a step further from using speech-based PTMs827

as feature extractors and test performance gains in terms of pre-training data for an array828

of downstream tasks (classification and detection on marine and terrestrial mammals,829

amphibians, birds and primates). Heavily inspired by the HuBERT architecture, they830

entirely retrain the masked modeling transformer on several curated datasets including831

animal vocalizations, speech and general sound. They propose different pre-training sets by832

filtering audioset and VGGsound: two collections of several millions of 10 second audio833

clips drawn from YouTube videos with corresponding categories. By filtering said834

categories, they build 4 distinct data subsets :835

• core: a configuration containing 153 hours of general sounds836

• bio: the core configuration with added sounds corresponding to the animal label in837

VGG sound (360 hours)838

• non-bio: a similarly sized control dataset containing random sounds from all839

categories except the animal one (360 hours)840
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• all: a dataset containing all types of sounds on top of the core configuration, making841

up to 5,054 hours of audio.842

To further test the performance gains of their models, they compare them with843

VGGish and ResNet (both PTMs developed for general purpose audio-tagging) which were844

further trained in a supervised manner on the tasks at hand. The authors find that the845

AVES version trained on bioacoustic data (bio) outperforms other PTMs, including the846

supervised topline from VGGish and ResNet on most tasks. Although these results seem847

promising and show the validity of the approach, they must be taken carefully as the848

bioacoustic pre-training set only increases performance by a small margin. Furthermore,849

the primate detection task, carried out on Müller gibbons (Hylobitae muelleri), shows850

slightly lower mean average precision compared to the supervised and unsupervised851

versions of ResNet. This result may be explained by the scarcity of vocalizations contained852

in the gibbon dataset and might not entirely reflect the advantages of AVES which can be853

seen in most of the other tasks.854

In a broader perspective, the authors compute t-scores to compare the average855

results obtained from the four pre-training datasets. Surprisingly, bio and non-bio reach856

very close performance and improve upon all despite their much smaller sizes. This857

indicates that selecting reduced curated datasets may give better results in a pre-training858

configuration rather than opting for very large and miscellaneous collections of sounds. The859

authors thus show their model’s ability to generalize well across domains. This might be860

seen as a counterargument towards the need for a specific bioacoustic pre-training dataset861

for transfer learning from self-supervised models. It could also mean speech-based models862

are not successful in bioacoustics because of some acoustic resemblance between speech and863

animal vocalizations but rather because of their ability to transfer knowledge across864

acoustic domains. In any case, such assumptions will need to be further tested to account865

for the many technical limitations which might also explain these counter-intuitive results.866

Lastly, the results obtained by Ghani et al. (2023), although not specifically tailored867
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for primate vocalization analysis, give a good example of transfer learning across species.868

In their experiments, large models pre-trained for bird sound classification (namely869

BirdNet 2.3 and Perch) are compared to general audio tagging models pre-trained on870

AudioSet (YAMNet, VGGish and AudioMAE). This comparison is carried out through871

probing: a method consisting in training simple linear layers on the pre-trained embeddings872

to understand how much of the information needed for the downstream task they are able873

to linearly encode. This gives a better account for the ability of a PTM to capture874

information for a given task, as the downstream model (a simple linear probe) adds very875

little knowledge to what was effectively captured by the PTM. In this case, results show876

that both bird-based models outperform the general event-detection ones by a good margin877

in detecting and classifying bird sounds as well as other animals such as frogs, cetaceans878

and bats. This is also the case in few-shot learning, as both models are still on the topline879

when downstream datasets are reduced in size, thus showing that pre-training models on880

bird sounds may be a viable option for few-shot learning on other scarcely annotated881

species. The authors state that this performance gain may be explained by the rich and882

diverse sounds produced by birds which occupy a broad range both temporally and in the883

spectral domain with great frequency, harmonic and rhythmical complexity. Added to this,884

the large amount of publicly available bird song datasets, in par with what can be found885

for speech compared to the scarcity of primate recordings, makes it another viable option886

for bioacoustic transfer learning across species. We think that, in addition to model testing887

and the development of primate-only PTMs, a good amount of work still needs to be put888

into understanding the influence of pre-training datasets for automatic primate889

vocalization analysis.890
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5 Discussion891

5.1 Available datasets892

As an encouragement for researchers to partake in further testing of the many893

options we have surveyed so far, we draw a non-exhaustive list of some publicly available894

primate vocalization datasets. These can be used either as pre-training data for transfer895

learning models or as manually annotated datasets for supervised downstream896

classification. Some also include open-source models and code to be used as inspiration or897

as baselines for performance evaluation. See Table 1 for a list of the previously-mentioned898

papers with code and dataset availability.899

5.2 General lack of publicly available data900

As can be seen in Table 1, few annotated datasets of primate vocalization recordings901

are made publicly available (compared to other taxa, or to the amount of public speech902

datasets). Despite this, our list in not exhaustive and more unpublished data could be903

found in addition to ongoing efforts still being carried out to this day in the recording of904

new datasets and their annotation. This lack of published data could be said to hinder905

research efforts into primate vocalization analysis and similar issues can be found in the906

whole field of bioacoustics (Baker & Vincent, 2019). Furthermore, within primate related907

research, some species are clearly underrepresented for various reasons, including the lack908

of interest put into the study of apparently poorly complex vocal systems, the remoteness909

of their habitat or the scarcity of endangered species. This is why the development of910

efficient machine learning solutions for the processing of primate vocalizations should911

always be made in parallel with annotation and recording projects as well as a substantial912

amount of work put into their deposition as supplementary material into public websites.913

The annotation itself should be thoroughly documented with an emphasis on reduced bias914

and reproducible methods. Finally, codes and models need to be published in open-source915
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(as is often the case). This encourages their reuse or adaptation, especially when916

developing large pre-trained foundation models which weights can be reemployed without917

the need for time and energy-consuming re-training.918

5.3 Ethical and environmental concerns919

In the field of computational bioacoustics applied to primates, we can observe a920

general tendency towards the use of PAM paired with deep learning approaches. This may921

be seen as a promising direction in terms of ethical and environmental concerns. In fact,922

PAM is considered as a non-invasive solution to the study of animal communication, and923

its automatic processing with machine learning methods leads to great opportunities for924

conservation and monitoring projects. Yet, several drawbacks should also be mentioned.925

First of all, the lack of control over the elements recorded during PAM may lead to926

privacy concerns when human speech is picked up by the acoustic sensors. This problem, in927

turn, can be easily circumvented with similar machine learning methods as the ones used928

for the animal vocalization analysis. As we have mentioned before, speech processing929

methods for the automatic detection of speech have shown impressive results in the recent930

years and their implementation is strongly facilitated by the availability of user friendly931

open-source models. Employing such models to filter out speech, especially when facing932

recording of animals in captivity should be included as a preprocessing step in such933

experiments (Janetzky et al., 2021).934

A second limit is the well-known environmental impact of AI, although935

computational bioacoustics stays a relatively niche domain of study compared to the936

research effort put into computer science for image or natural language processing. This937

important issue has been thoroughly addressed by specific reviews and studies938

(Van Wynsberghe, 2021). We should mention that promising solutions include the reuse of939

weights from pre-trained models which limits training time, and the development of940

foundation models for transfer learning as we discussed in Section 4.941
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Finally, the malicious use of automatic primate monitoring tools should always942

remain an important concern. As stated in Piel et al. (2022): “The ability of remote943

sensing tools to incidentally (or deliberately, in the case of poachers) reveal the location,944

movement and behavior of individuals raises concerns about informed consent, privacy,945

civil liberties, and fear of arrest”. This problem is unfortunately embedded in the advocacy946

for open-source models, and no single solution exists. More work needs to be carried out in947

evaluating the impact of open-source animal detection models and datasets, as was done by948

Lennox et al. (2020) for biotelemetric data sharing. In contrast however, the detection of949

poaching activity may be tackled through machine learning solutions and seems to be an950

actively addressed problem in recent computational bioacoustics studies with tasks like951

gunshot, chainsaw or illegal cattle farming detection from acoustic data (Pérez-Granados &952

Schuchmann, 2023; Sethi et al., 2020).953

6 Conclusion954

Primate vocal communication research has seen a significant shift with the advent of955

machine learning and artificial neural networks, inspired by bioacoustics studies on other956

taxa, or sound and speech processing. The use of passive acoustic monitoring and the957

availability of large annotated datasets have paved the way for innovative automated958

workflows, reducing our reliance on manual annotations and analysis and questioning some959

aspects of human bias. This paradigm shift has seen the emergence of new automated960

tasks with important scientific implications and is starting to turn into valuable monitoring961

and conservation tools. We have provided a concise survey of the recent directions taken in962

computational bioacoustics, highlighting emerging approaches and the valuable insights963

they offer for the study of primate communication. We have discussed recent interests for964

state-of-the-art deep learning models and their prolific application to primate bioacoustic965

research, all the while reaffirming the validity and greater transparency of earlier statistical966

approaches. Looking ahead, the development of high-performance weakly supervised967
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transfer learning models holds promise for further advancements in the field, but challenges968

remain in understanding the behavior of these black box models for their subsequent use as969

scientific tools. Challenges also remain in terms of data availability, and in turning existing970

solutions into user-friendly light-weight models accessible to primatologists. As the field of971

computational bioacoustics evolves, we can expect deep learning research to bring further972

exciting developments that will continue to enrich our understanding of primate vocal973

communication and its role in their social interactions and ecological contexts.974
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Glossary992

clustering is a machine learning approach which consists in grouping similar objects into993

different subsets (or clusters). Although many algorithms exist, they generally work994

by partitioning a dataset into said clusters according to some similarity and/or995

dissimilarity metric. In the case of primate vocalizations, this approach is usually996

employed to examine repertoires of call-types. 8, 22–28, 30997

CNN (Convolutional Neural Networks) are a popular DL architecture in bioacoustics,998

specifically designed to extract meaningful information from image inputs (such as999

spectrograms) by recognizing patterns in the data. 7, 13–17, 19, 21, 22, 27, 311000

DL (Deep Learning) models refer to a category of machine learning algorithms based on1001

neural networks and capable of learning complex patterns from data such as primate1002

vocalizations. 3, 6, 7, 9–11, 17, 19–21, 24, 281003

embedding (or latent representation) refers to a numerical vector outputted by a deep1004

learning model and supposed to encode relevant informative features from input1005

soundframes. Embeddings are usually extracted from a pre-trained model and used1006

as input for downstream models in the transfer learning approach (see Figure 3).1007

31–33, 371008

F1-score is a metric used to evaluate the performances of a machine learning model in1009

binary classification tasks. Ranging from 0 (worst) to 1 (best), it is computed as a1010

balance between precision and recall, making it particularly useful in scenarios with1011

inbalanced classes or to account for false positives and false negatives. 81012
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mel-spectrogram provides a detailed visual representation of the frequency content of an1013

audio signal. They can be considered as the conversion of a traditional spectrogram1014

into the Mel scale, which is better aligned with human auditory perception. 9, 14, 311015

MFCC (Mel-Frequency Cepstral Coefficients) are a spectral feature extraction method1016

commonly used in sound processing. They allow capturing essential characteristics of1017

an audio signal by converting the frequency domain into the so-called “Mel” scale.1018

This makes MFCCs quite difficult to interpret visually but a very successful feature1019

extraction method for machine learning models. 19–21, 32, 331020

self-supervised learning is a pre-training approach relying on pseudo-labels found within1021

the data itself, without human interventions (as in designing models that will predict1022

future sound frames given a context). 27–29, 31, 33, 35, 361023

supervised learning is a machine learning approach involving the use of annotated or1024

labeled data as training material for a given algorithm. Weak supervision is more1025

closely related to the unsupervised approach and involves using little expert1026

knowledge during this process (a pre-defined number of call-types during1027

unsupervised call-type clustering for example). 4, 21, 22, 24, 29, 36, 38, 401028

SVM (Support Vector Machines) are a class of “simple” machine learning algorithms1029

designed to linearly separate datapoints into different categories. They are especially1030

popular in bioacoustics where the use of more complex deep learning models might1031

not be necessary to reach acceptable performances on a given task. 8, 18, 21, 25,1032

32–341033

transformer networks are a type of neural network specifically designed to model1034

long-range dependencies in sequential data such as sound or text. Their popularity1035

grew in recent years within natural language processing research but their application1036

to bioacoustic data remains underexplored. 7, 31, 351037
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unsupervised learning is a machine learning approach which does not rely on expert1038

annotations. The data used for unsupervised learning is unlabeled and the machine1039

learning algorithms must categorize it according to the structure of the data itself or1040

by recognizing specific patterns in said data. 22, 23, 25, 27, 28, 30, 361041



MACHINE LEARNING FOR PRIMATE BIOACOUSTICS 44

References1042

Anders, F., Kalan, A. K., Kühl, H. S., & Fuchs, M. (2021). Compensating class imbalance1043

for acoustic chimpanzee detection with convolutional recurrent neural networks.1044

Ecological Informatics, 65, 101423.1045

https://doi.org/https://doi.org/10.1016/j.ecoinf.2021.1014231046

Baevski, A., Hsu, W.-N., Xu, Q., Babu, A., Gu, J., & Auli, M. (2022). Data2vec: A general1047

framework for self-supervised learning in speech, vision and language.1048

International Conference on Machine Learning, 1298–1312.1049

https://doi.org/10.48550/arXiv.2202.035551050

Baker, E., & Vincent, S. (2019). A deafening silence: A lack of data and reproducibility in1051

published bioacoustics research? Biodiversity Data Journal.1052

https://doi.org/10.3897/BDJ.7.e367831053

Banville, H., Chehab, O., Hyvärinen, A., Engemann, D.-A., & Gramfort, A. (2021).1054

Uncovering the structure of clinical eeg signals with self-supervised learning.1055

Journal of Neural Engineering, 18(4). https://doi.org/10.1088/1741-2552/abca181056

Bayestehtashk, A., Shafran, I., Coleman, K., & Robertson, N. (2014). Detecting1057

vocalizations of individual monkeys in social groups.1058

2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,1059

4775–4779. https://doi.org/10.1109/EMBC.2014.69446921060

Best, P., Paris, S., Glotin, H., & Marxer, R. (2023). Deep audio embeddings for vocalisation1061

clustering. Plos one, 18(7), e0283396. https://doi.org/10.1371/journal.pone.02833961062

Bonafos, G., Pudlo, P., Freyermuth, J.-M., Legou, T., Fagot, J., Tronçon, S., & Rey, A.1063

(2023, October).1064

Detection and classification of vocal productions in large scale audio recordings1065

[working paper or preprint]. https://doi.org/10.48550/arXiv.2302.076401066

Bravo Sanchez, F. J., Hossain, M. R., English, N. B., & Moore, S. T. (2021). Bioacoustic1067

classification of avian calls from raw sound waveforms with an open-source deep1068

https://doi.org/https://doi.org/10.1016/j.ecoinf.2021.101423
https://doi.org/10.48550/arXiv.2202.03555
https://doi.org/10.3897/BDJ.7.e36783
https://doi.org/10.1088/1741-2552/abca18
https://doi.org/10.1109/EMBC.2014.6944692
https://doi.org/10.1371/journal.pone.0283396
https://doi.org/10.48550/arXiv.2302.07640


MACHINE LEARNING FOR PRIMATE BIOACOUSTICS 45

learning architecture [Publisher: Nature Publishing Group]. Scientific Reports,1069

11(1), 15733. https://doi.org/10.1038/s41598-021-95076-61070

Chen, S., Wang, C., Chen, Z., Wu, Y., Liu, S., Chen, Z., Li, J., Kanda, N., Yoshioka, T.,1071

Xiao, X., et al. (2022). Wavlm: Large-scale self-supervised pre-training for full stack1072

speech processing. IEEE Journal of Selected Topics in Signal Processing, 16(6),1073

1505–1518. https://doi.org/10.1109/JSTSP.2022.31881131074

Chung, Y.-A., & Glass, J. (2020). Generative pre-training for speech with autoregressive1075

predictive coding.1076

ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),1077

3497–3501. https://doi.org/10.48550/arXiv.1910.126071078

Chung, Y.-A., Tang, H., & Glass, J. (2020). Vector-Quantized Autoregressive Predictive1079

Coding. Proc. Interspeech 2020, 3760–3764.1080

https://doi.org/10.21437/Interspeech.2020-12281081

Clink, D. J., Bernard, H., Crofoot, M. C., & Marshall, A. J. (2017). Investigating1082

Individual Vocal Signatures and Small-Scale Patterns of Geographic Variation in1083

Female Bornean Gibbon (Hylobates muelleri) Great Calls.1084

International Journal of Primatology, 38(4), 656–671.1085

https://doi.org/10.1007/s10764-017-9972-y1086

Cramer, A. L., Wu, H.-H., Salamon, J., & Bello, J. P. (2019). Look, listen, and learn more:1087

Design choices for deep audio embeddings.1088

ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),1089

3852–3856. https://doi.org/10.1109/ICASSP.2019.86824751090

Crofoot, M., Lambert, T., Kays, R., & Wikelski, M. (2010). Does watching a monkey1091

change its behaviour? quantifying observer effects in habituated wild primates using1092

automated telemetry. Animal Behaviour, 80, 475–480.1093

https://doi.org/10.1016/j.anbehav.2010.06.0061094

https://doi.org/10.1038/s41598-021-95076-6
https://doi.org/10.1109/JSTSP.2022.3188113
https://doi.org/10.48550/arXiv.1910.12607
https://doi.org/10.21437/Interspeech.2020-1228
https://doi.org/10.1007/s10764-017-9972-y
https://doi.org/10.1109/ICASSP.2019.8682475
https://doi.org/10.1016/j.anbehav.2010.06.006


MACHINE LEARNING FOR PRIMATE BIOACOUSTICS 46

Crunchant, A.-S., Borchers, D., Kühl, H., & Piel, A. (2020). Listening and watching: Do1095

camera traps or acoustic sensors more efficiently detect wild chimpanzees in an open1096

habitat? Methods in Ecology and Evolution, 11(4), 542–552.1097

https://doi.org/10.1111/2041-210X.133621098

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep1099

bidirectional transformers for language understanding.1100

Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),1101

4171–4186. https://doi.org/10.18653/v1/N19-14231102

Do Nascimento, L. A., Pérez-Granados, C., & Beard, K. H. (2021). Passive acoustic1103

monitoring and automatic detection of diel patterns and acoustic structure of1104

howler monkey roars. Diversity, 13(11). https://doi.org/10.3390/d131105661105

Dufourq, E., Durbach, I., Hansford, J. P., Hoepfner, A., Ma, H., Bryant, J. V.,1106

Stender, C. S., Li, W., Liu, Z., Chen, Q., et al. (2021). Automated detection of1107

hainan gibbon calls for passive acoustic monitoring.1108

Remote Sensing in Ecology and Conservation, 7(3), 475–487.1109

https://doi.org/10.1101/2020.09.07.2855021110

Enari, H., Enari, H., Okuda, K., Yoshita, M., Kuno, T., & Okuda, K. (2017). Feasibility1111

assessment of active and passive acoustic monitoring of sika deer populations.1112

Ecological Indicators, 79, 155–162.1113

https://doi.org/https://doi.org/10.1016/j.ecolind.2017.04.0041114

Enari, H., Enari, H. S., Okuda, K., Maruyama, T., & Okuda, K. N. (2019). An evaluation1115

of the efficiency of passive acoustic monitoring in detecting deer and primates in1116

comparison with camera traps. Ecological Indicators, 98, 753–762.1117

https://doi.org/10.1016/j.ecolind.2018.11.0621118

Erb, W., Ross, W., Kazanecki, H., Mitra Setia, T., Madhusudhana, S., & Clink, D. (2023,1119

April). Vocal complexity in the long calls of Bornean orangutans (preprint). Animal1120

Behavior and Cognition. bioarXiv. https://doi.org/10.1101/2023.04.05.5354871121

https://doi.org/10.1111/2041-210X.13362
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.3390/d13110566
https://doi.org/10.1101/2020.09.07.285502
https://doi.org/https://doi.org/10.1016/j.ecolind.2017.04.004
https://doi.org/10.1016/j.ecolind.2018.11.062
https://doi.org/10.1101/2023.04.05.535487


MACHINE LEARNING FOR PRIMATE BIOACOUSTICS 47

Eyben, F., Wöllmer, M., & Schuller, B. (2010). Opensmile: The munich versatile and fast1122

open-source audio feature extractor.1123

Proceedings of the 18th ACM International Conference on Multimedia, 1459–1462.1124

https://doi.org/10.1145/1873951.18742461125

Fedurek, P., Zuberbühler, K., & Dahl, C. D. (2016). Sequential information in a great ape1126

utterance. Scientific Reports, 6(1), 38226. https://doi.org/10.1038/srep382261127

Ganchev, T. (2017). Computational bioacoustics: Biodiversity monitoring and assessment1128

(Vol. 4). Walter de Gruyter GmbH & Co KG.1129

https://doi.org/10.1515/97816145163161130

Germain, F. G., Chen, Q., & Koltun, V. (2019). Speech denoising with deep feature losses.1131

Proc. Interspeech 2019, 2723–2727. https://doi.org/arXiv.1806.105221132

Ghani, B., Denton, T., Kahl, S., & Klinck, H. (2023, July). Feature Embeddings from1133

Large-Scale Acoustic Bird Classifiers Enable Few-Shot Transfer Learning1134

[arXiv:2307.06292 [cs, eess]]. Retrieved July 20, 2023, from1135

http://arxiv.org/abs/2307.062921136

Guo, S., Xu, P., Miao, Q., Shao, G., Chapman, C. A., Chen, X., He, G., Fang, D.,1137

Zhang, H., Sun, Y., Shi, Z., & Li, B. (2020). Automatic identification of individual1138

primates with deep learning techniques. iScience, 23(8), 101412.1139

https://doi.org/https://doi.org/10.1016/j.isci.2020.1014121140

Hagiwara, M. (2023). Aves: Animal vocalization encoder based on self-supervision.1141

ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),1142

1–5. https://doi.org/10.1109/ICASSP49357.2023.100956421143

Hagiwara, M., Hoffman, B., Liu, J.-Y., Cusimano, M., Effenberger, F., & Zacarian, K.1144

(2023). Beans: The benchmark of animal sounds.1145

ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),1146

1–5. https://doi.org/10.1109/ICASSP49357.2023.100966861147

https://doi.org/10.1145/1873951.1874246
https://doi.org/10.1038/srep38226
https://doi.org/10.1515/9781614516316
https://doi.org/arXiv.1806.10522
http://arxiv.org/abs/2307.06292
https://doi.org/https://doi.org/10.1016/j.isci.2020.101412
https://doi.org/10.1109/ICASSP49357.2023.10095642
https://doi.org/10.1109/ICASSP49357.2023.10096686


MACHINE LEARNING FOR PRIMATE BIOACOUSTICS 48

Heinicke, S., Kalan, A. K., Wagner, O. J., Mundry, R., Lukashevich, H., & Kühl, H. S.1148

(2015). Assessing the performance of a semiautomated acoustic monitoring system1149

for primates (K. Jones, Ed.). Methods in Ecology and Evolution, 6(7), 753–763.1150

https://doi.org/10.1111/2041-210X.123841151

Hsu, W.-N., Bolte, B., Tsai, Y.-H., Lakhotia, K., Salakhutdinov, R., & Mohamed, A.1152

(2021). Hubert: Self-supervised speech representation learning by masked prediction1153

of hidden units.1154

IEEE/ACM Transactions on Audio, Speech, and Language Processing, PP, 1–1.1155

https://doi.org/10.1109/TASLP.2021.31222911156

James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023).1157

An introduction to statistical learning: With applications in python. Springer1158

Nature. https://doi.org/10.1007/978-3-031-38747-01159

Janetzky, P., Davidson, P., Steininger, M., Krause, A., & Hotho, A. (2021). Detecting1160

presence of speech in acoustic data obtained from beehives.1161

Proceedings of the 6th Detection and Classification of Acoustic Scenes and Events 2021 Workshop (DCASE2021),1162

26–30.1163

Jiang, Z., Soldati, A., Schamberg, I., Lameira, A. R., & Moran, S. (2023). Automatic1164

Sound Event Detection and Classification of Great Ape Calls Using Neural1165

Networks. https://doi.org/https://doi.org/10.48550/arXiv.2301.022141166

Kalan, A. K., Mundry, R., Wagner, O. J., Heinicke, S., Boesch, C., & Kühl, H. S. (2015).1167

Towards the automated detection and occupancy estimation of primates using1168

passive acoustic monitoring. Ecological Indicators, 54, 217–226.1169

https://doi.org/10.1016/j.ecolind.2015.02.0231170

Kidney, D., Rawson, B. M., Borchers, D. L., Stevenson, B. C., Marques, T. A., &1171

Thomas, L. (2016). An efficient acoustic density estimation method with human1172

detectors applied to gibbons in cambodia. PLOS ONE, 11(5), 1–16.1173

https://doi.org/10.1371/journal.pone.01550661174

https://doi.org/10.1111/2041-210X.12384
https://doi.org/10.1109/TASLP.2021.3122291
https://doi.org/10.1007/978-3-031-38747-0
https://doi.org/https://doi.org/10.48550/arXiv.2301.02214
https://doi.org/10.1016/j.ecolind.2015.02.023
https://doi.org/10.1371/journal.pone.0155066


MACHINE LEARNING FOR PRIMATE BIOACOUSTICS 49

Kiskin, I., Sinka, M., Cobb, A. D., Rafique, W., Wang, L., Zilli, D., Gutteridge, B.,1175

Dam, R., Marinos, T., Li, Y., et al. (2021). Humbugdb: A large-scale acoustic1176

mosquito dataset. arXiv e-prints. https://doi.org/10.5281/zenodo.49048001177

Kiskin, I., Zilli, D., Li, Y., Sinka, M., Willis, K., & Roberts, S. (2020). Bioacoustic1178

detection with wavelet-conditioned convolutional neural networks.1179

Neural Computing and Applications, 32(4), 915–927.1180

https://doi.org/10.1007/s00521-018-3626-71181

Lakdari, M. W., Ahmad, A. H., Sethi, S., Bohn, G. A., & Clink, D. J. (2024).1182

Mel-frequency cepstral coefficients outperform embeddings from pre-trained1183

convolutional neural networks under noisy conditions for discrimination tasks of1184

individual gibbons. Ecological Informatics, 80, 102457.1185

https://doi.org/10.1016/j.ecoinf.2023.1024571186

Lennox, R. J., Harcourt, R., Bennett, J. R., Davies, A., Ford, A. T., Frey, R. M.,1187

Hayward, M. W., Hussey, N. E., Iverson, S. J., Kays, R., Kessel, S. T.,1188

Mcmahon, C., Muelbert, M., Murray, T. S., Nguyen, V. M., Pye, J. D.,1189

Roche, D. G., Whoriskey, F. G., Young, N., & Cooke, S. J. (2020). A Novel1190

Framework to Protect Animal Data in a World of Ecosurveillance. BioScience,1191

70(6), 468–476. https://doi.org/10.1093/biosci/biaa0351192

Leroux, M., Al-Khudhairy, O. G., Perony, N., & Townsend, S. W. (2021, December).1193

Chimpanzee voice prints? Insights from transfer learning experiments from human1194

voices. https://doi.org/https://doi.org/10.48550/arXiv.2112.081651195

Lin, T., Wang, Y., Liu, X., & Qiu, X. (2022). A survey of transformers. AI Open, 3,1196

111–132. https://doi.org/https://doi.org/10.1016/j.aiopen.2022.10.0011197

Liu, A. T., Yang, S.-w., Chi, P.-H., Hsu, P.-c., & Lee, H.-y. (2020). Mockingjay:1198

Unsupervised speech representation learning with deep bidirectional transformer1199

encoders.1200

https://doi.org/10.5281/zenodo.4904800
https://doi.org/10.1007/s00521-018-3626-7
https://doi.org/10.1016/j.ecoinf.2023.102457
https://doi.org/10.1093/biosci/biaa035
https://doi.org/https://doi.org/10.48550/arXiv.2112.08165
https://doi.org/https://doi.org/10.1016/j.aiopen.2022.10.001


MACHINE LEARNING FOR PRIMATE BIOACOUSTICS 50

ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),1201

6419–6423. https://doi.org/10.1109/ICASSP40776.2020.90544581202

Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang, J., & Tang, J. (2023).1203

Self-supervised learning: Generative or contrastive.1204

IEEE Transactions on Knowledge; Data Engineering, 35(01), 857–876.1205

https://doi.org/10.1109/TKDE.2021.30908661206

Mesaros, A., Heittola, T., Diment, A., Elizalde, B., Shah, A., Vincent, E., Raj, B., &1207

Virtanen, T. (2017). Dcase 2017 challenge setup: Tasks, datasets and baseline system.1208

DCASE 2017-Workshop on Detection and Classification of Acoustic Scenes and Events.1209

https://doi.org/doi:10.1109/TASLP.2019.29070161210

Mesaros, A., Heittola, T., & Virtanen, T. (2019). Acoustic scene classification in dcase 20191211

challenge: Closed and open set classification and data mismatch setups.1212

Workshop on Detection and Classification of Acoustic Scenes and Events.1213

https://doi.org/10.33682/m5kp-fa971214

Mielke, A., & Zuberbühler, K. (2013). A method for automated individual, species and call1215

type recognition in free-ranging animals. Animal Behaviour, 86(2), 475–482.1216

https://doi.org/10.1016/j.anbehav.2013.04.0171217

Mohamed, A., Lee, H.-y., Borgholt, L., Havtorn, J., Edin, J., Igel, C., Kirchhoff, K.,1218

Li, S.-W., Livescu, K., Maaløe, L., Sainath, T., & Watanabe, S. (2022).1219

Self-supervised speech representation learning: A review.1220

IEEE Journal of Selected Topics in Signal Processing, 16(6), 1179–1210.1221

https://doi.org/10.1109/JSTSP.2022.32070501222

Müller, M. (2007). Dynamic time warping. Information retrieval for music and motion,1223

69–84. https://doi.org/10.1007/978-3-540-74048-3_41224

Pellegrini, T. (2021). Deep-Learning-Based Central African Primate Species Classification1225

with MixUp and SpecAugment. Interspeech 2021, 456–460.1226

https://doi.org/10.21437/Interspeech.2021-19111227

https://doi.org/10.1109/ICASSP40776.2020.9054458
https://doi.org/10.1109/TKDE.2021.3090866
https://doi.org/doi:10.1109/TASLP.2019.2907016
https://doi.org/10.33682/m5kp-fa97
https://doi.org/10.1016/j.anbehav.2013.04.017
https://doi.org/10.1109/JSTSP.2022.3207050
https://doi.org/10.1007/978-3-540-74048-3_4
https://doi.org/10.21437/Interspeech.2021-1911


MACHINE LEARNING FOR PRIMATE BIOACOUSTICS 51

Pérez-Granados, C., & Schuchmann, K.-L. (2023). The sound of the illegal: Applying1228

bioacoustics for long-term monitoring of illegal cattle in protected areas.1229

Ecological Informatics, 74, 101981.1230

https://doi.org/https://doi.org/10.1016/j.ecoinf.2023.1019811231

Pérez-Granados, C., & Traba, J. (2021). Estimating bird density using passive acoustic1232

monitoring: A review of methods and suggestions for further research. Ibis, 163(3),1233

765–783. https://doi.org/10.1111/ibi.129441234

Pichler, M., & Hartig, F. (2023). Machine learning and deep learninga review for ecologists.1235

Methods in Ecology and Evolution, 14(4), 994–1016.1236

https://doi.org/10.1111/2041-210X.140611237

Piel, A. K., Crunchant, A., Knot, I. E., Chalmers, C., Fergus, P., Mulero-Pázmány, M., &1238

Wich, S. A. (2022). Noninvasive Technologies for Primate Conservation in the 21st1239

Century. International Journal of Primatology, 43(1), 133–167.1240

https://doi.org/10.1007/s10764-021-00245-z1241

Pozzi, L., Gamba, M., & Giacoma, C. (2010). The use of artificial neural networks to1242

classify primate vocalizations: A pilot study on black lemurs.1243

American Journal of Primatology: Official Journal of the American Society of Primatologists,1244

72(4), 337–348. https://doi.org/10.1002/ajp.207861245

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al. (2018). Improving language1246

understanding by generative pre-training.1247

Robakis, E., Watsa, M., & Erkenswick, G. (2018). Classification of producer characteristics1248

in primate long calls using neural networks.1249

The Journal of the Acoustical Society of America, 144(1), 344–353.1250

https://doi.org/10.1121/1.50465261251

Romero-Mujalli, D., Bergmann, T., Zimmermann, A., & Scheumann, M. (2021). Utilizing1252

DeepSqueak for automatic detection and classification of mammalian vocalizations:1253

https://doi.org/https://doi.org/10.1016/j.ecoinf.2023.101981
https://doi.org/10.1111/ibi.12944
https://doi.org/10.1111/2041-210X.14061
https://doi.org/10.1007/s10764-021-00245-z
https://doi.org/10.1002/ajp.20786
https://doi.org/10.1121/1.5046526


MACHINE LEARNING FOR PRIMATE BIOACOUSTICS 52

A case study on primate vocalizations. Scientific Reports, 11(1), 24463.1254

https://doi.org/10.1038/s41598-021-03941-11255

Ross, S. R.-J., O’Connell, D. P., Deichmann, J. L., Desjonquères, C., Gasc, A.,1256

Phillips, J. N., Sethi, S. S., Wood, C. M., & Burivalova, Z. (2023). Passive acoustic1257

monitoring provides a fresh perspective on fundamental ecological questions.1258

Functional Ecology, 37(4), 959–975. https://doi.org/10.1111/1365-2435.142751259

Ruan, W., Wu, K., Chen, Q., & Zhang, C. (2022). ResNet-based bio-acoustics presence1260

detection technology of Hainan gibbon calls. Applied Acoustics, 198, 108939.1261

https://doi.org/10.1016/j.apacoust.2022.1089391262

Sainburg, T., Thielk, M., & Gentner, T. Q. (2020). Finding, visualizing, and quantifying1263

latent structure across diverse animal vocal repertoires.1264

PLoS computational biology, 16(10), e1008228.1265

https://doi.org/10.1371/journal.pcbi.10082281266

Sarkar, E., & Doss, M. M. (2023, May). Can Self-Supervised Neural Networks Pre-Trained1267

on Human Speech distinguish Animal Callers? [arXiv:2305.14035 [cs, eess]].1268

https://doi.org/https://doi.org/10.48550/arXiv.2305.140351269

Schneider, S., Baevski, A., Collobert, R., & Auli, M. (2019). wav2vec: Unsupervised1270

Pre-Training for Speech Recognition. Proc. Interspeech 2019, 3465–3469.1271

https://doi.org/10.21437/Interspeech.2019-18731272

Schofield, D., Nagrani, A., Zisserman, A., Hayashi, M., Matsuzawa, T., Biro, D., &1273

Carvalho, S. (2019). Chimpanzee face recognition from videos in the wild using deep1274

learning. Science Advances, 5(9), eaaw0736. https://doi.org/10.1126/sciadv.aaw07361275

Schuller, B. W., Batliner, A., Bergler, C., Mascolo, C., Han, J., Lefter, I., Kaya, H.,1276

Amiriparian, S., Baird, A., Stappen, L., Ottl, S., Gerczuk, M., Tzirakis, P.,1277

Brown, C., Chauhan, J., Grammenos, A., Hasthanasombat, A., Spathis, D., Xia, T.,1278

. . . Kaandorp, C. (2021). The INTERSPEECH 2021 Computational Paralinguistics1279

https://doi.org/10.1038/s41598-021-03941-1
https://doi.org/10.1111/1365-2435.14275
https://doi.org/10.1016/j.apacoust.2022.108939
https://doi.org/10.1371/journal.pcbi.1008228
https://doi.org/https://doi.org/10.48550/arXiv.2305.14035
https://doi.org/10.21437/Interspeech.2019-1873
https://doi.org/10.1126/sciadv.aaw0736


MACHINE LEARNING FOR PRIMATE BIOACOUSTICS 53

Challenge: COVID-19 Cough, COVID-19 Speech, Escalation & Primates.1280

https://doi.org/10.48550/arXiv.2102.134681281

Sethi, S., Jones, N., Fulcher, B., Picinali, L., Clink, D., Klinck, H., Orme, D., Wrege, P., &1282

Ewers, R. (2020). Characterizing soundscapes across diverse ecosystems using a1283

universal acoustic feature set. Proceedings of the National Academy of Sciences,1284

117, 202004702. https://doi.org/10.1073/pnas.20047021171285

Stowell, D. (2019). State of the art in computational bioacoustics and machine learning:1286

How far have we come? Biodiversity Information Science and Standards, 3, e37227.1287

https://doi.org/10.3897/biss.3.372271288

Stowell, D. (2022). Computational bioacoustics with deep learning: A review and roadmap.1289

PeerJ, 10. https://doi.org/10.7717/peerj.131521290

Sugai, L. S. M., Silva, T. S. F., Ribeiro, J., José Wagner, & Llusia, D. (2018). Terrestrial1291

Passive Acoustic Monitoring: Review and Perspectives. BioScience, 69(1), 15–25.1292

https://doi.org/10.1093/biosci/biy1471293

Turesson, H. K., Ribeiro, S., Pereira, D. R., Papa, J. P., & de Albuquerque, V. H. C.1294

(2016). Machine learning algorithms for automatic classification of marmoset1295

vocalizations (M. Smotherman, Ed.). PLOS ONE, 11(9), e0163041.1296

https://doi.org/10.1371/journal.pone.01630411297

Tzirakis, P., Shiarella, A., Ewers, R., & Schuller, B. W. (2020). Computer Audition for1298

Continuous Rainforest Occupancy Monitoring: The Case of Bornean Gibbons Call1299

Detection. Interspeech 2020, 1211–1215.1300

https://doi.org/10.21437/Interspeech.2020-26551301

Van Wynsberghe, A. (2021). Sustainable ai: Ai for sustainability and the sustainability of1302

ai. AI and Ethics, 1(3), 213–218. https://doi.org/10.1007/s43681-021-00043-61303

von Luxburg, U., Williamson, R. C., & Guyon, I. (2012, February). Clustering: Science or1304

art? In I. Guyon, G. Dror, V. Lemaire, G. Taylor, & D. Silver (Eds.),1305

https://doi.org/10.48550/arXiv.2102.13468
https://doi.org/10.1073/pnas.2004702117
https://doi.org/10.3897/biss.3.37227
https://doi.org/10.7717/peerj.13152
https://doi.org/10.1093/biosci/biy147
https://doi.org/10.1371/journal.pone.0163041
https://doi.org/10.21437/Interspeech.2020-2655
https://doi.org/10.1007/s43681-021-00043-6


MACHINE LEARNING FOR PRIMATE BIOACOUSTICS 54

Proceedings of icml workshop on unsupervised and transfer learning (pp. 65–79,1306

Vol. 27). PMLR.1307

Wadewitz, P., Hammerschmidt, K., Battaglia, D., Witt, A., Wolf, F., & Fischer, J. (2015).1308

Characterizing vocal repertoireshard vs. soft classification approaches. PLOS ONE,1309

10(4), 1–16. https://doi.org/10.1371/journal.pone.01257851310

Wang, Y., Boumadane, A., & Heba, A. (2021). A fine-tuned wav2vec 2.0/hubert1311

benchmark for speech emotion recognition, speaker verification and spoken language1312

understanding. CoRR, abs/2111.02735. https://doi.org/10.48550/arXiv.2111.027351313

Wang, Y., Ye, J., & Borchers, D. L. (2022). Automated call detection for acoustic surveys1314

with structured calls of varying length. Methods in Ecology and Evolution, 13(7),1315

1552–1567. https://doi.org/10.1111/2041-210X.138731316

Wu, H.-H., Kao, C.-C., Tang, Q., Sun, M., McFee, B., Bello, J. P., & Wang, C. (2021).1317

Multi-task self-supervised pre-training for music classification.1318

ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),1319

556–560. https://doi.org/10.1109/ICASSP39728.2021.94144051320

Xie, J., Colonna, J. G., & Zhang, J. (2021). Bioacoustic signal denoising: A review.1321

Artif. Intell. Rev., 54(5), 3575–3597. https://doi.org/10.1007/s10462-020-09932-41322

Xie, J., Hu, K., Guo, Y., Zhu, Q., & Yu, J. (2021). On loss functions and cnns for improved1323

bioacoustic signal classification. Ecological Informatics, 64, 101331.1324

https://doi.org/https://doi.org/10.1016/j.ecoinf.2021.1013311325

Zimmer, W. M. X. (2011). Passive acoustic monitoring of cetaceans. Cambridge University1326

Press. https://doi.org/10.1017/CBO97805119771071327

Zimmermann, A., Zimmermann, E., Newman, J. D., & Jürgens, U. (1995). Artificial neural1328

networks for analysis and recognition of primate vocal communication. In1329

Current topics in primate vocal communication (pp. 29–46). Springer US.1330

https://doi.org/10.1007/978-1-4757-9930-9_21331

https://doi.org/10.1371/journal.pone.0125785
https://doi.org/10.48550/arXiv.2111.02735
https://doi.org/10.1111/2041-210X.13873
https://doi.org/10.1109/ICASSP39728.2021.9414405
https://doi.org/10.1007/s10462-020-09932-4
https://doi.org/https://doi.org/10.1016/j.ecoinf.2021.101331
https://doi.org/10.1017/CBO9780511977107
https://doi.org/10.1007/978-1-4757-9930-9_2


MACHINE LEARNING FOR PRIMATE BIOACOUSTICS 55

Zwerts, J. A., Treep, J., Kaandorp, C., Meewis, F., Koot, A. C., Kaya, H., et al. (2021).1332

Introducing a central african primate vocalisation dataset for automated species1333

classification. INTERSPEECH 2021, 466–470.1334

https://doi.org/10.21437/Interspeech.2021-1541335

https://doi.org/10.21437/Interspeech.2021-154


MACHINE LEARNING FOR PRIMATE BIOACOUSTICS 56

T
able

1
Sum

m
ary

ofcited
experim

ents
with

data
and

code
availability.

C
itation

Sp
ecies

T
ask

A
rchitecture

Features
A

vailability

D
ufourq

et
al.(2021)

H
ainan

G
ibbons

Segm
entation

supervised
C

N
N

D
ataset

+
code

R
uan

et
al.(2022)

H
ainan

G
ibbons

Segm
entation

R
esN

et
Subset

+
code

Y
.W

ang
et

al.(2022)
H

ainan
G

ibbons
Segm

entation
C

R
N

N
D

ataset
+

code
Tzirakis

et
al.(2020)

M
üller

gibbons
Segm

entation
C

R
N

N
C

ode
B

ayestehtashk
et

al.(2014)
rhesus

m
acaques

Segm
entation

SV
M

O
penSm

ile

R
obakis

et
al.(2018)

em
peror

tam
arins

+
saddleback

tam
arins

Individualclassification
Linear

layers
H

andcrafted

C
link

et
al.(2017)

M
üller

gibbons
Individualdiscrim

ination
D

FA
H

andcrafted
D

ataset
Fedurek

et
al.(2016)

chim
panzees

Individualclassification
SV

M
M

FC
C

M
ielke

and
Zuberbühler

(2013)
Stuhlm

an’s
blue

m
onkeys

+
others

Individualclassification
+

species
recognition

M
LP

Zw
erts

et
al.(2021)

chim
panzees

+
m

andrills
+

red-capped
m

angabeys
+

guenons
species

recognition
K

E
LM

M
FC

C
D

ataset
+

code

P
ellegrini(2021)

chim
panzees

+
m

andrills
+

red-capped
m

angabeys
+

guenons
species

recognition
C

N
N

+
M

obilenet
+

R
esnet

C
ode

P
ozziet

al.(2010)
black

lem
urs

calltype
classification

A
N

N
+

D
FA

+
clustering

Turesson
et

al.(2016)
com

m
on

m
arm

oset
calltype

classification
Seven

m
odels

(SV
M

,kN
N

,O
P

F
...)

D
ataset

+
C

ode

E
rb

et
al.(2023)

B
ornean

orangutans
calltype

clustering
SV

M
+

clustering

Sainburg
et

al.(2020)
gibbons

+
rhesus

m
acaques

+
other

taxa
calltype

clustering
U

M
A

P
S

spectrogram
s

D
ataset

B
est

et
al.(2023)

no
prim

ates
calltype

clustering
SSL

C
N

N
auto-encoder

+
U

M
A

P
S

spectrogram
s

+
P

T
M

s
C

ode

R
om

ero-M
ujalliet

al.(2021)
gray

m
ouse

lem
urs

+
goodm

ans
m

ouse
lem

urs

segm
entation

+
classification

+
calltype

clustering
D

eepSqueek
(FastC

N
N

)
D

ataset
+

code

Jiang
et

al.(2023)
bonobos

+
chim

panzees
+

orangutans
segm

entation
+

classification
C

N
N

w
aveform

+
spectrogram

s
+

w
av2vec

em
beddings

C
ode

Leroux
et

al.(2021)
chim

panzees
Individualclassification

A
N

N
s

D
eepTone

Sarkar
and

D
oss

(2023)
com

m
on

m
arm

osets
individualdiscrim

ination
SV

M
,LST

M
11

speech
P

T
M

s

H
agiw

ara
(2023)

gibbons
+

other
taxa

segm
entation

+
other

AV
E

S
(bioacoustic

H
uB

E
R

T
)

D
ataset

+
code

https://github.com/emmanueldufourq/GibbonClassifier
https://github.com/ ruwenda/ResNet-based-Bio-acoustics-Presence-Detection-Technology-of-Hainan-Gibbon-Calls
https://doi.org/10.5281/zenodo.6461670
https://github.com/glam-imperial/ Bornean-Gibbons-Call-Detection
https://osf.io/yqpvk/
https://github.com/ kalleknast/call_class.
https://zenodo.org/record/3775893#.X3YdqZNKhTY
https://gitlab.lis-lab.fr/paul.best/repertoire_embedder/
https://github.com/M0rph3u2x/How-Deepsqueak-can-be-utilized-for-mammalian-vocalizations
https://github.com/earthspecies/beans
https://github.com/earthspecies/aves


MACHINE LEARNING FOR PRIMATE BIOACOUSTICS 57

Detection and

segmentation

- Extracting vocalizations from long PAM recordings


- Analyzing vocalization frequency, localization, length, etc.


- Accelerating manual dataset collection for qualitative analysis

Presence
Absence

Presence Presence
Absence

Presence
Absence

3.1

Individual 

#1

Individual 

#2

OR

Species 

#1

Species 

#2

- Counting or recognizing individuals / species in the wild


- Analyzing inter-individual / inter-sexual / inter-species variations

- Monitoring bioacoustic diversity and environmental pressures

Identification and 
density estimation3.2

Call-type 

#1

Call-type 

#1

Call-type 

#2

Call-type 

#3

- Discovering new vocal repertoires / call-types


- Assessing the validity of pre-defined expert vocal repertoires

- Analyzing discreteness / continuity of vocalization typologies

Vocal repertoires and 
clustering3.3

Figure 1
The three main categories of tasks tackled with machine learning for primate bioacoustics.
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Figure 2
Machine learning workflow for primate bioacoustics.
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output
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embedding extraction
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Figure 3
The transfer learning approach: Using a pre-trained model to classify primate vocalizations
(ResNet, VGG, wav2vec, etc. are examples of publicly available pre-trained models).
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Figure 4
Spectrogram of a Müller Gibbon call. The blue boxes correspond to time and frequency
boundaries of the calls. Data from Clink et al. (2017).
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Figure 5
The efficacy / explainability tradeoff between different machine learning architectures
(wav2vec, AudioMAE, ResNet and AlexNet are examples of popular deep learning
architectures used in bioacoustics).
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Figure 6
Spectrograms of Rhesus macaques (Macaca mulatta) vocal elements discretized and
embedded into a 2D UMAP space. Scatter plot points are colored by individual identity.
Image from Sainburg et al. (2020).
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Figure 7
Gibbon syllable spectrograms embedded into a 2D UMAP space. Image from Sainburg et al.
(2020).
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Figure 8
Model size against performance on a primate bioacoustics task. Model pre-training objective
denoted as: Masked prediction (red). Autoregressive reconstruction (blue). Contrastive
(green). Masked reconstruction (orange). AUC is the Area Under Curve evaluation metric.
Figure from Sarkar and Doss (2023).
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